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Abstract—Increasing the safety of vulnerable road users (VRUs)
in traffic has become a topic of general interest. Predicting cyclists’
turning intention in intersections can benefit safety applications
in forecasting potential accidents. In this paper, we propose a
bidirectional, stacked LSTM intention prediction model utilizing
real-world smartphone cycling traces. We show that even imprecise
GPS data are sufficient to predict right turns, and straight-going
traces with a certainty of 90 % 45 m, and left turns 28 m before
the intersection center, resulting in recognizing even the intention
of the fastest cyclist in the data set 4.19 s before reaching the
center. We further conduct an explainability analysis, including
feature engineering, and SHapley Additive exPlanations (SHAP),
highlighting the influence of GPS positions, and rotation vectors on
our model. Lastly, we investigate the generalizability of our model
on untrained intersections, showing first promising results for left
turns of 90 % prediction probability 45 m before the intersection
center, and probabilities of 90 % 20 m for straight-going traces,
for an exemplary intersection.

Index Terms—VRU safety, intention prediction, LSTM net-
works, explainability, bicycle trajectory prediction

I. INTRODUCTION

In recent years, advanced driver assistance systems (ADASs),
autonomous driving, and traffic optimization grew into the
role of a game changer for smart cities, intelligent vehicles,
and politics. Therefore, ensuring the safety of vulnerable
road users (VRUs), especially cyclists, has become a topic of
general interest. To achieve this, ADASs have been researched,
developed, and deployed in modern cars. However, current
solutions do not incorporate VRUs sufficiently [1]. We focus on
the safety of such VRUs. Adequate safety systems in both cars
and bicycles require accurate trajectory prediction, particularly
at intersections, to forecast potential accident scenarios.

Three categories of trajectory prediction can be distin-
guished [2]: intention prediction, unimodal trajectory prediction,
and multimodal trajectory prediction. In the first category, only
the general action is predicted, e.g., turning left, or right. The
last two categories forecast concrete positions. Unimodal ap-
proaches focus on the most likely trajectory, while multimodal
compute different paths with their according probabilities.
Depending on the objective, a physics- or maneuver-based
prediction should be considered. According to Fu et al. [3],
physics-based prediction is built on vehicle kinematics models.
Here, human factors are either neglected, or the prediction
uncertainty is considered by applying the Kalman filter for state
estimation. In maneuver-based prediction, driver intention, and
possibly environment information are included in the prediction
process. In the literature, many approaches combine intention,

and uni- or multimodal predictions by using the first class as
an input for the other classes of trajectory forecast [4]–[6].

For identifying a driver’s intention, various AI techniques
can be applied, such as graph neural networks (GNNs),
convolutional neural networks (CNNs), or recurrent Neural
Networks (RNNs). Some prediction approaches base their
predictions on graph neural networks [7]–[9]. Li et al. [8]
combine a graph network predicting the social connections
with a long short-term memory (LSTM)-based encoder-decoder
setup for trajectory prediction. Furthermore, Lee et al. [10]
implement a CNN-based solution foretelling lane changes in the
context of automatic cruise control. Other works, such as Ding
et al. [11], utilize RNNs to compute the probabilistic likelihood
of multiple behaviour classes of cars. In the context of RNNs,
LSTMs are a common approach when dealing with long time
series data, and trajectory predictions [4]–[6], [9]. Using LSTM
networks permits to avoid the vanishing gradient problem
of RNNs. Furthermore, bidirectional LSTM systems allow
capturing context information in both directions [12]. Hence,
bidirectional LSTM networks can learn high-level abstractions
of sequential features. Additionally, stacked LSTM models
can achieve higher prediction accuracy [12]–[14]. Most of
these works either focus on cars instead of bicycles, or rely
on accurate video data, use sophisticated inertial measurement
unit (IMU) setups, and do not research the generalizability of
their approaches on untrained intersections.

