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Abstract—We present ToFMD, a system that can passively
detect the movement of an indoor device-free user by relying
on the absorptions and reflections of WiFi signals off his body.
Our system is of practical use as it is able to reuse existing
deployed commodity 802.11 infrastructure networks. It is based
on the observation that the movement of an user is altering
the multipath characteristics of the wireless channel which
leads to changes in the measured time-of-flight (ToF) between
adjacent WiFi access points. The system can detect moving
people at different places in the room, it is not necessary that
the user blocks the line-of-sight (LOS) path. In contrast to other
approaches, our system works with inexpensive single antenna
WiFi systems without access to low-level parameters like channel
state information (CSI). Instead the ToF between any pair of
access points is estimated using the fine time measurement
(FTM) protocol, which is standardized within IEEE 802.11. The
movement is detected with the help of a one class support vector
machine. As proof of concept, we implemented our system with
ultra-low cost ESP32 microcontrollers. The evaluation shows
that our solution outperforms traditional approaches using RSSI
except for the scenario with user motion in adjacent rooms. If
our system is installed in the same room as the user, it is able
to detect its movement with an accuracy of at least 95 %.

Index terms— wireless sensing, indoor movement detec-
tion, device-free detection, time-of-flight, IEEE 802.11 FTM

I. Introduction

There is rich literature body on device-free presence de-
tection schemes based on IEEE 802.11 WiFi [1]. However,
they either rely on complex hardware (MIMO arrays) and/or
special software. Some approaches rely on processing of
channel state information (CSI) which is available with COTS
WiFi hardware, however, require either customized device
drivers or root access to the WiFi devices. Other approaches
rely on processing of basic parameters like received signal
strength indication (RSSI) which are available to normal
applications, e.g., in Android operating system. However,
these approaches suffer from poor performance in certain
environments [2].

Results from experiments reveal that our ToFMD outper-
forms traditional RSSI-based approaches in most scenarios
except for user movement in adjacent rooms, i.e., behind a
wall. In this paper, we present ToFMD, a passive approach for

reflection

AP y

w
ire

d

2

movement
detection algo

3
AP x

device-free
person

AP z RTTz,y

RTTx,y

RTTx,z

server

1

Fig. 1: ToFMD architecture: 1) ToF estimation between fixed
installed WiFi APs using 802.11 FTM protocol, 2) data
fusion at server, and 3) algorithm for device-free movement
detection.

device-free movement detection of users indoors by process-
ing time-of-flight (ToF) data between any pair of adjacent and
cooperating WiFi access points (APs) (Fig. 1). As ToF-based
ranging is standardized within IEEE 802.11, information
on ToF is available to normal applications like RSSI. Our
approach is based on the observation that the movement
of an user is altering the multipath characteristics of the
wireless channel which lead to changes in ToF measurements.
For this it is not necessary that the user blocks the line-
of-sight (LOS) path. Moving behind or next to the LOS
link also changes the measured ToF. In contrast to other
approaches our system works with commodity single antenna
hardware without access to low-level parameters like CSI, i.e.,
unrooted devices. As proof of concept, we implemented our
system with ultra-low cost ESP32 microcontrollers which are
supporting 802.11n and the Fine Time Measurement (FTM)
standard required for ToF-based ranging. Even though the
microcontrollers also provide CSI measurements, we are not
using it as we want to provide a system which is usable on
Android devices and desktop computers without root access.



Our approach is of ultra-low complexity and low overhead.
The ToF ranging between WiFi APs is performed at very low
rate, i.e., every 2s.
Our contributions can be summarized as follows:
• Experimental results reveal the influence of a human

body on the measured ToF between a pair of WiFi
devices that can be exploited for movement detection.

• We propose ToFMD, a practical approach for device-free
indoor movement detection utilizing one class support
vector machine (OC-SVM).

• Our implementation with ultra-low cost COTS WiFi
hardware outperforms traditional RSSI-based approaches
in multiple scenarios.

