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Abstract 
 
The transformation of the Internet into an important commercial infrastructure in 
the recent years has led to the emergence of new service needs as it is required to 
carry a wide range of application information. It is widely agreed that the Internet 
architecture should offer some type of service differentiation, so that some traffic 
classes get better QoS (Quality of Service) than others. Currently, the attention of 
the research community has been focused on the Differentiated Service 
Architectures (DiffServ). 
 
A model attracting much attention from the research communities recently is the 
Proportional Differentiated Service Model, which provides proportional services 
between different classes. There are some existing studies on mechanisms to 
provide the proportional service, such as Proportional Delay Service (PDDM), 
Proportional Loss Service, WTP, BPR, MDP, and DDTS etc. Even when such 
mechanisms are implemented at every router, it is not always possible to receive 
per-class proportional service in an end-to-end manner.  
 
In order to overcome this issue, attention concentrates on developing a new and 
simple model (called Proportional Jitter Differentiated Services - PJDM) that does 
provide proportional jitter between different classes based on the Jitter 
Differentiation Parameters. Unlike other existing approaches, it is unnecessary to 
have complicated scheduling algorithms at every router in networks based on 
PJDM model. Subsequently, the issue of related packet scheduling problems is 
considered: four new schedulers for PJDM model are created in this work. The 
Relative Jitter Packet Scheduling (RJPS) and the Proportional Average Jitter 
(PAJ) algorithms provide long-term jitter and short-term jitter ratio proportionally 
between different classes. Furthermore I consider the use of variable Jitter 
Differentiation Parameters in RJPS and PAJ, this idea leads me to create two new 
mechanisms, called Adaptive RJPS and Adaptive PAJ, which are more robust 
than the previous RJPS/PAJ mechanisms under bursty traffic profiles. 
 
The focus then shifts to a comparison of quality of service provided by PDDM 
and PJDM in terms of end-to-end delay. Results received from my simulation 
confirm that the topologies based on my new model PJDM achieve significantly 
better quality of service than the others, which derive from the old model PDDM. 
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Chapter 1 Introduction 
 
This chapter presents the IP interworking environments as well as Quality of 
Service (QoS) support in such environments. It also addresses the needs of 
building a QoS architecture based on the Differentiated Services architecture and 
Playout buffer delay adjustment algorithms. Finally, it outlines problems to be 
solved and describes the major contribution of this thesis to the state-of-the-art. 
 

1.1 Why IP? 
  
Packet networks are able to transfer different types of information, such as E-
mail, WWW pages, voice, music, video etc. In general, if an information unit can 
be digitally represented, it can also be assembled into packets, and can be 
transferred through a network. The Internet as an interconnection of many 
different networks is based on the Internet Protocol (IP) [Clark88]. Internet was 
mainly used for E-mail and File Transfer in the eighties. Later in the nineties, 
WWW access significantly contributed to the traffic, and recently new 
applications like conferencing and multimedia streaming became more and more 
important. This fact especially leads to relevance of the topic “QoS”. 
 
In order to transfer packets through networks, it is necessary to have a sequence 
of links and routers from senders to receivers. Links are used to interconnect end 
users and routers with each others. Routers are nodes where packets from an input 
link are forwarded to output links. Source or destination addresses and application 
port numbers are stored in packet headers and they address a path and services 
which packets obtain in networks. 
 
In an IP router, packets arrive at an input interface and they depart from an output 
interface. The output interface is specified by a forwarding table. An important 
feature of an IP router is the fact that packet queues are inevitable, and they can 
cause delay and packet losses, which are major performance-degradation factors 
in packet networks. Another important performance factor in packet networks is 
rate, usually called bandwidth, at which routers can forward and transmit packets. 
The operation that routers perform choosing a packet from buffer in order to put it 
to the free output links is called scheduling.  
 
The Internet Protocol is based on connectionless mode (vs. connection oriented) 
and can be used to communicate across any set of interconnected networks. The 
major advantages of the Internet Protocol are its flexibility and scalability. There 
is no requirement to maintain state for individual connections. Neither a 
connection setup nor a teardown for packet forwarding does exist. IP and its 
auxiliary protocol features communicate with remote sites without a detailed 
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knowledge of a particular vendor’s network hardware. IP is able to operate over a 
very wide range of underlying network technologies. In addition, IP supports a 
wide range of applications and institutions, from commercial use to research. The 
vitality and scalability of the Internet Protocol is demonstrated by the rapid 
expansion of the Internet every day. The most important reason why IP scales 
well from small local area networks to worldwide networks with millions of users 
lies in its connectionless nature. In case of failures the network decides which 
way the message will take from sender to receiver. 
 
