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Abstract—Indoor positioning with IEEE 802.11 Fine Timing
Measurement (FTM) relies on precise estimation of the Round
Trip Time (RTT) between a pair of WiFi devices. However,
studies have demonstrated that multi-path propagation affect
FTM, which tends to overestimate and only rarely underestimates
the actual distance. We present HopFTM to enhances FTM ranging
accuracy by leveraging frequency diversity and space diversity
(mobility). Specifically, HopFTM performs ranging on multiple
radio channels. Additionally, in a mobile scenario, ranging is
performed at multiple locations. Our experimental results using
low-cost ESP32-S3 hardware reveal that selecting the smallest
RTT value from all measured channels significantly improves
accuracy, especially in environments with strong multi-path effects
or non-line-of-sight conditions. In a static scenario by using the
smallest RTT from four channels, we were able to reduce the
median ranging error by 4× from 120 cm to 30 cm while the
worst-case error was decreased from 15 m to 10 m, compared
to a traditional single-channel approach. In a mobile scenario,
ranging measurements taken at different locations outside the
decorrelation distance can also be fused. Our simulation shows
that taking the smallest RTT value over multiple positions can
improve FTM ranging error from 1.8 m to 0.76 m.

Index Terms—Ranging, WiFi, fine timing measurement, FTM,
frequency diversity, channel hopping

I. INTRODUCTION

Wireless sensing is becoming more relevant for 6G [1]
as well as for technologies like 802.11 WiFi [2]. Indoor
localization, where GPS is unavailable, drives the development
of anchor-based localization technologies [2]. These can rely
on ranging, for example on measurement of the Time of
Flight (ToF) which can be deducted from the Round Trip
Time (RTT) of a signal exchange. With the standardization
of Fine Timing Measurement (FTM) as 802.11mc [3] and
802.11az [4] ToF based ranging is introduced for WiFi. FTM
defines the exchange of packets on which the RTT can be
measured [3]. One of the key advantages is the widespread
availability of WiFi, both in terms of deployments and support
in end-user devices [2]. WiFi Access Points (APs) can work as
anchor points (so called Responders) for FTM and therefore
build the FTM infrastructure. By estimating the distances to
multiple APs, the position of the station can be determined.
This way FTM enables localization services in dense WiFi
deployments. Especially, low-cost, commodity microcontroller
with a full WiFi stack are now available, enabling the feasibility
of ultra-dense deployments with hundreds of devices [5].
Microcontrollers such as the ESP32-S2 also come with FTM
capabilities on the chip making ranging easily accessible.

While FTM proposes meter-level accuracy, recent studies
using Commercial Off-The-Shelf (COTS) WiFi hardware
demonstrated that FTM often fails to meet these expectations,
particularly in environments with strong multipath propagation,
such as indoors [6], [7]. Authors in [6], [8], [9] show that FTM
measurements tend to be noisy and tend to overestimate the
true distance and rarely underestimate it. Multipath effects
are frequency-dependent and position-dependent and, hence,
cannot be averaged out in stationary FTM measurements. The
same fact is visible in the data that we present in this paper.
Existing countermeasures proposed in the literature come with
many limitations, for example they are limited to calibrated or
trained environments [7].

In this paper, we take advantage of the fact that FTM is
prone to overestimation, which is a novelty in research on
FTM. Moreover, we show that the WiFi radio channel used
for ranging has a significant impact on accuracy showing
the frequency-dependency of FTM. Furthermore, the best-
performing channels for different positions vary. Based on
these observations, we propose to perform WiFi ranging across
multiple radio channels. Selecting the smallest RTT value,
we achieve a significant improvement in ranging accuracy
without additional training phases. Additionally, we show how
mobility can be used to work with position-dependent errors of
FTM. Doing multiple measurements in general and measuring
on multiple channels in particular comes with the tradeoff
of longer measurement times, which we also analyze in this
paper. We also study the effect if we decrease the number
of channels used for measurements. Since an AP in a WiFi
network typically does not frequently switch channels, we
developed a system named HopFTM system, where the FTM-
Responder perform channel hopping to enable ranging on
different channels. Additionally, we study the effect of mobility
in a simulation.

