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Abstract

Security has become a major concern for many real-
world applications for wireless sensor networks (WSN).
In this domain, many security solutions have been pro-
posed. Usually, all these approaches are based on well-
known cryptographic algorithms. At the same time, per-
formance studies have shown that the applicability of sen-
sor networks strongly depends on effective routing decisions
or energy aware wireless communication. This observa-
tion correlats with the emergence of new application sce-
narios. Security mechanisms were rarely included in such
measurements and studies and only few approaches were
analyzed in experimental setups. Therefore, only theoreti-
cal measures were applied to demonstrate and discuss the
behavior of security solutions. In this paper, we used an ex-
perimental setup for the verification of runtime behavior of
several cryptographic algorithms including MD5, SHA-1,
and AES. We used typical sensor hardware to get reason-
able results. Based on our experiments, we provide some
analysis and considerations on practical feasibility of such
cryptographic algorithms in sensor networks.

1. Introduction

In this paper, we evaluated the performance of real sen-
sor node performing cryptographic operations in oder to
provide some basic measures for case studies and simula-
tion setups of network security mechanisms in wireless sen-
sor networks (WSN). We used a testbed to analyze the pos-
sible performance of typical cryptographic hash functions
as well as of computational intensive encryptions. We fig-
ured out that most operations cannot be efficiently used on
typical sensor nodes due to operating times of up to sev-
eral seconds for a single operation. Therefore, the use of
security functions in WSN must be carefully designed and
evaluated even for simple setups.

With the proliferation of small and cheap embedded sys-
tems, wireless sensor networks have become a major re-
search domain in the communications community [1]. Be-
sides other issues that have been studied so far [6], energy
consumption and security were identified to be the most
challenging problem spaces. These properties are influ-
enced by the massively distributed operating principle based
on self-organization mechanisms [9]. Similarly, the lifetime
of sensor networks [10] depends strongly on the operation
mode, i.e. the used routing algorithms, the application be-
havior, and, finally, the employed security methods.

There are several surveys of security issues in ad hoc and
sensor networks avalable such as [7] and [17]. We discuss
additional work in section 2. Obviously, there are numer-
ous proposals for adding security features to WSN. Most of
them concentrate on copying and adapting well-established
approaches from Internet-based technology. Others propose
new ideas but most of them have not yet outlined the feasi-
bility of their proposals to work on real sensor nodes.

All approaches for enabling security in WSN are very
scenario dependent. There are different requirements, for
example, in an agriculture scenario [2] than in a habitat
monitoring scenario [14]. Other requirements appear in the
operation and control domain. Sensor nodes must be re-
configured, calibrated, and reprogrammed [11]. Such op-
erations are very sensible for possible attacks. Finally, it
must be mentioned that we ignore the problem of key man-
agement. Several solutions have been proposed that address
this issue, e.g. [19].

In this paper, we present the results of an experimen-
tal evaluation of cryptographic operations using real sen-
sor hardware. This study was inspired by previous work
on security mechanisms for mobile systems such as mobile
phones [13]. We implemented several cryptographic hash
functions as well as an encryption operation for the BTnode
sensors using available open source libraries. In several ex-
periments, we evaluated the performance overhead due to
such cryptographic functions.

The rest of the paper is organized as follows. In sec-
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tion 2, we outline typical security architectures and the
used cryptographic algorithms. Then, our implementation
is briefly described in section 3. A discussion of the mea-
surement results follows in section 4. Finally, section 5 con-
cludes the paper.

2. Security Solutions and Architectures

The purpose of this section is to summarize necessary
information in the security domain that relates to this paper.
We keep this section short because there are already good
surveys available such as [7,17]. The primary requirements
on a successful security architecture are availability, authen-
tication, data confidentiality, integrity, and non-repudiation.
Most of these objectives can be addressed using crypto-
graphic hash functions and appropriate encryption schemes.
In ad hoc and sensor networks, many proposals were pub-
lished concerning the use of security measures for particu-
lar applications [7]. Security protocols such as [17] define
complex architectures to be used in a sensor network envi-
ronment.

Most of such proposals defer the problem of key man-
agement - one of the most sophisticated problems - to be
solved elsewhere. Fortunately, several approaches seem to
be adequate in this domain. One example is the efficient
public-key encryption in sensor networks [3]. A survey on
key management solutions can be found in [5].

Besides security architectures and special solutions for
routing or key management, the aggregation of encrypted
data in WSN was discussed [4] as well as the integration
of particular security layers for reliable and secured com-
munication [8]. Finally, secure overlays were proposed to
address the security concerns in WSN [12].

In summary, it can be said that many promising propos-
als can be found in the literature that address the security
objectives in sensor networks. Nevertheless, most of these
papers only outline the principles or use simulation environ-
ments for verification. We tried to verify the applicability of
such solutions on real sensor node hardware by analyzing
the performance of several cryptographic algorithms.

