
Data Sharing in Virtual Edge Computing using
Coded Caching

Gurjashan Singh Pannu∗, Seyhan Ucar†, Takamasa Higuchi†, Onur Altintas† and Falko Dressler∗
∗School of Electrical Engineering and Computer Science, TU Berlin, Germany

†InfoTech Labs, Toyota Motor North America R&D, CA, U.S.A.
{pannu, dressler}@ccs-labs.org,

{takamasa.higuchi, seyhan.ucar, onur.altintas}@toyota.com

Abstract—Multi-access edge computing (MEC) has been iden-
tified as a powerful concept for offloading computational tasks
and for storing popular data in close proximity of end users;
avoiding frequent communication to a back-end cloud server.
In the context of vehicular applications, similar functionality
can be provided by vehicles collaboratively offering storage and
computational resources on-board, i.e., a virtual MEC concept.
Data management in a virtual edge is particularly challenging
due to the high degree of mobility. Coded caching is a concept
to store data on distributed systems in form of fragments. When
needed, these fragments are transmitted to the requesting node
in a coded form so that the total number of transmissions is
reduced (i.e., optimizing for reduced download times and reduced
resource utilization). In this paper, we introduce a new protocol
for data sharing among vehicles participating in virtual edge
computing using coded caching. Our results show that coded
caching improve the efficiency of data sharing by up to 50% in
a virtual edge computing environment.

I. INTRODUCTION

Connected car applications like fleet management, in-car
entertainment systems, emergency calling, and navigation have
been identified as the fastest growing application type for
the upcoming years [1]. These applications require a reliable
connectivity among themselves or to back-end cloud systems –
often referred to as vehicle-to-everything (V2X) communication
[2]. Some of these applications are capable of generating
vast amounts of data which needs to be processed, and can
also download large volume of data from the back-end cloud
systems. In an ideal world, these applications can benefit
from the multi-access edge computing (MEC) architecture [3],
[4] in terms of offloading compute tasks or reduced latency
due to popular data cached at MEC servers. However, the
installation of MEC infrastructure at a certain geographic
location depends on several factors like cost of running the
infrastructure and revenue generated. Despite research on
finding optimal locations for MEC servers [5]–[7], the actual
deployment of MEC is still very limited.

Meanwhile, the concept of vehicular clouds evolved to
provide edge computing services [8], [9]. Conceptually, this is
now known as virtual edge [10]. A virtual edge can be realized
by a group of vehicles collaboratively offering their on-board
resources like computational power and storage. In locations
where edge computing infrastructure is limited or unavailable,
the vehicular applications can still benefit from the virtual edge
created by the vehicles themselves.

Virtual edge computing comes with challenges of its own.
Its member nodes, i.e., vehicles are highly mobile. The
number of participating nodes could vary tremendously due
to their frequent join and leave operations in a virtual edge.
Furthermore, the time duration of their participation in a virtual
edge is also variable. Consequently, the distributed resource
pool in a virtual edge always keeps on changing. Under such
constraints, maintaining data in the mobile nodes of a virtual
edge, as well as accessing the data is very challenging and an
utmost important task for the proper functioning of a virtual
edge. Pannu et al. [11] proposed a novel protocol to maintain
the data in a virtual edge. According to the protocol the vehicles
may prefetch data from a virtual edge along its route even
before joining it. The data may be prefetched from the vehicles
which are leaving the virtual edge. This helps prevent the data
from getting lost, as the vehicle which is soon joining a virtual
edge bring back the data belonging to it.

To support proper functioning of the edge services, vehicles
in a virtual edge may try to access different data contents which
are cached by other members [12]. In this paper, we address the
question of how a car can efficiently access data stored in the
virtual edge. A naïve solution to tackle the data access problem
is to have a requesting vehicle send a control message which
includes a list of data content IDs that it wants to access. The
vehicles which have the requested data contents in their cache
then transmit the data to the requesting vehicle. If a number
of requests originate at the same time, the wireless channel
can easily be congested. We propose an optimized approach
using coded caching. The main idea of coded caching [13]
is to use the information about data contents available in the
local cache of users, and the current on-going requests to
broadcast multiple data contents coded together as a single
transmission. Coded caching assumes the network to support
multicast or broadcast communication, which is the case for
V2X communication technologies such as ITS-G5 or C-V2X
[2]. If the user has one part of the coded data, the other part
can be decoded. As the data transferred is a coding of multiple
data contents, several users can decode different contents from
it in a single transmission, thus helping reduce the channel
congestion.