However, IP has also two main disadvantages. First, different quality-of-services 
requirements from the user can hardly be supported due to very simple 
forwarding mechanisms where packets are treated equal. Second, the concept of 
IP routing was designed more towards flexibility than rate. 
 

1.2 Why QoS? 
 
Quality of Service (QoS) is a generic term which takes into account several 
techniques and strategies that could assure application and users a predictable 
service from the network and other components involved, such as operating 
systems. 
 
The reasons for supporting QoS models in the future are the appearance of time-
sensitive applications, and the more and more ubiquitous use of Internet as work 
tool, congestion and uncertainties in delay and delay variation. The traditional 
Internet, storing and forwarding packets without guaranteed service can provide 
best-effort service only, and cannot provide acceptable performance. New real-
time applications, which are less elastic and less tolerant to delay, packet losses 
and delay variations cannot be handled properly within the traditional data service 
architecture.  
 
It is a hotly debated issue if the support of QoS is needed. One example is the 
Wavelength Division Multiplexing (WDM) that makes the future bandwidth so 
abundant, ubiquitous and cheap. When the link utilization is low or even 
moderate observed, it is unlikely that packets are lost or heavily delayed. QoS will 
be the same for all connections regardless of their QoS requirements. Due to large 
bandwidth, there will be no communication delays other than the speed of light. 
However, even if bandwidth would eventually become abundant and cheap, it is 
not going to happen soon. Moreover, bandwidth provided as a network service is 
not likely to become so cheap that wasting it will be the most cost-effective 
design principle.  
 
In addition, different services with different price patterns are required from the 
Internet by the users because the users want to choose one service appropriate for 
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its capability. Within the same type of service requirements, there might be 
several service classes to be required. Some users, who are not so tolerant to 
packet loss and delay, need to choose a strictly guaranteed service with higher 
price, while others, who are tolerate to some degradation, will use a less 
guaranteed and cheaper service class.  
 
Recent experience in the Internet indicates that it is ill suited to handle time and 
loss sensitive applications. This is due not only to the inadequate bandwidth 
provided by the Internet but also because the Internet does not provide the right 
support in the form of end-to-end protocols and adequate service to the new 
applications. Thus service providers have to not only provision higher link 
capacity but more important, they need also to introduce more sophisticated 
service models and architectures that can satisfy varied QoS requirements. 
 

1.3 Why Differentiated Services (DiffServ)? 
 
In order to provide QoS support in the Internet, two service architectures - the 
Integrated Service (IntServ) [Brad, Wrocl11] and the Differentiated Services 
(DiffServ) architectures - have been developed [Nich98].  
 
The IntServ approach supports some quantified services such as minimum-service 
rate or a maximum tolerable end-to-end delay or loss rate for application sessions. 
In order to support this type of service, each router in the network has to maintain 
state and control information for each flow, which is a stream of packets belong to 
the same application session. This approach seems to be unfeasible for routers to 
perform all the above actions efficiently when there are millions of flows 
traversing through the network simultaneously. 
 
The other approach, DiffServ, is newer than the IntServ approach. It proposes a 
coarser notion of quality of service, focusing primarily on classes, and intends to 
qualitatively differentiate services between classes rather than to provide absolute 
per-flow QoS guarantees. In particular, access routers process packets on the basis 
of finer traffic granularity such as per-flow or per-organization while routers at 
the core network do not maintain fine-grained state, but process traffic based on a 
small number of Per Hop Behaviors (PHBs) encoded in the packet header.  
 
A DiffServ model that draws much attention from the research communities 
recently is the Proportional Differentiated Services Model [Dov3], which 
provides proportional services between different classes. There exist some studies 
on mechanisms to provide the proportional service, such as Proportional Delay 
Service (PDDM) and Proportional Loss Service [Dov2]. Waiting Time Priority 
WTP or Backlog Proportional Rates BPR are scheduling mechanisms designed 
specially for the PDDM model in [Dov3]. Even when such mechanisms are 
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implemented at every router, it is not always possible to receive per-class 
proportional service in an end-to-end manner. 
 

1.4 Why Playout Buffer at receiver end? 
 
Although such QoS architecture should be implemented in the Internet to 
guarantee QoS, the total end-to-end delay experienced by each packet is a 
function of variable delays due to physical media access and queuing delay. This 
variation of delay is considered as a big disadvantage for a stream of multimedia 
packets, because it influences the quality of audio-visual applications.  
 
