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ABSTRACT Next-generation intelligent transportation systems aim to achieve many cooperative
perception and cooperative driving functions that require considerable computational resources.
Offloading such tasks via mobile edge computing is considered part of the solution; this approach is
currently being studied within the scope of 5G networks and beyond. In the automotive context,
such edge systems could be roadside units (RSUs), which can easily be overloaded at peak times.
Vehicular microcloud approaches have been proposed to overcome such problems by sharing the
computational resources of nearby cars. In this study, we propose an offloading system architecture
to enable such offloading in a vehicular microcloud interconnected by a 5G core network. We model
the system as a queueing model to derive closed-form solutions for selected performance metrics.
Based on our insights, we propose the triple-check offloading algorithm (TCOA) to obtain both the
best offloading ratio of the vehicular microcloud to the entire offloading system and the optimal
maximum number of the remaining vehicle instances in the vehicular microcloud. Our simulation
results show that the proposed TCOA achieves better system performance than four other offloading
schemes in terms of cost, response time, service rate, and cost response-time production service rate
division (CRPSD).

INDEX TERMS Instance leaving, Dynamic scaling, Vehicular microcloud, RSU offloading, 5G
networks.

I. INTRODUCTION

IN recent years, there has been an increasing number of
vehicle-related applications, such as collision avoidance,

that require considerable computational resources and
low latency [1]. Because of the lack of computing resources
in available vehicles, the calculations required for such
applications cannot be completed in a short time. Thus,
computing resources are one of the main limitations of
vehicle-related applications. One popular solution is to
offload the calculating tasks to a roadside unit (RSU) [2]
deployed at the edge of a cellular network. The RSU can
complete tasks independently or deliver them directly to
a local edge server [3].

However, the performance of RSUs may degrade when

they are used by many vehicles simultaneously [4]. One
potential solution is to offload the calculating tasks to a
remote server through an infrastructure network, such
as a 5th generation (5G) core network with a 5G base
station (gNB). The vehicular microcloud [5] has potential
as a remote server because parked vehicles in a vehicular
microcloud typically do not use their resources.

Compared with simply offloading to an RSU, further
offloading to a remote vehicular microcloud could serve
a greater number of users, thereby improving system
scalability. Unfortunately, benefits always entail overhead,
i.e., the task response time may increase because of the
distance between the users and the vehicular microcloud,
and the cost may increase due to the use of the infras-
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tructure network and the fee for parked vehicles. From
the viewpoint of system operators, balancing the benefits
and the overhead is essential.

In addition to the above trade-off between the benefits
and overhead, we consider the scenario in which vehicles
leave the microcloud. Because vehicles may be driven
away by their owners, the parked vehicles in the vehicular
microcloud may leave while they are processing a task.
However, in the current studies and articles, no queueing
models are used to formulate such a system directly. Thus,
designing a dynamically scaling mechanism for vehicle
instances is a significant challenge faced by vehicular
microcloud operators.

In this study, we go beyond our earlier work in [6]
and propose a system architecture formulated with a
queueing model for this problem. Vehicle instances in
our scheme can leave the system with no considerable
effect because we retain some idle vehicle instances. In
addition to performing mathematical analysis, we also
use Network Simulator 2 (ns-2) to cross-validate the
correctness of the closed-form metrics derived by our
proposed queueing model. Additionally, we propose the
triple-check offloading algorithm (TCOA) to obtain the
offloading ratio of the remote vehicular microcloud and
the maximum number of the remaining vehicle instances
by observing the system performance. Finally, because
the proposed TCOA is designed based on an objective
function, operators can customize the weighting between
cost and performance according to their needs.

The main contributions of this paper are as follows:
• Challenge: If we model the case in which any number

of vehicle instances can leave the system at any time,
the complexity of the mathematical model will be
high. Existing models use approximation, so the
results are not accurate.
Solution: We propose a new model for the offload-
ing system, in which any number of the vehicle
instances can leave the system at any time. At the
same time, the model still enables highly accurate
system performance through a simple calculation.
Furthermore, additional started vehicle instances are
retained to reduce the impact of vehicles that leave
the microcloud.

• Challenge: What are the best values for both the
offloading ratio and the maximum number of remain-
ing vehicle instances?
Solution: We propose TCOA to analyze the best
offloading ratio of the vehicular microcloud to the
entire system and retain the optimal number of
vehicle instances in the vehicular microcloud to
balance the cost-effectiveness.

• Challenge: Many potential issues are new and have
not been previously studied.
Solution: We discuss many potential issues of this
system and provide answers according to our current
research results.

Thus far, the novelty of this study can be concluded:
• To our best knowledge, we propose the first model

that adapts to the scenario in which vehicles may
leave the vehicular microcloud, by taking the leaving
feature into consideration in the initial design. In
contrast, most previous studies assume the leav-
ing/broken rate is low and that there is only one
leaving instance at any time, which decreases the
model complexity, however, not close to actual cases.
Some studies have proposed high-complexity models
with several leaving instances.

• Moreover, the proposed model achieves both high
accuracy and low model complexity (short calcula-
tion time) by designing an instance set-up threshold.
In contrast, previous models of the instance leav-
ing/broken issue either require a long calculation
time (high model complexity) to increase accuracy
or make assumptions (which decrease the accuracy)
to derive closed-form performance metrics.

• Additionally, the proposed retention-based model
takes the benefits out of the instance-leaving features.
The proposed algorithm finds the system’s most
effective operating configurations (best retained
instance maximum and offloading rate) through
detailed analyses.

For operators, offloading the computational tasks
required by such vehicle-related applications from cus-
tomers to the RSU and vehicular microcloud, through
the proposed queueing model, they can immediately
obtain each system metric by using the closed-form
solution to develop their scheme/algorithm without
actually deploying such large-scale experiments that take
significant time and cost. Additionally, operators can use
the proposed algorithm to obtain the optimal offloading
configurations, including the offloading ratio β and the
maximum number of remaining instances N in such an
offloading system with the instance-leaving feature.

The rest of this paper is organized as follows. In Sec. II,
we introduce the background. In Sec. III, we detail the
proposed offloading system, the queueing model, and
the proposed TCOA. The performance evaluation and
experimental results are shown in Sec. IV. In Sec. V,
we discuss the potential issues of the proposed system.
Finally, we review related work in Sec. VI and summarize
the paper in Sec. VII.

II. BACKGROUND
The background for this paper comprises three parts:
RSU, 5G core network, and vehicular microcloud.
1) Roadside Unit (RSU): An RSU is a unit beside the

road that plays an important role in many vehicle-
related applications. RSUs communicate with nearby
vehicles and provide versatile services, such as cal-
culating tasks [2], locating vehicles [7], transmitting
information [8] or safety-related messages [9], and
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Figure 1. Proposed offloading system architecture

downloading data [10]. To support these applica-
tions, an RSU should be able to compute complex
calculations or directly connect to an edge server.

2) 5th Generation (5G) Core Network: The 5G core
network provides a service-based architecture (SBA)
that separates network functions into a data plane
and a control plane [11]. In the data plane, operators
can deploy network functions close to the users
to reduce latency. In addition, a 5G core network
provides ultra-reliable low-latency communication
(URLLC) that enables the use of networks with low
latency and high reliability [12].