The scenario of virtual edge computing is different from a
typical coded-caching scenario. In our case, the vehicles in
a virtual edge are the users having partial data contents in



the local cache, as well as the servers offering the data to
other virtual edge members. In addition, the topology of the
system is highly dynamic, which constantly changes the cached
data among the users. Our protocol is inspired by the coded
caching technique and builds upon the existing virtual edge
related protocol [14] aiming to maintain data within a virtual
edge. In short, virtual edge member vehicles exchange beacons
which contain information about the data which they have, as
well as the missing data which they need to access. Based
on this information, each member vehicle computes possible
combinations of data chunks which could be coded together
and transmitted in order to serve multiple data access requests
with a single transmission. To the best of our knowledge, this is
the first approach of using coded caching in the scope of virtual
edge computing. Our results show that using our protocol, data
present in a virtual edge can be accessed more efficiently by
virtual edge members.

Our contributions can be summarized as follows:
• We discuss the concept of coded caching in the scope of

virtual edge computing;
• We present a new protocol that allows vehicles to access

distributed data cached in a virtual edge using coded
caching concepts; and

• We evaluate the performance of the designed protocol
using the number of transmissions and the data access
latency as key metrics.

II. RELATED WORK

Multi-access edge computing [3], [15] is one of the key
network architecture concepts in 5G/6G networks. In brief,
the idea is to deploy computational, storage infrastructure in
close vicinity to end users. Being close to the users, the user
can offload computational tasks [16], as well as requesting
popular contents with minimal delays [17]. Particularly for
vehicular networks, Coll-Perales et al. [7] investigated the
performance for estimated MEC deployments. Chen et al. [12]
discuss caching data at the edge based on geographic location,
and data popularity.

In the absence of physical edge infrastructure, virtual edge
can offer edge services virtually [8], [10]. Virtual edge is a small
group of vehicles cooperating with each other and offering their
computational and storage resources on-board in a distributed
fashion. It can be stationary or mobile. Stationary virtual edge
is usually setup at intersections, as it is in line-of-sight of many
streets, and more vehicles can participate. Higuchi et al. [18]
studied the feasibility using vehicular mobility traces for the
city of Luxembourg. In order to provide edge services virtually,
efficient data handling is crucial as vehicles join and leave the
virtual edge very frequently [14].

Efficient transfer of partial data contents has been well
researched in the information theory. Maddah-Ali and Niesen
[13] proposed the coded caching scheme where users prefetch
selected data contents during low network traffic hours. The
server has information about the pre-cached contents in the
local user cache. Using this information, the server encodes
multiple data contents and broadcasts it to the users, which

can decode the desired data using their data from the local
cache. It has been shown that the benefits of coded caching are
manifold [19]–[22]. On one hand, there is local gain thanks to
the data contents locally cached. On the other hand, there is
also global gain attributed to the encoded broadcasts for data
delivery.

The initial proposal of coded caching was a centralized
approach, which needed a central server to assist the careful
placement of data contents in the user cache [13]. Maddah-Ali
and Niesen [19] showed that it is even possible to fill up the
user cache in a decentralized manner without any assistance
of a central server, also showing performance of the system
quite close to optimal results. Niesen and Maddah-Ali [20]
considered non-uniform popularity of the data being requested
by users, and grouped the data with similar priorities for filling
up the user cache. Their results showed better performance
than the highest popularity first (offline equivalent of least
frequently used scheme) uncoded scheme for efficient data
delivery.

One of the most challenging problems in coded caching
is subpacketization. Generally, each data content is split into
smaller parts. The users prefetch only a fraction of these parts
into their local cache. As the number of users participating in
the coded caching environment increases, the data needs to be
split into further smaller parts in order to get the gains from
coded transmissions. This makes the number of parts to increase
exponentially. In our scenario, decentralized caching becomes
particularly challenging as users can join or leave a virtual
edge at any time. The users are not expected to know about
the contents cached by other users as the server coordinates
the cache placement for future coded transmissions. These
problems have recently been addressed by Bayat et al. [22].
They extended the work in [13] to a two hop wired-wireless
networks including one server connected via fronthaul links
to a layer of access points and base stations which further
communicate with the end-users wirelessly. Their approach
tackles asynchronous user stream sessions, subpacketization,
user mobility, scalability to large cellular networks with many
users. These latest advancements make coded caching a
potential technique for making virtual edge system operate
more efficiently. To the best of our knowledge, coded caching
techniques have not been applied to the virtual edge computing
till date.