In order to compensate for these delay variations, a smoothing buffer (called 
playout buffer) is thus typically used at a receiver. Received packets are first 
queued into the playout buffer and the periodic playout of packets is delayed for 
some amount of time, called playout delay. That means: a playout buffer is 
responsible for holding each packet within an amount of buffer time so that the 
end-to-end delay is the same for every incoming packet without excessively 
delaying the packet. Clearly, the longer the playout delay, the more likely it is that 
a packet will have arrived before its scheduled playout time. Excessively long 
playout delay, however, can significantly impair human conversations. There is 
thus a critical tradeoff between the length of playout delay and the amount of loss 
(due to late packet arrival) that is incurred. The algorithm that controls this buffer 
time is called playout buffer delay adjustment algorithm.  
 

1.5 Problem Specification 
 
This thesis deals with the issues of providing DiffServ in an IP backbone network. 
These issues raise some general questions as below: 
 
 

1. How to create a new and simple DiffServ model that 
 

•  is simpler than the existing DiffServ models? 
 
•  collaborates well with the playout buffer delay adjustment 

algorithms implemented at receiver?  
 

•  produces better end-to-end QoS than the existing DiffServ models? 
 

2. Which playout buffer delay adjustment algorithm should be used at the 
receiver end for cooperating with the designed DiffServ model? 
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3. How to design different scheduling algorithms in routers in order to 

transport IP packets successfully through this DiffServ model? 
 

4. How to evaluate and compare and the performance of my new model and 
of the existing models? 

 
5. How to improve the disadvantages of my new model and the existing 

models? 
 
I believe that the problem of network-architecture design is very complex and 
cannot be solved satisfactorily without dealing with other problems in networks. 
There are at least following components, which are intricately associated with the 
problem of network-architecture design: 
 
The first question deals with the problem of network-architecture design, e.g., 
how to design a new architecture, which is able to simplify the components. 
 
The second question is concerning with the existing playout buffer delay 
adjustment algorithms: how to choose an appropriate mechanism, which performs 
a good trade-off between packet delay and loss rate.  
 
The third question implies the problem how to design different schedulers that 
produce proportional jitter? 
 
For the fourth question, the objective is to establish methods in order to evaluate 
the quality of these models. It concerns with the choice of network topologies 
used in my simulations, with the setup traffic parameters, with the performance 
criterion for comparing the quality of my scheduling algorithms with the existing 
ones. Based on these methods, the quality of my new model and the existing 
models are evaluated. 
  
For the last question, it is necessary to establish a combination of my new model 
and the existing model. 
 

1.6 Contribution of this work 
 

1.6.1 Innovative approaches 
 
This work provides some innovative approaches to the issues addressed above, 
creating: 
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•  First, a new model for Proportional Differentiated Services – Proportional 
Jitter Differentiated Model (PJDM). Unlike the PDDM model that 
performs proportional delay, this model provides proportional jitter in the 
network. Hence PJDM is simpler than the PDDM model because it is not 
necessary to implement special scheduling algorithms at every router in 
the network. Furthermore, by controlling the proportional jitter in the 
network, PJDM is also more efficient than PDDM because it can 
cooperate well with the playout buffer at receiver in order to produce 
better end-to-end quality of service. In addition, I analyse the existing 
playout schemes in order to choose an appropriate adaptation for PJDM. It 
was decided to choose Concord mechanism [Shiv95] for implementing at 
the receiver in my networks. 

 
•  Second, in contrast to existing schedulers that provide proportional delay 

between classes, designing four new schedulers in order to be 
implemented in the PJDM model, which facilitates proportional jitter. The 
first algorithm, which is called Relative Jitter Packet Scheduling (RJPS), 
maintains the short-term jitter and long-term jitter of different classes 
proportionally. This is a simple mechanism, which can be implemented 
easily at high-speed routers. The second algorithm, called Proportional 
Average Jitter (PAJ), is also designed for PJDM. This scheduler is simpler 
than RJPS, and hence easier to implement at network routers based on 
PJDM model. The two last algorithms (Adaptive RJPS and Adaptive PAJ, 
called Adaptive-RJPS and Adaptive-PAJ) are different from their original 
algorithms. These mechanisms use Adaptive Jitter Differentiation 
Parameters instead of fixed parameters as feedback signal for controlling 
the jitter ratio between different classes; hence improve the quality of jitter 
ratio under bursty load conditions. 