In this paper, we present a bicycle intention prediction
approach utilizing real-world smartphone data from the open-
source SimRa toolkit1 [15]. Similar to the work by Saleh
et al. [12], we implement a bidirectional, stacked LSTM
network with a sliding window approach to handle trace data
of uneven length. However, instead of utilizing video data
traces as position input, we use IMU and global positioning
system (GPS) data from smartphones, and adapt their design
to predict intentions, and conduct an extensive explainability
analysis, including feature engineering and SHapley Additive
exPlanations (SHAP).2 Finally, we present a first insight into
the generalizability of our approach to untrained intersections.

We show that even imprecise smartphone sensor data are
sufficient to predict cyclist intentions. Hence, our solution
can be realized using regular smartphones with no additional
equipment. By including features such as speed, rotation

1https://github.com/simra-project
2https://shap.readthedocs.io/en/latest/



vector, and linear acceleration, we show that we can correctly
predict intentions to turn left, right, or straight on a four-street
intersection with a probability of more than 90 % as early
as 28 m before the center of the intersection. We estimate
how early we can predict each intention with a 90 % certainty.
We demonstrate that even for fast bicycles the time available
for sending, and processing a warning message is sufficient.
Finally, we present first insights into the generalizability of
our approach on untrained intersections, showing we can still
achieve a prediction accuracy of 90 % as early as 45 m for left
turns, and 20 m before the intersection for going straight.

Our key contributions can be summarized as follows:

• We developed a LSTM-based intention prediction for
bicycles utilizing real-world smartphone data.

• We conducted an extensive evaluation of our model,
including feature engineering and SHAP.

• We offer first insights on generalizability of our approach
by applying it to an untrained intersection.

II. RELATED WORK

Compared to cars, research on the prediction of bicycle
trajectories is much more limited. The simplest models are
linear computations based on static acceleration, velocity, and
heading. For example, Ruß and Naumann [16] extrapolate
trajectories to forecast when an object will reach the intersec-
tion. More complex approaches, based on data collected via
simulation, or IMU sensor data, utilize classifiers or machine
learning solutions [17]–[20]. Mathuseck et al. [17] install
multiple IMU sensors on a bicycle, and successfully predict
intentions such as pedaling, coasting, and braking utilizing a
transformer-based classifier. Han et al. [18] forecast maneuvers
based on head movements of a cyclist. Zernetsch et al. [19]
compare a physical model of a cyclist, as well as a polynomial
least-squares approximation in combination with a multilayer
perceptron artificial neural network, to the performance of a
Kalman Filter. Predicting intentions such as starting, stopping,
and passing, their physical model performs 27% better than
the Kalman Filter, and the machine learning approach even
achieves an improvement of 34% for starting, and stopping.
Losada et al. [20] show how the cyclist’s behavior impacts
the collision probability using bicycle simulator data. They
implement simple classifiers to predict whether the cyclist’s
behavior, e.g., braking, dodging, or accelerating, would lead
to or prevent an accident.

Other works utilize camera-based solutions to predict the
trajectory of vehicles [9], [12], [21]. For example, Saleh et al.
[12] implement a vision-based trajectory prediction by training
a bidirectional RNN based on LSTMs. Li et al. [9] include
social interactions in their predictions by implementing a
spatial-temporal multi-graph network trained for crowded city
scenarios, resulting in 9% less prediction error than RNN
models in similar setups.

Multiple works, especially in the context of cars, have
successfully applied LSTM networks to trajectory prediction
approaches [4]–[6], [12], [22], [23]. Gao et al. [4] predict

cyclists’ trajectories in a car-to-cyclist scenario within a non-
signalized intersection utilizing a two-step approach with a
dynamic bayesian network (DBN) intention prediction and a
LSTM encoder-decoder setup for position predictions based
on camera data. However, they have not looked at the general-
izability of their solution, and made very strong assumptions
about the independence of variables. Xin et al. [5] developed
an intention-aware trajectory prediction for cars in the context
of autonomous driving. The authors follow a similar two-step
approach, each with its own LSTM network, first forecasting
the intention and using the result for the trajectory prediction.
Park et al. [6] use an LSTM solution coupled with an encoder-
decoder design to perform a multimodal trajectory prediction in
highway scenarios. Saleh et al. [12] implement a bidirectional
recurrent neural network consisting of LSTMs trained with
the cyclist’s position as an input. Dai et al. [22] model spatial
interactions and shortcuts in their LSTM network to include
car interactions. Phillips et al. [24] include interactions when
predicting the behavior of human drivers at intersections. They
achieve promising results by training a LSTM network to
forecast whether a driver is turning left, right, or going straight
ahead.