Our main contributions can be summarized as follows:

• We present HopFTM, a system which utilizes spacial di-
versity and frequency diversity to achieve higher accurate
ranging especially indoors,

• A low-cost prototype using ESP32s3 microcontrollers as
responder (soft-APs) is presented,

• Comprehensive experimental evaluation in indoor, out-
door and Non-Line-of-sight (NLOS) environments are
performed,

• Analysis of trade-offs like ranging delay and accuracy.



II. RELATED WORK

Since its introduction, there has already been extensive
research into the capabilities of FTM-based WiFi ranging. Many
works show, that FTM measurements come with a low accuracy
(2–3 m [10]) especially in indoor environments like hallways [6],
[7], [10]–[12] independent of the used hardware [10]. Also
persons moving in a room influence the accuracy of FTM
[11], [13]. However, using a larger bandwidth reduces the error
[10]. Barral Vales et al. [7] show how the distance estimation
algorithm of the ESP32 improves the ranging estimation in their
indoor scenario while the estimation in the outdoor scenario is
worse than the raw FTM measurement. Taking Received Signal
Strength Indication (RSSI) as an additional source for ranging
and signal quality, the authors train a Machine Learning (ML)
model based on their data, which achieves good results in the
environment for which the model was trained for. However,
there is no improvement visible for an unseen environment. Si
et al. [14] proposed an alternative approach, where a Gaussian
model was developed to identify whether FTM measurements
are done under Line-of-sight (LOS) or NLOS conditions based
on the measured RSSI. Using only data from LOS scenarios
they significantly improves the overall accuracy of the system
to an accuracy of 83.1%. Liu et al. [15] use a SegRNN to filter
the sequence of FTM measurements to detect anomalies within
the data and discard corrupted measurements. The SegRNN
does not require data following a specific distribution. Sun
et al. [16] use the available sensors on a smartphone together
with WiFi RSSI and FTM fingerprinting to build a localization
framework. The data from the sensors and the position out
of fingerprinting are combined and smoothened by a particle
filter.

In contrast, Horn [9] already studied the nature of the
ranging error and stated that the error distribution of FTM
is non-Gaussian, highly position-dependent and much larger
than the measurement noise. He is already suggesting fre-
quency diversity to limit the position-dependent error by using
dedicated non-overlapping channel in the 5 GHz band and
proofs with his data that the ranging errors measured on the
different channels are independent. Using a weighted average
to estimate distances, the author tries to emphasize the fact that
FTM tends to overestimate rather than underestimate distances.
With FUSIC Jiokeng et al. [17] introduce a framework using
the channel state information (CSI) to detect if the FTM
measurement was affected by multipath and corrects the ranging
measurement based on the time difference of the multipath
components estimated by the MUSIC algorithm. With FUSIC
the authors decrease the median ranging error from 5.04 m
to 1.9 m. Banin et al. [18] improve FTM localization with a
Bayesian filter for a moving device based on spacial diversity
and constraints given by a map.

So far, only one work was proposing FTM ranging on
different channels to increase accuracy. Furthermore, none
of the works propose using the smallest RTT value out of
multiple measurements.

III. BACKGROUND

A. Wireless Channel Propagation

A radio signal interacts with its surroundings, such as
walls, furniture, and even humans. As a result, the signal
is reflected off walls or scatters through obstacles, such that
multiple copies of the transmitted signal are created, known
as multipath components. These signal components arrive at
different times because of the varying path lengths, which
results in different phases of the signal, causing constructive
or destructive interference. This phase shift of the signal is
frequency dependent as φn = tn · f where φn is the phase of
the nth multipath component at the time tn and f the frequency
of the signal. The multipath characteristic of the channel can be
observed through the distinct impulses in the Channel Impulse
Response (CIR). When assuming a time-invariant channel, so
the CIR can be denoted as [19]:

h(t) =

N∑
n=0

ane
−jφnδ(t− tn) (1)

where an is the amplitude, N is the total number of multipath
components and δ(t) is the Dirac delta function. The sum of
amplitude and phase of these multipath components can result
in constructive or destructive interference.

