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Abstract—In vivo localization of infection sources is essential for
effective diagnosis and targeted disease treatment. In this work,
we leverage machine learning models to associate the temporal
dynamics of biomarkers detected at static gateway positions with
different infection source locations. In particular, we introduce a
simulation that models infection sources, the release of biomarkers,
and their decay as they flow through the bloodstream. From this,
we extract time-series biomarker data with varying decay rates
to capture temporal patterns from different infection sources
at specific gateway positions. We then train a stacked ensemble
model using LightGBM and BernoulliNB to analyze biomarker
time-series data for classification. Our results reveal that higher
biomarker degradation rates significantly reduce the localization
accuracy by limiting the biomarker signal detected at the gateways.
A fivefold increase in decay rate lowers the mean cross-validation
accuracy from ∼92 % to ∼66 %. This effect is more pronounced
for infection sources located farther from the gateways, e.g., the
kidneys. Due to the longer distance, more biomarkers degrade
before reaching the wrist-located gateways, leading to a substantial
decline in classification performance.

Index Terms—IoBNT, Localization, Machine Learning,
Biomarker Decay, Human Circulatory System

I. INTRODUCTION

IN recent years, the emerging idea of the Internet of Bio-
Nano-Things (IoBNT) has offered a vision of enhanced

healthcare, with potential advancements in early disease
detection, monitoring, and treatment [1]. The concept could
facilitate the monitoring of biochemical signals released from
infection sources, enabling their localization. Infection sources,
such as tumor cells, release specific biochemical signals called
biomarkers into the bloodstream, indicating the presence of
an infection [2]. These biomarkers related to cancer can be
categorized as either extracellular or intracellular. Extracel-
lular biomarkers include circulating tumor cells, circulating
tumor Deoxyribonucleic Acid (DNA), protein markers, and
exosomes. Intracellular biomarkers include telomerase and
microRNAs. The biomarkers disperse from the infection
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source and flow through the circulatory system. In the context
of molecular communication (MC), they act as information
carriers released by biological transmitters, e.g., infection
sites, and are transported through the bloodstream (channel)
to passive receivers (gateways). Using the temporal profiles
collected at these receivers, the identification of the biomarker
source is interpreted as an MC-based localization task [3]. A
representative example of technological advances for blood
sample collectors is researched in [4]. Such receiver devices
can provide temporal profiles of circulating biomarkers using
biofunctionalized field-effect transistors. However, temporal
profiles from a biomarker signal do not inherently reveal the
specific organ of origin. To address this limitation, it is essential
to characterize and map biomarker release patterns across
different organs.

To generate organ-specific biomarker profiles, we employ the
BloodVoyagerS (BVS) framework [5] that models blood flow
dynamics and the mobility of nanoscale particles within the
human circulatory system (HCS). BVS provides a schematic,
graph-based representation of the human vascular network. It
allows configurable placement of transmitters and receivers
along the vasculature. Based on this framework, we configure
the behavior of static infection sources and simulate the release
and transport of biomarkers within the HCS. Biomarkers
undergo exponential degradation in the human body [6], and
we incorporate this dynamic into the simulator, following our
previous work [7]. Next, we employ a data-driven machine
learning (ML)-based classification approach to address the
complexity of localizing infection sources in the vascular
network. In such networks, traditional analytical methods are
limited in their ability to reverse-map observed biomarker
concentrations to their sources. By learning temporal patterns
from biomarker data observed at gateways, ML enables the
classification of the infection source.

Our main contributions can be summarized as follows:

• We extended our simulation tool to support infection
sources, the release of biomarkers from these sources,
and their mobility along the vessels,

• We implement and train our ML models to classify the
location of infection sources based on temporal biomarker
dynamics,

• We evaluate the effect of different biomarker decay rates
on the accuracy of ML models.
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II. RELATED WORK

For the localization of disease sites in the HCS, Simonjan
et al. [8] proposed a distance tracking approach that employs
conceptual bionanosensors equipped with an inertial mea-
surement unit (IMU) composed of nanoscale accelerometers
and gyroscopes. However, this method is limited by the data
constraints of bionanosensors and the potential for inaccurate
IMU readings due to the complexity of blood flow patterns. An
alternative approach leverages the concept that specific body
regions can be identified by their environmental properties as
a fingerprint [9]. Thus, nanobots are enabled determine their
position through local pattern recognition. The nanobots can
ascertain their position within the human body and relay this
information to external systems. However, this method relies
on unique combinations of protein-coding genes for each tissue
as the basis for the fingerprints. Identifying such combinations
can be challenging as tissues exhibit similar gene expression
patterns, potentially reducing localization accuracy.