 
•  Third, focus on the methods of the performance evaluation. In order to 

analyse and compare different algorithms (as RJPS, PAJ, Adaptive-RJPS 
and Adaptive-PAJ) in different models (PDDM and PJDM), two methods 
are proposed. One compares the quality of my scheduling algorithms 
within only one hop and the other is for comparing the performance of 
PDDM and PJDM, which will contain different schedulers in a multi-hop 
network. The results from my simulations will show that two algorithms 
Adaptive-RJPS and Adaptive-PAJ achieve better quality in terms of jitter 
ratio than RJPS and PAJ, but they are also more complicated and hence, 
more difficult to implement in the ‘’real world’’. In addition, the 
simulations based on the second comparison method indicate that the new 
model PJDM that uses my new scheduling mechanisms achieve better 
end-to-end performance than the old model PDDM.  
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•  Finally, design  new network topologies based on both PJDM and PDDM 
models in order to overcome the disadvantages of PJDM and PDDM. I 
evaluate these new nework topologies and compare them with the existing 
topologies. 

 

1.6.2 Results 
 
The specific contributions of this work are the followings:  
 

•  Analysis about the relative DiffServ architecture and all the existing works 
on Proportional Differentiated Services Architecture. 

 
•  The development of a new model for relative DiffServ-PJDM. 

 
•  Analysis of the existing playout buffer delay adjustment algorithms. 

Among them, the Concord algorithm is used in my new model at the 
receiver, because of its good trade-off between the end-to-end delay and 
loss rate. 

 
•  The design of four new schedulers, which can be implemented, in my new 

model PJDM.  
 

•  The development of a comparative method to evaluate the quality of these 
four schedulers. 

 
•  Developing a comparative method to examine the performance of the new 

model PJDM with the existing model PDDM. 
 

•  Performance evaluation and comparison of my new four schedulers under 
different contexts within only one hop. 

 
•  Performance comparison of my new model PJDM with the existing model 

PDDM (by using different scheduling mechanisms) through a multi-hop 
network. Results show that my model PJDM achieves better end-to-end 
quality of service than the old model PDDM. 

 
•  Design new network topologies based on both PJDM and PDDM for 

overcoming the disadvantage of  PJDM and PJDM models. 
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1.7 Structure of the Thesis 
 
The overall structure of the thesis is organized as follows: 
 

•  Part I (Chapter 2, 3, 4) will present the background information and state 
of the art of my new research. 

 
•  Part II (Chapter 5, 6, 7) will present the new research issue and discuss it 

in depth.  
 
Chapter 2 gives an overview about general issues, mechanisms and service 
models for providing quality of service in the Internet. Then mechanisms such as 
congestion control, traffic shaping, call admission control, resource reservation 
and service scheduling that are deployed in the service architectures are 
discussed. The next part of the chapter presents two service models, namely 
Integrated Service and Differentiated Services model. Advantages and 
disadvantages of the two models are also be analysed in this chapter.  
 
Chapter 3 continues to focus on the proportional differentiation model, in terms of 
delay and loss. Existing works on proportional delay and proportional loss are 
also described. In addition, the chapter concentrates on proportional delay issues 
by presenting its properties. 
 
Chapter 4 provides an overview about the importance of playout buffer delay 
adjustment algorithm. The taxonomy of existing adaptation schemes are 
presented. Furthermore, the trade-offs between playout buffer delay and loss rate 
are analysed. After analysing the existing algorithms, I decide to use Concord 
algorithm at the receiver end in my work. The properties and characterizations of 
the Concord algorithm are also described.  
 
In Chapter 5, I will develop a new model for relative DiffServ, which is called 
Proportional Jitter Differentiation Model (PJDM). This is a new architecture that 
provides proportional jitter between different classes. After that I establish the 
performance evaluation methodology used in order to examine and compare the 
quality of my new schedulers in PJDM model. 
 
Chapter 6 then describes four new scheduling algorithms are developed for this 
new PJDM architecture. The first one is called Relative Jitter Packet Scheduling 
(RJPS) algorithm, and its properties under different context as variable packet 
size, variable window size, and variable load distributions are also examined. The 
second one, which is simpler than the previous RJPS algorithm is also created and 
called Proportional Average Jitter (PAJ) algorithm.  
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The RJPS and PAJ algorithms use Jitter Differentiation Parameters as fixed 
variables for controlling and monitoring the jitter ratios at the output link, so that 
the jitter ratios between different classes stay proportionally with each other. In 
this chapter, I also present two new variants of these algorithms, which do not use 
these variables as fixed but adaptive variables. The performance of the two new 
variants, called Adaptive-RJPS and Adaptive-PAJ are compared to the 
performance of there original algorithm RJPS and PAJ. 
 
In the last section of this chapter, the performance of the two models PDDM and 
PJDM using different scheduling algorithms is evaluated and compared in terms 
of end-to-end delay. This comparison is done based on the methodology 
described in the previous chapter. Finally, I propose new networks based on both 
PDDM and PJDM in order to overcome their disadvantages. 
 
Finally, Chapter 7 states some conclusions about the works covered in this thesis 
and suggests proposals for future works in this direction. 
 