III. CODED CACHING – A PRIMER

Coded caching was introduced by Maddah-Ali and Niesen
[13] to reduce the network load and to improve latency
problems over a shared wireless medium. The scheme consists
of two steps:

• partial content caching in the local cache of end-users and
• coded multicasts to serve multiple unique data contents

requests by different end-users.
The partial data contents are cached when network load is
low; and coded multicasts help saving bandwidth during high
network load.



Table I
CODED CACHING PERFORMANCE DEPENDING ON REQUESTS, CACHED CONTENTS, DATA TRANSFER NECESSARY FROM THE REMOTE SERVER.

Request by V1 V1 cache content Request by V2 V2 cache content TX Channel load

A - A - A, A (unicast) 2
A - B - A, B (unicast) 2
B - A - B, A (unicast) 2
B - B - B, B (unicast) 2

Average load 2

A A A B A (unicast) 1
A A B B - 0
B A A B B, A (unicast) 2
B A B B B (unicast) 1

Average load 1

A a1, b1 A a2, b2 a1 ⊕ a2 (multicast) 0.5
A a1, b1 B a2, b2 a2 ⊕ b1 (multicast) 0.5
B a1, b1 A a2, b2 b2 ⊕ a1 (multicast) 0.5
B a1, b1 B a2, b2 b2 ⊕ b1 (multicast) 0.5

Average load 0.5

To understand this concept, let us consider the simple
example shown in Figure 1. We have two users (vehicles)
V1 and V2 and two data contents A and B of the same size
at a remote server. Both data contents are split into two equal
parts, i.e., A into a1 and a2, and B into b1 and b2. In the first
phase of coded caching, partial data contents are fetched by
the users when the network is not congested. Consider both
vehicles have a cache capacity equal to the size of one data
content. Vehicle V1 fetches partial data contents a1 and b1,
while vehicle V2 fetches partial data contents a2 and b2. If
vehicle V1 requests A, it is missing only a2 as a1 is already
present in the cache. If it requests B, it is again missing only
a half of the data content b2 as b1 is present in the cache.
Similarly, if V2 requests A, the missing data is a1 and if it
requests B, the missing data is b1.

Consider V1 requires A and V2 requires B. Based on the
partial data cached by the users, the server encodes a message
containing a2 and b1 by bitwise XOR. The resulting X =

A

a1
a2=

Multicast data

Decoded data

Decoded data

b1
b2

B

V1

V2

=

a1
a2

b1
b2

a1 b1

b2 a2

a2 b1⊕ = X

X ⊕ a2 = b1

X ⊕ a2= b1

Figure 1. Example setting with two data contents and two vehicles, which do
not yet cache any data content.

a2 ⊕ b1 is transmitted by the server as a multicast to both
vehicles V1 and V2. On successful reception of X , V1 is able
to decode missing content a2 by using b1 from its cache as
a2 = X ⊕ b1. Similarly, V2 gets missing b1 by using a2 from
the cache. As the transmitted data is bitwise XOR of the two
partial data contents, the size of the result remains equal to
the size of a partial data content. Additionally, two or more
requests can be served by a single transmission (depending
on the requested data and the partial data present in the user
cache).

To show the benefits of coded caching, Table I lists different
combinations of requests which can originate from vehicles V1
and V2. It covers three cases:

• when vehicles do not cache any data and requests are
served as a unicast from the remote server,

• when vehicles cache a complete data content and requests
are served as a unicast from the remote server, and

• when vehicles cache partial data contents and requests
are served as an encoded multicast of missing partial data
contents.

In the first case, vehicles do not cache any data. So, every
data request needs a subsequent data transfer from the server.
In this case, average load on the shared wireless medium
is 2 data transfers. In the second case, vehicles pre-fetch a
random data content into their local cache. When the requested
data is already in the local cache, there is no need for data
transfer over the wireless medium. On average, there is 1 data
transfer necessary. The prefetching gain is generally referred
to as local gain. In the third case, the vehicles do prefetch
partial data contents. Now, the average load on the wireless
channel becomes 0.5 data transfers. As the receiving vehicles
already have a part of the encoded data, they XOR their locally
available data content part with the received encoded data
content part to get the missing data content part. The further
gain to reduce the load on the shared channel comes from the
data available at cache of other users and coded multicasts.



This gain is referred to as global caching gain. In order to
maximize the global gain, the prefetching the cache becomes
very critical as the server has to decide which partial data
contents can be encoded together to fulfill multiple requests.