To localize abnormalities within the HCS, our previous
work proposed a framework combining unsupervised and
supervised ML models [10]. We used a Markov model to
evaluate the nanosensor distribution and movement in the HCS.
The ML models were trained on data from BVS to improve
the accuracy of abnormality localization. Furthermore, Pascual
et al. [11] developed an analytical model to represent raw data
for flow-guided localization, where the data is influenced by
the communication and energy constraints of nanodevices. The
model was validated against a simulator, showing similarity in
results across different scenarios and performance metrics.

The localization of infection sources within the body, a
complex physiological environment, is challenging to formulate
through analytical approaches. Biomarkers may be transported
through different blood vessels, each following a distinct
path. As a result, predicting their exact location at any given
time is difficult. Circumventing the challenges of predicting
the source location, we resort to ML-based methods due
to a variety of inherent advantages. In contrast to classical
analytic models, trained ML modules learn organ-specific signal
signatures automatically, allowing them to discriminate among
different source organs; scale naturally across heterogeneous
physiological pathways; and generalize far better to unseen
operating conditions – e.g., new flow rates, pathway geometries,
or noise levels.

III. MODELING AND IMPLEMENTATION

We first provide details on the system model and the
implementation of biomarker dynamics in BVS. We then give
detailed insights into the selected ML classification frameworks.

A. System Model

In our system model, biomarkers are continuously released
by a static infection source located in one of three regions:
the head, thorax, or kidneys. These biomarkers travel through
the HCS via blood flow to the detection points, referred to
as gateways. In this work, we consider two such gateways
located at the blood vessels beneath the left and right wrist. Of
course, the model in general can support other configurations of

infection locations or gateway positions. Gateways are modeled
as transparent, static observers that passively count biomarkers
flowing through designated vessel segments, specified by their
vessel ID in the simulator. The biomarker counts collected
at the gateways are used for subsequent analysis and source
localization.

For each simulation, a single infection source is considered
at a time, with biomarkers released from one location (i.e.,
head, thorax, or kidney) and observed at both gateways. At
the end of each simulation, biomarker time-series data are
recorded at each gateway, enabling analysis of their temporal
distribution from a given infection source. The generated data
is analyzed to identify patterns in biomarker counts, facilitating
the classification and localization of the infection source within
the body.

B. Implementing Biomarker Dynamics in BVS

The BVS framework [5] integrates a human body model into
ns-3, modeling the movement of nanobots within a simplified
cardiovascular system. The human model in BVS bases its
blood vessel lengths on a 1.72m, 69 kg woman, covering 94
major blood vessels connecting organs to realistically simulate
biomarker mobility within the HCS. We extended BVS to
integrate infection sources, their release of biomarkers, and the
decay of emitted biomarkers as they move along the HCS.

The simulation environment is implemented as a C++
extension of the ns-3 and operates in discrete time, with a fixed
step size of 10ms and a total simulation duration of 500 s. Key
configurable parameters include the total simulation duration;
the time interval between successive simulation steps, which
determines the temporal resolution; the number of infection
sources; the specific vessel segment for infection sources; and
the number of biomarkers released from each source.