1.7.1 Terms and Definitions 
 
Before going to next chapters, I would like to define some of the important and 
most frequency used terms throughout this work in order to make it easier to read. 
 
Accounting: The collection of resource consumption data for the purposes of 
capacity and trend analysis, cost allocation…Accounting management requires 
that resource consumption be measured, rated, assigned, and communicated 
between appropriate parties. 
 
Admission control: is a set of actions taken by the network during the call setup 
phase to determine whether a new flow can be accepted. Call admission control is 
especially necessary for real-time flows. 

Bandwidth: The difference between the highest and lowest frequencies of a 
transmission channel.  

Bandwidth broker: QoS architectures are designed with agents called bandwidth 
brokers, that can be configured with organizational policies, keep track of the 
current allocation of marked traffic, and interpret new requests to mark traffic in 
light of the policies and current allocation 
 
Best-effort service: This service does not make any promise of whether a packet 
is actually delivered to the destination, or whether the packets are delivered in 
order or not. 
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Circuit switching: A method of guiding traffic through a switching centre, from 
local users or from other switching centres, whereby a connection is established 
between the calling and called stations until the connection is released by the 
called or calling station.  
 
Congestion control: is a mechanism used in a network such that the network can 
operate at an acceptable performance level when the demand exceeds or is near 
the capacity of the network resources. 
 
Delay or latency: In a network, latency, a synonym for delay, is an expression of 
how much time it takes for a data packet to get from one designated point to 
another.  
 
Domains: A DiffServ-capable domain; a contiguous set of nodes, which operate 
with a common set of service provisioning policies and PHB definitions. 
 
Dropping: the process of discarding packets based on specified rules. 
 
Egress node: A DiffServ boundary node in its role in handling traffic as it leaves 
a DiffServ domain. 
 
Flow classification: to identify the flow to which a packet belongs. 
 
Flow: is a stream of packets belonging to the same application sessions. 
 
Ingress node: A DiffServ boundary node in its role in handling traffic as it enters 
a DiffServ domain. 
 
Links: are direct connections between end users or routers.  
 
Marking: A process of setting the DiffServ code point in a packet based on 
defined rules. 
 
Metering: the process of measuring the temporal properties (e.g., rate) or a traffic 
stream selected by a classifier. The instantaneous state of this process may by 
used to affect the operation of a marker, shaper, dropper, and or may be used for 
accounting and measurement purposes. 
 
Multiplexing (MUXing): Combining/mixing two or more information channels 
onto a common transmission medium.  
 
Network congestion occurs when packets arrive at an output port of a router 
faster than they can be transmitted. 
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Packet classification: is the process of sorting packets based on the contents of 
packet headers according to defined rules. 
 
Packet headers: Information such as the source or destination addresses and the 
application port numbers is stored in the packet headers and serves as the 
determination of the path and the service that packets receive in networks. 
 
Packet switching networks: A switched network that transmits data in the form 
of packets. 
 
Packets: In general, if an information unit can be digitally represented, it can also 
be assembled into packets, and transferred through a network 
 
Per-hop behavior: a description of the externally observable forwarding 
treatment applied at a single node to a behavior aggregate.  
 
Playout buffer delay: Enforced delay at the receive side for interactive real-time 
communication in order to smooth delay variation. 
 
Policing: The process of delaying or discarding packets of a traffic stream (by a 
dropper) in accordance to the state of a corresponding meter enforcing a traffic 
profile. 
 
Policy control: the process of discarding packets (by a dropper) within a traffic 
stream in accordance with the state of a corresponding meter enforcing a traffic 
profile.  
 
Provisioning: is a policy, which defines how traffic are configured on DiffServ 
boundary nodes and how traffic streams are mapped to DiffServ behavior 
aggregates to achieve a range of service. 
 
QoS: On the Internet and in other networks, QoS (Quality of Service) is the idea 
that transmission rates, error rates, and other characteristics can be measured, 
improved, and, to some extent, guaranteed in advance. QoS is of particular 
concern for the continuous transmission of high-bandwidth video and multimedia 
information. Transmitting this kind of content dependably is difficult in public 
networks using ordinary "best-effort" protocols. 
 
Resource reservation: reserves different resources for a flow at the network node 
so that its quality of service is maintained. 
 
Route pinning: Receivers or routers can request that once the reservation along a 
path has been set up, the path does not automatically change when a better path is 
available. 
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Routers is a physical device that joints multiple networks together. 
 
Routing lookup: For forwarding packets, it is necessary to search and find the 
appropriate output interface, and this operation is called routing lookup, which is 
the main and most complex operation in routers today. 
 