II. RelatedWork
Related work falls into four categories:
RSSI-based Designs: RSSI is used by WiDet [3] and by the
approach of Depatla et al. [2]. WiDet achieves an accuracy of
94 % in detecting pedestrians with the help of a convolutional
neural network and continuous wavelet transformation to
detect slow moving persons [3]. Depatla et al. [2] use the
RSSI to estimate the average speed of a crowd based on
cross correlation and a Markov chain model. They build their
prototype with commodity WiFi hardware.
CSI-based Designs: Natarajan et al. [4] use both, CSI and
RSSI, to achieve movement detection using ESP32 WiFi
hardware. While they use the RSSI value as a feature as
itself the CSI data is filtered and features like variance and
mean value are extracted. Using different learning models,
e.g., random forest gradient boosting, they achieve an average
detection accuracy based on RSSI of 83 %. Wu et al. [5]
use the CSI values to calculate Doppler frequency shifts.
Their approach works with Intel WiFi cards and achieves
an accuracy of 88 %. TTW [6] also uses the calculation of
Doppler frequency shifts to achieve an accuracy in movement
detection of 99%. The same hardware is used in DeMan [7]
which can detect moving humans with an accuracy of 95%.
This approach uses Eigenvalues of the covariance matrix of
consecutive CSI measurements. The authors of Wi-PSG [8]
feed time and frequency features together into a multiclass
SVM to detect rhythmic movements with an accuracy of
98 %. The CSI data was obtained from Intel WiFi cards,
where the CSI was filtered with the help of a Hampel filter.
Wang [9] use the CSI values for a breath rate detection. They
also show the limits of CSI-based sensing based on a study
of Fresnel zones. RT-Fall [10] is a fall detection solution that
can detect different types of movement (like sitting, walking,
standing) with an accuracy between 80 % and 90 %. It uses
the difference in the phase information and calculates features
like standard deviation and signal strength out of it to use
them in a ν-SVM with an RBF kernel. FullBreath [11] uses

the amplitude and the phase data of the CSI to measure
the breath frequency. Only the magnitude of the CSI data
is used by Korany et al. [12] to identify multiple persons
moving around in a room with an accuracy of 82%. They
calculate the angle of arrival and analyze the data by a short
term Fourier transformation. In [13] the same authors count
a crowd with an accuracy of 96%. They use the analogy to
a M/G/∞ queuing theory problem and estimate the number
of persons based on busy (movement) times and idle times.
Their solution bases on a Poisson distribution. WiSign [14]
can recognize sign language with an accuracy of 87 %. A
SVM or a k-nearest neighbors detector use features like mean
and maximum value of the amplitude and the velocity of
signal change.

MIMO-based Designs: Kianoush et al. [15] extract features
like the mean or standard deviation, the skewness and the
kurtosis from the data and estimate the number of persons
based on a Kullback-Leibler divergence with an accuracy of
100 %. They also use a fast forward neuronal network and a
long short term memory. Another solution based on CSI in
MIMO systems is MoSense [16] that detects the movement of
a person with an accuracy of 97 %. It also uses the difference
in the phase information. In our previous work we presented
an approach based on CSI, MIMO and the usage of OC-SVM
working with normalized batches [17].

Specialized Waveforms: Some technologies use specialized
waveforms for sensing and require specialized hardware like
an USRP. In this way, Tan et al. [18] use a radar system to
detect gestures based on Doppler frequency shifts with the
help of a cross correlation function. WiZ [19] create a radar
system that allows centimeter range localization estimation,
gesture recognition and breath detection based on ToF data. It
uses frequency modulated carrier waves in a MIMO system.
With the help of silhouette canceling it can detect the position
of different persons within 8 cm. The breath rate is correct in
97 % of the cases.

III. Background

A. Wireless Channel Propagation

A radio signal propagating through the wireless channel
to the receiver over multiple paths experiences several ef-
fects. Reflection on walls or scattering through obstacles will
produce additional copies of the transmitted signal, so-called
multipath components, which have different arrival times.
This behavior of the channel can be seen by different impulses
in the channel impulse response (CIR). When assuming a
time-invariant channel the CIR can be denoted as [20]:

h(t) =
N∑

n=0

ane− jϕnδ(t − tn) (1)
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Fig. 2: An FTM exchange with one burst according to the
IEEE 802.11 standard [21]

where an is the amplitude, ϕn is the phase of the nth multipath
component at the time t, N is the total number of multipath
components and δ(t) is the Dirac delta function. The sum of
amplitude and phase of these multipath components can result
in constructive or destructive interference.

B. Time-of-flight based Ranging with WiFi

The 802.11 fine time measurement (FTM) protocol [21]
enables high accuracy ranging between any pair of WiFi
stations. Synchronized clocks are not required as FTM uses
a two-way time transfer protocol. In the protocol, one station
acts as initiator while the other station is configured as
responder. Association of the initiator with the responder
is not required in order to perform ranging. This allows
measurements to multiple responders.