To generalize, suppose there are K vehicles, N data contents,
and M per-vehicle cache slots. The local gain can be obtained
as

K × (1−M/N). (1)

The global gain can be calculated as
1

1 +K ×M/N
. (2)

Thus, the overall gain through coded caching is

K × (1−M/N)× 1

1 +K ×M/N
. (3)

The normalized aggregate (global) size of cache can be
quantified as

t = KM/N. (4)

Obviously, coded caching is a promising approach to transfer
data efficiently during the peak network traffic hours.

IV. DATA DOWNLOADING IN A VIRTUAL EDGE

In this paper, our focus is on a virtual edge formed at an
intersection. The member nodes of the virtual edge are vehicles
which are assumed to be equipped with a GPS device to know
their current location and the route they are following. We also
assume that the vehicles have information about the location
of virtual edges established along their route [14]. Each virtual
edge has several data contents distributed among different
member vehicles.

As a novel concept, these data contents are fragmented into
smaller parts, and it is possible that different fragments of
a data content are present at different member vehicles. The
scenario in virtual edge is appropriate for benefiting from coded
caching scheme, where partial data contents are available in
the local cache of users. Generally, we try to minimize the data
transfers from the backend remote servers. If requests could be
served by other virtual edge members, then the data transfer
takes place among the members locally without relying on the
backend server.

A. An Example Scenario

Figure 2 shows an example virtual edge set up at an
intersection. Vehicle A has a partial data content Y2 in its cache
and requests partial data content X1. Vehicle B has partial
data content X1 in its cache, and requests partial data content
Y2. Vehicle C has both data contents X1 and Y2 available in
its cache.

The requests of A and B can be served individually, i.e., A
sending partial data content Y2 to B, and B sending partial
data content X1 to A. Alternatively, C can send X1 to A and
Y2 to B. Using coded caching, however, C now encodes X1

and Y2 and broadcasts X1⊕Y2. Vehicle A decodes the received
data to retrieve X1 = (X1 ⊕ Y2)⊕ Y2 and vehicle B decodes
the received data to retrieve Y2 = (X1 ⊕ Y2)⊕X1.

Y2✓

X1✓ Y2✓

X1✓

A

Virtual Edge

C

X1⊕Y2

B

request X1

request Y2

Figure 2. Example scenario showing a virtual edge at an intersection. Vehicle
A needs to access data fragment X1, and has data fragment Y2 available in
its cache. Vehicle B has X1 in its cache, but needs to access Y2. If vehicle
C has both X1 and Y2 in cache. C broadcasts a bitwise XOR of X1 and Y2,
both vehicles A and B can decode the data fragments they need using the
data from their local cache and the received encoded data.

beacon TX
timeout

 

no

add list of 
available data ids

yes

add list of 
missing data ids

Tx beacon

idle

(a) Control beacon TX pro-
cedure

save sender's
available data ids

save sender's 
data id requests

Rx beacon

idle

(b) Control beacon RX pro-
cedure

Figure 3. Transmission and reception procedure of control beacons.

B. Coded Caching Protocol

Each vehicle maintains a virtual edge management database.
It contains information about all the other virtual edge members.
Our coded caching protocol defines two types of data exchange
among the virtual edge member vehicles, i.e., control beacons
and encoded data. Control beacons are periodically sent by
each vehicle. They include information such as cached data
fragments and missing data fragments. The procedures to send
and receive control beacons are shown in Figure 3. Each vehicle
stores a list of available and missing data contents per sender
in its virtual edge management database to prepare for the data
exchange.

The procedures for data transmission to serve requests is
shown in Figure 4a. The vehicles need to know which data
contents can be encoded together for serving multiple missing
data requests in a single data transmission. To identify the



data TX
timeout

 

no

execute 
algorithm 1

yes

Tx data

select data 
to be encoded

idle

encode data

(a) Data TX procedure

no

yes

data 
decodable? 

decode data

save data

Rx data

save encoded
data

idle

(b) Data RX procedure

Figure 4. Transmission and reception procedure of encoded data.

possible encoding combinations, each vehicle periodically
executes Algorithm 1.

The input to the algorithm is the list of data contents
owned by the vehicle, the list of data contents owned by other
vehicles, as well as their data requests. All of the information
is obtainable from the virtual edge management database. Line
2 in the algorithm implies pre-calculation of all the possible
data duplets (ki, kj) from the list of data contents available
in the cache. In line 4 to 10, the vehicle aims to find those
duplets such that each one of them is available in the cache of
two different vehicles, and each vehicle requests the other data
from the duplet. In line 11, the algorithm returns a list of all
possible data duplets which can be encoded and transmitted
by the vehicle to serve data requests.