BVS simulates the mobility of biomarkers based on laminar
flow, with vessel-specific velocity profiles derived from physio-
logical parameters. The emission of biomarkers is modeled as a
continuous point source. The vessel walls are considered rigid
and impermeable boundaries, restricting biomarker movement
strictly to the vessel lumen, without modeling interactions
such as permeability, adhesion, or penetration. In large and
mid-sized blood vessels, such as arteries and veins, the flow
regime is predominantly laminar due to relatively low Reynolds
numbers under normal conditions [12]. This approach simplifies
simulation of biomarker transport while remaining consistent
with observed hemodynamics. To focus on large-scale transport
and source localization, we excluded diffusion, vessel wall
interactions, temperature effects, and biochemical reactions.
Gateways are modeled as passive, transparent observers,
counting biomarkers passing through specific vessel segments.
Reception noise and signal interference were similarly omitted
to isolate core signal dynamics. Table I summarizes the key
parameters relevant to molecular communication.

The simulator models a single, stationary infection source
per simulation run, emitting one type of biomarker from a
predefined location. At the start of the simulation, the IDs of the
infection source blood vessels are provided as input by the user.
Each ID corresponds to a specific blood vessel associated with
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TABLE I: Simulation parameters used in BVS

Parameter Description

Blood velocity Modeled as laminar flow; values vary by vessel type (e.g., aorta ≈ 20 cm/s, veins ≈ 2–4 cm/s, capillaries ≈ 0.02 cm/s).
Infection source type Modeled as a point source, continuously releasing biomarkers into the bloodstream.
Receiver type Gateways are modeled as transparent observers, passively counting biomarkers that pass through their location.
Channel model BVS simulates laminar, stream-based flow within blood vessels, modeling biomarker transport as advection rather than

diffusion. Biomarkers are carried passively along vessel-specific velocity profiles, consistent with convective transport
observed in the HCS.

Diffusion & Temperature Since particle transport is governed by laminar blood flow rather than Brownian motion, BVS does not account for diffusion
or temperature effects.

Péclet number The flow-dominant transport dynamics of the simulation implies a high Péclet number.

an organ or region in the human body. A corresponding method
is invoked to model the release of biomarkers from the infection
source within the specified blood vessel over a set duration.
For the release, biomarkers are placed either individually or in
groups at a fixed location within a blood vessel. Each biomarker
is then randomly assigned to one of the parallel internal streams
of the vessel to simulate a spatially distributed but localized
release within that region. The simulation triggers an initial
release of the biomarkers and schedules subsequent releases
at an interval of one second throughout the simulation. This
approach effectively simulates an infection source in the vessel,
continuously releasing biomarkers for the specified simulation
duration.

We implement the decay of biomarkers by modeling their
gradual reduction over time in the simulation following an
exponential decay process [7]. At each time step, the simulator
computes the number of biomarkers to decay based on the
current total number of circulating biomarkers. As a result,
the decay scales proportionally with the biomarker count at
any given time. The number of biomarkers removed per time
step is given by, N(t) = e−rdecay∆tN(t−∆t), where rdecay is
the decay rate and N(t) is the current biomarker count. The
simulator then randomly selects blood vessels from the global
map and further selects random streams within those vessels.
In the bloodstream, biomarkers are randomly removed from
the simulation. The decay process is rescheduled to run every
time step, allowing continuous biomarker decay over time. This
approach effectively models the natural degradation dynamics
in a biological system, ensuring realistic simulation behavior.

C. Classification Framework

For training and evaluation, we use biomarker data collected
from multiple simulation runs. Each time series is labeled with
the ID of the blood vessel corresponding to the infection source,
following the mapping in [5]. The resulting dataset consists
of 240 samples, each representing time-series biomarker data
over 500 s of simulation time. We analyze the time-series data
to capture temporal dependencies arising from physiological
transport. The dataset is then split into training and testing sets
using an 80

20 stratified split, to ensure that all infection source
classes are proportionally represented in both subsets. We
employ a stacking ensemble model with LightGBM [13] and
Bernoulli Naive Bayes (BernoulliNB) [14] as base classifiers.
LightGBM, a gradient boosting framework, handles complex
feature interactions in structured data, while BernoulliNB offers

TABLE II: Summary of ML parameters

Component Parameter Value / Description

Base boosting_type dart, gbdt
Classifiers learning_rate 0.005, 0.01
LightGBM / n_estimators 500, 1000
BernoulliNB max_depth 3, 5

reg_alpha, reg_lambda 1.0, 5.0
Hyperp. Tuning RandomizedSearchCV (5-fold)