Routing: The process to determine and prescribe the path or method to be used 
for forwarding messages. 
 
Scheduling: is the policy to choose from multiple packets, which exist in a buffer 
and which share a common outgoing link, the next one for service. 
 
Service classes: Class of service is the ability of a service provider to categorize 
user’s application into separate classes, each class correspond to one type of 
service requirement. 
 
Service level agreement: A service contract between a customer and a service 
provider that specifies the forwarding service a customer should receive. A 
customer may be a user organization (source domain) or another DiffServ 
domain.  
 
Service profile: the service contract between a customer and the DiffServ 
network or ISP is called the service profile. A service profile is usually defined in 
absolute bandwidth and relative loss. 
 
Shaping: is the process of delaying packets within a traffic stream to cause it to 
conform to some defined traffic profile.  
 
Signalling protocol: A protocol responsible for transfering the requirement of the 
application and traffic characteristics on quality of service from senders to routers 
along the path of this flow and to the receiver. 
 
Speedup: in a switching fabric is the term that describes how much faster the 
switching fabric operates than the native line rate it supports. 
 
Statistical multiplexing: is a method of making the most efficient use of the 
bandwidth available for transponder or cable transmission, whilst maintaining a 
quality of service across all of the multiplexed channels. It is the process of 
dynamically allocating bandwidth where it is needed most.  
 
Switching fabric: Switching fabric is the combination of hardware and software 
that moves data coming in to a network node out by the correct port (door) to the 
next node in the network. 
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Traffic conditioning: control functions that can be applied to aggregation, 
application flow, or other operationally useful subset of traffic, e.g., routing 
updates. These may include metering, policing, shaping and packet marking. 
Traffic conditioning is used to enforce agreements between domains and to 
condition traffic to receive a differentiated service within a domain by marking 
packets with the appropriate code point in the DiffServ field and by monitoring 
and altering the temporal characteristics of the aggregate where necessary. 
 
Traffic profile: a description of the temporal properties of a traffic stream such as 
rate and burst size. 
 
WDM: Fibre-optic modulation scheme where data channels are put on different 
light wavelengths (or colours).  
 
Work conserving: A property of a scheduling algorithm such that it services a 
packet, if one is available, at every transmission opportunity. 
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Chapter 2 Background 
 
In this chapter, I firstly provide an overview of the two switching techniques, 
namely circuit switching and packet switching. It then presents the basic 
mechanisms of the Internet. The next part of the chapter presents two service 
models, namely Integrated Service and Differentiated Services model. 
Advantages and disadvantages of the two models are also analysed in this chapter. 
Then such mechanisms as congestion control, traffic shaping, call admission 
control, resource reservation and service scheduling that are deployed in the 
service architectures are discussed. After analysing these operations, I present 
some existing work in DiffServ architecture. Finally, the importance of playout 
buffer delay adjustment algorithm at the receiver is also discussed.  
 

2.1 Circuit Switching vs. Packet Switching 
 
Generally, there are two major important switching techniques that are used in 
communication networks: packet switching or circuit switching. A very good 
example for circuit switching is the telephone network, which was developed 
more than 100 years ago. In a telephone network, a circuit will be established for 
any two end points, which want to communicate with each other. The two end 
points remain connected with each other until the circuit is switched off. 
 
In packet switching networks, information streams are transmitted in form of 
small packets, which are switched and transferred based on the information 
contained in packet headers. At receiver end, packets are put together for 
receiving the original information. An example of such networks is the Internet 
Protocol (IP) [Clark88] network.  
 
Compared to circuit-switching network, a packet-switching network is capable of 
statistical multiplexing, which means that the active traffic sources can use any 
additional capacity made available by the inactive traffic sources. Statistical 
multiplexing can significantly increase network utilisation. More concretely, 
recent research has demonstrated that the ratio between peak and average rate is 
3:1 for audio traffic, and as high as 15:1 for data traffic [Robert]. 
 
Unfortunately, this statistical multiplexing has its own disadvantage: congestion. 
Network congestion appears when packets coming from multiple inputs arrive at 
an output port of a router faster than they can be transmitted. In such a case, the 
network will have to buffer and in some cases to drop some traffic. Furthermore, 
the sender is required to cooperate with the network to reduce the congestion by 
decreasing its rate upon detection of congestion. 
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2.2 IP Network Model 
 
The Internet has a hierarchical architecture where major backbone networks are 
connected to smaller regional networks, which then are interconnected with even 
smaller local networks. The most important service of today’s IP network is to 
deliver packets between different nodes in the Internet with reasonable QoS 
[Gup99]. As noted before, it is the router, which makes this job available. Each 
router needs to have at least two interfaces to interconnect networks. In order to 
forward packets the router uses the destination address in the packet’s header. 
That is why each router needs to maintain a table, called forwarding table, which 
maps an IP address to an interface attached to the routers. Furthermore, routers 
run a routing protocol based on a distributed algorithm. The main function of this 
algorithm is to enable routers to learn to know the reachability of any host in the 
Internet along a good path, or the shortest path. Hence, a packet will be 
transferred from its source to the destination theoretically via the shortest path. 
  