B. FTM Protocol

FTM is a standardized MAC layer protocol in WiFi for
ranging between a Station (STA) and a responder (AP) which
can be performed without prior association. The APs announce
their FTM capabilities in beacon frames or probe response
frames. The FTM protocol works in this way: A STA (the
initiator) can request a FTM session at the responder. Although
the responder does not have to be an AP, some devices, such
as the ESP32, only support FTM Responder functionality in
AP-mode. Once the responder acknowledges the FTM request,
a number of FTM packets are exchanged between the devices,
each device measuring the packets’ send and arrival times.
The responder sends FTM frames including its recorded time
measurements of previously sent (t1) and received packets (t4)
which the initiator acknowledges. The initiator records the
points in time when the packets arrive (t2) and when the
Acknowledgement (ACK) was sent (t3). Hence, the initiator
can calculate its distance to the responder based on the RTT
and the speed of light c. Mathematically speaking, the distance
d is calculated as

RTT = (t4 − t1)− (t3 − t2) (2)

d = c · RTT
2

+ ki (3)

where ki is an offset due to the antenna and chip design [20].
The distance values over the FTM packets in one session are
averaged, however, this method cannot average out biases,
as multipath fading effects are stationary. FTM relies on
a high resolution of the Time of Arrival (ToA) which is
higher than the required sample rate by Shannon’s theorem
(e.g., the sample rate would be 50 ns for a 20 MHz channel).



−2.5 0.0 2.5 5.0 7.5 10.0 12.5 15.0
Ranging error [m]

0.0

0.1

0.2

0.3
D

en
si

ty
exp. mod. Normal Dist.
expected value
measured error

Figure 1. Histogram of ranging errors in studied environments (ESP32
hardware). The data follows a exponentially modified Normal Distribution

Thus, the higher resolution might be achieved by massively
oversampling the incoming signal, however, methods relying on
the CSI like MUSIC can also be used. However, the concrete
implementation of the ToA estimation in COTS hardware is a
black box. In case of a multipath environment, the chip might
estimate the arrival based on a component which bounced and
thereby traveled a longer distance. Indeed, it might always see
a mixture of different signal components. Nevertheless, this
does not explain underestimations that also occur and might
be caused by the ToA estimation algorithm.

IV. SYSTEM MODEL & PROBLEM STATEMENT

Indoor ranging based on the FTM protocol is highly affected
by multipath propagation, leading to inaccurate distance and,
hence, position estimations, as many authors have already
discussed [6], [7], [11], [12]. These multipath components arrive
so close in time that one sample includes a mixture of multiple
components. To overcome multipath effects, two ways are
physically possible. One possible way is leveraging spacial
diversity, e.g. changing the position as done in [18], [21] or
the environment [13]. A change of the position will change
the path length of the different multipath components and
thereby the phase of each multipath component at the receiver.
Another way is changing the frequency of the signal as this will
change the phase of the signal without the need of changing
the position.

In this paper, we are analyzing the first way for mobile
stations and the second way for a static environment and static
positions of the STAs and APs. As system model, we assume
that an IEEE 802.11 WiFi infrastructure network consisting of
some number of APs is deployed in the environment where
localization is required. However, this paper elaborates an
approach to improve ranging with FTM. Via trilateration
ranging can be used or localization. No association of a STA
to the APs is required.

The aim of this paper is to improve the ranging accuracy
while looking for a standard compliant solution. Our proposed
approach does not require any changes to the FTM protocol
and is a software-only solution, which could be installed on
both user devices (STA) and APs.

V. HOPFTM APPROACH

Our proposed approach is based on the following ob-
servations. First, with FTM the actual distance is usually
overestimated and rarely underestimated. Figure 1 shows the
ranging error for each FTM session of different environments
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Figure 2. Ranging measurement on multiple channels (indoor, hallway). The
error behaves differently depending on the used channel.

we studied like an indoor hallway, a living room and a
computer pool with strong multipath as well, as an outdoor
scenario (Figure 4) and using COTS WiFi hardware, i.e.,
ESP32. The ranging error follows a non Gaussian distribution
(e.g., an exponentially modified Normal Distribution) where
it is more likely to overestimate the true distance rather than
underestimating it. The WiFi radio channel used for ranging
has a significant impact on the achieved accuracy as shown
in Figure 2, where different channels works best for different
distances. The figure shows the ranging error depending on
the channel for measurements on eight different distances in a
computer room with the same hardware.