High accuracy ranging in FTM is achieved by taking
precise timestamps at the physical layer in picoseconds (ps)
resolution, which gives them an accuracy of 0.03 cm. Ac-
cording to the standard [21], the timestamps should be taken
as soon as the start of the preamble has been detected to
make these timestamps as accurate as possible. The FTM
protocol is defined as follows (Fig. 2): The responder takes
the timestamps t1 and t4. It takes the first one immediately
before it starts transmitting the FTM response frame while it
takes the second when it receives the corresponding ACK
frame. The initiator determines the timestamps t2 and t3,
when the FTM response was received and when the initiator
started transmitting the corresponding ACK frame respec-
tively. These four timestamps form an FTM dialog for which
the round trip time (RTT) can be calculated as:

RTT = (t4 − t1) − (t3 − t2) (2)

The estimated RTT is affected by fluctuations due to the
limited bandwidth and environmental influences [22], [23].

Hence, in order to get higher accuracy, averaging is performed
over multiple RTT values.

IV. Impact of Humans on ToF-based Ranging

We start our study of how a human affects the RTT
measurement of FTM with an over-the-air experiment in
our lab. Therefore, we use the ESP32 SoC hardware plat-
form supporting the 802.11 FTM protocol. The setup of the
experiment shown in Fig. 9c consists of a single target and
three anchor nodes. During the experiments the three anchor
nodes performed ToF-based ranging towards the target node
with a rate of 3 Hz. We analyzed the impact on the measured
RTT for two scenarios: i) empty room and ii) a moving person
inside that room.

The results are shown in Fig. 3. We can observe that
in an empty room the measured RTT towards the three
anchor nodes is stable fluctuating with only 1 ns which is
the quantization error of the ESP32.

This changes dramatically when a person is moving inside
the room resulting in sudden changes in measured RTT. Note,
that even so the person was able to block at most the LOS path
towards a single anchor we see fluctuations in RTT towards
all three anchors.

Mathematically speaking, we see a clear difference when
we calculate the standard deviation σ of RTT for both
scenarios (see Table I). The σ for a moving person inside a
room is one magnitude larger (4.84 ns) than it is for the empty
room (0.39 ns). In addition we calculated σ for the perfect
wired channel which is just 0.197 ns. This is even smaller
and shows that the over-the-air transmission is impacted
by additional external influences, e.g., micro-scale vibrations
(windows) and co-channel interference.

For a deeper analysis Fig. 4 illustrates the three possible
cases where a device-free human is affecting the wireless
signal propagation of a point-to-point communication. First,

0 25 50

time [s]

0

20

40

60

80

R
T

T
[n

s]

(a) empty room

0 20 40

time [s]

AP1

AP2

AP3

(b) moving person

Fig. 3: RTT in over-the-air measurements (lab, cf. Fig. 9c)



additional
reflection

measured
ToF

fully blocked
LOS

measured
ToF

obstructed
LOS

measured
ToF

attenuated
LOS

(a) true NLOS (b) obstructed LOS (c) LOS w/ additional scattering

Fig. 4: Presence of a device-free human impacting round trip time (RTT) measurement.

by fully blocking the LOS path the signal is propagated over
a true non-line-of sight (NLOS) channel. Here, the ToF of the
reflection is measured instead of the shorter LOS leading to a
significant alteration in measured ToF. Second, we show the
case of obstructed, i.e., attenuated LOS path, in which the
reflected paths might be stronger than the obstructed LOS
one. Here, the ToF of the combined channel, i.e., weakened
LOS with reflections, is measured which can lead to changes
in measured RTT as well. Third, the human is not blocking
the LOS path. Instead it creates an additional source of signal
scattering resulting in a change of multipath propagation as
we see in the results of our experiment. In this case, again,
the ToF of the combined channel is measured.

Clearly, in the first case the human will influence the
resulting measurement as the reflection is the strongest signal
at the receiver. Hence, in the following we will study the
impact for the last two cases. Therefore, we have already
shown in our previous work [24] that ToF-based ranging of
commodity 802.11 WiFi hardware is affected by multi-path
propagation. Our assumption is, that the preamble detection
algorithm is not capable to detect the start of a packet
accurately when receiving multiple copies of the same packet.