Meta Model Random Forest
Classifier n_estimators 300

max_depth 5
Ensemble Method StackingClassifier
Strategy Cross-validation StratifiedKFold (n_splits=5)
Data Split Train-Test Ratio 80% train / 20% test

Stratification Yes (to maintain class balance)

a probabilistic perspective that performs well on sparse features.
Together, these models are well-suited for capturing nonlinear
patterns in biomarker time-series data that arise from complex
vascular topology, branching dynamics, degradation, or failure
of the signal to reach gateways. The LightGBM classifier
is initialized with predefined parameters to balance model
complexity and generalization. To further refine the model,
we perform randomized hyperparameter search using 5-fold
stratified cross-validation. The best parameter configuration is
used to train the final classifier.

We adopt a stacking ensemble where the outputs of
LightGBM and BernoulliNB are combined using a Random
Forest meta-classifier [15]. Random Forest is chosen for its
robustness in capturing nonlinearities between base model
outputs and effective generalization across diverse data. The
ensemble model is then trained and evaluated using 5-fold
stratified cross-validation to ensure consistent performance
across classes. Although higher fold values were tested, no
significant performance improvement was observed beyond 5
folds. This is because increasing the number of folds results
in smaller validation sets, which tend to have higher variance
in evaluation scores. Meanwhile, the incremental increase in
training set size results in minimal bias reduction, which is
disproportionate to the additional computational cost. Table II
summarizes the key parameters of our ML model.
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IV. EVALUATION

In the following, we present the results and discuss the impact
of biomarker decay on the performance of ML classification
models. We conducted simulations for 500 s, ensuring a contin-
uous release of 100 biomarkers per second from the infection
source and observed by the gateways. The gateways perform
measurements within the vessel segments of the axillaris vein,
located in the right and left arms, corresponding to vessel
IDs 74 and 75, respectively. Different infection sources, head,
thorax, and kidney, correspond to blood vessel segments O9,
O18, and O40, respectively, in the BVS simulator. These
segments are treated as distinct classes in the classification
model for source identification. The biomarkers circulated
within the HCS throughout the simulation and were assumed
to decay exponentially [16, Eq. (60)], i.e., their degradation
follows the rule e−rdecayt, where rdecay is the decay rate as
0.007, 0.015 and 0.035 s−1. We evaluated model performance
using classification accuracy and Receiver Operating Character-
istic (ROC) curves, offering insights into both overall accuracy
and class-wise classification. All simulation data1 and the
Python code used for data processing2 and model evaluation are
made publicly available under the CC BY and MIT licenses. We
also provide a supplementary file with biomarker distribution
profiles and results for the 70/30 train/test split.

We highlight that this decay model is a heuristic approxi-
mation and not derived from a detailed physical formulation
of biomarker transport and degradation. This modeling aligns
with the assumptions of the BVS framework, which simulates
biomarker transport under laminar flow without accounting
for turbulence, diffusion, or complex boundary interactions.
Accordingly, exponential decay is applied uniformly to estimate
net biomarker loss, as localized effects like cardiac turbulence
have minimal impact at the wrist-located gateway.

A. Results

Fig. 1 illustrates the performance of the ensemble classi-
fication model under a decay rate of rdecay = 0.007. Fig. 1a
presents the learning curve, showing classification accuracy
on both training and validation sets as a function of the
number of training samples. The model demonstrates improved
generalization with increasing data, achieving a mean cross-
validation accuracy of 92%, as indicated by the dashed red
line. Fig. 1b shows the ROC curve for each class, O9, O18,
and O40, with area under the curve (AUC) values of 0.98,
0.98, and 1.00, respectively. The results highlight the ability of
the model to effectively differentiate among infection source
classes based on the temporal patterns of biomarker data.