Most of these works do not focus on predicting turning
behavior, or do not investigate bicycles. Furthermore, the
presented solutions often base their results on very precise
input data, usually collected by additionally installed sensors,
utilizing camera data for accurate position data, or generating
simulation data for training. Furthermore, they typically limit
their analysis to one single scenario also used for training, and
do not sufficiently look into the explainability of their models.

III. BICYCLIST INTENTION PREDICTION AT
INTERSECTIONS

A. Intention Prediction Model

To predict a cyclist’s intention at intersections, we realize a
two-layer, stacked, bidirectional LSTM network, similar to the
work by Saleh et al. [12]. As shown in Figure 1, we adapt their
solution to produce an intention prediction with probabilities
for turning left, right, or going straight.

As an input, the sensor data at the current time t plus the
last n− 1 measurements are used (cf. Figure 1). Thereby, n
defines the size of a sliding input window of measurement

inputt−(n−1) inputt−2 inputt−1 inputt
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Figure 1. Bidirectional, stacked LSTM network for intention prediction with
input of window size n.



Table I
INPUT FEATURES FOR INTENTION PREDICTION

Feature Type Description

GPS position derived relative GPS coordinates to inter-
section center

GPS accuracy raw estimated GPS accuracy in radius
of 68 % confidence

speed derived based on timestamps and dis-
tances, low-pass filter

lin. acceleration raw indicate, if missing
rotation vector raw indicate, if missing

data. For each step in time, the window is moved one step.
Using such a sliding input window enables our network that
expects a static input size to handle traces of varying lengths.
The time of crossing an intersection, and with that the number
of measurement points in a trace, vary with the cyclist’s speed.
Hence, most traces will vary in length. For our model, we
evaluate the potential sliding window sizes 1, 3, 5 and 8 with
a step size of 1. As potential input features, we chose GPS
position, estimated GPS accuracy, speed, linear acceleration,
and rotation vector. They are summarized in Table I.

Additionally, as the measurements can include missing
values, we add a masking layer to indicate missing sensor
data. To prevent overfitting, dropouts are included after each
bidirectional LSTM layer. In layer 1, the LSTM has 256 hidden
cells. For layer 2, this value is reduced to 128 hidden cells.
As our output is a multi-class classification with different
probabilistic outputs that should sum to one, categorical cross-
entropy loss L(y, ŷ) is applied:

L(y, ŷ) = −
C=3∑
i=1

yi × log(ŷi) (1)

with yi being the true label, ŷi being the predicted probability
for class i, and C being the number of classes. We select an
Adam optimizer with a default learning rate lr of 0.001, a
momentum decay rate β1 of 0.9, and a squared gradient decay
rate β2 of 0.9999 for its efficiency on large datasets.

B. Data Preprocessing

Our approach is trained and tested with real-world, smart-
phone cycling data from the SimRa dataset1 [15]. It is part
of an ongoing project allowing cyclists to record their regular
rides via a smartphone app. Hence, our intention prediction
requires no additional equipment, or infrastructure setup. Firstly,
we read all traces collected in Berlin from June 2019 until
February 2024 into a PostgresSQL database. Similar to [25],
we filter out rides with multiple unrealistic position jumps
("teleportation") of more than 100 m/s, short rides of only a
few seconds, and parts of rides where users stopped recording.
Furthermore, we apply a Gaussian kernel filter to the GPS data
to even out inaccuracies and noise. The velocities are computed
based on distances between locations and time stamps. Next, a
low-pass filter is applied to the velocity values smoothing the
data and further reducing noise. Furthermore, as GPS positions

(a) Google maps view (b) Visualized traces

Figure 2. Selected intersection for intention prediction.

are not as frequently recorded as IMU data, we apply linear
interpolation between consecutive GPS recordings.