As mentioned previously, a router has in general a set of input interface(s) and a 
set of output interface(s) or both. Packets will reach the router at input interfaces 
and leave the router at output interfaces. A switching fabric is responsible to 
transfer packets from inputs to outputs [Patr94]. For each switching fabric, there 
is a main parameter called the speedup. Speedup in a switching fabric is the term 
that describes how much faster the switching fabric operates than the native line 
rate of supported inputs/outputs. 
 
In routers, packets could either be stored at the input interface or at the output 
interface or at both before going to the output link. According to the place where 
the packets are stored, there are three possibilities of routers, so they are classified 
as input queuing, output queuing or input-output queuing.  
 
In an output-queuing router, packets are transferred immediately to the 
corresponding output when they arrive at the inputs. Packets will be queued and 
scheduled at the output interfaces only. Most of the analytical studies assume an 
output-queuing router model because of the simplicity of this model. “Simple” 
routers additionally need a speedup of n, where n is the number of input links. 
Routers have to work at this speed in cases when all inputs need to process 
packets simultaneously for the same output. Since inputs do not have buffers, the 
output must receive n packets from this inputs simultaneously, which I call a 
speedup of n. In high-speed networks, high speedups lead to technically costly 
output-queuing routers. That is why the market prefers input-output queuing 
types.  
 
Input-output queuing routers use to store packets at the input, and the speedup of 
the switching fabric is decreased significantly. Unfortunately, this advantage at 
the same time increases the complexity of the router: since only the output has 
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complete knowledge of how packets are scheduled, complex and distributed 
algorithms in order to control the packet transfer from input to output have to be 
implemented. Furthermore this makes the routers much more complicated to be 
understood. To conclude, output-queuing routers are more tractable for analysis; 
the input and input-output queuing routers are more scalable and therefore easier 
to design. 
 
Recently, researches in [Chua99, Stoika1] have proved that an input-output 
queuing router, which has an internal speedup of 2 only, is able to emulate a large 
class of scheduling algorithms of output queuing routers. That is why, at least in 
principle, it is possible to build scalable input-output queuing routers, which can 
emulate the behavior of output-queuing routers. For this reason in this work I will 
focus on the output-queuing router architecture only. 
 
Figure 1 shows the architectural layout of an IP router [Kesh98], especially the 
queuing components. Technical parameters are the reason why packets can be 
delayed and lost. Queuing delay and packet loss (locally or per-hop) are 
substantial reasons for performance-degradation factors of each IP router. If 
routers have sufficient forwarding resources at their disposal, packet flow can 
receive adequate performance from routers, and on the other hand, if routers are 
not able to transfer packets fast enough (packets then have to stay in routers) then 
performance will be degraded.  
 
Major resource types within a router are on the one side the rate at which it can 
forward and transmit packets (usually called bandwidth) and on the other side the 
size of packet buffers in the router queues. In summary, traffic performance 
decreases when there is contention for either of these resources.  
 
A disadvantage of the IP network, which provides best-effort service only, is the 
fact that all packets are treated equal in terms of bandwidth, delay or loss etc., 
even though not every application has the same requirements from the network. A 
packet of an interactive voice session has the same performance considering delay 
as packets of the file transfer protocol application. 
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Figure 1 Architecture of a conventional IP router 
 

Nowadays demands for more than best-effort services are coming up - towards 
e.g. guaranteed services and differentiated services, while today’s Internet is 
evolving to a global architecture. Guaranteed services are able to ensure specific 
performance parameters such as bandwidth and delay on a per-flow basis. For 
example it should be guaranteed that all packets of a flow receive a delay smaller 
than a specified threshold, which implies that this specific flow receives at least a 
certain amount of bandwidth. This kind of service would provide support for new 
applications such as IP telephony, video-conferencing, and remote diagnostics. 
Differentiated services are able to provide different services, in terms of 
bandwidth, loss, and delay for different traffic classes. As an example it can be 
useful to allocate twice as much bandwidth on every link in networks to a single 
organization than to another organization.  
 
Providing these services in packet-switched networks such as the Internet has 
been one of the major challenges in the network research over the past decade. To 
address this challenge, a plethora of techniques and mechanisms have been 
developed. Among these techniques I will examine Integrated Services and 
Differentiated Services architectures. 
 

