
Passive Detection of Fat Users in WiFi Networks

using Thompson Sampling

Lorenz Julius Pusch, Anatolij Zubow and Falko Dressler

Technische Universität Berlin, Germany

l.pusch@campus.tu-berlin.de, {zubow,dressler}@tkn.tu-berlin.de

Abstract—The user experience in large WiFi networks, such
as those on university campuses, can be greatly enhanced by
monitoring user activity. Early detection of high-bandwidth users,
often called fat users, who consume substantial radio resources,
can help prevent the formation of network hotspots. This enables
both short-term measures, such as traffic shaping, and long-term
solutions, like deploying additional access points. In this paper,
we present a fully passive method for detecting fat users in
WiFi networks that requires no modifications to existing WiFi
infrastructure. Our approach employs multiple WiFi interfaces to
passively capture WiFi traffic over the air, with channel hopping
managed intelligently through a Multi-Armed Bandit framework
using a modified Thompson Sampling algorithm. This technique
allows effective monitoring of a broad radio spectrum, even with
a limited number of interfaces. Simulation results and real-world
experiments demonstrate the feasibility of this approach in both
stationary and non-stationary network environments.

Index Terms—Wireless, 802.11, passive sensing, user activity,
Thompson sampling

I. INTRODUCTION

The popularity of IEEE 802.11 (Wi-Fi) networks has surged

over the past decade, thanks to their convenient connectivity

available anytime and anywhere. However, the Access Points

(APs) that facilitate network access are often deployed in

a spontaneous and sometimes chaotic manner, leading to

highly variable AP densities and an uneven distribution of

load among them [1]. Hence, to improve the operation of next-

generation WiFi networks, monitoring user activity over time

is essential [2]. In particular, detecting so-called heavy or fat

users is important, as this can help prevent the creation of

hotspots, i.e., overloaded APs, by means of traffic shaping,

load balancing [3] and reconfigurations like band steering [4]

in the WiFi access. Fat users are users who have high

resource consumption in the access network, caused by their

high network traffic and unfavorable wireless conditions, i.e.,

low signal quality due to a significant distance from the

nearest access point (AP), an outdated WiFi standard with

low-order MCS and insufficient channel bonding capabilities,

or ultra-low cost single-input single-output (SISO) systems.

However, monitoring such users is not easy, as it requires

comprehensive network monitoring, including both the core

and access networks. A completely passive approach without

active monitoring within the WiFi access or backhaul network

would therefore be desirable.

Contributions: We present PDF-WiN which is a practical

system for the passive detection of fat users in Wi-Fi networks.

PDF-WiN utilizes multiple WiFi interfaces to passively sniff

WiFi traffic over the air whereas the channel hopping is

steered by an Multi-Armed-Bandit (MAB) based on a modified

Thompson Sampler. Thompson sampling is a common heuristic

for MAB and is used due to its efficient balance between

exploration and exploitation. This enables the intelligent

monitoring of a much larger radio spectrum even with small

number of sniffing interfaces. It is also able to handle non-

stationary environments with changing traffic load and radio

channel conditions. Results from simulations and experiments

with a prototype build from inexpensive off-the-shelf hardware

show that PDF-WiN is able to accurately identify the fat users

even in non-stationary environments and using only a few

sniffing interfaces.

II. RELATED WORK

Related work falls into two categories:

Passive Sniffing: Friess [5] proposed a multi-channel sniffing

system for the identification of WiFi devices and analyzed

the efficiency of channel hopping in comparison to a system

without channel switching. Results for a low-traffic scenario

show that the number of sniffing interfaces can be much lower

than the total number of channels and still the rate of missed

packets can be kept low. Li et al. [6] analyzed the performance

of different channel hopping strategies for determining the

number of users on a certain channel and their activity over

time. They were able to show that the number of channel

switches had a large influence as during channel reconfiguration

no packets can be received. Hao et al. [7] targeted the problem

of large scale crowd counting using passive WiFi sensing. Here

fingerprints were created from sensing data mainly including

timestamp, signal strength, frame type and MAC address and

later used to detect devices. Song et al. [8] proposed a passive

client-side approach which allows accurately derive metrics

such as airtime and throughput with only a minimal amount

of observed WiFi traffic. Passive Monitoring has also found

applications in sensing human activities, as Liu et al. [9]

presented in their work. Ge et al. [10] stated that this activity

tracking through WiFi Sensing and Monitoring is also a relevant

and important topic for future healthcare.

