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 33 

Abstract: 34 

Recent advances in animal tracking technology have ushered in a new era in biologging. 35 

However, the considerable size of many sophisticated biologging devices restricts their 36 

application to larger animals, while old-fashioned techniques often still represent the state-of-37 

the-art for studying small vertebrates. In industrial applications, low-power wireless sensor 38 

networks fulfill requirements similar to those needed to monitor animal behavior at high 39 

resolution and at low tag weight. We developed a wireless biologging network (WBN), which 40 

enables simultaneous direct proximity sensing, high-resolution tracking, and long-range 41 

remote data download at tag weights of one to two grams. Deployments to study wild bats 42 

created social networks and flight trajectories of unprecedented quality. Our developments 43 

highlight the vast capabilities of WBNs and their potential to close an important gap in 44 

biologging: fully automated tracking and proximity sensing of small animals, even in closed 45 

habitats, at high spatial and temporal resolution. 46 

 47 

 48 
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Introduction 52 

Recent advances in animal tracking technology have ushered in a new era in biologging1, 2. 53 

By collecting data of unprecedented quantity and quality, automated methods have 54 

revolutionized numerous fields including animal ecology3, collective behavior4, migration5, 55 

and conservation biology6. For example, automated tracking of animals from space has 56 

advanced considerably over the past decade, in particular for observing large-scale 57 

movements1. However, satellite communication for localization or data access requires a lot 58 

of energy, and heavy transmitters greatly limit our ability to track smaller vertebrate species1. 59 

Efforts to further miniaturize increasingly powerful biologging devices culminated in the 60 

launch of the ICARUS initiative in 2019, which aims to achieve global animal observation at a 61 

small tag weight through a combination of GPS tracking, on-board sensing, energy 62 

harvesting, and energy-efficient data access from low space orbit7. ICARUS promises a great 63 

step forward in tracking large-scale movements such as migration. GPS tracking, however, is 64 

often not ideal or feasible for field biologists studying behavior on smaller spatial scales. GPS 65 

tracking of small vertebrate species is further limited by the considerable weight of GPS 66 

devices1. Satellite reception is hampered by complex habitats and impossible if animals go 67 

inside trees, caves, or underground burrows. 68 

In industrial applications or for civilian surveillance, low-power wireless sensor 69 

networks (WSNs) fulfill requirements similar to those needed to track animal behavior at high 70 

resolution and at low tag weight8. Consistently, there have been numerous applications for 71 

WSNs in wildlife monitoring (‘biologging’) since the early 2000s9. In the last decade, more 72 

sophisticated approaches have created powerful monitoring systems, e.g., for high-resolution 73 

tracking10 and fully automated logging of social encounters11, 12. The major challenge in 74 

developing efficient wireless biologging networks (WBNs) is to design ultra-low power 75 

communication networks in order to maximize performance, minimize energy consumption, 76 

and reduce tag weight.  77 

Here, we describe a system that takes WBNs to the next level: a multifunctional and 78 

thus Broadly Applicable Tracking System (‘BATS’, Figure 1). We first present a solution for 79 
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direct proximity sensing that enables the collection of proximity data at a temporal resolution 80 

of seconds, at tag weights of one to two grams, and with runtimes of up to several weeks 81 

depending on the sampling rate. Second, we describe an adaptive option for triangulating 82 

spatial positions based on Received Signal Strength (RSS) by ground-borne localization 83 

nodes. This adaptive option allows automated recording of robust movement trajectories 84 

even in structurally complex habitats. Third, we explore a new, almost energy neutral solution 85 

for remote data access over distances of several kilometers at low data rates. Finally, we 86 

present an energy model that shows the effect of the parameter settings of software tasks on 87 

the runtime of the animal-borne tag. First deployments of BATS have resulted in proximity 88 

and tracking data of unprecedented quality and have demonstrated the high potential of 89 

WBNs for studying (social) behavior. Our developments highlight the vast capabilities of 90 

WBNs and their potential to close an important gap in biologging: fully automated tracking 91 

and proximity sensing of small animals, even in closed habitats, at high spatial and temporal 92 

resolution. 93 

 94 

Results 95 

The modular structure of BATS allows researchers to combine proximity sensing, long-range 96 

telemetry, and high-resolution tracking (Figure 1) depending on the research question and 97 

the behavior of the animals. We chose bats to test and validate the system since they are 98 

small-bodied and move fast in dense vegetation, both challenges to the performance of the 99 

WBN. Three recent field studies were conducted in temperate and tropical habitats on three 100 

bat species: greater mouse-eared bats (Myotis myotis), common noctules (Nyctalus noctula) 101 

and common vampire bats (Desmodus rotundus). Each study documented high-resolution 102 

proximity data by direct proximity sensing among animals and automatically forwarding data 103 

to ground nodes (Figure 1a) that were deployed at roosting or foraging sites. Bat-borne 104 

mobile nodes that came within the reception range of the localization grid automatically 105 

increased their sampling rate to enable high-resolution localization (Figure 1b). Data for the 106 

synchronization of clocks was transmitted successfully over distances of more than 4 km by 107 
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long-range telemetry (Figure 1c). The following sections describe the empirical validation of 108 

the system. 109 

 110 

 111 

Figure 1: BATS overview. (a) Animal-borne mobile nodes (MNs) document animal-animal 112 

meetings, which are triggered by MN-beacons 24/7 and independently of ground 113 

infrastructure. Each mobile node forwards its meeting data when it receives beacons from a 114 

ground node (GN) that is dedicated to downloading and storing data. (b) When a tagged 115 

animal enters a grid of localization nodes (depicted by an antenna with red/blue gain 116 

patterns), a beacon of a tracking-dedicated GN triggers the transmission of localization 117 

packets from the MN to the localization nodes. Received signal strength indicators (RSSIs) of 118 

the impinging localization packets are then sent from the localization nodes to a work station 119 

via a WLAN. (c) Long-range bursts, which contain encoded sensor data, are received by 120 

long-range receivers. Long-range telemetry enables data transmission over distances of 121 

several kilometers at a low data rate. 122 

 123 

High-resolution social network data from direct proximity sensing 124 

Fifty individuals of one large natural colony of common vampire bats (Desmodus rotundus) 125 

were tagged simultaneously in Panama. Associations with other tagged bats are fluid and 126 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/767749doi: bioRxiv preprint first posted online Sep. 18, 2019; 

http://dx.doi.org/10.1101/767749
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 

highly dynamic both during day and night. For example, Figure 2a shows the course of the 127 

meeting history and the dynamic range of degree centrality for a single bat (ID 56) over a 128 

two-day period. The high temporal resolution of meetings (all mobile nodes in reach 129 

communicate with each other every two seconds) also makes it possible to infer a behavior 130 

such as departure from the roost or movement within the roost. For example, foraging bouts 131 

can be identified by a sudden drop in meeting partners at night, which can be verified by 132 

contacts to ground nodes outside the roost. Autonomous direct proximity sensing allows 133 

monitoring changes in roosting associations, caused by moving among subgroups within the 134 

roost (Figure 2b, c) and it also allows inferring ‘social foraging networks’ outside the roost 135 