A. Emulated (Wired) Multipath Channel

To get a better understanding of how the WiFi preamble
detection behaves under different conditions, we conducted
additional experiments using the ESP32 SoC hardware plat-
form in a controlled wired setup. So we can study effects

TABLE I: Standard deviation of measured RTT in different
scenarios.

scenario σ [ns]

wired cable 0.197
empty room 0.389
moving target 4.839

TABLE II: Correlation between channel properties and RTT.

property correlation coefficient p-value

Multipath (d2/d1) r = 0.820 6.20 · 10−4

Signal strength [dBm] r = 0.915 1.05 · 10−2

caused by multipath and effects caused by signal attenuation
separately.

First, we conducted measurements with ESP32 SoCs
connected over an emulated 2-tap wired multipath chan-
nel (Fig. 5). Here we analyzed the impact of the ratio of the
cable lengths, d1 and d2, on the measured RTT. From the
results shown in Fig. 6 we can see that the increase in d2/d1
tends to increase the measured RTT. To assess the degree of
correlation among the two metrics, we computed the Pearson
correlation coefficient which was r = 0.820 (Table II).

In addition to multi-path, the packet detection accuracy is
also impacted by the quality of the received signal which
might also result in too early or too late packet detection.
Therefore, we conducted additional experiments where we
removed the first wired path (d1) and analyzed the impact
of attenuation on the remaining second path. The results are
shown in Table III. With lower Prx the RTT distribution
becomes wider, i.e., larger σ, and the mean value µ is shifted
to the right resulting in an overestimation of the true RTT.
The Pearson correlation coefficient between signal strength
(in dBm) and RTT was r = 0.946 (Table II).

In a third experiment we create a 2-tap wired multipath
where one path (d2) is attenuated (Fig. 5). We analyse the
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Fig. 5: Emulated 2-tap multipath channel over cable.



TABLE III: Impact of receive power Prx on RTT.

Prx [dBm] µ σ
-38 0.0 1053
-48 -575 1091
-58 280 1220
-68 4733 1634
-78 9809 3836
-88 17858 10657

effect on the measured RTT as well, as the measured RSSI.
By comparing Figures 7a and 7b, we come to the conclusion
that the RSSI is less affected by multipath than ToF (RTT),
i.e., see orange curve.

V. ToFMD Approach
Our results from the previous section confirm that the

RTT measured using ToF and commodity 802.11 hardware
is highly affected by changes in the multipath channel prop-
agation. This can be utilized to implement a passive device-
free human movement detection scheme. Our key idea is
to reuse existing WiFi infrastructure as much as possible.
Therefore, we measure the RTT continuously between any
pair of installed WiFi APs (Fig. 1). The measured RTT data
streams from K APs are forwarded to a central server node
where the movement detection algorithm is executed. Fig. 8
shows the processing pipeline.

A. In a Nutshell

The streams of RTT data from K-different APs (x) are pre-
processed to extract the desired features. Here, two different
processing chains (chain A and chain B) can be used. While
the best results are achieved with chain A, chain B acts
as baseline and gives best results when working with RSSI
instead of RTT data. However, both processing chains can be
used with both types of data (RTT or RSSI). Both chains are
using a sliding window consisting of Bt = 10 data samples to
create batches of data. Next chain A calculates the variance of
a batch, while chain B normalizes the batch. The so extracted
features are fed as flattened vector into the OC-SVM which
performs the classification. Trained with the data of an empty
room, the OC-SVM classifies whether the room is empty or
if somebody is moving in the room, i.e., novelty.
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Fig. 6: Impact of d2/d1 on measured RTT from emulated
multipath channel over cable.
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Fig. 8: ToFMD takes input from K anchor nodes and having
two possible processing chains (chain A and chain B).

B. Detailed Description

Our processing pipeline consists of three major steps:
1. Pre-processing: The stream of RTT/RSSI data from the
K anchor nodes is captured with a sample rate of S = 3 Hz.
The data must be pre-processed before it can be passed to the
OC-SVM for classification. First, we group our N RTT/RSSI
samples into Nt batches of size Bt, with each batch resembling
a time window of Bt

S . This results in the data dimension of
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our data array X, given by

X = Nt × Bt × K (3)

Within the duration of a batch, we expect a change in the
temporal domain of RTT or RSSI due to a moving person.
The next step is different for processing chains A and B.
Without loss of generality we consider the i-th batch.