Thompson Sampling: The usage of Thompson Sampling for

rate adaptation in 802.11ac WiFi networks was proposed by Qi

et al. [11]. Bardou et al. [12] targeted IEEE 802.11ax networks

and showed that a method based on Thompson Sampling



can be used to adapt the Clear Channel Assessment (CCA)

sensitivity threshold and its transmission power leading to

improved spatial reuse and hence better performance. Another

approach to efficiently select the next free channel to transmit

using Thompson Sampling was conducted by Maskooki et al.

[13]. Ye and Wang [14] proposed an improved Thompson

Sampler (TS) method for Dynamic Spectrum Access (DSA)

in Cognitive Radio (CR) with non-stationary environments.

Results show that the proposed approach outperforms classical

TS as outdated information are deleted after some time. The

threshold method used by our approach was inspired by this

work. Trovo et al. [15] proposed a sliding-window approach

to TS and analyzed the impact of the window size in different

scenarios.

Our work provides a cost efficient passive monitoring system.

While previous studies have focused on binary rewards, our

approach uses a modified version that utilizes the radio airtime

as a continuous reward.

III. MULTI-ARMED-BANDIT PRIMER

MAB is a framework for algorithms that make decisions

over time under uncertainty. It focuses on optimizing rewards

through exploration and exploitation. It is designed for scenar-

ios in which multiple options, or "arms," must be selected in

order to maximize the reward. The next action is always based

on the current learning state and feedback of last selections [16],

[17].

There are various versions of the MAB, which can be used in

stationary but also in non-stationary cases, where probabilities

of each bandit change over time. Specific algorithms e.g., are

the simple ϵ-greedy, where a small percentage of choices are

made randomly to explore new options. But also Thompson

Sampling (TS) and Upper Confidence Bound (UCB) are

common methods [16]. The TS is a widespread heuristic for

the MAB problem and its basic version was designed for a

stationary environment [17]. Imagine there are K bandits. Only

one Bandit k can be selected at a time. Each of them has a fixed

(stationary) probability θk to give a positive reward (1) and a

probability of 1− θk to give a negative one (0). To model the

likelihood of the reward for each bandit it is common for TS

to use beta distribution. Initially it begins with an independent

prior belief. The parameters of the distribution, α and β, are

both one. As a result, the distribution is constant within the

interval [0, 1]. Afterwards, each bandit is then updated as

follows:

(αk, βk) =











(αk, βk) , bandit k is not chosen

(αk, βk) + (1, 0) , chosen and reward is 1

(αk, βk) + (0, 1) , chosen and reward is 0

To decide which bandit will be visited next, an estimated

reward is generated from each bandit and the one with the

highest reward is chosen.

IV. SYSTEM MODEL & PROBLEM STATEMENT

We consider a IEEE 802.11 WiFi infrastructure network

consisting of a large number of APs and user devices (STA)

AP
...

STA

high traffic & 
weak radio link

fat user

DS
large airtime

Figure 1. System model.

(Figure 1). The Basic Service Sets (BSS), i.e., APs with

associated clients, are operating on either different or same

radio channels (overlapping BSS) from either 2.4, 5 or 6 GHz

band. The user devices generate network traffic in both

downlink and uplink. We assume very heterogeneous users, i.e.,

from ultra-low cost legacy SISO systems to state-of-the-art large

MIMO systems operating on wide channels (cmp. Figure 1).

Moreover, no assumptions are made about the stationarity of

the users with respect to the used radio resources. This means

that both the traffic pattern and the radio conditions (due to

mobility) can change.

The following specific model was used. The time is divided

into T timeslots, t ∈ [1, T ], of equal duration τ . The

spectrum is split into N channels with equal bandwidth,

N = {1, 2, . . . , N}, n ∈ N . The non-stationary environ-

ment is divided over the entire time T into M stationary

segments m ∈ [0,M ]. The segments are represented as slots

φ0, φ1, . . . , φM+1 with φ0 = 0 and φM+1 = T . In each

segment the network traffic load changes for each user on all

channels:

aun
(t) = P (pun,m), φm < t ≤ φm+1

Here aun
(t) is the state of the user un and specifies the airtime

in a timeslot t. P (pun,m) is a random variable with Poisson

distribution. There are Un users per channel n.

Un = {1, 2, . . . , Un}, un ∈ Un

And the available W monitor interfaces are specified by Ω =
{1, 2, . . . ,W} with ω ∈ Ω.

Our objective is to find the fat users, i.e., those occupying

the largest airtime which is pun,m in our model. Such users

are characterized by either high network load and/or poor

radio conditions, i.e., low SNR, no or small MIMO spatial

multiplexing, no or low channel bonding (see Figure 1).