For this paper, we focus on four-street cross-shaped in-
tersections. To achieve good training results, the dataset is
combined with OpenStreetMap3 data of Berlin, and filtered
for four-street cross-intersections with more than 600 available
traces. Furthermore, an intersection with a variety of different
crossing behaviors is required. After analyzing multiple options,
we decided for an intersection at 52.543 079 5° latitude and
13.376 406 3° longitude, as shown in Figure 2a. In total, we
have 719 traces available for the chosen intersection. For further
processing, traces with an estimated GPS accuracy of over
100 m were filtered out, resulting in 680 traces as illustrated
in Figure 2b. In average, the GPS accuracy of all traces was
7.15 m.

C. Data Labeling and Training

Before feeding the data into the network, we labeled
the traces. We choose a three-vector labeling in the format
[pleft, pright, pstraight] where each field represents the probability
p of the turning direction. The correct direction is represented
with 1 while the others are set to 0. In total, 58 left turnings,
165 right turnings, and 457 straight traces are used for training,
and testing. To improve generalizability of the model to other
intersections, GPS positions are recomputed in relation to the
intersection center, rather than using the absolute values for
training. All input features are further min-max scaled to fit
the [−1, 1] scale of the default hyperbolic tangent activation
function of LSTMs.

As the different turning behaviors for the intersection are
very unevenly distributed, we apply stratified test-split on all
traces before computing input windows, with a 70/30 relation
for the training and testing set. The splitting is conducted
before dividing the traces into windows to avoid shuffling
issues of time series data. Finally, we used 41 left, 115 right,
and 320 straight traces during training, and 17 left, 50 right,
and 137 straight traces for testing. To balance out the uneven
distribution of classes, class weights are computed. During
training, we apply a batch size of 64, and limit the epochs
to 500. To further prevent overfitting, we include an early
stopping mechanism [26]. It stops training if the validation
loss does not change significantly for at least 5 epochs, and
restores the best configuration.

3https://www.openstreetmap.org
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Figure 3. Weighted F1 score for different window sizes and full feature set.

IV. OPTIMIZATION AND EXPLAINABILITY STUDY

A. Window Optimization

First, we train our model with the complete feature set (cf.
Table I) applying four different sliding window sizes 1, 3, 5
and 8. As shown in Figure 3, the weighted F1 score gives best
results for a window size of 3. Evaluating the turning intention
prediction certainties, the three-window model achieves the
highest probability of correctly predicting left turns, right
turns, and straight-going traces. It can predict left turns with a
probability of 90 % 23 m before the intersection. The intention
of going straight can be forecast with a probability of 97 %
45 m before the intersection. Right turns are detected with
at least 90 % 45 m before the intersection. Hence, as it has
the overall best performance, we continue our explainability
analysis with window size 3. Note that our results are different
to findings in [12], in which a window size 5 gave the best
results.

B. Feature Engineering

For feature engineering, we train our model with all existing
subsets of features for our model. Performance results for best-
performing models of each category are depicted in Figure 4.

For single-feature models, the GPS input performed best
by far. Interestingly, it performs slightly better than the model
with the complete input feature set for right and left turns.
However, it performs significantly worse in predicting going
straight. In general, all best-performing models include GPS
positions. All models, except the single-feature GPS model,
can predict right turns (cf. Figure 4b) and going straight (cf.
Figure 4c) with a probability of at least 90 % more than 40 m
before the intersection. Overall, left turns seem to be most
difficult to predict. Potentially, the comparatively lower number
of left turns incorporated in the training data could affect the
prediction. Thus, we focus on models that perform well for
left turns.

For further explainability analysis and generalizability in-
vestigations, we focus on the model trained with GPS, the
estimated GPS accuracy, and the rotation vector. This model has
the best weighted F1 scores and shows excellent accuracy for
all intention predictions. We skip the typical step of increasing
the training epochs for models with higher numbers of features
as the training never continued for more than 35 epochs before
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(c) Going straight

Figure 4. Results for best-performing models during feature engineering.

stopping. Furthermore, we increased the epochs for models
with at least four features by doubling them. However, no
significant performance improvement was achieved. Hence, we
conclude that the model based on GPS, the estimated GPS
accuracy, and rotation vector performs best in our evaluation.
It can correctly predict left turns with at least 90 % probability
already 28 m, right turns with at least 92 % probability already
45 m, and going straight with at least 97 % probability already
45 m before the intersection center.