3) Vehicular Microcloud: A vehicular microcloud com-
prises vehicles, and other users can use the computing
resources provided by the microcloud. In this paper,
we focus on vehicles that are usually parked and un-
likely to use their CPU resources [13]–[15]. Addition-
ally, this approach improves the resource utilization
of parked vehicles, which may obtain rewards (for
example, monetary rewards). The scale of a vehicular
microcloud is dynamic because parked vehicles may
leave the microcloud; therefore, the computing ability
of a vehicular microcloud is dynamic and depends
on the number of vehicles used.

III. PROPOSED OFFLOADING SYSTEM
The proposed offloading system architecture is illustrated
in Fig. 1, and the notations are listed in Table 1. In the
figure, a car may offload tasks to an RSU/edge server to
reduce the task load of the car. In our proposed system,
a car can also offload tasks to a vehicular microcloud
in addition to an RSU. Here we refer to the car as user
equipment (UE). We assume the task arrival rate follows
a Poisson distribution with mean λ. When an RSU is
overloaded, offloading tasks to the vehicular microcloud
can increase the system service rate; however, offloading
too many tasks to the microcloud will result in high costs
for the parked vehicles in the microcloud.

We propose the TCOA to determine the offloading
ratio β and the maximum number of remaining vehicle
instances N. Fig. 2 shows the flow of our proposed system
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Figure 2. Input-process-output (IPO) model

model, which consists of the following parts:
• Input Parameters: The required operating informa-

tion includes the traffic, system capacities, instance
abilities, system scale, instance leaving rate, instance
set up rate, and weight factors.

• System Modeling: Based on the input parameters, we
derive a mathematical model to provide a systematic
method for system designers or service providers to
tune and test different parameters without running
simulations or actual deployment. This can save
significant time and cost.

• Performance Metrics: To assess the performances of
the system, the closed forms of the metrics, including
cost, response time, and service rate are used. Then,
an integrated metric, cost response-time production
service rate division (CRPSD), is used to determine
whether the result is outstanding according to the
preferences of operators.

• TCOA: We propose TCOA according to the best
interests of the system. TCOA searches for the
best offloading ratio and the appropriate maximum
number of remaining vehicle instances according to
the CRPSD.

• Outputs: Based on TCOA, both the optimal offload-
ing ratio and the maximum number of remaining
vehicle instances are derived to balance the cost,
response time, and service rate over the entire
system.

As shown in Fig. 2, the complete procedure includes
eight steps. First, step (a) describes the system behavior
with the input parameters using the proposed queueing
model. Fig. 2 also indicates that the system modeling is
discussed in Sec. III-C. Second, steps (b)–(d) calculate
each metric for the RSU and the vehicular microcloud
to obtain the CRPSD. Third, in step (e), TCOA finds
the best offloading ratio and the appropriate maximum
number of remaining vehicle instances by checking three
local minima. The details of each process in Performance
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Table 1. List of Notations

Notation Explanation

P System performance
λ System task arrival rate
β Offloading task ratio to vehicular microcloud
C Average system cost

Wq Average system response time in queues per task
S Average system service rate
λr Task arrival rate in an RSU
µr Service rate for each instance in an RSU
Kr The maximum number of tasks that can be accom-

modated in an RSU
Cr Average RSU cost
cr Average cost for each instance in an RSU

Wqr Average RSU response time in the queue per task
Sr Average RSU service rate
pr Multiple of RSU power (compared with a general

vehicle)
λv Task arrival rate in vehicular microcloud
µv Service rate for each instance in the vehicular micro-

cloud
Kv The maximum number of tasks that can be accom-

modated in a vehicular microcloud
Cv Average vehicular microcloud cost
cv Average cost for each vehicle instance in a vehicular

microcloud
Wqv Average vehicular microcloud response time in the

queue per task
Sv Average vehicular microcloud service rate
ov Multiple of vehicle instance overhead (compared with

a general vehicle)
k The number of vehicle instances in the vehicular

microcloud
α Setup rate for each vehicle instance in the vehicular

microcloud
γ Leaving rate for each vehicle instance in the vehicular

microcloud
N The maximum number of remaining vehicle instances

in the vehicular microcloud
ω1 Weight factor for C
ω2 Weight factor for Wq
ω3 Weight factor for S

Metrics are discussed in Sec. III-A, III-B, and III-D,
respectively. Fourth, in steps (f)–(g), TCOA gradient
descent is used to return the best offloading rate with
the appropriate maximum number of remaining vehicle
instances returned from the TCOA binary search. Finally,
step (h) obtains the global minimum and provides the
optimal offloading ratio and the optimal maximum
number of remaining vehicle instances. The details of
each process in TCOA are discussed in Sec. III-E, III-F,
and III-G, respectively.

A. ROADSIDE UNIT (RSU)
In real scenarios, there may be many RSUs. In our
analysis, without loss of generality, we consider that
there is only one RSU (only one edge server, if any),
and its calculation time per task follows an exponential
distribution with mean 1/µr. The RSU always consumes
resources because it does not turn off even when there are
no tasks. If there are too many tasks, the RSU will buffer
some of the tasks in the queue, ignoring the remaining
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Figure 3. State transition diagram in vehicular microcloud
(k = 4, Kv = 4,N = 2)

tasks because of overloading. We will discuss the cases of
multiple RSUs in Sec. V-D.

B. VEHICULAR MICROCLOUD
We assume that the vehicular microcloud consists of
k vehicles parked in a parking lot. Each vehicle leaves
the vehicular microcloud after parking, following an
exponential distribution with a mean of 1/γ. Once a
vehicle leaves the vehicular microcloud, another parked
vehicle joins the vehicular microcloud. The calculation
time per task follows an exponential distribution with a
mean of 1/µv for each vehicle instance. If there are too
many tasks, the vehicular microcloud buffers some of the
tasks in the queue and ignores the remaining tasks.

To reduce the impact of vehicles leaving the micro-
cloud, we design dynamic scaling rules for the vehicular
microcloud. As shown in Fig. 3, assuming there are i
vehicle instances and j tasks in the queue, only if the
offloading system fills the buffer with tasks does the
microcloud manager use the nonrunning vehicle instances
to reduce the response time. We assume that the setup
time follows an exponential distribution with mean 1/α,
and a vehicle instance in the setup state cannot process
tasks but consumes resources. If the task buffer is not full,
the vehicle instances in the setup state are turned off to
save cost. In contrast, if the number of tasks is less than
the number of vehicle instances that have started, and
the difference in number between them is greater than
the threshold N, the microcloud manager immediately
turns off a running vehicle instance to save resources.
In other words, we retain at most N additional started
vehicle instances in the system without calculating tasks
to reduce the impact caused by a vehicle leaving the
microcloud. When a vehicle leaves during a calculating
process, the remaining part of the task is returned to
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the top of the task buffer for completion by one of the
additional started vehicle instances. In contrast, if there
are no additional started vehicle instances, the remaining
task will wait at the top of the task buffer, and this
increases the response time in the queue. For more design
details, please refer to Sec. V.