V. PDF-WIN APPROACH

Figure 2 shows the architecture of the envisioned PDF-WiN

approach. The frames received over the W WiFi sniffing

interfaces are decoded and their airtime is estimated using

information including the PHY header. This information is

passed to the adapted TS, which updates its internal state and

decides on the channels to be used by each interface in the

next time slot t. After the T timeslots have been completed the

TS outputs the identified fat users together with their channels.

The proposed adapted TS is described in next section.



A. Adapted Thompson Sampler

The core of PDF-WiN is the modified TS which differs

from the plain version described in Section III as follows

(Algorithm 1). First of all, the reward in our system is not

binary. Hence, the Beta-distribution cannot be used since it is

only defined in the interval [0, 1]. Moreover, the TS must be

capable of visiting multiple bandits in each time slot, because

it is equivalent to using more than one sniffing interface,

i.e., W > 1. Additionally, to improve its adaptability in non-

stationary environments additional modifications (Threshold

method, Sliding Window) were made.

Algorithm 1 Adapted Thompson Sampling

Input: A prior for the reward distributions
D ← ∅ ▷ observed data from visited channels
for t = 1, . . . , T do

θt ← draw sample from Posterior P (θt | D)
Compute expected rewards EP (r|n,θt)[r] for all channels n
Rank all channels by expected reward
a← min(W,N)
if rand() ≤ 95% then
N ∗(t)← Select top a channels maximizing EP (r|n,θt)[r]

else
L← Actions not in the top a
k ← min(a, |L|)
Randomly select k channels from L
if k < a then

Add (a− k) channels from the top a to N ∗(t)
end if

end if
Visit all channels from N ∗(t) and observe rewards r(t)
Append (r(t),N ∗(t)) to D

end for

A modified TS is used to estimate the fat users in the network.

It controls the channels to be monitored (sniffed) by each of

the W available interfaces in the next time slot. The reward for

each channel n in each timeslot t is the airtime of the heaviest

user, i.e., user with largest airtime, of this channel:

rn(t) = auheavy
(t); with uheavy is in argmax

un∈Un

(aun
(t))

To make it possible that the TS is capable of visiting multiple

bandits in each time slot the adapted TS visits min(W,N)
channels. This way it is possible to update in one timeslot

multiple estimated distributions of the channels.

In order to operate in non-stationary environments outdated

observations need to be discarded. Three methods are available:

1) Plain TS,

...

channels to visit in next
time slot

PDF-WIN Node

Decode
frames

fra
m

e
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e

Decode
frames

IF1

IFW

fat user per channel

... channel rel. airtime (%)MAC addr (fat user)

de:ac:bb:97:fc:592437 HT40+ 5.75

a0:ce:c8:f1:c8:cf5220 80MHz 12.75
...... ...

Adapted TS
Agent

Figure 2. PDF-WiN architecture of a single node with W interfaces.

2) Window TS,

3) Threshold TS.

Plain TS is the TS as described above, where all observations

even very old ones are kept. Hence, this method is only suitable

for stationary environments. Window TS, is a method that uses

a sliding window to construct the estimated distribution of

each channel based on the rewards from the last n time slots.

Older reward values are discarded. Threshold TS uses a method

adapted from [14]. It stores the rewards of a channel for the first

n visits. Afterwards a confidence interval is calculated from

these initial rewards on the channels estimating distribution.

For following visits, the estimated distribution is based on the

most recent n rewards like a sliding window. Additionally,

if a observed reward falls outside the confidence interval the

entire learning state will be reset and the TS restarts with the

initial learning phase for that channel. The last two methods

are suitable for non-stationary environments.

Finally, there is an additional mechanism for adapting to

changes on the channel. With a probability of 5% the TS

does not visit the channels with highest estimated reward but

randomly chooses the channels to be used for the next time

slot. In case of fewer channels available then the number of

chosen channels, then the chosen ones are included again in

descending order regarding the estimated reward.

B. Prototype

As a proof-of-concept (PoC) PDF-WiN was implemented as

prototype (Figure 3)1. The PoC uses commercial off-the-shelf

hardware, i.e., multiple WiFi USB NICs connected via USB

hub to Linux laptop. Specifically, we used EDUP AX3000 WiFi

cards with MT7921AUN chipset which are compliant to IEEE

802.11a/b/g/n/ac/ax (6E) and support monitor/promiscuous

mode. On the software side we used the Python library Scapy

for parsing WiFi frames. The prototype is capable of handling

a different number of NICs for both sniffing and sending. In the

prototype shown in Figure 3, eight NICs are connected. During

execution it is continuously displaying the current status in the

terminal. For the sniffer component it is the observed heavy user

of the current timeslot t for each monitor interface ω and for the

sender this is the MAC address and corresponding airtime of the

simulated heavy user for each channel. Additionally, the sniffer

component displays the current state of probability distributions

for each channel the TS works with in a live-updated Matplotlib

window. The second plot shows how often each channel has

been visited. Regarding performance requirements, the program

was executed five minutes with eight NICs on a laptop with

an Intel(R) Core(TM) i5-7300U CPU with 4 cores at 2.60

GHz. The uptime command reported load averages of 0.85

over the last 5 minutes. This value reflects efficient resource

usage, as they stay below the available CPU core count, which

implies that the program is capable of managing higher loads

effectively.