(Figure 2d). In addition, every meeting is labeled with a maximum signal strength intensity 136 

indicator (RSSI). This makes it possible to subset the meeting dataset according to signal 137 

strength, an estimate for proximity13. RSSI values can distinguish close-contact associations 138 

from associations based on merely occupying the same area. 139 

The social networks created from direct proximity sensing are independent of the 140 

whereabouts of the tagged bats and provide an adaptive temporal resolution of seconds. 141 

Almost 400,000 individual meetings were recorded during the first eight days of our field test. 142 

To take bats as an example, the typical approach for collecting social network data has been 143 

to sample some unknown portion of co-roosting associations in a sample of identified roosts 144 

each day14. Our system allows complete networks of all bats every few seconds. This 145 

temporal resolution makes changes in social gathering directly visible if time slices in high-146 

resolution data are small enough15. We believe this represents an extraordinary advance for 147 

studying such small free-ranging animals, and it allows for an analytical depth which is so far 148 

known predominantly from human social networks generated by communication among 149 

smart phones or social media15.  150 

 151 

 152 
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 153 

Figure 2: High-resolution association data in wild vampire bats. (a) Meeting history of a 154 

single vampire bat (ID 56; 50 tagged bats in total) with other tagged bats. Red lines show 155 

meetings between bat 56 and other tagged bats (right-hand y-axis). The black line shows the 156 

degree centrality (number of associated tagged bats, left-hand y-axis) of bat 56 every two 157 

seconds. Date and time are on the x-axis. Shaded areas indicate night time. Vertical dashed 158 

lines show egocentric social networks at each snapshot of time during roosting (b,c) and 159 

foraging (d). Associations with the focal bat are indicated by red lines.  160 

 161 

RSSI-based localization from angle-of-arrival estimation:  162 

Seventeen wireless localization nodes were used to track tagged 11 mouse-eared 163 

bats (Myotis myotis) over an area of approximately 1.5 ha in an old, natural deciduous forest 164 

in northern Bavaria (Germany, Forchheim). We were able to reconstruct flight trajectories 165 

from foraging mouse-eared bats. Figure 3b shows as an example two trajectories of one 166 

foraging mouse-eared bat during two different nights in early August.  167 

We evaluated the spatial resolution of the tracking system by estimating a trajectory 168 

from a defined reference path using unscented Kalman filters. The reference path and 169 
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estimated trajectories are shown in Figure 3a. The trajectories were calculated from angle-of-170 

arrival estimates of signals impinging on localization nodes. Angles were estimated from 171 

difference measurements of received signal strength (RSS) at two orthogonal antenna gain 172 

patterns. This procedure in combination with a set of post-processing techniques for 173 

probabilistic multipath mitigation makes the trajectories robust to multipath propagation. The 174 

calculated trajectory is based on 4,912 data sets, while one set was composed of up to 2x17 175 

RSS difference measurements (one per frequency band), if all 17 localization nodes were 176 

within the reception range of the mobile node. For comparison, we also analyzed four tracks 177 

recorded by a 15 g heavy-duty Ornitela GPS tracker, which is commonly used for tracking 178 

large birds of up to 450 g body weight. The mean positioning error was 7.30 m for the 179 

Ornitela GPS tracker and 5.65 m for the trajectory of the BATS system.  180 

We calculated the positioning accuracy at lower densities of the localization grid. 181 

Localization was less accurate with fewer localization nodes (Figure 4), but it was robust and 182 

comparable to the full tracking grid (17 nodes) when using 15 - 16 nodes. With 12 - 14 183 

nodes, we observed increasing variation in average error rates. With 11 nodes, the mean 184 

error was similar to the results from GPS tracking. Variation increased steadily with lower 185 

numbers of nodes and the mean error reached more than 10 m with a maximum error rate of 186 

34 m at 6 nodes. At such low grid densities, the localization results tended to diverge, 187 

resulting in increasing positioning errors. In addition, sparser grids lack robustness against 188 

multi-path scattering. Consequently, the node density may only be reduced to a certain point, 189 

while positioning errors remain quite stable (Figure 4).  190 

These analyses show that 11 localization nodes over an area of 1.5 ha in a forested 191 

habitat might be sufficient to construct high-resolution trajectories comparable in quality to a 192 

heavy-duty GPS tracker, which would only last for a few hours using a 15 g device, or to 193 

reverse GPS in open desert habitats10. Only moderate resources and human effort are 194 

needed to cover an area of a few hectares. For example, a setup as described above 195 

consisting of 11 localization nodes is deployed and configured by two people in one to two 196 

workdays.  197 
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   198 

 199 

Figure 3: Tracking bat movements in a forest. (a) Tracking grid in a deciduous forest of 200 

Forchheim, Germany, consisting of 17 localization nodes (grey dots) covering an area of ca. 201 

1.5 ha. Dashed black line: known reference path; blue line and blue shading: estimated path 202 

and average localization error obtained by BATS; yellow lines: four individual GPS tracks. (b) 203 

Estimated flight trajectories of a tagged mouse-eared bat during foraging on August 2nd and 204 

5th. 205 
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 206 

Figure 4: BATS tracking performance vs GPS tracking. Localization errors of a reference 207 

path of ca. 300 m by BATS are shown for different numbers of tracking nodes (6-17) in a 208 

deciduous forest of ca. 1.5 ha area. The average positioning error of four tracks of a heavy-209 

duty commercial wildlife GPS tracker is shown for comparison by a yellow dashed line. 210 

 211 

Distance verification of packet transmission by long-range telemetry: 212 

Transmission distances of data packages were measured in an urban green area. 34 noctule 213 

bats (Nyctalus noctula) were tagged in a forest within the city of Berlin and two long-range 214 

telemetry receivers were placed at a distance of about 1 and 4 km from the forest. 215 