In particular, we selected the following three crypto-
graphic algorithms:

• MD5 (Message Digest) [18]

• SHA-1 (Secure Hash Algorithm) [15]

• AES (Advanced Encryption Standard) [16]

The first two algorithms, MD5 and SHA-1, represent
cryptographic hash functions that are heavily used for typ-
ical message integrity checks and authentication. AES is
a symmetric encryption algorithm that promises fast opera-
tion compared to asymmetric solutions. We selected these

algorithms as candidates due to two reasons. First, these
solutions are de facto standards in current security architec-
tures and, secondly, open source implementations are avail-
able that can be used for our tests.

3. Experimental Implementation and Setup

3.1. Hardware and Software

As hardware platform for the tests, we used the BTn-
ode sensor nodes developed at the ETH Zurich1. The nodes
were used with the NutOS operating system and the BTnut
system software version 1.6. In particular, we used the fol-
lowing libraries from the BTnut system software: thread,
timer, event, terminal, ccc/bmac, bluetooth, and eeprom.
The BTnode architecture consists of an Atmel ATmega
128L microcontroller operating at 8MHz with 4kByte flash
and 244kByte RAM. For communication, a Zeevo ZV4002
bluetooth system and a Chipcon CC1000 low power radio
are available. An ISP and an UART interface are provided
for programming and easy debugging, e.g. using a terminal
program.

In addition to the standard system software, we used the
following libraries to provide support for cryptographic al-
gorithms:

• MD5/SHA-1: md5deep, version 1.122

• AES: reference code version 2.2 by Rijndael3

We needed to customize these libraries for use in the
node environment. Basically, only minor modifications
were necessary such as providing appropriate integer data
types (sometimes, 32 bit integer were assumed by the li-
braries).

3.2. Implementation

In order to test the runtime behavior of the described
cryptographic algorithms, we implemented a test environ-
ment as shown in figure 1.

First, a data-array is allocated with appropriate size, and
filled with data (all bits zero/one, alternating values, etc.)
to test the hash functions. The algorithm is given a pointer
to this array and another to a data structure where it stores
the resulting hash. For an encryption-algorithm a second
data-array of same size is required to store the resulting
en/decrypted data. After the execution the arrays are de-
allocated.

For time measurement a 16-bit timer is used, which is
being increased by the main system clock divided through

1http://btnode.ethz.ch/
2http://md5deep.sf.net/
3http://www.iaik.tu-graz.ac.at/research/krypto/AES/old/∼rijmen/rijndael/
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Figure 1. UML diagram showing the main
functions of the test setup

8 by a prescaler, resulting in a 1-µs-resolution. Further-
more, an IRQ-Handler is set which increases a global in-
teger variable whenever the timer overflows. Through this
the time since the activation of the timer can be measured
exactly. To determine the time, which a hash or encryption
algorithm needs, the system time before the computation is
simply subtracted from the time thereafter.

To create arbitrary series of measured data, an outer loop
was created that allows generating data-arrays with increas-
ing size to be hashed or encrypted. For each step, either a
single measure can be taken, or multiple measures for which
statistical information such as the minimum, maximum, av-
erage, and median, are displayed, providing simplified fur-
ther processing.

The interaction with the BTnodes is controlled by the
terminal included in the ’BTnut System Software’. It pro-
vides the ability to execute any function and so start mea-
surements or concurrent actions, and to extract the results
immediately after the experiment using the text output.

For tests of effects due to concurrently running oper-

ations on the node, several additional tasks were imple-
mented. First, another application was created, which can
flood any node with data packets being sent through the
Chipcon low-power radio. It can be run on a second node to
verify the performance of the node under test while receiv-
ing data.

Currently, a standard BTnode has no sensors attached by
default. Nevertheless, it is possible to measure the battery
voltage which is similar to measuring sensoric data. The
’BTnut System Software’ provides a function to measure
the voltage multiple times and return the average of it. This
function can be run in another thread and periodically trig-
gered through a timer to test the performance of the node
when measuring and hashing or encrypting concurrently.

Another action that can be run in another thread is to
send data packets of different size through the bluetooth
subsystem. This can also be triggered through a timer.

3.3. Experimental Setup

The experimental setup consisted of a PC running Linux
(using a kernel providing USB-to-serial-support) and two
BTnodes with attached connector boards to use USB con-
nections to the PC. Using a terminal program, measure-
ments and concurrent computations or data transmissions
can be launched. The measurement results are then dis-
played in the terminal and can be copied to a file to be ana-
lyzed later.

4. Measurements and Discussion

4.1. Executed measurements

In order to evaluate the performance of the cryptographic
algorithms on the described sensor nodes, we executed the
following measurements:

1. Hashing/encrypting data arrays of different size up to
1024 byte with MD5/SHA-1/AES. For each size, the
test was executed multiple times and the median was
calculated.