1https://git.tu-berlin.de/lorenz.pusch/ts-passive-monitoring-system



Figure 3. The PDF-WiN prototype with 802.11ax NICs connected via USB.

VI. EVALUATION

The proposed approach was analyzed both by simulations

and real experiments using the prototype.

A. Methodology

For the evaluation the following performance metric was

selected. It is the cumulative airtime over all time slots and

channels of the selected approach divided by that of the oracle

solution:

µ =
R

R∗
(1)

where R is defined as follows:

R =

T
∑

t=1

∑

n∈Ct

rn,m(t) (2)

Here Ct represents the visited radio channels in time slot t:

Ct = {c|c ∈ N , cωi
̸= cωj

, ∀ωi, ωj ∈ Ω, ωi ̸= ωj ,

this set has a maximum of W elements}
(3)

Note, that R∗ is computed in the same way and represents

the upper bound as it is computed using full information about

traffic on all channels, i.e., oracle solution. Hence, in each

timeslot all W sniffing interfaces are distributed optimally over

the channels with the highest pun,m. So, Ct becomes C∗
t :

C∗
t = {c|c ∈ N , cωi

̸= cωj
, ∀ωi, ωj ∈ Ω, ωi ̸= ωj ,

this set has a maximum of W elements,

puc,m is ranked among the highest rn(t),

∀n ∈ N}

(4)

B. Simulation

We present results from simulations starting with analysis

of the selected distribution for TS, the performance of our

proposed approach in both non-stationary as well as stationary

environments and the comparison with simple random and

sequential scanning strategies.

1) Impact of TS Distribution: In the following, we want

to examine which distribution should be used in Thompson

sampling. Specifically, we examined the Gamma, Poisson and

Gaussian distribution. For the analysis we selected W = 2
sniffing interfaces, N = 5 radio channels, τ = 1 s time slot

duration and a total number of T = 1k time slots. The

number of users was five and each user used a different

channel. The user traffic was Poisson distributed with different

λ = 2, 3, 6, 8, 9 for the five users.

Figure 4 shows the different estimated distributions. From

the results we can see that all three distributions are suitable

for identifying the fat user, i.e., those with the highest traffic,

although the number of sniffing interfaces was smaller than

the number of channels, W < N .

2) Stationary environment: To demonstrate the effectiveness

of the proposed approach, it is compared with the following

two strategies. In the random strategy at the beginning of

a time slot, the channels for the W sniffing interfaces are

randomly selected whereas the sequential strategy scans the N

available channels in sequential order using the W interfaces.

The following scenario was used: W = 1 sniffing interface,

N = 7 channels, τ = 1 s time slot duration, a total number

of T = 500 time slots. PDF-WiN was configured to use plain

TS with Poisson distribution.

As can be seen from Figure 5 both the random and the

sequential strategies are unable to identify the fat users as

µ remains low at ≈ 0.45. This is because all channels are

visited equally frequently and therefore independently of the

occupancy by users. In contrast µ of the proposed TS approach

converges to one and hence is achieving a performance close

to the oracle solution.

3) Non-stationary environment: Next, we analyzed the three

different methods, i.e., plain, window and threshold TS, in a
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Figure 4. Estimated distributions of TS with different distributions.



0 100 200 300 400 500
timeslots [x 1s]

0.0

0.2

0.4

0.6

0.8

1.0

Plain TS
Random
Sequential

Figure 5. Comparison of plain TS with random and sequential strategies.
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Figure 6. Comparison of different TS methods in a non-stationary environment.

non-stationary environment. The following configuration was

used: W = 2 sniffing interfaces, N = 5 radio channels, τ = 1 s
time slot duration, a total number of T = 1350 time slots, use

of Gamma distribution for TS and M = 6 segments.

Figure 6 shows the results. The plain TS performs signifi-

cantly worse than the other two methods whereas the threshold

TS is able to adapt fastest. Note, that in last segment the

channel utilization changed very drastically. The advantage of

the threshold TS was highest here, 0.79 vs. 0.66 at t = 920.