Mobile nodes transmitted with each MN-beacon a burst for long-range transmission of 216 

the mobile node’s time stamp. During a period of two weeks, we were able to receive more 217 

than 168,000 long-range bursts, which allowed us to successfully recover 9,511 complete 218 

timestamps from 32 individual bats. To mitigate the impairment by interfering transmission, 219 

one complete long-range telemetry packet is split over 24 single burst transmissions. At the 220 

long-range receiver, 24 subsequent bursts are merged to one actual long-range packet 221 

containing the ID and the bat’s time reference. This transmit scheme assures that the mobile 222 

node’s transmit module is only activated for a short time period avoiding stress on the 223 
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batteries and hardware. In addition, it avoids interference of other channels by a time-224 

frequency hopping pattern in transmission. Instead of a complete package loss, only a 225 

fraction of the collection of bursts might be corrupted, which can be reconstructed by means 226 

of error-correction codes at the receiver side. It is only due to this specialized telegram-227 

splitting technique16 that a long-range transmission under extreme power-restrictions and 228 

vastly occupied frequency channels becomes possible. 229 

Reception of long-range data should perform best when the tagged bats move in 230 

open airspace. However, we recovered a considerable number of these long-range bursts 231 

while bats were inside their roosts during the day. 563 long-range bursts received during the 232 

day were mapped to the known roosts of the bats, allowing us to measure the transmission 233 

distance. Fifty-seven long-range bursts from four bats inside their roost were recovered over 234 

distances of ca. 4.2 km (between roost 1 or 2 and the receiver at the cogeneration plant, 235 

Supplementary Figure 1). 506 long-range bursts from five tagged bats were recovered at 236 

distances between 667 and 819 m (between roost 1 or 3 and the receiver at the retirement 237 

home, Supplementary Figure 1). Burst retrieval over distances of more than 4 km was 238 

surprising. Theoretical calculations predicted transmission distances of about 5 km assuming 239 

barrier-free transmission17. In the field, however, signals had to pass first through the wooden 240 

wall of the tree roost and second the forest’s vegetation, which should greatly reduce 241 

transmission distance.  242 

Data recovery is a major challenge in automated light-weight tracking-systems. Signal 243 

transmissions inherently suffer from limited transmission power under heavy losses due to 244 

distance, shadowing, and other interfering signals. Remote downlinks, e.g., per GSM (Global 245 

System for Mobile Communications), add considerable weight in the form of circuitry and 246 

battery1. Many light-weight trackers must therefore be retrieved, or energy harvesting must 247 

be used to counter-balance the expenses for remote data download7, 18-20, again adding 248 

weight for the required hardware components. When tagged animals move on predictable 249 

scales, energy-saving methods like transfer via VHF (Very High Frequency) or radio modems 250 

may be an option to receive data over distances of hundreds of meters to few kilometers21. 251 
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Our scenario explores options to decrease the energy expense for downloading stored data 252 

to a negligible proportion of the overall energy budget (compare Figure 5). For data 253 

download over short distances of ca. 100m, we accumulate and pre-process data on-board 254 

and use sophisticated communication protocols that maximize data-package reconstruction 255 

while minimizing energy demand22, 23. The above described long-range telemetry mode 256 

provides an option for robust transmission of small amounts of data at a low rate without the 257 

expenditure of additional energy due to the hybrid modulation of the signal. In comparison, 258 

other long-range systems for biologging, such as LoRa12, enable higher transmission rates. 259 

However, the bi-directional communication between transmitter and receiver strongly 260 

increases the energy demand no the mobile node. 261 

 262 

Sensor node energy consumption and lifetime 263 

A major strength of WBNs is the ease of adjusting parameters such as sampling rate and in 264 

turn energy consumption. These adjustments can maximize runtime for a given battery 265 

capacity, or alternatively maximize sampling rate to obtain higher resolution data. To 266 

investigate the impact of the different software-task parameters on runtime, we derived a 267 

model for energy consumption. We computed examples of runtimes of mobile nodes for two 268 

battery capacities and different parameter settings (Table 1). For example, the increase in 269 

energy consumption when tracking two to four hours per day can be compensated by 270 

extending the MN-beacon intervals. We achieve runtimes of at least five days using a 12mAh 271 

battery (corresponding to a 1g mobile node) even at the shortest beacon intervals of two 272 

seconds (active mode) and with two hours of high-resolution tracking per day. Depending on 273 

the parameter settings, we achieve runtimes of up to 13 days using the smaller battery and 274 

25 days using 22mAh (Table 1).   275 

 276 

Table 1: Estimated runtimes of mobile nodes for two battery capacities of 12 or 22 277 

mAh inferred by an energy model for MN-runtime. While the model comprises seven 278 

energy consuming tasks, the shown runtimes are based only on varying MN-beacon intervals 279 
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and localization time (i.e. animal is within the localization grid). For MN-beacon intervals two 280 

operation modes are possible, depending on whether an animal is within reception range of a 281 

ground node (inactive mode) or not (active mode). 282 

MN-beacon interval [s] Time inside tracking  

grid per day [h] 

Estimated runtime 

[h] for a battery 

capacity of 

12 / 22mAh 

if absent from 

ground node 

(active mode) 

if near ground node 

(inactive mode) 

2 10 0 151 / 278 

10 30 0 321 / 589 

2 10 2 135 / 248 

10 30 2 257 / 471 

30 60 4 247 / 454 

 283 

Figure 5 illustrates the energy consumption of the different software tasks on the 284 

mobile nodes of the six different scenarios described in Table 1. When localization is 285 

disabled (i.e., only proximity sensing), sending out beacons to wake up other mobile nodes to 286 

initiate meetings strongly drives the energy demand (Figure 5a, b). Therefore, modifying the 287 

MN-beacon intervals has the highest impact on runtime. When localization is enabled, 288 

tagged animals send localization packages whenever they enter the tracking grid. The high 289 

duty-cycle of sending localization packages (8/s) strongly decreases the runtime (Figure 5c-290 

e, Table 1). At active/inactive MN-beacon intervals of 2/10s, a daily localization period of two 291 

hours decreases the overall runtime by 10.8% (Fig 5 a, c, Table 1). At four hours of 292 

localization, the energy demand for localization dominates the overall energy consumption, in 293 

particular at high MN-beacon intervals.  294 
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 295 