2.1 Feature extraction - Chain A: In mode A we simply
compute the variance of each grouped batch Bt:

Xi,:,:
var()
−−−→ Xflat (4)

This changes the dimension of the data into a vector of size
K which serves as feature vector in next step.

2.2 Feature extraction - Chain B: In mode B we normalize
each grouped batch Bt in respect to the first RTT/RSSI sample
by element-wise division (Hadamard division). This gives us

Xnorm = Xi, : , : ÷ X : ,0, : (5)

Now the first entry of any batch Bt consists only of a vector
with the value 1, while the remaining entries of Bt have a
relative value. This is done because the absolute RTT/RSSI
value is dependent on the distance between transmitter and
receiver and the multipath propagation conditions. With this
normalization, we try to remove this environmental impact.

In addition we have to flatten our data dimensions of Bt×K
into one dimension, which serves as feature vector for the
input to the OC-SVM in the next step:

Xnorm flatten
−−−−→ Xflat (6)

3. Classification: The feature vector generated by either chain
A or B is fed into the OC-SVM for classification. Here we
consider data corresponding to no-mobility as regular and data
corresponding to mobility as irregular, a novelty.

During training, the OC-SVM adjusts a function based on
the training data. Therefore, it calculates bases in combination

with a kernel specifying the shape of the function. E.g., the
radial basis function kernel (RBF) achieves circular shaped
areas in the hyperplane for which the configuration parameter
γ defines the inverse radius. Additionally, OC-SVM come
with the regularization parameter ν defining an upper bound
of the accepted outliers and a lower bound for the number of
support vectors [25].

We train the OC-SVM with the data of the empty room
we later want to run the detector on. Training of a single
OC-SVM with data from multiple empty rooms led to low
accuracy. However, we used the same hyperparameter for all
the different rooms. The optimal hyperperameter configura-
tion for different type of data (RTT and RSSI) and processing
chain is shown in Table IV. At the end, the OC-SVM checks
whether the feature is within the function (empty room) or if
it is an outlier (moving person).

VI. Evaluation

ToFMD was prototypically implemented and evaluated by
means of experiments in the three indoor scenarios depicted
in Figures 9a to 9c.

A. Experimental Setup

As hardware for the WiFi APs we selected ESP32s2
boards (Fig 10) offering a full 802.11n stack operating in
2.4 GHz spectrum and supporting the WiFi FTM protocol.
The ESP32s2 boards provide both the RTT value as well as
the RSSI value for each exchanged FTM frame which gives

TABLE IV: Hyperparameter selection

data processing kernel γ ν

RTT chain A RBF 0.632412 0.1
RTT chain B RBF 0.083417 0.1
RSSI chain A RBF 0.498744 0.14
RSSI chain B RBF 0.675377 0.11



Fig. 10: ESP32s2 setup in the hall of the university building

us 15 values per FTM session send in 2 bursts. The actual mo-
bility detector was implemented in Python. Specifically, we
used the implementation OneClassSVM of scikit-learn [26]
which is based on the work of Schölkopf et al. [27].

We evaluated ToFMD in three scenarios:

• S1: small hall in our university building (Fig. 9a),
• S2: behind a wall in an adjacent room (Fig. 9b),
• S3: multi AP setup in our lab (Fig. 9c)

The scenario S1 is further divided into four sub-scenarios:

• S1.1: empty hall
• S1.2: walking inside the LOS path
• S1.3: walking next to the link
• S1.4: walking behind the link

In S2 we analyzed the performance of ToFMD in detection of
movements behind a wall. Here, a person was walking close
to the other side of the wall. Scenario S3 allows us to analyze
the gain from having multiple anchor nodes from which the
RTT/RSSI can be estimated.

B. Performance Metrics

Our main metric for evaluation is the accuracy denoted as:

accuracy =
TP + TN

TP + TN + FP + FN
(7)

which takes the true positives (TP), the false positives (FP),
true negatives (TN) and false negatives (FN) into account.
In our scenarios the room is either empty or somebody is
moving inside a given area. Therefore, there are either no TP
and FN or no FP and TN. That is why the accuracy is equals
the sensitivity in case of a scenario where a person is moving
or the accuracy is equals the specificity if an empty room is
tested.
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Fig. 11: Accuracy of ToFMD using RTT in processing chain A

