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Abstract— Many security solutions have been proposed in the
domain of wireless sensor networks (WSN). Usually, all these
approaches are based on well-known cryptographic algorithms.
The efficiency of WSN not only depends on effective routing
decisions or energy aware wireless communication. In contrast,
the efficiency strongly depends on the application scenario that
includes appropriate security mechanisms. Previously, only few
approaches were analyzed in experimental setups. Therefore, only
theoretical measures were applied to demonstrate and discuss
the behavior of security solutions. In this paper, we used an
experimental setup for the verification of runtime behavior
of several cryptographic algorithms including MD5, SHA-1,
and AES. We used typical sensor hardware to get reasonable
results. Based on our experiments, we provide some analysis
and considerations on practical feasibility of such cryptographic
algorithms in sensor networks.

I. INTRODUCTION

In this paper, we study the behavior of wireless sensor nodes
performing cryptographic operations. Instead of estimating the
overhead introduced by such operations, we used a testbed to
analyze the possible performance of typical cryptographic hash
functions as well as of computational intensive encryptions.
We figured out that most operations cannot be efficiently used
on typical sensor nodes due to operating times of up to several
seconds for a single operation. Therefore, the use of security
functions in WSN must be carefully designed and evaluated
even for simple setups.

Wireless sensor networks (WSN) have become a major
research domain in the communications community [1]. Be-
sides other issues that have been studied so far [2], energy
consumption and security were identified to be the most
challenging problem spaces. These properties are influenced
by the massively distributed operating principle based on self-
organization mechanisms [3]. Similarly, the lifetime of sensor
networks [4] depends strongly on the operation mode, i.e. the
used routing algorithms, the application behavior, and, finally,
the employed security methods.

A survey of security issues in ad hoc and sensor networks
can be found in [5]. Related work in the security area, focused
on WSN, is summarized in [6]. We discuss additional work
in section II. Obviously, there are numerous proposals for
adding security features to WSN. Most of them concentrate
on copying and adapting well-established approaches from
Internet-based technology. Others propose new ideas but most
of them have not yet outlined the feasibility of their proposals
to work on real sensor nodes.

All approaches for enabling security in WSN are very sce-
nario dependent. There are different requirements, for exam-
ple, in an agriculture scenario [7] than in a habitat monitoring
scenario [8]. Other requirements appear in the operation and
control domain. Sensor nodes must be reconfigured, calibrated,
and reprogrammed [9]. Such operations are very sensible for
possible attacks. Finally, it must be mentioned that we ignore
the problem of key management. Several solutions have been
proposed that address this issue, e.g. [10].

In this paper, we present the results of an experimental
evaluation of cryptographic operations using real sensor hard-
ware. This study was inspired by previous work on security
mechanisms for mobile systems such as mobile phones [11].
We implemented several cryptographic hash functions as well
as an encryption operation for the BTnode sensors using
available open source libraries. In several experiments, we
evaluated the performance overhead due to such cryptographic
functions.

The rest of the paper is organized as follows. In sec-
tion II, we outline typical security architectures and the used
cryptographic algorithms. Then, our implementation is briefly
described in section III. A discussion of the measurement
results follows in section IV. Finally, section V concludes the
paper.

II. SECURITY SOLUTIONS AND ARCHITECTURES

The purpose of this section is to summarize necessary in-
formation in the security domain that relates to this paper. We
keep this section short because there are already good surveys
available such as [5], [6]. The primary requirements on a
successful security architecture are availability, authentication,
data confidentiality, integrity, and non-repudiation. Most of
these objectives can be addressed using cryptographic hash
functions and appropriate encryption schemes. In ad hoc and
sensor networks, many proposals were published concerning
the use of security measures for particular applications [5].
Security protocols such as [6] define complex architectures to
be used in a sensor network environment.

Most of such proposals defer the problem of key man-
agement - one of the most sophisticated problems - to be
solved elsewhere. Fortunately, several approaches seem to be
adequate in this domain. One example is the efficient public-
key encryption in sensor networks [12]. A survey on key
management solutions can be found in [13].
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Besides security architectures and special solutions for rout-
ing or key management, the aggregation of encrypted data in
WSN was discussed [14] as well as the integration of particular
security layers for reliable and secured communication [15].
Finally, secure overlays were proposed to address the security
concerns in WSN [16].

In summary, it can be said that many promising proposals
can be found in the literature that address the security objec-
tives in sensor networks. Nevertheless, most of these papers
only outline the principles or use simulation environments
for verification. We tried to verify the applicability of such
solutions on real sensor node hardware by analyzing the
performance of several cryptographic algorithms.

In particular, we selected the following three cryptographic
algorithms:

• MD5 (Message Digest) [17]
• SHA-1 (Secure Hash Algorithm) [18]
• AES (Advanced Encryption Standard) [19]
The first two algorithms, MD5 and SHA-1, represent cryp-

tographic hash functions that are heavily used for typical mes-
sage integrity checks and authentication. AES is a symmetric
encryption algorithm that promises fast operation compared
to asymmetric solutions. We selected these algorithms as
candidates due to two reasons. First, these solutions are de
facto standards in current security architectures and, secondly,
open source implementations are available that can be used
for our tests.