Once the vehicle has prepared the list, the next step is to
select one of the duplets for encoding. For selection, there can
be several heuristics which can be applied, e.g., time past since
the data request, or number of vehicles requesting the same

Algorithm 1 Finding candidate data fragments to be encoded
Input: V, set of virtual edge member vehicles other than me
Input: Dv∀v ∈ V, set of data locally accessible by vehicle v
Input: Rv∀v ∈ V, set of data requested by vehicle v
Input: K, set of data in my local cache

1: E← φ, empty result set to contain encoding duplets
2: X ← {(ki, kj) | ki, kj ∈ K}, all possible duplets of

elements of K
3: while X 6= φ do
4: if ∃ xi, xj ∈ X | xi ∈ Dv1∧xi ∈ Rv2∧xj ∈ Dv2∧xj ∈

Rv1 then
5: E← {(xi ⊕ xj)}

⋃
E

6: X← X \ {(xi, xj)}
7: else
8: break
9: end if

10: end while
11: return E

Virtual edge 

b1

b1

b1a1

a1

a1

V1 V2

X

Y

Figure 5. The vehicle X prefetches a1 from the vehicle Y which belongs
to V1 even before joining virtual edge V1. Similarly, Y prefetches b1 which
belongs to V2 and joins V2 to prevent b1 from getting lost in V2.

data. In our study, we take an average of the time since the
data requests were made for both data contents in a duplet.
The duplet which has the maximum average is selected for
transmission to avoid any data request from starving. If multiple
duplets have the same average time since request, the vehicle
selects a random duplet among them to break a tie.

Figure 4b shows the procedure followed by a vehicle on
receiving an encoded data. If the received data is decodable,
i.e., one of the data contents encoded in the received data is
present in the cache, then the vehicle decodes the message. If
the data is not decodable, the vehicle saves the encoded data
in cache. This encoded data can later be used to decode other
data contents if necessary.

As vehicles add received data contents in their cache, they
update the list of required and available data contents. This
updated list is transmitted again in their subsequent control
beacons. As there are continuous updates in the cache, the
requests which have already been served are removed from the
virtual edge management table to avoid repetitive transmission
of the same data contents.

C. Combination with Data Recovery Techniques

Vehicles in a virtual edge may join and leave the system
frequently. If the vehicle leaving the virtual edge is having
the last copy of a data content available in the virtual edge,
the data is lost. As shown in Figure 5 the lost data can be
recovered by allowing the neighboring virtual edge vehicles to
cooperate with each other [14].

Based on the knowledge of the trajectory being followed by
the vehicles, they prefetch data belonging to the virtual edge
which they will be joining in the near future. The prefetching
is done from the vehicles which have recently left that virtual
edge, or will be leaving soon. As a result, the data which might
get lost due to the leaving vehicles is brought back into the
virtual edge by the vehicles which have recently joined or will
join soon.

The design of our protocol to access data cached by other
virtual edge members is very similar to the data recovery
protocol so that the two protocols can operate in combination
for the efficient virtual edge operations.



Figure 6. Screenshot of the SUMO scenario showing vehicles moving close
to the intersection. A virtual edge is set up around the intersection with a
radius of 200 m.

V. PERFORMANCE EVALUATION

To evaluate the performance of our coded caching-based
data management protocol for virtual edge computing, we
used vehicular networking simulation toolkit Veins [23], which
makes use of the road traffic simulator SUMO 1 and the network
simulator OMNeT++ 2. For performance comparisons, we
compared the coded approach with a baseline as follows:

• No coding: the vehicles do not encode the data to serve
multiple requests at the same time. Data to be transmitted
is selected based on the time since the first request for the
data content. The longest waiting time gets the highest
priority.

• Coded caching: two data contents are encoded together fol-
lowing Algorithm 1. Protocol details have been described
in Section IV-B.

As the vehicles are moving, there are frequent vehicle join
and leave operations in the virtual edge, which may lead to data
loss due to the leaving vehicles. This may negatively impact
the performance. Therefore, we also evaluate the coded caching
protocol in combination with our previous work helping to
recover data by exchanging data between leaving and joining
vehicles [14].

A. Simulation Setup

We configured a virtual edge at an intersection with a radius
of 200 m as shown in Figure 6. To understand the performance
of accessing data under different conditions, we investigated
different configurations. The number of data contents in a
virtual edge were configured to be 10, 20, 30, 40 and 50. Size
of each data content is configured to be 10 kByte. Each of
these data contents was fragmented into blocks of 1 kByte.
In coded caching, the cache placement phase is very critical

1https://www.eclipse.org/sumo/
2https://omnetpp.org/ for V2X communication

Table II
SIMULATION PARAMETERS.