C. Results

At first we evaluate the performance of ToFMD when using
processing chain A. As Fig. 11 shows, the accuracy is above
95% for all sub-scenarios in S1. In S1.2, which is either a
true NLOS or an obstructed LOS (see Fig. 4) scenario, a
moving person is detected with 100% accuracy. Scenarios
having a LOS condition with additional reflections from the
user may have a worse accuracy, as walking in S1.4 achieves
an accuracy of 100% but walking in S1.3 only achieves an
accuracy of 96%. A reason therefore might be the structure of
the Fresnel zones which are tighter in the area behind the tag
as seen in [9]. The detection of empty rooms has an accuracy
of 99% for S1 and just 90% for S3. For S3 we can see, that
fusing the measurements from multiple APs can improve the
overall accuracy, as the performance when using only a single
AP is at most 85%. An improvement in motion detection
when using multiple APs cannot be concluded as already the
usage of a single AP achieves 100% accuracy. In S3 ToFMD
achieves only an accuracy of 63%. As the wall attenuates the
signal, the influence of an reflection on the other side of the
wall is small but still measurable.

In a next step we used the RSSI-based approach as a
baseline for comparison. While chain A is optimized for
processing RTT data we use chain B for a fair comparison as
it improves the accuracy when using RSSI data. We do the
comparison based on four selected scenarios where ToFMD
works best (S1.1 and S1.2) but also where it achieves weaker
performance e.g., S1.3 and S2.

The results presented in Table V show that if the LOS is



blocked or obstructed both approaches achieve an accuracy
of 100%. This is probably the easiest case as the signal
strength shows strong variations. In all the other cases, where
the scenario is a LOS with additional scattering, only the
reflection changes which is visible due to constructive or
destructive interference. In such cases we see how ToFMD
outperforms the RSSI approach by 13% in detecting walking
next to the link. Also the detection of the empty room seems
to raise some issues as the best detection rate using RSSI
values is 9% below the accuracy of the RTT approach.

Indeed, the RSSI approach achieves a 20% better accuracy
in detecting movements on the other side of the wall using
chain B. Chain A using RSSI data was not able to detect
any movement. Chain B also improves detecting movement
behind the wall for RTT data by nearly 10%. All in all chain
A fed with RTT values works better in the other selected
scenarios.

VII. Conclusions

In this paper, we proposed ToFMD which is a novel tech-
nique to detect device-free human movement based on pro-
cessing ToF (RTT) measurements from COTS WiFi devices.
Our solution exploits the influence of multi-path propaga-
tion on RTT measurements of COTS WiFi hardware. The
approach uses the calculation of the variance as feature
extraction and an OC-SVM as detector. The results show an
accuracy of more than 80 % and also 100 % in some scenarios
like movement in the LOS. ToFMD outperforms the baseline of
using RSSI values for movement detection. However, we see
that detection of movement behind a wall comes with a poor
accuracy of only 63 % where using RSSI values and a batch
of measurement values works better. Another limit is the room
specific training and the careful selection of hyperparameter.

TABLE V: Comparison of ToFMD (RTT) with baseline
(RSSI).

data type processing room scenario accuracy

RTT chain A hall S1.1: empty 98.71 %
RSSI chain A hall S1.1: empty 88.37 %
RTT chain B hall S1.1: empty 87.34 %
RSSI chain B hall S1.1: empty 89.93 %
RTT chain A hall S1.2: LOS blocked 100.00 %
RSSI chain A hall S1.2: LOS blocked 100.00 %
RTT chain B hall S1.2: LOS blocked 100.00 %
RSSI chain B hall S1.2: LOS blocked 100.00 %
RTT chain A hall S1.3: next to LOS 95.89 %
RSSI chain A hall S1.3: next to LOS 78.54 %
RTT chain B hall S1.3: next to LOS 83.12 %
RSSI chain B hall S1.3: next to LOS 82.65 %
RTT chain A b. wall S2: movement 63.31 %
RSSI chain A b. wall S2: movement 0.00 %
RTT chain B b. wall S2: movement 72.40 %
RSSI chain B b. wall S2: movement 83.12 %

All in all, ToFMD can achieve a 10 % improvement compared
to an RSSI approach if the setup is placed in the same room.
With our approach we enable a better movement detection
which is comparable to techniques relying on CSI processing
which might not be always available. For future work we
plan to extend our work towards a joint detector using RSSI
together with ToF data. Additionally, we plan to also include
the CSI values in a setup which provides CSI, RSSI and ToF
like the ESP32.
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