III. EXPERIMENTAL IMPLEMENTATION AND SETUP

A. Hardware and Software

As hardware platform for the tests, we used the BTnode
sensor nodes developed at the ETH Zurich1. The nodes were
used with the NutOS operating system and the BTnut system
software version 1.6. In particular, we used the following
libraries from the BTnut system software: thread, timer, event,
terminal, ccc/bmac, Bluetooth, and eeprom. The BTnode ar-
chitecture consists of an Atmel ATmega 128L micro controller
operating at 8MHz with 4kByte flash and 244kByte RAM.
For communication, a Zeevo ZV4002 Bluetooth system and a
Chipcon CC1000 low power radio are available. An ISP and
an UART interface are provided for programming and easy
debugging, e.g. using a terminal program.

In addition to the standard system software, we used the
following libraries to provide support for cryptographic algo-
rithms:

• MD5/SHA-1: md5deep, version 1.122

• AES: reference code version 2.2 by Rijndael3

We needed to customize these libraries for use in the
node environment. Basically, only minor modifications were
necessary such as providing appropriate integer data types
(sometimes, 32 bit integer were assumed by the libraries).

1http://btnode.ethz.ch/
2http://md5deep.sf.net/
3http://csrc.nist.gov/encryption/aes/rijndael/
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Fig. 1. UML diagram showing the main functions of the test setup

B. Implementation

In order to test the runtime behavior of the described
cryptographic algorithms, we implemented a test environment
as shown in figure 1.

First, a data-array is allocated with appropriate size, and
filled with data (all bits zero/one, alternating values, etc.) to
test the hash functions. The algorithm is given a pointer to this
array and another to a data structure where it stores the result-
ing hash. For an encryption-algorithm a second data-array of
same size is required to store the resulting en/decrypted data.
After the execution the arrays are de-allocated.

For time measurement a 16-bit timer is used, which is being
increased by the main system clock divided through 8 by
a prescaler, resulting in a 1-µs-resolution. Furthermore, an
IRQ-Handler is set which increases a global integer variable
whenever the timer overflows. Through this the time since the
activation of the timer can be measured exactly. To determine
the time, which a hash or encryption algorithm needs, the
system time before the computation is simply subtracted from
the time thereafter.

To create arbitrary series of measured data, an outer loop
was created that allows generating data-arrays with increasing
size to be hashed or encrypted. For each step, either a single
measure can be taken, or multiple measures for which statisti-
cal information such as the minimum, maximum, average, and
median, are displayed, providing simplified further processing.

The interaction with the BTnodes is controlled by the
terminal included in the ’BTnut System Software’. It provides
the ability to execute any function and so start measurements
or concurrent actions, and to extract the results immediately
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after the experiment using the text output.
For tests of effects due to concurrently running operations

on the node, several additional tasks were implemented. First,
another application was created, which can flood any node
with data packets being sent through the Chipcon low-power
radio. It can be run on a second node to verify the performance
of the node under test while receiving data.

Currently, a standard BTnode has no sensors attached by
default. Nevertheless, it is possible to measure the battery
voltage which is similar to measuring sensor data. The ’BTnut
System Software’ provides a function to measure the voltage
multiple times and return the average of it. This function can
be run in another thread and periodically triggered through a
timer to test the performance of the node when measuring and
hashing or encrypting concurrently.

Another action that can be run in another thread is to send
data packets of different size through the Bluetooth subsystem.
This can also be triggered through a timer.

C. Experimental Setup

The experimental setup consisted of a PC running Linux
(using a kernel providing USB-to-serial-support) and two
BTnodes with attached connector boards to use USB con-
nections to the PC. Using a terminal program, measurements
and concurrent computations or data transmissions can be
launched. The measurement results are then displayed in the
terminal and can be copied to a file to be analyzed later.

IV. MEASUREMENTS AND DISCUSSION

A. Executed measurements

In order to evaluate the performance of the cryptographic
algorithms on the described sensor nodes, we executed the
following measurements:

1) Hashing/encrypting data arrays of different size up to
1024 byte with MD5/SHA-1/AES. For each size, the
test was executed multiple times and the median was
calculated.

2) Hashing/encrypting a single array of 1024 byte with
MD5/SHA-1/AES while using the Chipcon low-power
radio:

• ccc idle – with Chipcon enabled, idle
• ccc receiving – with Chipcon enabled, receiving

messages
• ccc disabled – with Chipcon disabled

3) Hashing arrays of different size with MD5 while Chip-
con low-power radio is enabled (idle)

4) Hashing 1024 byte with MD5 while periodically mea-
suring the battery voltage

5) Hashing 1024 byte with MD5 while periodically sending
packets through the Bluetooth subsystem

B. Results and Discussion

The plots depicted in figures 2 and 3 show the time needed
to hash or encrypt data arrays of different size. For 1 kByte of
data, hashing takes about 43 ms with MD5 and 129 ms with
SHA-1. Encrypting with AES takes 1.67 s. The computation
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Fig. 2. Hashing arrays of different size with MD5 and SHA-1
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Fig. 3. Encrypting arrays of different size with AES

times are linearly dependent to the amount of data being
processed. The MD5 algorithm needs the same time for data
blocks of n∗64 to (n+1)∗64−1 byte. SHA-1 behaves similar
to that, but the computation times even decrease a little within
any of these intervals.