Parameter Value

Channel 5.89 GHz
Transmission power 20 mW
Bandwidth 10 MHz
Data rate 6 Mbit/s

Building size 400m× 400m
Virtual edge radius 200 m
Manhattan Grid 3× 3
Number of data contents per virtual edge 10, 20, 30, 40 and 50
Data size 10 kByte
Fragments per data 10
Initial data fragment redundancy 2, 3 and 5
Control beacon interval 1 s
Data transfer interval 1 s
Vehicle density (avg. number in a virtual edge) 10, 20 and 30
Repetitions per configuration 5
Simulation duration 1200 s

2 3 5

30
  

40
  

50
  

30
  

40
  

50
  

30
  

40
  

50
  

0

10

20

30

Data contents

A
vg

. T
X 

cy
cl

es
 p

as
se

d
Config

Coding
No coding

Figure 7. Average number of data transmit cycles (cf. Figure 4a) passed until
a complete data content was available in the cache of a vehicle. Data is shown
for a vehicle density of 20 vehicles in the virtual edge. The labels on top of
facets represent the data redundancy factor.

as the encoding of data contents for mulicast depends on the
data contents available in the cache. For the cache placement
phase, we use a redundancy factor, i.e., the number of vehicles
that initially cache each data fragment, set to 2, 3 and 5. All
relevant simulation parameters are summarized in Table II.

B. Data Access Time

One of the most important metric to measure the performance
of the designed protocol is data access time. To quantify
this metric, we record the number of data transmit cycles
(cf. Figure 4a) passed until a vehicle was able to access
all fragments of a data content. Figure 7 shows the average
number of such transmit cycles for which a vehicle had to
wait until it was able to receive all fragments of the requested
data. The labels on the top of facets represent the fragment
redundancy factor, i.e., each data fragment is cached by how
many vehicles initially. As clearly seen, the coded caching
approach significantly reduces the data access time. The main



10 20 30

2
3

5

30
  

40
  

50
  

30
  

40
  

50
  

30
  

40
  

50
  

0

20

40

0

20

40

0

20

40

Data contents

Im
pr

ov
em

en
t i

n 
da

ta
 a

cc
es

s 
tim

es
 (%

)

Figure 8. Improvement in the data access times when using the data recovery
algorithm presented in [14]. The labels on top of facets indicate the number
of vehicles in the virtual edge, while the numbers on the right represent the
data redundancy factor.

reason for this effect is that the vehicles are able to serve
multiple data requests with a single transmission.

Another pattern that we observe from this plot is that as
redundancy factor increases, the access time decreases. We
observe the decrease in both cases, i.e., with and without
coding. However, the improvement is much more prominent
when the coded data are exchanged. When a particular data
fragment is available in the cache of multiple vehicles, the
possible data encoding combinations increase. Thus, more data
requests can be served by the vehicles. Although it increases
the computational load to solve a larger combinatorial problem,
some promising solutions have been proposed in the literature
to reduce the complexity [24].

Figure 8 shows the improvements in the data access times
when we use the designed protocol along with data recovery
algorithm proposed for virtual edge (cf. Section IV-C). The
labels on the top represent average vehicles present in the virtual
edge, while the labels on the side represent data redundancy
factor. As the data is also being recovered continuously
irrespective of the mobility of the vehicles, the vehicles continue
to serve the requests of other member vehicles. The data access
times using using coded caching can achieve an improvement
of up to 50 %.

C. Data Access Success

In our performance evaluation, we consider data requests
to be successful only when all of the data fragments for a
certain request are received. Even a single missing fragment
results in a failure. To obtain deeper insights on the received

0

5

10

15

0 1 2 3 4 5 6 7 8 9 10

Data fragments

Fr
eq

ue
nc

y Config
No coding
Coding

Figure 9. Histogram of successfully received data fragments (without the
additional data recovery algorithm). We only show data for a redundancy
factor of 5 and a vehicle density of 20 vehicles in the virtual edge.

10 20 30

2
3

5

30
  

40
  

50
  

30
  

40
  

50
  

30
  

40
  

50
  

0

20

40

60

80

0

20

40

60

80

0

20

40

60

80

Data contents

Re
qu

es
t s

uc
ce

ss
 ra

te
 (%

)

Config
Coding
No coding

Figure 10. Successfully served data requests when using the data recovery
algorithm presented in [14]. The labels on top of facets indicate the average
number of vehicles in the virtual edge, while the numbers on the right represent
the data redundancy factor.

fragments, we also looked at the number of fragments received
by vehicles.