Figure 5: Energy distribution of software tasks of a mobile node powered by a 22mAh 296 

battery. Energy demand per software task depends on parameter settings for active/inactive 297 

beacon interval [s] and amount of time an animal spends in the localization grid [h]. The 298 

energy demand is shown for the seven major software tasks; MN = mobile node, GN = 299 

ground node. Zero time in the localization grid (a, b) refers to a pure proximity sensing 300 

scenario. 301 

 302 

Model-derived runtimes were compared with empirical runtimes from field tests on 303 

noctule bats (Nyctalus noctula), where mobile nodes were either powered by a 12mAh 304 

battery or a 22mAh battery, resulting in MN weights of 1.1g to 1.9g depending on housing. 305 

The average runtime was 148h (max. 209h) for the small battery, while the model predicted 306 

151h. For the larger battery, average runtime was 280h (max. 426h) with a predicted 307 

average value of 277h. For both batteries, the predicted values were very close to the 308 

observed (1.8% overestimation and 0.7% underestimation, respectively) indicating that the 309 

model is a reliable tool for experimental design of a field study. 310 

 311 

Discussion 312 

In past years, developments in high-performance proximity sensing using significantly 313 

larger animal-borne tags24 and in ground-based high-resolution tracking in low-clutter desert 314 
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environments10 have previously pushed the boundaries of what was technologically feasible. 315 

BATS takes the next step by combining these functionalities while keeping the tag weight at 316 

one to two gram. Adhering to the 5% rule25, even animals weighing as little as 20g can be 317 

tagged with this system. These smaller species make up a large proportion of birds and 318 

mammals (see Figure 3 in1) and WBNs will give researchers new capabilities to address a 319 

wide range of questions in animal behavior and ecology. Our adaptive and scalable system 320 

design provides great flexibility to tailor such a system, allowing adjustable use for any 321 

species- and study-specific requirement. The design of the mobile node allows to add 322 

multiple functionalities beyond the ones presented here, such as accelerometers, 323 

magnetometers, or even an on-board electrocardiogram (ECG) sensors26.  324 

 An early example of automated tracking of small-bodied animals on a limited 325 

geographic scale was ARTS, a system for automated VHF tracking, which was installed on 326 

Barro Colorado Island, Panama27. This six-year endeavor in the 2000s already highlighted 327 

the promising opportunities offered by WBNs: scalability, remote reconfiguration, full 328 

automation, and low-cost tags. Yet, a rather low positioning accuracy (~50 m) and restricted 329 

coverage were limiting factors27. Most of today’s solutions for automated tracking of small 330 

animals such as songbirds, bats, or rodents perform best at larger geographic scales or in 331 

open habitats. For example, current versions of 1 g GPS loggers are suitable to explore 332 

seasonal large-scale movements18, 20. However, they cannot reconstruct flight paths in a 333 

complex environment, since they can only collect around 100 fixes. Furthermore, the 334 

physical devices must be retrieved for data recovery, and satellite reception suffers within 335 

vegetated areas. Alternatively, reverse GPS can track small animals much more energy-336 

efficiently and at much higher temporal and spatial resolution by measuring time-of-flight at 337 

ground-based receiving stations10. However, time-of-flight measurements are inherently 338 

affected by vegetation and perform best in open areas. Therefore, we combined signal 339 

strength measurements (including angle of arrival (AoA) estimates) from two frequency 340 

bands and probabilistic multipath mitigation28 to create a system that is robust to multipath 341 

propagation and thus performs well in complex environments. Common but costly measures 342 
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to resolve multipath propagation are large-aperture antenna arrays for AoA tracking or large 343 

signal bandwidth for time-of-flight tracking. However, the future of animal tracking will most 344 

certainly center on low cost, ultra-low power integrated circuits, which are currently 345 

experiencing a noticeable push due to their broad applications in Industry 4.0 and 5G. This 346 

technology has the potential to dramatically boost the capabilities of biologging devices.  347 

Contact networks of small-bodied animals have received increased attention in past 348 

years and are most commonly built from RFID- (radio-frequency identification) or PIT-349 

(passive integrated transponder) tagged animals that were observed to be feeding or 350 

sleeping at the same site at the same time29-31. Later developments for direct encounter 351 

logging were able to log association independently of the locality. However, these sensors 352 

were either quite large and heavy11 or had short runtimes of less than 24h32 due to the high 353 

energy demand for the permanently active receiver — a major shortcoming for applications 354 

in small-bodied species. We show that the use of wake-up receivers and adaptive operation 355 

paired with novel wireless communication protocols dramatically reduce the energy demand 356 

of such wireless sensor tags. We believe that direct encounter logging or more precisely 357 

proximity sensing will enable diverse research in the future, as this approach creates large 358 

datasets, with additional sensor data providing the behavioral context closing the gap 359 

between social patterns and their underlying processes2. 360 

Ongoing work on ultra-low power sensor networks not only targets animal tracking 361 

systems but a variety of "Internet of Things"-solutions in general. Energy efficiency is not only 362 

a question of hardware circuit design but also of how to interact across all relevant layers in 363 

the node's software stack (i.e., application, and operating system). On the mobile node, the 364 

interaction aspect between communication layers (e.g., application and MAC layer) concerns 365 

the placement of certain functions (e.g., retransmissions) within the entire software 366 

hierarchy33 such that energy-efficient operation is not affected by unnecessary functional 367 

redundancies. Besides, cross-layer designs that optimize the timing of communication 368 

processes and make them deterministic at least within limits34 form the software-engineering 369 

basis for an overall energy-aware systems approach. In our scenario, energy-efficient and 370 

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/767749doi: bioRxiv preprint first posted online Sep. 18, 2019; 

http://dx.doi.org/10.1101/767749
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

reliable communication between nodes are cross-cutting concerns, since failed 371 

communication attempts lead to additional overhead for retransmissions. Very promising 372 

examples for low-power communication initiation are novel selective wake-up receivers35, 373 

which allow the small tags to enter sleep modes in the nano-ampere range rather than 374 

constantly operating in the micro- or milli-ampere range. Selective wake-up concepts allow 375 

waking up dedicated recipients of a message (or a selected subset thereof) instead of 376 

waking up all systems in communication range. Integrated into the animal tracking nodes, 377 

this could enable the next quantum leap on low-power operation. The alternative to making 378 

the receiver operate on a lower energy budget is to make the communication more reliable. 379 

Recent advances in integrating coding for forward error correction into such lightweight 380 

systems show very promising results, e.g., using erasure codes22. Ultra-reliable 381 

communication protocols currently used in 5G networks can also be applied to localization 382 

nodes, which are used for quasi-live tracking in the bat tracking scenario. For example, the 383 

ground network can be used as a distributed antenna array, which allows the use of smart 384 

decoding algorithms for very weak communication signals to further optimize data recovery36. 385 