C. MODEL DERIVATION
To evaluate the system performance, we consider three
metrics: the average cost of the RSU and vehicular
microcloud, the average response time in the queues per
task, and the average number of tasks served. The system
performance is defined as (1)

P =
Cω1 × Wω2

q

Sω3
. (1)

The definition of each notation is shown in Table 1.
The optimization goal of this paper is to make the

offloading system perform with a cheaper cost, lower
response time, and higher service scale. However, these
aforementioned metrics belong to a trade-off, where a
significant improvement in one metric may worsen other
metrics, which is the primary constraint of this study.
Therefore, we first define the objective function P to make
a balance/fairness between these metrics to a certain
degree, and second, operators can control the weight
factors to reflect their preferences on this balance.

In this paper, we refer to P as cost response-time
production service rate division (CRPSD): a smaller
CRPSD indicates better system performance, such as
lower cost, shorter response time, or a great number
of serviced tasks. Before calculating the CRPSD, we
normalize the three system metrics to a range from 0 to
1. Operators can alter the weight factors in (1) according
to their own requirements. For example, if the operators
consider the cost to be twice as important as the response
time, they can set the weight of the cost ω1 to twice the
weight of the response time ω2. In this study, we set all
weights to 1 by default. For more weight factor settings,
please refer to Sec. V-B.

The system metrics are a combination of the local
metrics and remote metrics, which are defined in (2), (3),
and (4).

C = Cr + Cv (2)

Wq =
Sr × Wqr + Sv × Wqv

S
(3)

S = Sr + Sv (4)

The system uses the remote offloading ratio to offload
tasks to the vehicular microcloud, and it offloads the
remaining tasks to the RSU, as defined in (5) and (6).

λv = λ× β (5)

λr = λ− λv = λ× (1− β) (6)

Using Equations (1) to (6), we describe the system
performance with local and remote metrics. Then, we

discuss the forms of these metrics to determine the
CRPSD. Because the RSU (or the edge server, if any) is
required to calculate tasks for many vehicles in typical
scenarios, its calculating ability is pr times greater than
that of a vehicle instance; the resource consumption of an
RSU may also be pr times greater than that of a vehicle
instance. However, the vehicular microcloud involves an
additional fee and increases the cost of the vehicle instance
by a factor of ov. The microcloud operator can set both pr
and ov according to the use case, and we assume pr = 100,
ov = 2 in this paper. Therefore, the cost ratio between an
RSU and a vehicle instance is pr/ov = 50. We set both
the average service rate µv and the average cost cv for
each vehicle instance to 1 as a baseline.

In this paper, the cost of tasks increases to ov times
because of the fee if the tasks are offloaded to a vehicular
microcloud. Additionally, because the networks in 5G
and beyond are URLLC, and the offloading tasks do not
break down or cause damage to the vehicular microcloud
if the number of tasks is less than the capacity Kv, we
treat the transmitting/offloading cost as a constant ov
instead of a variable of the remote offloading ratio β.

The RSU can be described as an M/M/1/K queueing
model. Thus, we have the following equations:

Cr = cr × 1 =
cv × pr

ov
= 50 (7)

Sr = min(λr, µr) = min(λr, µv × pr) = min(λr,pr) (8)

Wqr =
Lq

λeff
(9)

In Equation (9), λeff denotes the effective arrival rate
without blocking due to a full task buffer. The expected
value of the task number in the queue is denoted by Lq.
For the derivation of the M/M/1/K response time in the
queue, please refer to Appendix A.

In this study, we chose an M/M/1/K model among
several queueing models to describe the RSU for two
reasons. One reason is that in IP networks, an M/M/1
model is enough for a single server system in most cases
[16]–[19]. The other reason is that our simulation matches
the mathematical results, which means using an M/M/1-
based model such as an M/M/1/K model is appropriate
in this study.

The vehicular microcloud can be described by the
proposed queueing model. To obtain the value of each
metric, the probabilities π of each state are essential. We
define πi,j as the state probability with i vehicle instances
and j tasks in the queue, where I is the maximum of i
and J is the maximum of j. For the derivation of the state
probabilities, please refer to Appendix B.

After all state probability values are obtained, the
metrics of the vehicular microcloud can be defined as
follows: (10), (11), and (12).

Cv = cv(
∑

(i,j)∈Sspace

πi,ji+
k∑

i=0

πi,Kv min(k−i,Kv−i)) (10)
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Figure 4. Parameter study of the entire system

Sv =
∑

(i,j)∈Sspace

πi,j min(i, j) (11)

Wqv =

∑
(i,j)∈Sspace

πi,jj

λv(1−
∑k

i=0 πi,Kv)
− 1

µv
(12)

Notably, the notation Sspace represents the set of all
vehicular microcloud states. The closed forms of the three
local and remote metrics are obtained from Equations
(7) to (12). Therefore, the system performance metrics
defined in Equations (1)–(4) can be derived.

D. OBSERVATION AND ANALYSIS
We calculate the system performance metrics defined in
(1)–(4) and then use Network Simulator 2 (ns-2) [20]
version 2.35 to implement and run the simulation of the
proposed offloading system. All the simulations in this
paper use the following default values: Kr = 200, Kv =
250, k = 150, and α = 0.02.

The plots in Fig. 4 show the impacts of the offloading
task ratio on the vehicular microcloud β in terms of each
metric with different arrival rates λ. Temporarily, we set
the maximum number of remaining vehicle instances to
N = k/2 = 75 and γ = α/20 = 0.001 by default. In
Fig. 4a, the cost increases as the value of β rises because

an increasing number of vehicle instances are set up to
handle the incoming tasks.

In Fig. 4b, the response time in the queues Wq increases
initially because the RSU is overloaded and offloads a
few tasks to the vehicular microcloud. The subsequent
decreases are caused by additional vehicle instances
being available to handle the tasks. The relief of the
overloaded RSU causes Wq to decrease drastically, but the
low resource utilization of the RSU ultimately increases
Wq. Furthermore, the global minimum decreases as the
arrival rate increases because the capacity of the vehicular
microcloud Kv remains constant as an increasing number
of vehicle instances are set up to service the tasks. When
the vehicular microcloud is not overloaded, a higher
arrival rate reduces the response time in the remote
system queue Wqv.

In Fig. 4c, the service rate increases because tasks
are appropriately distributed to both the RSU and
the vehicular microcloud. In Fig. 4d, the best remote
offloading ratio may be located at the local minimum
found by a search from the middle value of β because of
the effects of the high service rate. Moreover, it may
be located at the local minimum found by a search
from β = 0, as the arrival rate is small enough to
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Figure 5. Parameter study of the vehicular microcloud

be handled by the RSU, as well as in some particular
situations, in which the RSU can perform calculations
rapidly without consuming a considerable amount of
resources. In contrast, it may be located at the local
minimum found by a search from β = 1 for the same
reason. Therefore, the global minimum may be located at
the local minimum found in a search from β = 0, β = 1,
or the middle value of β, where the global maximum of
the service rate is located.

The plots in Fig. 5 show the impact of the maximum
number of remaining vehicle instances N on each metric
when several leaving rates γ are used. As the values N
and γ do not impact the RSU, we set β = 1 to focus
on the effects on the vehicular microcloud. Because the
number of vehicle instances in the vehicular microcloud
is k = 150, we set the arrival rate λ to 100 to assess the
proposed dynamic scaling rules.