Figure 9 shows a histogram over the number of fragments
received successfully for a data content (without the additional
data recovery algorithm). As similar trends were observed in all
configurations, we only present results for a data redundancy
factor of 5 and a vehicle density of 20 vehicles in virtual edge.
The bar corresponding 10 data fragments shows the completely
successful data requests. We can observe that we had more
successful data requests when the data is transferred using the
coding approach. An interesting observation is that all vehicles
received at least 4 fragments of their requested data. In case of
coded caching, the number is significantly shifted to a larger
number of successfully received contents.



When adding the data recovery algorithm, we expect an even
higher number of successful requests. The results are shown in
Figure 10. An interesting observation here is that for a lower
data redundancy factor, the difference between successfully
served requests with coding compared to no coding is higher.
Thanks to the data recovery algorithm running concurrently
with the data accessing protocol, increasing the redundancy of
data improves the ability of vehicles to retain (or recover) a
larger number of data contents in the virtual edge. As a result,
the difference between overall successful data requests in the
case of no coding and coding approaches decreases. However,
the performance of the coding approach still remains better
because of the efficient use of the shared wireless medium.

Comparing Figure 8 and Figure 10, our protocol helps in
accessing the data available in the cache of other virtual edge
members. Even in scenarios where vehicles have fewer copies,
it is beneficial to transfer data using the coding technique.

VI. CONCLUSION

In this paper, we presented a coded caching-based protocol
designed specifically for a virtual edge and it aims to allow
vehicles to access distributed data from other member vehicles
efficiently. Coded caching has first been suggested for efficient
multicast-based communication from a single to distributed
clients. We explored the capabilities of coded caching in this
vehicular networking scenario, in which wireless communica-
tion inherently supports broadcast or multicast communication.
According to our protocol, vehicles use the information about
data contents in their local cache, as well as missing and
cached data contents of other vehicles to compute possible
data encoding combinations to fulfill the data requests of other
vehicles. As the data is transmitted in an encoded form, a
single data transfer may serve two data requests, thus saving
the channel bandwidth.

We evaluated the performance of our protocol in a simulation
scenario. We studied different performance metrics like data
access time, total transmissions by a vehicle, and successfully
served data requests. The results show that using our protocol
based on coded caching, vehicles can access data up to
50 % faster while consuming less bandwidth on the shared
wireless medium. Thus, internal operations of a virtual edge
which involve data sharing among its members can benefit
significantly using our designed protocol.

REFERENCES

[1] “Cisco Annual Internet Report (2018–2023),” Cisco, White paper, Mar.
2020. [Online]. Available: https://www.cisco.com/c/en/us/solutions/
collateral/executive-perspectives/annual- internet- report/white-paper-
c11-741490.html.

[2] C. Sommer and F. Dressler, Vehicular Networking. Cambridge University
Press, 2014.

[3] P. Mach and Z. Becvar, “Mobile Edge Computing: A Survey on
Architecture and Computation Offloading,” IEEE Communications
Surveys & Tutorials, vol. 19, no. 3, pp. 1628–1656, Mar. 2017.

[4] S. Wang, X. Zhang, Y. Zhang, L. Wang, J. Yang, and W. Wang, “A
Survey on Mobile Edge Networks: Convergence of Computing, Caching
and Communications,” IEEE Access, vol. 5, pp. 6757–6779, Jun. 2017.

[5] Y. Li and S. Wang, “An Energy-Aware Edge Server Placement Algorithm
in Mobile Edge Computing,” in IEEE International Conference on Edge
Computing (EDGE 2018), San Francisco, CA: IEEE, Jul. 2018.

[6] F. Zeng, Y. Ren, X. Deng, and W. Li, “Cost-Effective Edge Server
Placement in Wireless Metropolitan Area Networks,” Sensors, Special
Issue on Edge/Fog/Cloud Computing in the Internet of Things, Dec.
2018.

[7] B. Coll-Perales, M. C. Lucas-Estan, C.-H. Wang, J. Gozalvez, T. Shimizu,
S. Avedisov, M. Sepulcre, T. Higuchi, B. Cheng, A. Yamamuro, and
O. Altintas, “Impact of the MEC Location in Transport Networks on the
Capacity of 5G to Support V2X Services,” in 16th IEEE/IFIP Conference
on Wireless On demand Network Systems and Services (WONS 2021),
Virtual Conference: IEEE, Mar. 2021.

[8] F. Dressler, G. S. Pannu, F. Hagenauer, M. Gerla, T. Higuchi, and
O. Altintas, “Virtual Edge Computing Using Vehicular Micro Clouds,”
in IEEE International Conference on Computing, Networking and
Communications (ICNC 2019), Honolulu, HI: IEEE, Feb. 2019.