C. SHAP Values Analysis

To evaluate each feature’s contribution to predicting maneu-
vers, we perform a SHapley Additive exPlanations analysis.
A key objective in cyclist-turn prediction is determining a
cyclist’s intention far enough in advance to allow other traffic
participants to respond safely. We therefore focus on a distance
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Figure 5. SHAP beeswarm plot illustrating each feature’s contribution to
predicting a right turn 45 m before the intersection, using the full feature set
and a window size of 3.

of 45 m before the intersection. At this range, turning behaviors
have often begun, yet there remains sufficient space and time for
cars or nearby road users to adapt. In Figure 5, we visualize
the SHAP values for correctly predicting a right turn 45 m
before the intersection, given the selected input features: GPS
(latitude, longitude, and estimated accuracy), speed, linear
acceleration, and rotation vectors for three consecutive time
windows (window_0, window_1, and window_2). The
horizontal axis represents the SHAP value (i.e., impact on the
model’s output), and each dot corresponds to one sample from
the test set; red dots indicate higher feature values, whereas
blue dots indicate lower feature values. Features at the top of
the beeswarm plot exert the greatest influence on the model’s
prediction (based on their mean absolute SHAP value), while
those at the bottom play comparatively smaller roles.

Several informative observations can be discussed. First,
GPS-related features (particularly window_0_gps lon,
window_0_gps lat, and window_2_gps lon) appear
at or near the top of the plot, underscoring that the model
strongly relies on positional information when determining
if a cyclist will execute a right turn well in advance of
an intersection. Notably, red (i.e., higher longitude or lat-
itude values) often correlates with positive SHAP values
for right-turn classification, suggesting that specific geo-
graphic regions or directional bearings consistently increase
the likelihood of predicting a right turn. Meanwhile, ro-
tation vector components across different time windows

(window_0_rot.vector y, window_2_rot.vector
y, window_1_rot.vector y, etc.) also show substantial
contributions. This is consistent with the idea that subtle
orientation changes (e.g., leaning, body rotation, or handlebar
movement) emerge before an overt turn and thus serve as
important indicators of a forthcoming right turn. Features
such as speed and GPS accuracy appear lower on the list
but still contribute to the model’s decisions. For example,
window_0_speed contributes moderately—indicating that
although velocity does matter, it may be secondary compared to
positional shifts or orientation cues for predicting a future right
turn. The estimated GPS accuracy (window_0_accuracy)
similarly has non-negligible effects, but its impact is clearly
smaller than the immediate positional and rotational informa-
tion. This modest impact of GPS accuracy suggests that, for
right-turn prediction at 45 m, coarse positioning data (even with
varying accuracy) may be sufficient when combined with other
more discriminative signals such as rotation vector changes.

Overall, the SHAP values results confirm that positional
cues (GPS) and orientation dynamics (rotation vector features)
are primary drivers in forecasting a cyclist’s right turn. The
results align with earlier observations that GPS-based features
alone can provide robust hints for turn prediction, and that
including orientation data further boosts the model’s ability to
discern turning maneuvers well in advance.

V. EVALUATION

A. Performance Comparison

To evaluate the effect of memory, we compare the perfor-
mance of our intention prediction to a setup where the LSTM
cells are replaced by RNNs (cf. Figure 6). An equivalent
number of 256 hidden cells for the first, and 128 for the
second layer were used, followed by a dense layer. For a
fair comparison, an equivalent sliding window approach is
applied. As input, the full features, as well as the best feature
combination (GPS, estimated GPS accuracy, and rotation
vector) are fed into the network (cf. Table I). Accordingly,
a categorical cross-entropy loss and an Adam optimizer with
the same parameters are chosen. The comparison model is
trained with the equivalent training-test split of 70/30 with a
batch size of 64 and 500 epochs. Again, we include an early
stopping mechanism to avoid overfitting. We compare this new
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Figure 6. Comparison model based on simple RNNs.
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Figure 7. Performance results of RNN model and best intention prediction.

setup to our best-performing three-window model with GPS
data, their estimated accuracy, and the rotation vector as input.