In Fig. 5a, the cost increases because more started
vehicle instances remain in the system. Furthermore,
the increase becomes more intense as the leaving rate
γ decreases. When the tendency of a vehicle to leave
decreases, the vehicle instance has a longer parking time
during which it remains in the vehicular microcloud. Both
of these trends can also be observed for the other metrics.

In Figs. 5b and 5c, the response time in the queue de-
creases and the system service rate increases, respectively.
The reasons for this are the same as those explained in
the previous paragraph.

In Fig. 5d, the decreasing trend intensifies initially, then
slows, and finally becomes horizontal. The decrease part
shows the benefits of retaining additional started vehicle
instances, and the horizontal part shows that when N
exceeds a certain threshold, further increases in N do not
improve the performance because the frequency of setting
up vehicle instances cannot be further decreased. This
observation does not mean that a larger N is necessarily
good. Suppose the task arrival rate λ does not follow a
Poisson distribution, such as the case with burst traffic.
In this case, a larger N will cause many additional
started vehicle instances to remain and consume resources.
Although burst traffic may not occur frequently, N should
be chosen carefully to improve the system performance
while remaining as small as possible.

Some brief conclusions can be drawn thus far:
• The best offloading ratio β may be located at the

local minimum found in a search from β = 0, β = 1,
or the middle value of β, where the global maximum
of the service rate is located.
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Algorithm 1: Triple-Check Offloading Algorithm
(TCOA)
Input: P, λ, µr
Output: βTCOA,NTCOA
initial βmiddle to (λ− µr)/λ
set (βv,Nv) by TCOAGD(−1, 1.0, 0.04,P)
set (βm,Nm) by TCOAGD(1, βmiddle, 0.02,P)
set (βr,Nr) by TCOAGD(1, 0.0, 0.01,P)
if P(βv) smallest then

set βTCOA to βv
set NTCOA to Nv

else if P(βr) smallest then
set βTCOA to βr
set NTCOA to Nr

elseset βTCOA to βm
set NTCOA to Nm

end

• N should be chosen carefully to improve the perfor-
mances while remaining as small as possible.

E. TRIPLE-CHECK OFFLOADING ALGORITHM (TCOA)
According to the observations in Sec. III-D, we propose
TCOA, based on the value of CRPSD to make the fairness
between system metrics to a certain degree, to obtain
both the best task offloading ratio β and an appropriate
number of remaining vehicle instances N. In TCOA,
gradient descent and binary search methods are used
to determine the search results. In what follows, these
algorithms are introduced, and a performance evaluation
is presented.

As shown in Algorithm 1, according to the three
possible local minima feature summarized in Sec. III-D
with Fig. 4d, TCOA checks the three local minima found
in a search from β = 0.0, β = 1.0, and the middle value
of β, where the global maximum of the service rate is
located, and then identifies the global minimum. A simple
method can be used to determine the median value of β.
We assign the RSU as many tasks as possible and offload
the rest to the vehicular microcloud. Then, we define
the current β as the required middle value and denote it
as βmiddle. Note that when starting from βmiddle, TCOA
must search over a larger β range to check the other
choices with a high service rate, if any, because the RSU
is overloaded and cannot handle any more tasks.

We use the function TCOA gradient descent to deter-
mine the local minimum. In the TCOA gradient descent,
we set the search steps to 0.04, 0.02, and 0.01 as default
values for each search. In each search step of a local
minimum of the offloading ratio β, according to the
strictly downward trend feature summarized in Sec. III-D
with Fig. 5d, we use the function TCOA binary search
to find the optimal remaining instance maximum N.
With the current offloading ratio β, we can obtain the
CRPSD in the current search point through the closed-

Algorithm 2: TCOA Gradient Descent (TCOAGD)
Input: Sign, βinit, Step, P
Output: βTCOAGD ,NTCOAGD

initial βcurrent to βinit, Pprevious to doublemax
initial Flagrun to True, Flagborder to False
while Flagrun do

set Ncurrent by TCOABS(βcurrent,P, 0, k)
if P(βcurrent,Ncurrent) worse Pprevious then

inverse Sign
reduce Step

set Pprevious by P(βcurrent,Ncurrent)
if Step smaller Stepmin then

update βcurrent by Stepmin with Sign
set Ncurrent by TCOABS(βcurrent,P, 0, k)
set Flagrun to False

elseupdate βcurrent by Step with Sign
if βcurrent larger 1.0 then

set βcurrent to 1.0
if Flagborder then

inverse Sign
reduce Step

elseset Flagborder to True
else if βcurrent smaller 0.0 then

set βcurrent to 0.0
if Flagborder then

inverse Sign
reduce Step

elseset Flagborder to True
elseset Flagborder to False

set βTCOAGD to βcurrent
set NTCOAGD to Ncurrent
end

Algorithm 3: TCOA Binary Search (TCOABS)
Input: β, P, Nmin, Nmax
Output: NTCOABS

if horizontal then
set NTCOABS to Nmin

else if Nmin adjacent Nmax then
set NTCOABS to Nmax

else
set Nmiddle by Averageup(Nmin,Nmax)
if P(β,Nmiddle) equal P(β,Nmax) then

recur TCOABS(β,P,Nmin,Nmiddle)
else

recur TCOABS(β,P,Nmiddle,Nmax)

end

form solution. The last part of TCOA compares the
CRPSD metric with each search result and returns both
the β and N values of the best result as the final answer.

In terms of time complexity, the optimization problem
generates two parameters as the results, the offloading
ratio β and the maximum number of remaining instances
N. Therefore, assuming the granularity of the set of β is
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divided into m choices, and there are k vehicle instances
in a vehicular microcloud, the time complexity of the
optimization problem is O(mk). In contrast, through
observations, the proposed TCOA accurately uses the
gradient descent three times (time complexity is generally
O(logm)) according to the three possible local minimum
feature and a binary search (time complexity is generally
O(log k)) according to the strictly downward feature to
reduce the time complexity of the optimization problem,
which is the purpose and reason to propose TCOA.
However, in the three-time gradient descent, one may be
far from the starting point and a local minimum because
there are only two local minima, basically. Therefore, in
the worst case, it may search a relatively large range,
which increases the time complexity to O(m) for itself
and O(m log k) for TCOA.

F. TCOA GRADIENT DESCENT
The TCOA gradient descent shown in Algorithm 2 is
used to determine the local minimum for the TCOA.
To obtain the best N value with the current β, we use
a binary search method TCOA binary search and we
select 0 to k as the search range. In this study, we set
the minimum search step Stepmin to 0.01 and reduce the
search step by a factor of 2 by default. This algorithm
repeats the following instructions in sequence:

• Use TCOA binary search to search for the best N
with the current β.

• If the current search feedback is worse than the
previous feedback, change the search direction and
reduce the search step.

• Record the search result for comparison with future
results.

• If the search step is smaller than the minimum step,
search using the minimum step, use TCOA binary
search to obtain the best N, and return the current
search result to TCOA. Otherwise, move a step.