[9] B.-J. Qiu, C.-Y. Hsieh, J.-C. Chen, and F. Dressler, “DCOA: Double-
Check Offloading Algorithm to Road-Side Unit and Vehicular Micro-
Cloud in 5G Networks,” in IEEE Global Communications Conference
(GLOBECOM 2020), Taipei, Taiwan: IEEE, Dec. 2020.

[10] F. Dressler, C. F. Chiasserini, F. H. P. Fitzek, H. Karl, R. Lo Cigno,
A. Capone, C. E. Casetti, F. Malandrino, V. Mancuso, F. Klingler, and
G. A. Rizzo, “V-Edge: Virtual Edge Computing as an Enabler for Novel
Microservices and Cooperative Computing,” IEEE Network, vol. 36,
no. 3, pp. 24–31, May 2022.

[11] G. S. Pannu, S. Ucar, T. Higuchi, O. Altintas, and F. Dressler, “Dwell
Time Estimation at Intersections for Improved Vehicular Micro Cloud
Operations,” Elsevier Ad Hoc Networks, vol. 122, p. 102 606, Nov. 2021.

[12] J. Chen, H. Wu, P. Yang, F. Lyu, and X. Shen, “Cooperative Edge Caching
With Location-Based and Popular Contents for Vehicular Networks,”
IEEE Transactions on Vehicular Technology (TVT), pp. 10 291–10 305,
Sep. 2020.

[13] M. A. Maddah-Ali and U. Niesen, “Fundamental Limits of Caching,”
IEEE Transactions on Information Theory, vol. 60, no. 5, pp. 2856–2867,
May 2014.

[14] G. S. Pannu, F. Hagenauer, T. Higuchi, O. Altintas, and F. Dressler,
“Keeping Data Alive: Communication Across Vehicular Micro Clouds,”
in 20th IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM 2019), Washington, D.C.: IEEE,
Jun. 2019.

[15] ETSI, “Mobile Edge Computing (MEC), Framework and Reference
Architecture,” European Telecommunications Standards Institute, Sophia
Antipolis, France, GS MEC 003 V1.1.1, Mar. 2016.

[16] H. Guo, J. Liu, and J. Lv, “Toward Intelligent Task Offloading at the
Edge,” IEEE Network, vol. 34, no. 2, pp. 128–134, Mar. 2020.

[17] M. Emara, M. C. Filippou, and D. Sabella, “MEC-Assisted End-to-
End Latency Evaluations for C-V2X Communications,” in European
Conference on Networks and Communications (EuCNC 2018), Ljubljana,
Slovenia: IEEE, Jun. 2018.

[18] T. Higuchi, J. Joy, F. Dressler, M. Gerla, and O. Altintas, “On the
Feasibility of Vehicular Micro Clouds,” in 9th IEEE Vehicular Networking
Conference (VNC 2017), Turin, Italy: IEEE, Nov. 2017, pp. 179–182.

[19] M. A. Maddah-Ali and U. Niesen, “Decentralized Coded Caching Attains
Order-Optimal Memory-Rate Tradeoff,” IEEE/ACM Transactions on
Networking (TON), vol. 23, no. 4, pp. 1029–1040, Aug. 2015.

[20] U. Niesen and M. A. Maddah-Ali, “Coded Caching With Nonuniform
Demands,” IEEE Transactions on Information Theory, vol. 63, no. 2,
pp. 1146–1158, Feb. 2017.

[21] S. P. Shariatpanahi, S. A. Motahari, and B. H. Khalaj, “Multi-Server
Coded Caching,” IEEE Transactions on Information Theory, vol. 62,
no. 12, pp. 7253–7271, Dec. 2016.

[22] M. Bayat, K. Wan, and G. Caire, “Coded Caching Over Multicast
Routing Networks,” IEEE Transactions on Communications, vol. 69,
no. 6, pp. 3614–3627, Jun. 2021.

[23] C. Sommer, R. German, and F. Dressler, “Bidirectionally Coupled
Network and Road Traffic Simulation for Improved IVC Analysis,” IEEE
Transactions on Mobile Computing (TMC), vol. 10, no. 1, pp. 3–15, Jan.
2011.

[24] M. Cheng, J. Li, X. Tang, and R. Wei, “Linear Coded Caching Scheme
for Centralized Networks,” IEEE Transactions on Information Theory,
vol. 67, no. 3, pp. 1732–1742, Mar. 2021.