As visualized in Figure 7, our LSTM-based intention
prediction outperforms both comparison models in predicting
the correct turning directions, highlighting the positive effect
of memory on intention prediction. While the RNN models
can still predict right turns, and going straight events with a
high probability of at least 94 % 45 m before the intersection,
they only achieve a minimum 85 % probability of recognizing
left turns about 10–12 m before. This is at least 5 % less, and
18–20 m later compared to our approach.

B. Outlier Analysis

In addition, we manually analyzed wrongly predicted traces.
As shown in Figure 8, 5 of the 204 testing traces were
incorrectly predicted. The red dot marks the start of a trace, the

(a) Visualization of all wrongly
predicted traces(red as straight,
green as left, blue as right)

(b) Wrongly predicted left-turning
traces(red, blue) with correctly
predicted ones(green)

Figure 8. Visualization of wrongly predicted traces for the 3-feature model
with GPS, GPS accuracy, rotation vector 28 m before intersection center.

green dot marks the end of a trace. The green trace, marked
with a 5 in Figure 8a, was incorrectly identified as going left,
although it goes straight through the intersection. The trace
shows typical right-turning behavior in the beginning. It drifts
slightly to the left, a natural movement when turning right on
the bicycle, which might lead to the wrong prediction. Here,
however, the trace starts turning left in the beginning which
probably leads to the wrong prediction.

The two red traces, marked 1 and 2, were wrongly identified
as going straight, even though they turned left. However, when
visualized with other left-turning traces in Figure 8b, they
continue going straight without any turning indication until
reaching the intersection center.

The two blue traces, marked as 3 and 4, were classified as
turning right, however, they are turning left and going straight.
The first one was correctly identified as a turning process,
however, for the wrong direction. When looking at Figure 8b,
the trace is the most right on the street. This could lead to
misclassification. Adding more left traces to the training might
further improve the model.

C. Communication Requirements

Our best-performing intention prediction model with a
window size of three, and GPS data, estimated GPS accuracy,
and rotation vector as an input predicts all turning probabilities
for up to 28 m before the intersection with a probability of
at least 90 %. Hence, we can make first assumptions about
how much time is left until the cyclist reaches the intersection.
For each trace, we computed the average speed crossing the
intersection. The traces are then split into different intention
categories. We calculated the maximum average speed of all
traces to identify the fastest cyclist for each maneuver. Together
with the distance at which each intention can be predicted with
a 90 % certainty, the time to reach the intersection center is
calculated for the average, and the maximum average speed.

The results are visualized in Table II. For the fastest left-
turning trace, a prediction with 90 % certainty can be made
4.98 s before the cyclist reaches the intersection center. For
the fastest right-turning trace, a prediction with 90 % certainty
can be made 6.02 s, and for the fastest straight-going trace, a
prediction with 90 % certainty can be made 4.19 s before the
cyclist reaches the center. Hence, there will be a time window



Table II
TIME ESTIMATES FOR THE TIME FROM THE MOMENT A MINIMUM OF 90 %

CERTAINTY FOR CORRECT INTENTION PREDICTION TO REACHING THE
INTERSECTION CENTER.

Intention Distance Average Max. Time Time Max.
Speed Average Average Average

Speed Speed Speed

Left 28 m 2.54 m/s 5.62 m/s 11.02 s 4.98 s
Right 45 m 3.94 m/s 7.48 m/s 11.42 s 6.02 s
Straight 45 m 4.19 m/s 10.08 m/s 10.73 s 4.19 s

of at least 4.19 s available for sending warning messages,
processing them, and reacting accordingly.