Therefore, in order to improve the ranging accuracy of
WiFi-FTM, we propose the HopFTM approach (Figure 3). It
performs WiFi ranging on multiple different radio channels
where taking the smallest value already results in significant
improvement in ranging error. In case of mobility it can also
perform ranging measurements at different locations along the
trajectory of the STA using spacial diversity. To measure on
different channels the responders have to change their operating
channels frequently. As the STA is requesting FTM sessions
from the AP also the client has to adapt its channel. We like
to highlight two different implementation strategies. First, the
AP is changing its channel, while the STA has to first do WiFi
scanning before executing the ranging with FTM. Another
option is to synchronize the STA with the APs using the
beacon frames so that the ranging can be performed after each
channel switch of the AP.
HopFTM comes with three parameters: The number RTT

measurements taken into account for preprocessing W , the
number of used channels C and the spacing between the chan-
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Figure 3. HopFTM approach: 1) APs perform channel hopping, 2) STA
performs scanning & FTM ranging, 3) obtained per channel RTT results are
post-processed to derive final RTT.
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Figure 4. Measurement setup - both STA and AP mounted on tripods (1.5 m above the ground)

nels K. So, the specific hopping sequence Si = (c1i , . . . , c
m
i )

of a specific AP i is defined by C and K. As the spectrum
is limited, there is a wrap-around in case hopping beyond the
highest channel is done. All three parameters have an impact
on both, ranging accuracy and overhead. The STA periodically
starts FTM sessions, such that there is at least one session
on a channel. After performing W different FTM rangings
on C different channels towards a specific responder m the
STA performs a post-processing on the set of collected RTT
data RTTm = RTTm

1 , . . . ,RTTm
W . For a static scenario, we

assume that each channel is only measured once (W = C).
HopFTM provides the following two post-processing strategies.
First, the RTT min strategy takes the smallest RTT value
from RTTm and, hence, the shortest distance. This could be
illustrated as only the shortest path (which is the direct path)
is measured, however, this would ignore the fact that devices
see always a mixture of the different path. Second, in order
to deal with outliers the RTT 3 min strategy computes the
average over the three channels with the lowest RTT values.
For comparison, we also apply the strategy of taking the
largest RTT measurement (RTT max) and the mean value
over the measured RTT values (RTT mean). As baseline acts
the strategy of taking the RTT values without applying any
further post-processing (BL: No window).

As a proof-of-concept (POC) HopFTM was implemented as
a prototype with COTS hardware, an ESP32 microcontroller,
for both APs and STAs. The AP was realized using ESP32
Soft AP functionality. Channel hopping was performed using
the WiFi channels in the 2.4 GHz ISM band and hop through
the channels in increasing order. To synchronize to the AP, the
STA used WiFi scanning with subsequent ranging. The station
does not associate with the AP.

VI. EVALUATION

In the following, we first study how HopFTM leverages
frequency diversity. Therefore, we do experiments using our
prototype in a static setup, which we compare against a baseline
of using no windowing (W = 1) and other different post-
processing strategies. We analyze the impact of the number
of used measurements and the channel spacing. In a later
simulation we analyze the impact of spacial diversity in a

mobile scenario. The following six different environments
were analyzed:
(a) Free field - outdoor environment with little multipath

propagation (Figure 4a),
(b) Livingroom - indoor environment with short ranges (Fig-

ure 4b),
(c) Hallway - indoor environment with strong reflections

(Figure 4c),
(d) PC lab - indoor in university,
(e) NLOS wall - environment with LOS blocked by a wall,
(f) NLOS door - environment with LOS blocked by a door.

For each environment we collected FTM ranging traces for
different distances for which we apply the post-processing
strategies. We always collect data from all channels, but for
the post-processing we only choose a subset of C channels and
process all combinations with respect to limits coming from a
given K. So every channel is taken as start channel and the
chosen or all possible channel hopping sequences are applied.
As performance metric, we computed the ranging error.