For the plots shown in 4, 5, and 6, measures of hashing or
encrypting operations on a 1024 byte array were made. For
each algorithm three series of single values were recorded: one
with the Chipcon low-power radio disabled, one with the radio
in idle mode, and one while concurrently receiving packets.

These plots show, that the computation times do not drift
much when the radio is deactivated. When it is in idle mode,
the times increase by a constant value and some additional
peaks appear. These peaks seem to occur when the radio thread
that periodically checks for incoming messages is triggered
one more time during a single cryptographic computation.
Then, the measured values are about 6200 µs higher, which
seems to be the time needed to poll the radio.

When the node is flooded with data packets by another
node using the Chipcon radio, the computing times alternate
irregularly, sometimes being even smaller than before. This
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Fig. 4. Hashing 1024 byte of data with MD5 while using Chipcon radio
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Fig. 5. Hashing 1024 byte of data with SHA-1 while using Chipcon radio
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Fig. 6. Encrypting 1024 byte of data with AES while using Chipcon radio

seems to be due to the receiving thread returning faster when
a packet arrives.

Tables I, II, and III depict also the minima, maxima,
average, and median for all these measurements.

µs disabled idle receiving
MIN 42673 48921 44188
AVG 42697.52 49499.4 48875.9
MED 42699 49014 48202
MAX 42995 55152 53916

TABLE I
HASHING 1024 BYTE OF DATA WITH MD5 WHILE USING CHIPCON RADIO

µs disabled idle receiving
MIN 128496 145531 139450
AVG 128546.18 146876.48 145631.94
MED 128548 145723 145224
MAX 128817 151730 151635

TABLE II
HASHING 1024 BYTE OF DATA WITH SHA-1 WHILE USING CHIPCON

RADIO

µs disabled idle receiving
MIN 1668525 1668525 1912343
AVG 1668698.96 1668698.96 1917133.38
MED 1668696 1668696 1918802.5
MAX 1668722 1668722 1920002

TABLE III
ENCRYPTING 1024 BYTE OF DATA WITH AES WHILE USING CHIPCON

RADIO

The measures shown in figure 7 were made on a BTnode
with Chipcon radio activated and idling. They show the com-
puting times of the MD5 algorithm being used multiple times
for a data block of 64, 128, or 256 byte. Again, continuous
peaks of 6200 µs appear, indicating the time consumed by
the idling Chipcon thread waiting for messages, which is
independent from the amount of data being hashed.

The plot in figure 8 shows the time needed to compute the
MD5 hash of a 1024 byte array while the BTnode measures
its battery voltage in another thread. If this happens 10 times
a second, about half of the measurements take about 5500 µs
longer. This is plausible as one computation takes 42700 µs
on average, which is a little less than 1/20th of a second. If the
battery measurement is triggered 50 times a second, this occurs
two or three times during one computation. This behavior can
be recognized easily in the plot.

With the Bluetooth subsystem activated, some measure-
ments where made hashing 1024 byte with MD5 while an-
other thread was sending packets. The results as depicted in
figure 9 show that this did not influence the computations. This
happened because the thread sending packets waited while the
hashing algorithm was active, which could also be seen on the
terminal.
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Fig. 7. Hashing arrays of different size with MD5 while Chipcon radio is
idle
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Fig. 8. Hashing 1024 byte of data with MD5 while measuring the battery
voltage
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Bluetooth subsystem (bt)

V. CONCLUSION

We studied and analyzed several cryptographic algorithms
using measurements on real sensor hardware. Such algorithms
build the basis for all security solutions in communication
networks including ad hoc and sensor networks. Focusing on
the experimentation, produced statistically significant results
by performing all measurements several times and analyzing
singular effects as well as mean values (or more precise
median values).

In conclusion, it can be said that the analyzed cryptographic
algorithms need remarkably high execution times. For exam-
ple, the execution of a single AES operation on a 1 kByte
array lasted 1.67 s. Therefore, sensor nodes will need long
times to perform adequate security operations for transporting
several sensor measures. In scenarios as described in [14],
multiple encryption/decryption operations are needed for data
aggregation or in-network operation. We propose to use our
measurement results as a basis for validating security scenarios
for wireless sensor networks. Real measurements must build
the basis for analyzing proposed security protocols in order to
estimate their behavior. Additionally, our measurement results
can be used to calibrate simulation setups in order to find out
boundaries for real-time operation and communication.
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