This time window is obviously more relaxed than previously
anticipated warning message delays. According to the Euro
NCAP recommendations [27], a forward collision warning
for longitudinal scenarios should issued at least 1.7 s before
a potential crash. This would result in a minimum message
generating, sending, and processing time of 2.49 s for the
fastest cyclist (cf. Table II). Schories et al. [28] conducted real-
world experiments in a secluded environment for cyclist-car
scenarios. They found that warnings as early as 4 s together
with an urgent warning at 2 s could prevent 98 % potential
crashes in their scenarios. However, for urban scenarios like
ours, they recommend later warnings as identifying the conflict
partner is difficult otherwise. Hence, assuming we need to issue
a warning 3.5 s before a potential collision at the intersection
center, a minimum message generating, sending, and processing
time of 0.69 s for the fastest cyclist is required (cf. Table II).

D. Generalizability

1) Applicability to New Intersections: To gain first insights
into the generalizability of our model, we chose an untrained
but similar four-street intersection at 52.487 446 4° latitude
and 13.431 550 8° longitude. The complete trace data (25
left, 33 right, and 69 straight) were applied for testing.
The resulting probabilities of correct turning predictions are
summarized in Figure 9. Straight-going traces continue to
be the easiest to predict. However, instead of 45 m before
the intersection, only 20 m predictions can be made with a
certainty of 90 %. The recognition probability of left-turning
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Figure 9. Prediction probabilities for intentions after converting the model to
an untrained intersection.
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Figure 10. Prediction probabilities for intentions at 45 m while retraining the
model during testing with batches of 10 traces.

traces is reduced from 90 to 80 % the closer the cyclist gets
to the intersection. Multiple factors contribute to this behavior.
Firstly, the intention prediction model was only trained with
58 left-turning traces. Hence, adding more traces from similar
intersections to the training process could help to improve
the prediction performance. Secondly, the angle between the
intersecting streets of both intersections varies, resulting in
a visible change in turning angle and earliness, which might
affect the prediction results. Still, left turns can be predicted
with a probability of at least 90 % at a distance of 45 m. For
right-turning traces, the prediction probability is insufficient for
application. Again, the varying angle between the intersecting
streets results in a change of turning angle, and earliness.
However, looking at common cyclist-car crash scenarios, right
turns of bicycles are less likely to lead to accidents [29]. Overall,
the model performs astonishingly well for the new intersection.

2) Online Retraining: We further evaluate the effects of
online learning to see how fast our model can adjust to a new
intersection. First, we test it with the full set of traces for the
new intersection. Then, a batch of 10 randomly chosen traces is
used for retraining the model. One batch consists of 2 left turns,
3 right turns, and 5 straight traces, representing the distribution
of data available for the intersection. The resulting probabilities
for the remaining test traces are then computed. This process
is repeated 11 times until only 17 traces are left for evaluating
the retrained model. The resulting prediction probabilities of
maneuvers for a distance of 45 m are visualized in Figure 10.
Even retraining with only two additional batches leads to a
significant increase in correctly predicting maneuvers. Hence,
either we will use continuous online retraining for improved
accuracy or we will further increase the training data set with
left- and right-turning traces of more intersections to generalize
our trained LSTM model for other intersections.

VI. CONCLUSION

In this paper, we show the immense potential of our
bidirectional, stacked LSTM intention prediction model for
cyclists. After training, we demonstrate that even imprecise
GPS data are sufficient to predict right turns, and straight-
going traces with a certainty of 90 % 45 m, and left turns 28 m
before the intersection center. The presented results show that



our model can predict cyclists’ intentions early using traces
from noisy smartphone data. While already attaining promising
first results when converted to another intersection, we aim to
further enhance the performance of our model by extending the
training set with additional traces from similar intersections.
This requires an analysis of suitable, preferable automatic,
groupings of intersections. We will extend the generalizability
investigation by applying our model to multiple different
groupings of intersections. Regarding intersections, we plan to
explore cases with different numbers of streets, structures, and
lane setups. Additionally, to increase our model’s performance,
we will investigate the real-time requirements of our setup,
and evaluate our solution in safety scenarios sending warnings
based on intention predictions. Finally, we intend to extend
our model by using the intention prediction as an input for
concrete bicycle trajectory forecasts.
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