A. Impact of Environment

The results for the six different environments and different
post-processing strategies are shown in Figure 5 for which we
measure a set of C = 9 channels. As expected, the ranging
error is the smallest in the outdoor environment, and much
higher for the five indoor environments. The lowest errors are
achieved using HopFTM with RTT min strategy. It decreases
the median ranging error by between 70 cm and more than
1 m for multiple environments under study, e.g., from 45 cm to
1.2 m in the Hallway scenario. The worst-case ranging error is
decreased by 9 m to 2.5 m in the Hallway scenario and to 6.4 m
in the NLOS door scenario. However, in contrast to the other
strategies, this method underestimates the distance slightly for
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Figure 5. Comparison of post-processing algorithms in different environments
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Figure 6. Influence of number of selected channels

Free field (median 36 cm), Hallway (median 1 cm) and NLOS
door (median 66 cm). RTT mean and RTT max achieve the
highest ranging error. The baseline approach of using a single
channel only achieves different performances depending on the
environment, as the chosen channel sometimes performs well.

B. Impact of Number of Channels

The results of the study on the influence of number of
channels C in one hopping sequence are shown in Figure 6.
We therefore did measurements in all six environments. We can
see that the use of more channels decreases the ranging error
and its variation for RTT min and RTT 3 min. However, as
we see larger improvements if the number of channels increases
if only a few channels in use, it becomes less effective if more
channels are already used. This effect is especially visible for
RTT min as there is a high probability that the channel with
the smallest RTT value or a similar value is already in the
data set. Numerically, the median ranging error decreases for
RTT min to 30 cm if four channels are measured compared
to 70 cm for a measurement of two channels and 1.2 m for
our baseline. For the worst-case ranging error, we measure an
improvement of 5 m when using four instead of two channels,
and 8 m if we use 9 channels instead. Compared to it, RTT
3 min require more channels to be measured as it takes the
lowest three values into account.

C. Impact of Channel Spacing

For a study on the channel spacings K we focus on the
algorithm RTT min. Note, the channel spacing is measured
by taking the difference of the center frequency of the WiFi
channel, where a switch to a neighbored channel is K = 5 MHz.
The start channel is random, indeed, channel hopping beyond
channel 12 will cause a wrap starting at channel 1. The results
in Figure 7 show a similar behavior for the different channel
spacings under study for the different number of channels.
We see for two channels an improvement of 15 cm for K =
15 MHz) compared to neighboring channels are used (K =
5 MHz). But there is a smaller improvement of 10 cm if every
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Figure 7. Influence of channel spacing on ranging error
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Figure 8. Trade-off between ranging delay and median ranging error

fourth channel is used (K = 25 MHz), however, the worst-
case ranging error decreases by 4 m. From the results, we see
that neighboring channels are similarly affected by multipath
effects. If a larger number of channels is taken into account,
the effect of the hopping distance is quiet marginal as the real
steps between the channel are smaller due to the overflow.

D. Ranging Duration

Even tough the use of more channels for ranging leads to
more accurate results, it also introduces additional delay as
the ranging is performed on multiple channels. Therefore, for
our prototype, we measure the duration of the FTM session
which lasts 325 ms for a burst of 16 FTM frames. Additionally,
the channel switch on an ESP32s3 takes 500 ms. The overall
delay compared to the median ranging error presented in
Figure 8 shows an exponential trend which flattens around
4 s (5 channels). The presented theoretical analysis for an Intel
chipset-based approach uses our observation of a median FTM
measurement duration of 117 ms. Changing a channel takes
around 1.3 ms as shown in [22] and therefore around 1% of the
measurement duration of a FTM session. Therefore, HopFTM
can achieve small ranging errors with a measurement duration
below 1 s if deployed on Intel hardware.

E. Influence of Mobility

Spatial diversity becomes available in case the WiFi station
performing ranging is mobile. Therefore, we stick to our
strategy of collecting data into a windows of size W and
taking the lowest measured RTT value. In a simulation, we
evaluate how taking the minimum RTT value over multiple
spatial locations can improve FTM ranging instead of taking
the minimum of a measurement over multiple channels. The
window now can consist of RTT values measured on the same
channel (so W ≥ C), however, the data is measured at different
locations. Our Monte-Carlo simulation uses a random-waypoint
mobility model, where a station is moving at constant speed v
towards or away from the AP changing its direction at random
time. We use the ranging error model for the ESP32 chip from
[8] excluding the error caused by the received signal strength.
The simulated RTT value (R̃TT) follows R̃TT = RTT+h+w.
For the position-independent Gaussian error (w) we assume a
standard deviation of 75 cm as shown in [8]. The distribution
shown in Figure 1 is used for the position-dependent error(h)
caused by multipath for which we use the decorrelation distance
of one wavelength (12 cm for 2.412 GHz carrier frequency).
We assume that the measurements are made immediately at
the end of each interval (325 ms).
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Figure 9. Influence of window duration or window size (W ) on the absolute
value of ranging error in case a station moves with 1 m/s measuring constantly
on one channel.