• If the current β value is greater than 1.0, set β = 1.0.
If the next β value is still greater than 1.0, change
the search direction and reduce the search step.

• If the current β value is smaller than 0.0, set β = 0.0.
If the next β value is still smaller than 0.0, change
the search direction and reduce the search step.

G. TCOA BINARY SEARCH
The TCOA binary search shown in Algorithm 3 is used
to determine the appropriate value for the maximum
number of remaining vehicle instances (N) for the TCOA
gradient descent. When the trend in terms of the CRPSD
decreases and then becomes horizontal with increasing N,
this algorithm recursively finds the smallest value of N
in the horizontal part. The following steps are performed
each time:

• If N in the given range is horizontal, return the
minimum of the given range Nmin.

• If Nmin and Nmax of the given range of N are adjacent,
return the maximum Nmax.

• Average Nmin and Nmax to obtain the middle value
Nmiddle, and carry Nmiddle if it is not an integer.

• If the middle value Nmiddle is equal to the maximum
Nmax in terms of the CRPSD metric with the input
offloading ratio β, repeat the TCOA binary search
with Nmin and Nmiddle as the new range for N.
Otherwise, repeat the TCOA binary search with
the new range Nmiddle to Nmax.

IV. EVALUATION AND COMPARISON
To the best of our knowledge, no other studies have
proposed a model that can accommodate, without
assumptions, any number of instances that leave the
system at any time. In other words, to date, the features
and requirements of vehicular microclouds have not
been met, except in this paper. Therefore, we compare
the proposed TCOA with four baseline schemes: Local,
Remote sensitive, Remote nonsensitive, and Intuitive.

The Local scheme offloads all the tasks to the RSU,
whereas the Remote sensitive scheme offloads all the tasks
to the vehicular microcloud and retains no additional
started vehicle instances (N = 0), so it is expected to
be sensitive to departing vehicle instances. In contrast,
the Remote nonsensitive scheme offloads all tasks to
the vehicular microcloud but retains as many started
vehicle instances as possible (N = k), so it is expected
to be less sensitive to departing vehicle instances. The
Intuitive scheme uses an intuitive method, whereby it
allows the local arrival rate λr to be equal to the RSU
service rate (µr) and offloads the remaining tasks to the
vehicular microcloud to prevent the RSU from becoming
overloaded, thereby serving users to the greatest possible
extent. Finally, the Intuitive scheme sets the maximum
number of remaining vehicle instances to k/2 = 75 by
default. The simulation results are depicted in Fig. 6 and
Fig. 7.

Fig. 6 shows the impacts of each offloading scheme for
several task arrival rates λ. We set the leaving rate for
each vehicle instance to 0.001 by default. In Fig. 6a, the
results of the Local scheme are constant because it uses
only the RSU. Therefore, the cost is cr = 50. In contrast,
both Remote schemes have higher costs because they do
not use the RSU and thus use more vehicle instances to
handle the tasks. The Intuitive scheme performs slightly
better than the TCOA because it requires the RSU to
perform more tasks, and thus it requires fewer vehicle
instances.

In Fig. 6b, the Local scheme has the longest response
time in the queue because the task buffer of the RSU is
full and the RSU is overloaded. In contrast, the response
time of both Remote schemes decreases with an increase
in the number of tasks. In the vehicular microcloud, more
tasks lead to setting up more vehicle instances and to
consuming the fixed-size task buffer within a shorter time.

VOLUME 10, 2022 9
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Figure 6. Impact of offloading schemes with diverse arrival rates

For the same reason, the trend of the Intuitive scheme
increases initially because of the low task arrival rate to
the vehicular microcloud λv. Although the trend of the
proposed TCOA is similar to that of the Intuitive scheme,
it performs much better because more vehicle instances
are used. Thus, the RSU is not overloaded.

In Fig. 6c, the Local scheme performs the worst because
the RSU can handle at most 100 tasks, on average,
according to the service rate µr. Both Remote schemes
have the same limitation that the vehicular microcloud
can handle at most 150 tasks, on average, according to
the total service capacity of the service rate of the vehicle
instances (k × µv). Compared with the proposed TCOA,
the Intuitive scheme has a slight advantage because the
proposed TCOA may ignore some tasks instead of asking
the RSU to finish them to avoid overloading the RSU.

In Fig. 6d, the Local scheme performs better than
the Intuitive scheme when the task arrival rate λ is
less than or equal to 175, whereas the former shows
worse performance when λ is greater than or equal to
200. Therefore, the vehicular microcloud performs more
efficiently with a higher task arrival rate. In contrast,
although both Remote schemes also show a downward
trend, they perform worse because of the zero usage rate
of the RSU. In addition, similar behavior is caused by the
high instance leaving rate. Finally, the proposed TCOA
performs the best because a good balance between metrics
is achieved.

The plots in Fig. 7 show the impacts of each offloading
scheme with different instance leaving rates γ. We set the
task arrival rate to k = 150 by default. In Fig. 7a, the
Local scheme has the lowest cost because no additional
fees are paid to the vehicular microcloud. The cost of
the proposed TCOA is slightly higher than that of the
Intuitive scheme because of the greater number of started
vehicle instances. Furthermore, regarding the Remote
schemes, the nonsensitive scheme consumes slightly more
resources than the sensitive scheme because of the low
leaving rate. When the instance leaving rate is low, the
additional started vehicle instances remain for a longer
period of time, resulting in higher costs. However, the cost
difference is small because the former retains additional
instances, whereas the latter sets up vehicle instances
more frequently.

In Fig. 7b, the Local scheme shows a long response
time in the queue because the RSU is overloaded. The
other schemes have lower response times with smaller
instance leaving rates because the vehicular microcloud
is more stable and has a longer parking time to handle
tasks. In Fig. 7c, the Intuitive scheme and the proposed
TCOA have almost the same service rate, regardless of
the value of the instance leaving rate, because the RSU
handles many tasks, and the burden on the vehicular
microcloud is not heavy. In contrast, the two Remote
schemes ask the vehicular microcloud to handle all tasks,
where the number of tasks is similar to the number of
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Figure 7. Impact of offloading schemes with diverse leaving rates

all vehicle instances (k). It is difficult to ask all vehicle
instances to handle tasks because some may leave and
some require time to set up. This challenge is overcome
when the vehicle instance leaving rate decreases, thereby
increasing the maximum number of tasks calculated on
average.

In Fig. 7d, all the schemes, except for the Local scheme,
perform better with a lower instance leaving rate, and this
trend is affected mainly by the response time metric. The
proposed TCOA shows the best performance. Even in a
harsh environment, such as a high instance leaving rate,
within a reasonable range, the TCOA can improve the
system performance by finding the best task offloading
ratio β and the proper maximum number of remaining
vehicle instances N.

According to the above evaluations, the reasons the
proposed TCOA always performs the best in terms of
the CRPSD metric can be summarized as follows:

• The proposed TCOA tends to ignore excess tasks to
avoid overloading the RSU.

• The proposed TCOA sometimes offloads more tasks
to the vehicular microcloud to reduce the response
time in the queue Wq.