 386 

Conclusions 387 

There is no single best method for tracking animal behavior. RFID- and PIT-tags allow 388 

monitoring presence of animals at known sites at low cost. Satellite-based localization will 389 

remain the method of choice to monitor large-scale movements such as migration or to 390 

explore unpredictable events such as nomadism1, 37. However, we believe that WBNs like 391 

BATS will greatly benefit biologging of small animal species that move over smaller and more 392 

predictable spatial scales, especially inside of habitats where signal transmission is 393 

constrained. The homologies of applications between mobile communications and biologging 394 

(e.g., Bluetooth low energy for communication among mobile nodes12) will boost the 395 

development of WBNs. Experimental setups including automated triggers (e.g., acoustic 396 

playbacks or other sensory cues) might easily be integrated and direct proximity sensing will 397 

bring exciting research opportunities. Such setups will allow to study the effect of social 398 
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network dynamics on phenomena such as transmission of social information30 and 399 

pathogens38, and key ecosystem functions such as pollination and seed dispersal39. 400 

 401 

4. Methods  402 

The WBN hardware, software, and functionality: 403 

Figure 1 is a schematic overview of BATS. In order to study its performance, we empirically 404 

evaluated the three major functions of the system: proximity sensing (Figure 1a), high-405 

resolution tracking at local scales (Figure 1b), and long-range telemetry (Figure 1c). See 406 

Glossary (Supplementary Table 1) for definitions of terms.  407 

 408 

Proximity sensing:  409 

Any given mobile node (MN) dyad generates meetings whenever it comes within reception 410 

range (5 - 10 m depending on the environment). The animal-borne MN consists of a 22mm x 411 

14mm Flex PCB circuit board, which is populated with a central System-on-Chip (EFR32, 412 

Silicon Labs) containing an ARM Cortex-M4 core and two radio frontends for 868/915MHz 413 

and 2.4GHz (Supplementary Figure 2). The transmitter in the sub-GHz frontend periodically 414 

sends MN-beacons, a signal that contains a wake-up sequence. The rate of beacons is 415 

configurable (see below). A low-power wake-up receiver on the MN triggers the conventional 416 

receiver to receive incoming information on the ID whenever a MN-beacon is received from 417 

another MN. Subsequently, a meeting is created between the communicating MN-dyad 418 

(Figure 1a left). While a conventional receiver draws a relatively high current in receiving 419 

mode waiting for incoming packages, a wake-up receiver achieves this functionality with a 420 

low current (yet, at cost of sensitivity and performance). When no further MN-beacons are 421 

received from the meeting partners for 5 MN-beacon intervals, the meeting is closed and 422 

stored to memory along with the ID of the meeting partner, meeting duration, maximum RSSI 423 

and a relative timestamp. The mobile node contains both persistent and volatile random-424 

access memory for data storage. 425 
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The conventional receiver of the sub-GHz frontend is periodically activated to observe 426 

the presence of a ground node (at a fixed interval of every two seconds), which is indicated 427 

by a ground node beacon (GN-beacon), periodically broadcast by the transmitter of each 428 

ground node (Figure 1a right). The transmitter supports several configurations defining the 429 

main purpose of the ground node (GN) and enabling location-dependent adaptive operation 430 

of the WBN. (i) A download-dedicated GN broadcasts a signal that enables transmitting MN 431 

data based on a customizable RSSI threshold received at the mobile node. (ii) A tracking-432 

dedicated ground node positioned within the grid of localization nodes for high-resolution 433 

tracking broadcasts a signal that activates the 2.4GHz frontend in addition to the sub-GHz 434 

front end on the MN, transmitting ‘localization packets’ at a rate of 8 packets per second. (iii) 435 

A presence-detection-dedicated GN triggers the transmission of ‘presence signals’ by an MN 436 

and stores incoming signals which can be used to determine presence/absence of tagged 437 

individuals (presence at resources or at sleeping sites). Combinations of functionalities (i-iii) 438 

may be used in a single GN if desired (e.g., a tracking-dedicated GN can also trigger data 439 

download). Incoming MN data is received by the GN and stored by a Raspberry Pi 440 

(Raspberry PI Foundation, Cambridge, UK) to a SD card along with the ID of the transmitting 441 

MN and the receiving GN, respectively, and a timestamp, which is provided by a GPS unit. 442 

The Raspberry Pi also hosts a WiFi allowing the user remote data access.  443 

 Visualization of proximity sensing data is facilitated by the custom-made software 444 

‘meeting splitter’ (see Figure 2). For each specified mobile node ID, the current meeting 445 

partners are projected onto a discrete time axis (one second resolution). We specified a 446 

configurable time window around each point on the time axis (five seconds in case of Figure 447 

2). All ongoing meetings, which overlap with the window around the respective point in time, 448 

are included in the set of associated bats at this particular point in time. The result per bat is 449 

a set of associated bats per each second in the dataset. A subsequent automated analysis 450 

classifies each meeting as inside or outside the roost, depending on the number of 451 

simultaneous meeting partners (not applied in this manuscript). 452 

 453 
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RSSI-based high-resolution tracking:   454 

Localization nodes (LN) perform field strength measurements, which are collected by WLAN 455 

and are processed by a PC including a file system whenever animal-borne mobile nodes 456 

enter the localization grid (Figure 1b; localization nodes collect localization packets from 457 

mobile nodes; the transmission is triggered by a ground node). Each localization node 458 

comprises a software-defined radio (consisting of a radio-frequency frontend, a highly 459 

integrated analog-to-digital converter, a field-programmable gate array and a microcontroller) 460 

and two receiving antenna gain patterns each with two main lobes (Figure 1b, red and blue 461 

pattern, respectively). The bi-lobed shape indicates the directional sensitivity of the antenna, 462 

while the direction of each lobe represents its maximum in sensitivity. The red pattern is 463 

rotated by 90° compared to the blue pattern, and both are simultaneously used to estimate 464 

the angles of arrival (AoA) of the localization packages transmitted by the animal-borne MNs. 465 