Fig. 2 depicts the performance of the ensemble classification
model for a decay rate of rdecay = 0.015. Fig. 2a shows the
learning curve depicting training and validation accuracy as a
function of the number of training samples. As the decay rate
increases, the mean cross-validation accuracy drops to 86%.
However, the upward trend indicates that the performance
improves as the training data increases. Fig. 2b illustrates the

1https://doi.org/10.5281/zenodo.15303191
2https://github.com/tkn-tub/BVS-Localization
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Fig. 1: Performance of the ensemble model for rdecay = 0.007.
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Fig. 2: Performance of the ensemble model for rdecay = 0.015.

ROC curves for the three infection source classes, O9, O18,
and O40, with respective AUC values of 0.93, 0.96, and 0.93.
These values reflect good class separability, with a modest
reduction in performance compared to the rdecay = 0.007
scenario. Overall, the results demonstrate that the ensemble
model maintains robust classification performance even under
increased biomarker decay conditions.

Fig. 3 illustrates the performance of the ensemble clas-
sification model under a higher biomarker decay rate of
rdecay = 0.035. As the number of training samples increases, the
training accuracy improves, reaching 90%, as shown in Fig. 3a.
However, the validation accuracy levels off at a relatively low
level, resulting in a mean cross-validation accuracy of 66%. The
gap between training and validation curves indicates increased
overfitting and reduced generalization when biomarkers degrade
more rapidly. Fig. 3b shows the ROC curves, where O18
remains clearly distinguishable, while reduced separability for
the other classes indicates increased classification uncertainty
as decay increases. These results indicate that faster biomarker
degradation significantly reduces accuracy, particularly for
sources located at a greater distance from the gateways.
This highlights the influence of decay dynamics on model
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Fig. 3: Performance of the ensemble model for rdecay = 0.035.
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Fig. 4: Performance of the ensemble model for linear decay.

performance.
We also simulated linear degradation by removing a con-

stant 60 biomarkers per time step, resulting in a steady
decrease independent of the current count. Fig. 4 evaluates
the performance of the ensemble model when subjected to
a linear decay scenario. Fig. 4a shows the learning curve,
where both training and validation accuracies increase with
the number of training samples and eventually converge. A
mean cross-validation accuracy of 89% demonstrates that the
model maintains effective generalization across folds, closely
aligning with the 92% achieved under the exponential decay
model with rdecay = 0.007. The high AUC values in Fig. 4b
indicate robust classification performance under linear decay,
suggesting that the consistent reduction in biomarker count
over time preserves the distinct temporal pattern of data.

B. Discussion

The analysis of our results reveals that biomarker decay
significantly influences the performance of ML models for
infection source localization. Specifically, as shown in Fig-
ures 1a, 2a and 3a, the slower biomarker decay leads to more
accurate model performance, as indicated by higher accuracy
and more consistent loss curves. This is because the slower
decay of the biomarkers allows the model to better capture
the temporal dynamics of biomarker release, which is crucial
for accurately classifying and thereby localizing the infection
source. In contrast, faster decay introduces more noise and
reduces the effectiveness of the model. In this scenario, the
biomarker count drops too rapidly, making it difficult for the
model to distinguish temporal patterns. The analysis therefore
emphasizes the importance of understanding and accounting
for the natural degradation of biomarkers within the HCS. It
is essential to accurately model the biological processes to be
able to classify and localize infection sources effectively.

V. CONCLUSIONS

In this work, we leveraged ML models to localize infection
sources in the HCS by analyzing time-series biomarker data.
To obtain the biomarker data, we extended the open-source
simulator BVS, which models infection sources and biomarker
release, decay, and mobility through the blood vessels. We
generated time-series biomarker data by simulating the release
of biomarkers from specific organs, i.e., the head, thorax, and
kidneys. Biomarkers were observed at two locations in the
simulator (left and right arm blood vessels), and each data

sample was labeled according to the source organ releasing the
biomarkers. We employed a multi-class classification approach
based on the temporal dynamics of the biomarkers to identify
the organ that was releasing the biomarkers. We evaluated
the impact of biomarker decay on the performance of the
ML models in the context of infection source localization.
Our results highlight the importance of accurately modeling
biomarker behavior to improve the effectiveness of ML-based
localization methods.
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