V. DISCUSSION
Our proposed system has some potential issues, which
we separate into the candidate to turn off, weight factor
setting, RSU cost ratio, many-to-many offloading, non-

cooperative selfish scenario, result correctness, and the
vehicle setup threshold. In this section, we discuss these
issues.

A. CANDIDATE TO TURN OFF
In Sec. III, if the number of tasks is less than the
number of started vehicle instances by threshold N, a
started vehicle instance is turned off immediately to save
resources. In this situation, which vehicle instance should
be turned off is an interesting question. According to the
queueing model, if we do not want to affect the leaving
rate, we should turn off vehicle instances in a balanced
manner among the various parking times. To serve
this requirement, the vehicle instance with the shortest
living time in the vehicular microcloud is a prospective
candidate. In addition to the instance with the shortest
living time in the vehicular microcloud, the instance with
the longest living time should be considered. In addition,
there are many possible candidates, such as the closest
and furthest instance from the end of the parking time
(leaving). As shown in Fig. 8, different candidates show
the same performance with an appropriate N, such as 30.
Therefore, the candidate does not matter for the proposed
offloading architecture and TCOA.

B. WEIGHT FACTOR SETTING
In Sec. III, we set all weights to 1 by default and stated
that the operators could modify them according to their
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preferences. This section shows what happens if some
weights are not 1. We list three settings as examples and
observe the differences in terms of metrics. As shown
in Table 2, Setting 1 is the baseline, in which ω1, ω2,
and ω3 are all 1s and the other parameters are set as
described in Sec III-D with the arrival rate λ = 250. In
contrast, Setting 2 considers the cost, so ω1 is increased
to 2. Furthermore, in addition to the cost, Setting 3
considers the response time in the queues, so ω2 is also
increased to 2.

In Fig. 9, the global minimum of Setting 2 is β = 0
because the lowest cost is incurred, as no vehicle instances
are running. On the other hand, although the global
minimum of Setting 3 is still in the middle, its value of β
increases by 0.01 compared with the baseline (Setting 1).
The reason for this is that compared to the other metrics,
the weight of the service rate is smaller, which has less
impact on CRPSD; moreover, the global maximum of the
service rate is β = 0.6, whereas the global minimum of the
response time is β = 0.68. In Table 2, Setting 2 has a lower
cost compared with the baseline, whereas its performance
is worse in terms of the other metrics. Additionally,
Setting 3 performs better in terms of response time Wq,
whereas it is slightly worse in terms of service rate S and
cost C.

Thus far, we can draw a brief conclusion: the setting
of the weight factors affects the CRPSD, thus further
impacting the β obtained by the proposed TCOA. There-
fore, operators need to set the weight factors carefully,
and the suggested value is 1 if there is no preference.
Although the weight factors genuinely affect the CRPSD,
the proposed TCOA can correctly derive both the best
offloading ratio β and the optimal maximum number of
remaining vehicle instances N according to the CRPSD,
regardless of the weight factor settings.

C. RSU COST RATIO
As indicated in Equation (7) in Sec. III-C, the cost
of an RSU cr is defined by three variables, including
a multiple of the RSU power Pr, multiple of vehicle
instance overhead ov, and cost of a vehicle instance cv,

Table 2. Weight Settings and Impacts

Setting ω1 ω2 ω3 β C Wq S

Setting 1 1 1 1 0.64 179.57 0.62 213.4
Setting 2 2 1 1 0 50 1.98 100
Setting 3 2 2 1 0.65 180.3 0.61 211.6
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Figure 9. Impact of weight factor settings with various offloading ratios

which is set to 1 as a baseline. To observe the effects
of cr (the cost ratio between an RSU and a vehicle
instance), we manipulated ov instead of Pr to avoid
affecting the computational ability of the RSU. The
results are presented in Fig. 10. When cr is low, the
optimal offloading ratio β is decreased to zero because
the RSU is highly cost-efficient. In contrast, with a higher
cr, all values increase, especially for a lower offloading
ratio β. Thus far, we know that the value of cr affects the
offloading system; however, no matter what the value cr
is, the proposed TCOA can always determine the optimal
results for the offloading system.

D. MANY-TO-MANY OFFLOADING
In Sec. III, we analyze only the one-to-one offloading sce-
nario, which has one RSU and one vehicular microcloud.
How to offload tasks among several RSUs and vehicular
microclouds is the next challenge. By observation, we note
that the RSU may become overloaded when it handles too
many tasks, and the threshold is approximately 90 percent
of its service rate. On the other hand, the vehicular
microcloud prefers to take on many tasks to reduce the
response time in the queue. The overload threshold still
exists, and it is determined by the instance leaving rate.
Temporarily, we assume that the overload threshold is
also approximately 90 percent; then, a simple offloading
policy can be determined as follows.

• If the usage rate of the RSU is less than 90 percent,
ask the RSU to manage all tasks.

• If the usage rate of the RSU is close to 90 percent,
offload the remaining tasks to the vehicular micro-
cloud.

• Choose the vehicular microcloud with the largest
scale k.

• Offload tasks to the chosen vehicular microcloud.
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• If the usage rate of the chosen vehicular microcloud
is close to 90 percent, offload the remaining tasks to
the next chosen vehicular microcloud.

• If a task is ignored because a task buffer is full,
offload the task to the previous or the next chosen
vehicular microcloud.

By means of the above offloading policy, several vehicular
microclouds can cooperate with each other so that tasks
are not ignored because of a full buffer.

E. NON-COOPERATIVE SELFISH SCENARIO
The non-cooperative scenario is closer to the actual
conditions for operating such an offloading system. In
the non-cooperative scenario, we have two solutions to
motivate all the nodes (cars, edge servers, and vehicular
microclouds) to join the operation of the offloading system
and further follow the offloading algorithm.

One solution is that operators use incentive mechanisms
with rewards [21], [22]. For example, at the beginning of
each time slot, the operator asks all possible edge servers
and vehicular microclouds (computational nodes) to
obtain their prices of computational resources; according
to the total amount of computational requirements from
the cars (customers), the operator selects the cheaper
computational nodes to serve the customers.

The other solution is that operators perform as a trade-
matching platform, which presents the prices of computa-
tional resources. Specifically, computational nodes register
the prices of the computational resources to the operator,
and the operator displays all reported prices; customers
select the offloading destination by themselves when they
need the offloading services. Furthermore, according to
the game theory, the operator can add an additional fee
to the price of each computational node to influence the
customers’ offloading decisions.

F. RESULT CORRECTNESS
After the calculation, the vehicle instance returns the
result. However, users may worry about whether the
calculated answer is correct. Thus, a simple quality-of-
service (QoS) policy is required. To ensure a high QoS
level, the vehicular microcloud distributes the same task

to several vehicle instances and compares whether the
calculated results are similar before returning the result
to the user. In this way, we can guarantee the quality of
the calculation to a large extent.

G. VEHICLE SETUP THRESHOLD
In Sec. III, the dynamic scaling rules set up vehicle
instances only when the task buffer is full. This design
can substantially reduce the complexity of the queueing
model. If the vehicle setup threshold is smaller than Kv,
the probability of each state cannot easily be derived in
sequence because the transitions are complicated.