The difference in received signal strength (RSS) of the two patterns relates to AoA: If the 466 

difference – RSS of the blue pattern minus RSS of the red pattern – is maximum, the wave 467 

front impinges on the localization node either from east or west; if the RSS difference is 468 

minimum, the direction of arrival is N or S. Accordingly, there are four options for the AoA if 469 

the difference is zero: NE, NW, SE or SW. These ambiguities are resolved by fusing 470 

measurements of several localization nodes.  471 

This design allows us to exploit not only error-prone absolute field strength 472 

measurements40, but also fail-safe angles of arrival. These are not affected by faulty 473 

propagation laws or shadowing effects, because both error sources disappear when forming 474 

the RSS differences. The angular resolution of the AoA estimates improves with increasing 475 

ambiguity of the antenna pattern designs. However, more localization nodes have to be in 476 

reach to resolve the ambiguity41. During the Forchheim field trial, we collected up to 272 477 

angle estimates per second when all 17 localization nodes were in reception range.  478 

To further improve localization accuracy, we exploited three sources of information 479 

((a) model-based Bayesian positioning, (b) frequency diversity, (c) retrodiction), which 480 

increase robustness against multipath propagation. This effect complicates the positioning 481 
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process, in particular in structurally complex environments since wave fronts impinge a 482 

localization node out of the different directions of multiple reflectors (e.g., surrounding 483 

vegetation). The information sources to counteract multipath-related adverse effects are 484 

described in the following: 485 

 (a) Model-based Bayesian positioning: Due to the nature of multipath propagation, a 486 

stochastic model can be devised to characterize the resulting spread in the AoA estimates28. 487 

This AoA measurement model can be incorporated into the likelihood function of the 488 

recursive Bayesian positioning process, e.g., based on a Kalman filter or a related grid-based 489 

estimation filter42. The recursive estimation process yields a probability distribution 490 

characterizing where the bat may be, considering propagation characteristics from a local 491 

channel model43. All measurements are fused during the recursive process taking into 492 

account a movement model reflecting the flight characteristics of a bat (e.g., max. flight 493 

speed). The better the agreement of the various AoA estimates, the more pronounced the 494 

positioning probability distribution.   495 

(b) Frequency diversity: Multipath propagation leads to frequency-dependent fading. 496 

We therefore measured field strength not only on the primary far-reaching carrier frequency 497 

at 868 MHz, but also on a secondary carrier frequency at 2.4 GHz. On both carrier 498 

frequencies, wave forms comprising several subcarriers are employed to enhance the field-499 

strength based AoA estimation process. Due to the large carrier frequency separation (> 500 

1.4GHz), frequency-dependent fading effects are de-correlated even if multipath time-of-flight 501 

differences are minor, i.e., in the range of a few meters, which corresponds to our accuracy 502 

level.  503 

(c) Retrodiction. If we do not have to estimate the position of a particular bat in real-504 

time, we can exploit all measurements of a bat to estimate a complete trajectory. Forward-505 

backward filtering enhances estimation quality considerably, yielding a positioning quality in 506 

the range of 4 m (1 - σ). Performance limits of field-strength based positioning have been 507 

discussed in depth41, 44. 508 

 509 
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We evaluated the trade-off between tracking grid density and localization quality for the 510 

Forchheim setup, which comprised 17 localization nodes. In particular, we asked: how many 511 

localization nodes are required to obtain localization quality comparable to heavy-duty GPS 512 

tracking? We selected subsets of 6 to 16 out of the 17 localization nodes in order to observe 513 

the decrease in positioning accuracy with decreasing grid density. Trajectories including 514 

standard deviation were estimated for each subset of localization nodes. 17 configurations 515 

were calculated for the grid consisting of 16 nodes (all possible subsets of the full grid) and 516 

25 unique, randomly chosen subsets for all remaining grid configurations (6 to 15 nodes, 517 

respectively) to obtain average errors for the given number of nodes (see Figure 4). 518 

 519 

Long-range telemetry 520 

Our long-range telemetry approach aimed at transmitting long-range bursts from mobile 521 

nodes over distances of up to several kilometers – much longer distances than our 522 

download-dedicated ground nodes would allow for – within the city of Berlin, under harsh 523 

shadowing by obstacles (vegetation, buildings, etc.) or in presence of numerous interferes.  524 

We periodically transmitted ‘long-range bursts’, i.e., relative timestamps in form of seconds 525 

since mobile node start-up generated by a simple clock counter. These timestamps are 526 

crucial for post-processing of meeting because they allow accounting for clock drift on the 527 

mobile node. We embedded the long-range functionality into the existing modulation scheme 528 

using a hybrid phase-alternating modulation on top of the pure amplitude-modulated wake-up 529 

sequences of the MN-beacon45. As a consequence of the extreme energy limitation of the 530 

MN, we ensured the required Signal-to-Noise-Ratio (SNR) by counterbalancing the rate and 531 

the desired transmission distance. The combination of the hybrid modulation, the channel 532 

encoding procedure17, 45 and the ‘Telegram-splitting’ technique16 enables an ultra-low power 533 

long-range transmission without additional expenditure of energy. The long-range bursts 534 

were received at two long-range receivers, which were deployed on exposed sites (rooftops) 535 

at distances of ca. 200 - 1,800m (retirement home) and 3,300 - 4,500m (cogeneration plant; 536 
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see Figure S1) to the proximate respectively ultimate border of the urban forest where the 537 

roosts of the tracked bats were located. 538 

We quantified communication distances in the field, which was possible when a 539 

tagged bat occupied a known roost and was simultaneously received by the long-range 540 

receiver. We therefore matched timestamps of signals received simultaneously by GNs at 541 

roosting sites and at long-range receivers. In case of a match, we quantified the distances 542 

between roosts and long-range receivers in the R package geosphere using the Haversine 543 

function46. The empirically assessed communication distances have then been compared to 544 

a theoretical model of long-range transmission distances47.  This model evaluates achievable 545 

rate and distance of transmission based on the energy relation of the SNR, presuming the 546 

transmission power given by the MN’s hardware configuration and a desired target payload 547 

rate. For simulating the channel characteristics faced by the MN, the model comprises 548 

parameters like the path loss in dependence of the signal-center frequency, the transmission 549 

distance and receiver and transmitter heights. Environmental influences like attenuation by 550 

obstacles, multi-path propagation or unpredictable rotation of the MN’s rod antenna are 551 

incorporated by means of a random variable, stating the superimposed attenuation effects. 552 

Based on these assumptions we were capable of overcoming path losses of over 150dB for 553 

a distance of 5 km and more, under reasonable rates of packet loss17, thus accomplishing an 554 

ultra-robust implementation supporting payload data rates of a few bits per second.  555 