2. Hashing/encrypting a single array of 1024 byte with
MD5/SHA-1/AES while using the Chipcon low-power
radio:

• ccc idle – with Chipcon enabled, idle

• ccc receiving – with Chipcon enabled, receiving
messages

• ccc disabled – with Chipcon disabled

3. Hashing arrays of different size with MD5 while Chip-
con low-power radio is enabled (idle)

625



0

20

40

60

80

100

120

140

0 128 256 384 512 640 768 896 1024

ms

byte

MD5

bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbbbbbbb

b
SHA-1

rrrrrrrrrrrr
rrrrrrrrrrrr

rrrrrrrrrrrr
rrrrrrrrrrrr

rrrrrrrrrrrr
rrrrrr

Figure 2. Hashing arrays of different size with
MD5 and SHA-1

4. Hashing 1024 byte with MD5 while periodically mea-
suring the battery voltage

5. Hashing 1024 byte with MD5 while periodically send-
ing packets through the bluetooth subsystem

4.2. Results and Discussion

The plots depicted in figures 2 and 3 show the time
needed to hash or encrypt data arrays of different size. For
1 kByte of data, hashing takes about 43 ms with MD5 and
129 ms with SHA-1. Encrypting with AES takes 1.67 s.
The computation times are linearly dependent to the amount
of data being processed. The MD5 algorithm needs the
same time for data blocks of n ∗ 64 to (n + 1) ∗ 64 − 1
byte. SHA-1 behaves similar to that, but the computation
times even decrease a little within any of these intervals.

For the plots shown in 4, 5, and 6, measures of hashing or
encrypting operations on a 1024 byte array were made. For
each algorithm three series of single values were recorded:
one with the Chipcon low-power radio disabled, one with
the radio in idle mode, and one while concurrently receiving
packets.

These plots show, that the computation times do not drift
much when the radio is deactivated. When it is in idle mode,
the times increase by a constant value and some additional
peaks appear. These peaks seem to occur when the radio
thread that periodically checks for incoming messages is
triggered one more time during a single cryptographic com-
putation. Then, the measured values are about 6200 µs
higher, which seems to be the time needed to poll the ra-
dio.

When the node is flooded with data packets by another
node using the Chipcon radio, the computing times alter-
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with AES
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Figure 6. Encrypting 1024 byte of data with
AES while using Chipcon radio

nate irregularly, sometimes being even smaller than before.
This seems to be due to the receiving thread returning faster
when a packet arrives.

Tables 1, 2, and 3 depict also the minima, maxima, aver-
age, and median for all these measurements.

µs disabled idle receiving
MIN 42673 48921 44188
AVG 42697.52 49499.4 48875.9
MED 42699 49014 48202
MAX 42995 55152 53916

Table 1. Hashing 1024 byte of data with MD5
while using Chipcon radio

µs disabled idle receiving
MIN 128496 145531 139450
AVG 128546.18 146876.48 145631.94
MED 128548 145723 145224
MAX 128817 151730 151635

Table 2. Hashing 1024 byte of data with SHA-1
while using Chipcon radio

µs disabled idle receiving
MIN 1668525 1668525 1912343
AVG 1668698.96 1668698.96 1917133.38
MED 1668696 1668696 1918802.5
MAX 1668722 1668722 1920002

Table 3. Encrypting 1024 byte of data with
AES while using Chipcon radio

The measures shown in figure 7 were made on a BTn-
ode with Chipcon radio activated and idling. They show the
computing times of the MD5 algorithm being used multiple
times for a data block of 64, 128, or 256 byte. Again, con-
tinuous peaks of 6200 µs appear, indicating the time con-
sumed by the idling Chipcon thread waiting for messages,
which is independent from the amount of data being hashed.

The plot in figure 8 shows the time needed to compute
the MD5 hash of a 1024 byte array while the BTnode mea-
sures its battery voltage in another thread. If this happens
10 times a second, about half of the measurements take
about 5500 µs longer. This is plausible as one computa-
tion takes 42700 µs on average, which is a little less than
1/20th of a second. If the battery measurement is triggered
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50 times a second, this occurs two or three times during one
computation. This behavior can be recognized easily in the
plot.

With the bluetooth subsystem activated, some measure-
ments where made hashing 1024 byte with MD5 while an-
other thread was sending packets. The results as depicted in
figure 9 show that this did not influence the computations.
This happened because the thread sending packets waited
while the hashing algorithm was active, which could also
be seen on the terminal.

5. Conclusion

In this paper, we evaluated several cryptographic algo-
rithms using measurements on real sensor hardware. The
selected algorithms build the basis for nearly any security
solution used in communication networks including ad hoc
and sensor networks. Focusing on the experimentation, we
produced statistically significant results by performing all
measurements several times and analyzing singular effects
as well as mean values (or more precise median values).

The analysis of the selected cryptographic algorithms
(MD5, SHA-1, and AES) has shown that all the algorithms
need remarkably high execution times. For example, the
execution of a single AES operation on a 1 kByte array
lasted 1.67 s. Therefore, sensor nodes will need long times
to perform adequate security operations for routing or data
dissemnination issues. In many scenarios, multiple encryp-
tion/decryption operations are needed for data aggregation
or in-network operation. We propose to use our measure-
ment results as a basis for validating security scenarios for
wireless sensor networks. Real measurements must build
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the basis for analyzing proposed security protocols in order
to estimate their behavior. Additionally, our measurement
results can be used to calibrate simulation setups in order to
find out boundaries for real-time operation and communica-
tion.
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