4) Impact of number sniffing interfaces: The objective of this

examination was to find out how many timeslots T are required

to reach µ ≥ 0.95, i.e., to identify the heavy users with a high

degree of certainty. We therefore varied the number of interfaces

W , while the number of channels remained constant. The

specific configuration was: N = 100 radio channels, τ = 1 s
time slot duration, use of Gamma distribution for TS, stationary

environment (M = 1) and the use of threshold TS. The number

of users and their utilization was randomized in each run and

the results are averaged. From the result in Figure 7 we can

clearly see the speedup in identification if sufficient sniffing

interfaces are available.

C. Experiments

We conclude our evaluation with presenting results from

real over-the-air experiments using our PDF-WiN prototype.

1) Emulated user traffic: The selected parameters were,

W = 1 sniffing interface, N = 5 radio channels, τ = 1 s
time slot duration, a total number of T = 220 time slots,

use of Gamma distribution with window TS and M = 6
segments. The user traffic was emulated using five additional

WiFi interfaces by injecting WiFi frames via Scapy.
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Figure 7. Impact of number of sniffing interfaces.
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Figure 8. Results from over-the-air experiments with emulated traffic.

Figure 8 shows a single run where a sufficient high value

for µ was achieved. Note, that for the measurement, we used

the unlicensed 2.4 GHz ISM band, which was also used by

other WiFi devices at the time of the measurement. Therefore,

only the emulated traffic could be taken into account resulting

in a slightly lower value for µ.

2) Measurements on campus: We used our PoC to identify

the fat users in three different locations on our campus,

namely: i) office, ii) lecture hall, iii) small library. The selected

parameters were W = 8 sniffing interfaces, τ = 1 s time slot

duration, a total number of T = 600 time slots (10 min), use

of Gamma distribution and Window TS with window size 20.

An initial scan was used to find the channels on which APs

are operating.

The results for the three environments are shown in Table I.

We can observe that in the office location, the fat users are

operating in the 2.4 GHz spectrum whereas it is the 5 GHz

spectrum that is being used in the other two locations. Moreover,

we see that the channel utilization was not particularly high in

the three environments. Even the heaviest user consumed less

than 2% of the total medium time. Finally, we see that channel

bonding is being used and supported by our prototype.

3) Measurement over time: In a last measurement we

analyzed how the heavy users change over time. For this the

last experiment (VI-C2) was conducted repeatedly for 90 min

in a lecture hall during a lecture. Hence, this is a real world

measurement without knowledge about the ground truth. The

selected parameters were W = 4 sniffing interfaces, τ = 1 s
time slot duration, a total number of T = 120 time slots

(2 min), use of Gamma distribution and Threshold TS with



Table I
DETECTED FAT USERS (LOCATION: OFFICE)

Location Channel Rel. airtime (%)

Office 2462 HT20 0.953
2412 HT40+ 0.408
2437 HT40+ 0.401

Lecture hall 5500 40MHz 1.717
2437 HT40+ 0.899
2437 HT40- 0.820

Library 5500 80MHz 0.939
5220 40MHz 0.771
5220 80MHz 0.708

2024-12-10 14:15:00

2024-12-10 14:30:00

2024-12-10 14:45:00

2024-12-10 15:00:00
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Figure 9. Results from measurements over time on the campus

window size 20. Also for this measurement, an initial scan was

used to find the channels on which APs are active. As a result

of this scan, the measurement was conducted on 7 frequencies

with in total 24 different bandwidths.

Figure 9 shows the result. Each user refers to a MAC

address, that is extracted from WiFi-frames. There are some

frame-types without an entry for transmitter address, such as

Acknowledgments (ACK) and Clear to Send (CTS). These are

listed under no_tx_mac in the plot, but do not have a high

airtime compared to the other users. We can observe that there

are users that came up infrequently and spontaneously, like

user_0 or user_6 in the plot. Besides this, user_2 was

present most the time and consumed on average the highest

airtime.

VII. CONCLUSION

Early detection of high-bandwidth users, known as fat users,

helps prevent network hotspots by enabling short-term traffic

shaping and long-term solutions like deploying additional

access points. We presented PDF-WiN which is using a Multi-

armed Bandit based on a modified Thompson Sampler for

efficient passive detection of fat users in Wi-Fi networks. Its

feasibility in stationary and non-stationary environments was

demonstrated by means of simulations and real experiments. As

future work we plan to perform field tests in large-scale WiFi

university campus networks which would allow us to validate

our approach under real channel and network conditions.
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