 556 

Sensor node energy consumption and runtime  557 

A crucial aspect for biologging is knowledge on the runtime of the sensor nodes. Static 558 

program-code analysis methods of the mobile node are able to determine upper bounds on 559 

the nodes’ runtime48. However, in the context of the BATS tracking system, precise estimates 560 

for the average uptimes of the system proved to be more beneficial for the empirical studies 561 

than upper bounds for the lifetime. Consequently, we focused on an energy model to 562 

determine the average runtime of the mobile nodes, which is strongly dependent on the tasks 563 

executed by the software. Our models are based on measurements of each executed task in 564 
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combination with empirically determined activity parameter of each task. That way, we 565 

ensure highest accuracy for our model. In our setting, seven different tasks are implemented: 566 

(i) Standby, (ii) sending MN-beacons, (iii) receiving MN-beacons, (iv) observing ground node 567 

availability, (v) transmitting data to a ground node, (vi) sending localization packets, and (vii) 568 

sending presence signals (see Table S Glossary for definition of terms). 569 

 570 

We determined the runtime by using the specific energy demand for a task and by translating 571 

it to an average current draw. With the average current draw and a given battery capacity, 572 

the runtime can be computed as follows: 573 

���������	
 � �������� � �
�
�∑������  

 574 

ŋDCDC represents the efficiency of the DCDC-converter, which is permanently active and 575 

consumes energy. Determining ŋDCDC is impractical, because it highly depends on the 576 

actual current drain of the application for the entire runtime. For this reason, we assume a 577 

fixed efficiency of 0.95, which translates to only 95% of the battery capacity being available 578 

for software tasks. This way, losses caused by the DCDC and parasitic discharges of the 579 

battery are modeled in a coarse-grained manner. 580 

The idle current during standby is given in a current draw, which does not require any 581 

further calculations. The other tasks (e.g., observing GN availability, sending localization 582 

packets) are executed in predefined cycle times (duty cycle). Based on the measured energy 583 

demand and the duty cycle, we calculated an average current draw for each task. The 584 

energy demand for each task was measured in the lab with an Agilent DC power analyzer 585 

precise source meter. In the case of a localization packet, which is sent every 128ms, the 586 

average current draw can be expressed as follows: 587 
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The average time spent inside the localization grid (Tlocalization) per day is strongly dependent 589 

on the species-specific animal behavior and the experimental design. For the calculations 590 

presented here, we set the daily localization period to 2 or 4 hours, respectively.  591 

Observing a ground node in receiving range is carried out at a fixed duty cycle of 2 592 

seconds. Here, the task is independent of the behavior of the tracked animal and the energy 593 

demand is calculated as follows: 594 

�������������� � ������������������������ � ������� 

The transmission rate of MN-beacons and presence signals is adaptive based on the contact 595 

to a ground node (i.e., a mobile node near a GN at a roost will decrease the duty cycle in 596 

comparison to a MN on a foraging animal which is not in reception range of a GN). In turn, 597 

the energy demand for sending beacons and presence signals highly depends on the 598 

behavior of the tracked study species and the individual animal (e.g., time spent near GNs at 599 

roosting sites). We therefore used empirical data obtained in the Berlin field test to inform our 600 

energy model with realistic averaged parameter values for duty cycles of each task and the 601 

amount of transmitted data. We quantified the average time-tagged bats spent in reception 602 

range of a GN (inactive mode, decreased duty cycle) versus the time bats spent outside the 603 

reception range of any GN (active mode, increased duty cycle). The common noctule bats in 604 

the Berlin field test spent on average 47% of the observation time in the inactive mode and 605 

the energy demand for transmitting beacons and presence signals calculates as follows:  606 
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 608 

Receiving a MN-beacon depends on the duty cycle at which beacons are transmitted and on 609 

the number of mobile nodes in receiving range. During the Berlin field test, we calculated the 610 

average number of 2.05 maximum parallel meetings.  611 
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 612 

For data download to a GN, we assumed static energy consumption (the energy demand for 613 

sending a data packet highly depends on the size of the packet to be transmitted23. The 614 

number of data packets to be transmitted is again dependent on the behavior of the tracked 615 

animal (depending on how many meetings an individual accumulates). Mobile nodes on 616 

common noctule bats sent on average 23.7 packages per hour to a ground node. Thus the 617 

current draw can be denoted as: 618 

��������� � ������� � ���������������3600� � �������  

Based on these calculations, we matched the estimated average runtimes to the observed 619 

runtimes during the Berlin field test (based on the last beacon or packet received from each 620 

individual tagged bat).  621 

 622 

Adaptive operation, scalability, and reconfiguration: 623 

The adaptive operation contributes to the energy efficiency of BATS. We define location-624 

specific communication schemes on the mobile nodes which are initiated by ground nodes. 625 

At a noctule bat day roost, for example, GNs activated the inactive beacon interval where 626 

MN-beacons for meeting generation were only sent every 10 seconds. When tagged bats 627 

leave their roost and move beyond the reception range of the GN, the MN switches to the 628 

active interval, sending a MN-beacon every two seconds, which increases the probability to 629 

detect also very short meetings in comparison to the inactive rate. Similarly, localization 630 

packets, which strongly increase the energy demand, should only be sent when the tagged 631 

animal moves within the tracking grid and are therefore triggered by a GN within the grid.  632 

 BATS tracks multiple individuals simultaneously. Our current design allows for the 633 

observation of up to a theoretical maximum of 60 individuals. Field deployments containing 634 

11 to 50 tagged bats empirically validated this targeted scalability. The scale of the 635 
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localization grid can be adapted to the ranges required for experimental setups. While we 636 

tracked mouse-eared bats on 1.5ha, smaller areas might be sufficient to track, e.g., rodents 637 

(bank voles, which showed a density of 40 - 162 individuals per hectare, have been tracked 638 

on less than 0.5ha using automated VHF telemetry49). Tracking grids larger than 1.5ha are 639 

certainly possible from a technological point of view. Yet, one has to keep in mind that effort 640 

for maintenance (e.g., replacing power sources for localization nodes) scales with the size of 641 

the tracking grid. 642 

Since settings for communication schemes are sometimes difficult to pick a priori, we 643 

built an option for reconfiguration of so-called ‘soft-settings’ (active/inactive rate of MN-644 

beacons, RSSI-thresholds for data download, localization interval, or timeout duration after 645 

which a running meeting is terminated, etc.). Four values for every soft-setting (e.g., active 646 

rate 2s, 4s, 10s, 30s) can be defined a priori and during operation ground nodes can be used 647 

to trigger a switch between these pre-defined values at the mobile node.    648 

  649 

Field deployments:  650 

BATS functions as a modular system and hardware setup and software configurations are 651 

easily tailored to a specific use case. We evaluated BATS during three major field studies by 652 

applying mobile nodes to vampire bats, noctule bats, and mouse-eared bats with body 653 

weights of 27 - 48g, 18 - 35g, and 22 - 28g respectively. While at least two of the three major 654 

functionalities (proximity sensing, high-resolution tracking, long-range telemetry) have been 655 

used in all three field studies, we focus on one specific functionality per deployment.  656 