In this situation, a matrix analysis method is required.
However, assumptions and approximations rather than
accurate values are involved in the calculation, which
gives rise to the results of the closed-form solution
being different from the simulation results. In addition,
the high computational complexity increases the time
required for the calculation because the calculation scale
is considerable. For example, if the value of k is 150, the
size of the matrix is 150× 150 = 22500 elements.

Furthermore, because the Denman-Beavers iterative
algorithm [23] must be used to solve a quadratic matrix,
which contains negative elements, the accuracy of the
result depends on the number of iterations of the calcu-
lation. Therefore, the time required for the calculation is
further extended, whereas the obtained result is only an
approximation.

A conclusion can thus be drawn: a good design for
the dynamic scaling rules of a vehicular microcloud
should comprehensively consider the system performance,
the calculation accuracy, and the time required for the
calculation.

VI. RELATED WORK
There are three main categories of related research,
namely, edge traffic offloading [2], [24]–[29], dynamic
scaling systems [30]–[34], and server breakage and re-
pair [35]–[39].

A. EDGE TRAFFIC OFFLOADING
Guo et al. [24] proposed an algorithm based on deadlines
to determine whether to offload and then deliver tasks
to an edge server or to the cloud according to the
cost involved. Li [25] focused on the offloading decision
and wireless scheduling for an edge server and many
mobile devices. Zhan et al. [2] used deep learning to
determine when and how to schedule offloading tasks to
RSUs along a road. Xu et al. [26] used vehicle-to-vehicle
communications to offload data traffic to other vehicles by
WiFi to deliver data traffic to the Internet. Dai et al. [27]
focused on a relay scheme to determine when to offload,
and which vehicle cloudlets to offload to. Zhou et al. [28]
formulated the offloading and service caching problem
in an edge computing-based smart grid as a mix-integer
non-linear program (MINLP) to minimize the system
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cost. Specifically, they decomposed the optimization
problem and proposed gradient descent and game theory-
based algorithms for resource allocation and computing
strategies. Zhou et al. [29] focused on the offloading
problem in a three-tier mobile-cloud-edge scenario and
used a deep reinforcement learning-based mechanism to
optimize the offloading, service-caching, and resource-
allocating strategies. Specifically, they formulated the
optimization problem as an MINLP and proposed an
asynchronous advantage actor-critic-based (3AC-based)
algorithm as a solution.

In this study, we focus on determining the offloading
ratio to remote vehicular microclouds using a queueing
model and the proposed algorithm. Additionally, rather
than focusing on a method for offloading traffic to RSUs,
we enable tasks to be directly offloaded to a vehicular
microcloud through the gNBs and the 5G core network.
Moreover, because the vehicle instances in a vehicular
microcloud may leave without expectations, the proposed
queueing model presents this unique behavior and has
different features from the other cloud-based clusters.

B. DYNAMIC SCALING SYSTEM
Song et al. [30] proposed a hybrid algorithm to decide
when and how many instances should be reserved to
improve resource utilization and reduce the service cost
in geo-distributed clouds. Ma et al. [31] provided a fast
approximation algorithm for static request admissions
and an online algorithm for dynamic request admissions
to cost-efficiently enable virtualized network functions
(VNFs). Phung-Duc et al. [32] proposed an algorithm
to address the budget-performance trade-off for cloud
systems. Rahman et al. [33] proposed a negotiation game-
based service chain autoscaling method that considered
computation, memory, and network bandwidth resources
for VNFs. Guo et al. [34] proposed a shadow routing-
based approach by packing virtual machines onto physical
machines in the cloud.

In this study, we consider the scenario of vehicles
leaving the microcloud to design a dynamic scaling
method. Furthermore, our proposed algorithm determines
both the value of the offloading ratio to the vehicular
microcloud and the maximum number of remaining
vehicle instances.

C. SERVER BREAKAGE AND REPAIR
Gao et al. [35] analyzed an M/G/1 model with two types
of server breakdown assumptions: if the server is idle,
it needs some time to be repaired after the breakdown;
otherwise, it can be repaired immediately without any
delay. Chakka et al. [36] used the joint-state approach
to model the performance of a multi-node system with
breakdowns and repairs. Schwefe et al. [37] considered a
cluster system having multiple nodes with a high-variance
repair duration, where each server provides a degraded
service when a fault occurs, and they represented it as an

M/MMPP/1 model. Li et al. [38] proposed a scheduling
algorithm for cloud workflow execution to guarantee the
deadline constraint and resource utilization with several
kinds of resource failures. Alam et al. [39] first presented
a multi-server queueing system with a mode in which one
server is broken, and they then extended it to include
more than one server breakdown.

In this study, we did not focus on how to repair broken
servers. Instead, our proposed queueing model permits
any number of instances to leave the system at any time,
without assumptions or heavy computation.

VII. CONCLUSION
This study proposes an offloading system architecture
comprising an RSU, 5G core network, and vehicular
microcloud. We design dynamic scaling rules for vehicle
instances and propose, without making assumptions, a
queueing model in which any number of instances can
leave at any time. To evaluate the system performance, we
conduct extensive simulations to cross-validate our closed-
form solutions. In addition, we propose TCOA to optimize
the offloading ratios and remaining vehicle instances.
The simulation results demonstrate that TCOA exhibits
the best system performance of the five schemes. In the
future, we intend to further investigate this scenario by
considering more factors, such as the mobility of vehicles,
the effects of 5G core network slices, and the other issues
mentioned in the discussion section.

APPENDIX A
DERIVATION OF THE M/M/1/K RESPONSE TIME
IN THE QUEUE
The response time in the queue for the M/M/1/K model
(RSU) is derived in this section. To achieve this goal, the
state probabilities of this system when there are different
numbers of tasks in the queue must be derived first.

A. STATE PROBABILITY ANALYSIS
We define pn as the state probability with n tasks in the
queue, and the range of n is from zero to Kr because of
the task buffer limitation.

According to the balance equations of the state transi-
tions:

p0 × λr = p1 × µr

p1 × (λr + µr) = p0 × λr + p2 × µr

Leading to

p1 = p0 ×
λr

µr

p2 = p0 ×
λ2

r

µ2
r

By mathematical induction, we derive

pn = p0 ×
λn

r

µn
r

(13)
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Thus far, all state probabilities pn are defined. Next, we
obtain the value of each state probability pn by means of
Equation (14), which is shown below.

Kr∑
n=0

pn = 1 (14)

B. RESPONSE TIME IN THE QUEUE
After obtaining the state probabilities, we derive the
response time in the queue by following Little’s law:

Wqr =
Lq

λeff
(15)

In Equation (15), λeff denotes the effective arrival rate
when there is no blocking due to a full task buffer, and
the expected value of the task number in the queue is
denoted as Lq.

λeff = λr × (1− pK) (16)

In Equation (16), pK denotes the blocking probability,
which is equal to the probability of a full task buffer.

pK =
pKr∑Kr
n=0 pn

Leading to

pK =


1

Kr + 1
, if ϕ = 1

(1− ϕ)× ϕKr

1− ϕKr+1
, otherwise

(17)

In Equation (17), ϕ denotes the traffic intensity.

ϕ =
λr

µr
(18)

Thus far, we have obtained the value of λeff . In addition,
we need the value of Lq, which is equal to the number of
tasks in the system except for the serving task.