At first, we study the influence of the window size W
on the ranging accuracy for a station moving with v =
1 m/s. The results in Figure 9 reveal that the median ranging
error decreases from 1.8 m to 0.76 m in case 4 ranging
values are taken into account (W = 4). Additionally, the
deviation of the ranging error decreases, making ranging
more reliable. However, increasing W further increases the
ranging error as the measurement delay increases, so the best
fitting Ŵ depends on v. Therefore, we run the simulation for
v ∈ [0.1m/s; 10m/s] using two strategies: measuring on a
Single channel (C = 1) or channel hopping over fully
uncorrelated channels (Channel hopping, C = 3). We
search Ŵ that results in the lowest ranging error for a given
speed. Figure 10 shows that for v ≤ 5 m/s there is a benefit if
our approach is used, so Ŵ > 1. Ŵ decreases by speed, so
for 1 m/s Ŵ = 4, while for a device moving slowly (0.1 m/s)
Ŵ = 11. Using channel hopping, it is possible to decrease
Ŵ for slowly moving stations (e.g. from 11 to 7 for 0.1 m/s).
However, this effect vanishes for v > 0.4 m/s as measurements
on one channel become uncorrelated.

The resulting absolute values of the ranging error for the
different speeds v are presented in Figure 11 together with the
baseline of normal FTM ranging (W = 1). For v ≤ 1 m/s our
approach decreases the ranging error and its spread by around
1 m, while the median error increases above the ranging error
of the baseline at higher speeds (v = 3 m/s). This shows the
limit of our approach. Using channel hopping can improve
FTM ranging even further in case of low speeds v < 1 m/s. The
comparison of our experimental data from the pure channel
hopping approach without mobility (v = 0) shows in case of
C = 3 and C = 5 a similar median value, however, its spread is
wider than the simulated one with mobility. This can be caused
by deviations between simulation and a real environment like
channels not being uncorrelated and position-dependent errors
not being uncorrelated after 12 cm.
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Figure 11. Influence of speed v on the absolute ranging error in scenarios
without channel hopping C = 1 (Single channel) and with channel
hopping C = 3 (Channel hopping (C = 3)). Baseline without use
of windows W = 1, experimental data of HopFTM for W = C = 5

F. Discussion

HopFTM can increase the accuracy of wireless ranging and
thereby also the accuracy of WiFi based localization. However,
it comes with a higher ranging duration in case an ESP32 is
used and hence might not be feasible for low-latency or high
mobility ranging applications. Nevertheless, our approach is
of practical use in case the target STA is moving slowly or
has stationary phases. However, our theoretical study shows
that the measurement duration can be decreased by using Intel
hardware which requires a WiFi AP and higher costs.

Channel hopping of the AP comes with the cost of all
associated stations have to switch the channel and airtime is
lost by this channel switching procedure. Possible solutions
are the usage of dedicated radios or APs for ranging as no
normal data traffic needs to be served. Such approaches are
also feasible due to the very low costs of COTS hardware, e.g.,
usage of ESP32. They can be installed just for the purpose
of localization without providing data service. Furthermore,
HopFTM requires multiple measurements either on the same
channel or divided over multiple channels resulting in a higher
consumption of air time. Frequent channel switching can also
cause issues for coexistence mechanisms of other technologies
that rely on WiFi staying constantly on one channel.

VII. CONCLUSION

In this paper, we introduced HopFTM and demonstrate
that using the smallest RTT value measured under frequency
diversity or spacial diversity improves FTM ranging accuracy.
Large improvements can be achieved by using just a few
uncorrelated channels or positions. Overall, we see a decrease
of the median ranging error to 1/4 and a large decrease
of the worst-case. However, it is important to note that the
measurement time increases creating a limit due to mobility. As
future work we plan to combine FTM ranging measurements
from different spectrum bands like sub-GHz, 5, 6 and 60 GHz
because the bands have very different channel propagation
characteristics.
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