 657 

Proximity sensing in vampire bats: 658 

We tagged 50 common vampire bats (Desmodus rotundus; 44 adult females, 6 subadults) 659 

from a colony roosting in a cave tree near Tolé, Panama, to document social networks with 660 

high resolution. Field work was conducted during September and October 2017. Mobile 661 

nodes were powered by a 22mAh LiPo battery and housed in a 3D-printed plastic case, 662 

resulting in a total weight of 1.8g. One download-dedicated ground node was positioned 663 
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inside the roost and five ground nodes were placed on surrounding cattle pastures to detect 664 

the presence of foraging or commuting bats.  665 

 666 

Long-range telemetry in noctule bats: 667 

We captured and tagged 34 common noctule bats (Nyctalus noctula; 19 adult females and 668 

15 juveniles) from two bat boxes in a nursing colony an urban forest in the city of Berlin, 669 

Germany (‘Königsheide Forst’)50. Mobile nodes were powered by either a 12mAh or a 22mAh 670 

battery and were housed either in a 3D-printed plastic case or in a fingertip of a nitrile lab 671 

glove that was sealed with glue. Total weight varied between 1.1 - 1.9g depending on 672 

housing and battery. We positioned 5 ground nodes underneath known roosts to document 673 

the presence of individual bats and to remotely download data. In addition, we set up two 674 

long-range receivers to evaluate model-based predicted data retrieval over distances of up to 675 

4-5km17. This opportunity is particularly valuable to retrieve data of tagged individuals that 676 

moved to an unknown roost. 677 

 678 

High-resolution tracking of mouse-eared bats 679 

We captured 11 mouse-eared bats (Myotis myotis) using mist-nets set up at ground level in a 680 

mature deciduous forest near Forchheim, Germany. When hunting for ground beetles, 681 

mouse-eared bats are faithful to their foraging sites for consecutive days. We therefore mist-682 

netted bats at an attractive foraging site rather than catching them from a roost in order to 683 

track repeated bouts by returning individuals over the course of several days. Mobile nodes 684 

were powered by 22mAh batteries and housed in fingertips of nitrile lab gloves (total weight 685 

1.4g). At the capture site we installed a tracking grid consisting of 17 localization nodes 686 

covering roughly an area of 1.5ha (see Figure 3). Distance between tracking stations varied 687 

between ca. 25 - 40m. The irregular configuration was due to the presence of thick trees. We 688 

aimed at positioning tracking stations at least 3 - 5m away from trees to reduce shielding of 689 

the signal. We set up a polygon-shaped reference path for estimating localization errors and 690 

determined the true position of the corners using a Leica Robotic Total Station TS16 691 
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(positioning error < 5cm). Corners were connected using strings, and we walked either a 692 

sensor node (once) or a GPS tracker (four times) (Ornitela OrniTrack-15; a 15g solar 693 

powered GPS-GSM/GPRS tracker; maximum logging rate 1 fix per second at a lifetime of ca. 694 

4h without solar harvesting) along the calibration path and calculated the average localization 695 

error based on the obtained tracks.  696 

 697 

Ethics 698 
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 840 

Supplementary Figure 1: Experimental setup for long-range telemetry in the city of 841 

Berlin, Germany. Yellow symbols mark the positions of two long-range telemetry receivers 842 

(asterix = retirement home, circle = cogeneration plant). Red symbols show the locations of 843 

bat day roosts 1 to 3 (tree holes). Map data ©2019 GeoBasis-DE/BKG (©2009), Google.  844 
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 846 

Supplementary Figure 2: animal-borne mobile node for proximity sensing. (a) Common 847 

vampire bat (Desmodus rotundus) carrying a mobile node housed in a plastic case; (b) bare 848 

mobile node on a quarter US dollar coin for comparison of size . 849 

 850 

 851 

Supplementary Table 1: Glossary. Description of hardware components, communication 852 

and data types and software tasks considered for the energy model. 853 

Keyword Description 

Hardware 

Mobile node (MN) Animal-borne sensor node.  

Ground node (GN) Multifunctional ground-based sensor nodes. Depending on the GN-

configuration, it receives data from MNs, triggers transmission of 

localization packets at the MN, or triggers the transmission of presence 

signals at the MN. 

Localization node  Sensor node containing a dual-band antenna for high-resolution 

positioning of MNs. Arranged in a tracking grid. 

Long-range receiver Long-range telemetry-dedicated sensor node for receiving long-range 

bursts.  
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Communication and data types 

Ground node beacon 

(GN-beacon) 

A packet sent by a ground node that triggers action on the MN (e.g., 

data download).  

Mobile node beacon 

(MN-beacon) 

A packet sent by a mobile node. It contains a wakeup sequence which 

wakes other MNs from standby. 

Long-range burst A packet embedded in the wakeup sequence of the MN-beacon for 

data transmission to a long-range receiver. 

Localization packet A packet sent by a MN to localization nodes for high-resolution 

tracking. Transmission is initiated by a GN-beacon.  

Presence Signal A packet sent by a MN to indicate the presence of a bat in range of a 

GN. Transmission is initiated by a GN-beacon. 

Software task on the mobile node 

(i) standby An idle state where only mandatory devices are active (e.g., wakeup 

receiver). The idle state is terminated by the reception of a wakeup. 

(ii) sending beacons Sending a MN-beacon to wake nearby MNs from standby. Nearby MNs 

immediately send their IDs in return. 

(iii) receiving beacons If the wakeup receiver receives a wakeup sequence, the conventional 

receiver is activated to receive the IDs of nearby MNs (encoded in the 

MN-beacons). 

(iv) observing ground 

node availability 

Every 2 s the receiver is activated to check whether GN-beacons are 

received.  

(v) transmitting data to a 

ground node 

If beacons of a download-dedicated GN are received, the transmitter is 

activated and data download is initiated. 

(vi) sending localization 

packets 

If beacons of a tracking-dedicated GN are received, localization 

packets are sent (duty cycle 8/s; 868MHz & 2.4GHz) 

(vii) sending presence 

signals 

If beacons of a GN are received, a presence signals is send 
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