Lq = L − (1− p0)

L =

Kr∑
n=0

n × pn

Leading to

Lq =


Kr × (Kr − 1)

2× (Kr + 1)
, if ϕ = 1

ϕ

1− ϕ
− ϕ× (Kr × ϕKr + 1)

1− ϕKr+1
, otherwise

(19)
Using Equations (15) to (19), we derive the response time
in queue (Wqr) for the M/M/1/K model (RSU).

APPENDIX B
DERIVATION OF STEADY-STATE PROBABILITY
The state probabilities of the vehicular microcloud are
derived in this section. We define πi,j as the state
probability with i vehicle instances and j tasks in the
queue, where I is the maximum of i and J is the maximum
of j. The state probabilities can be derived in order based
on the range of i, as follows:

Assume πI,J is already known.

A. FOR I = I
πI,j × (Iγ + min(i, j)× µv + λv)

= πI,j−1 × λv + πI,j+1 × min(i, j + 1)× µv
(20)

πI,I−N × (Iγ + min(i, j)× µv + λv)

= πI,I−N+1 × min(i, j + 1)× µv
(21)

Assume πI,j = πI,j+1 × a(I)j ,
leading to

a(I)I−N =
min(I, I − N + 1)× µv

Iγ + min(I, I − N)× µv + λv
(22)

a(I)j =
min(I, j + 1)× µv

Iγ + min(I, j)× µv + λv − a(I)j−1 × λv
(23)

To derive the state probabilities with i in the next range,
πI−1,J must be obtained.

πI−1,J×α = (

J∑
j=I−N

πI,j× Iγ)+πI,I−N×min(I, I−N)×µv

πI−1,J

=
(
∑J

j=I−N πI,j × Iγ) + πI,I−N × min(I, I − N)× µv

(min(I, J)− (I − 1))× α
(24)

Thus far, the state probabilities πi,j are defined within
range i = I, and the state probability πI−1,J is also known.

B. FOR I > I > N
πi,j × (Iγ + min(i, j)× µv + λ) = πi,j−1 × λv

+ πi,j+1 × min(i, j + 1)× µv + πi+1,j × (i + 1)× γ
(25)

πi,i−N × (Iγ + min(i, i − N)× µv + λv) = πi,i−N+1 × µv

+ πi+1,i−N+1 × min(i + 1, i − N + 1)× µv
(26)

Assume πi,j = πi,j+1 × a(i)j + b(i)
j ,

leading to

a(i)i−N =
min(i, i − N + 1)× µv

iγ + min(i, i − N)× µv + λv
(27)

b(i)
i−N =

πi+1,i−N+1 × min(i + 1, i − N + 1)× µv

iγ + min(i, i − N)× µv + λv
(28)

a(i)j =
min(i, j + 1)× µv

iγ + min(i, j)× µv + λv − a(i)j−1 × λv
(29)
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b(i)
j =

b(i)
j−1 × λv + πi+1,j × (i + 1)γ

iγ + min(i, j)× µv + λv − a(i)j−1 × λv
(30)

To derive the state probabilities with i in the next range,
πi−1,J must be obtained.

πi−1,J × min(J − i + 1, I − i + 1)× α

= (

J∑
j=i−N

πi,j × iγ) + πi,i−N × min(i, i − N)× µv

πi−1,J

=
(
∑J

j=i−N πi,j × iγ) + πi,i−N × min(i, i − N)× µv

min(J − i + 1, I − i + 1)× α
(31)

Thus far, the state probabilities πi,j are defined within
range i > N, and the state probability πN,J is also known.

C. FOR I = N

πN,j × (iγ + min(N, j)× µv + λv) = πN,j−1 × λv

+ πN,i+1 × min(N, j + 1)× µv + πN+1,j × (N + 1)× γ
(32)

πN,0 × (Nγ + λv) = (πN,1 + πN+1,1)× µv (33)

Assume πN,j = πN.j+1 × a(N)
j + b(N)

j ,
leading to

a(N)
0 =

µv

Nγ + λv
(34)

b(N)
0 =

πN+1,1 × µv

Nγ + λv
(35)

a(N)
j =

min(N, j + 1)× µv

Nγ + min(N, j)× µv + λv − a(N)
j−1 × λv

(36)

b(N)
j =

b(N)
j−1 × λv + πN+1,j × (N + 1)γ

Nγ + min(N, j)× µv + λv − a(N)
j−1 × λv

(37)

To derive the state probabilities with i in the next range,
πN−1,J (N ≥ 1) must be obtained.

πN−1,J × min(J − N + 1, I − N + 1)× α =

J∑
j=0

πN,j × Nγ

πN−1,J =

∑J
j=0 πN,j×Nγ

min(J − N + 1, I − N + 1)× α
(38)

Thus far, the state probabilities πi,j are defined within
range i ≥ N, and the state probability πN−1,J (N ≥ 1) is
also known.

D. FOR N > I > 0
πi,j × (iγ + min(i, j)× µv + λv) = πi,j−1 × λv

+ πi,j+1 × min(i, j + 1)× µv + πi+1,j × (i + 1)γ
(39)

πi,0 × (iγ + λv) = πi,1 × µv + πi+1,0 × (i + 1)γ (40)

Assume πi,j = πi,j+1 × a(i)j + b(i)
j ,

leading to
a(i)0 =

µv

iγ + λv
(41)

b(i)
0 =

πi+1,0 × (i + 1)γ

iγ + λv
(42)

a(i)j =
min(i, j + 1)× µv

iγ + min(i, j)× µv + λv − a(i)j−1 × λv
(43)

b(i)
j =

b(i)
j−1 × λv + πi+1,j × (i + 1)γ

iγ + min(i, j)× µv + λv − a(i)j−1 × λv
(44)

To derive the state probabilities with i in the next range,
πi−1,J must be obtained.

πi−1,J × min(J − i + 1, I − i + 1)× α =

J∑
j=0

πi,j × iγ

πi−1,J =

∑J
j=0 πi,j × iγ

min(J − i + 1, I − i + 1)× α
(45)

Thus far, the state probabilities πi,j are defined within
range i > 0, and the state probability π0,J is also known.

E. FOR I = 0
π0,j × λv = π0,j−1 × λv + π1,j × γ (46)

π0,0 × λv = π1,0 × γ (47)

Assume π0,j = π0,j−1 × a(0)j + b(0)
j ,

leading to
a(0)0 = 0

b(0)
0 =

π1,0 × γ

λv

(48)

a(0)j = 0

b(0)
j =

b(0)
j−1 × λv + π1,j × γ

λv

(49)

Thus far, all the state probabilities πi,j are defined. If
N = 0, because all values of i are already included in
the range I ≥ i ≥ N, the remaining part in the range
N > i ≥ 0 is unreasonable and should be ignored. In
contrast, if N = I, all values of i are already included in
the range N ≥ i ≥ 0; thus, the other part in the range
I ≥ i > N is unreasonable and should be ignored. We can
then obtain the values of each state probability πi,j by
means of Equation (50), which is shown below.∑

(i,j)∈Sspace

πi,j = 1 (50)

The notation Sspace denotes the set of all vehicular
microcloud states.
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