2.3 Integrated Services Architecture 
 
There is a need for the provision of new services, which are more sophisticated 
than best-effort service because new applications such as IP telephony, video-
conferencing and distributed games are currently growing in the Internet. These 
new applications have special requirements on performance parameters, such as 
delay and bandwidth compared to previous applications such as file transfer. For 
example, interactive applications demand an end-to-end delay smaller than 
approximately 100 ms. In global networks the propagation delay can be as much 
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as 100 ms. Thus, coping with these tight delay requirements is a very challenging 
task. 
 
In order to support these new applications, the Internet Engineering Task Force 
(IETF) proposed a new service model called Integrated Service or IntServ 
[Brad94, Wrocl10, Whit97]. This architecture was developed within the IETF in 
the mid-nineties and has its roots in earlier research results [Ban96, Par93, Cruz1,  
Cruz2, Enw95]. IntServ provides two services besides the traditional best-effort 
service: Guaranteed and Controlled-Load services.  
 

•  Guaranteed Service: Among the services applied by IntServ and Internet, 
this service is the strongest semantic service so far [Shenk12] and is able 
to provide per-flow bandwidth and delay guarantees. Particularly, 
guaranteed service guarantees a minimum amount of bandwidth to a flow, 
even in a worst-case situation. Thus delay is bounded under a given arrival 
process of the flow. Hence, Guaranteed service is an ideal service for 
supporting real-time applications such as IP telephony, or videoconference 
etc. 
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Figure 2 Architectural layout of an IntServ router 

 
•  Controlled Load Service: The controlled Load Service is a less strict 

service provided in the IntServ framework. Wroclawski has defined 
Controlled-Load service in [Wrocl11] as: ‘’tightly approximates the 
behavior visible to applications receiving best-effort service under 
unloaded conditions from the same series of network element’’.  The 
Controlled-Load service guarantees that packet loss is not significantly 
larger than basic error rate of the transmission medium and the end-to-end 
delay experienced by a very large percentage of packets does not greatly 
exceed the end-to-end propagation delay. The main idea of this type of 
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service is to provide better support for broad class of applications that 
have been developed in the Internet. Some examples of such applications 
could be adaptive and real-time applications, such as video and audio 
streaming. 

 
The services mentioned above have been standardized in the IntServ architecture 
and they include a maximum end-to-end delay [Shenk15], a sufficiently low loss 
rate [Wrocl11] and minimum end-to-end rate [Bak96]. They are based on the 
IntServ architectural principle: service differentiations are accomplished with per-
flow end-to-end resource reservations. These critical issues have important 
implications on the strengths and the weakness of IntServ, which are discussed 
next. 
 
IntServ has a flow-centric property. That means the service-differentiation router 
mechanisms are applied to individual flows, i.e., to streams of packets, which 
belong to the same application session. In an IntServ router (Figure 2) it is 
necessary to perform the following operations on packets of a flow: 
 

•  Flow Classification, to identify the flow in which a packet belongs to 
[Lak98, Srin99] 

 
•  Scheduling, to provide a certain delay deadline or rate to a flow [Step99,  

Stil98]. 
 

•  Buffer Management: to allocate a number of buffers to a flow. [Suter98] 
 

•  Traffic Shaping or Policing, to control certain traffic characteristics of a 
flow [Chao92, Step99]. 

 
•  Admission Control determines whether the requested QoS to a flow can be 

granted without affecting other flows in the network [Jam97]. 
 

•  Resource Reservation is performed on a per-flow basis to provide 
guarantees to the established flows in the network  [Whit97] 

 
These operations, such as flow classification, scheduling, buffer management and 
traffic shaping or policing play an important role for the data-plane per-flow state 
of a router. Besides per-flow operations at the data plane described above, a router 
has to maintain and to process information for each flow at the control-plane. The 
control-plane of IntServ is responsible for resource reservations and signalling 
operations as well as for per-flow accounting [Edel99] and policy control 
[Raj99]. 
In addition, IntServ is an end-to-end architecture. In order to provide an end-to-
end service guarantee it requires the cooperation between network providers. If 
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one of these networks is not able to provide this service type requested by a user 
then it will not be able to provide this service guarantee end-to-end.  
 
Additionally the hierarchical architecture of the Internet significantly contributes 
to the difficulty to implement an IntServ model. Hence the establishment of the 
required multilateral agreements for enabling end-to-end services is a very 
difficult task in practice [Ferg98]. 
 
Resource reservation mechanisms in IntServ as a consequence lead to a certain 
amount of resources (bandwidth and buffer) to be allocated to a flow before the 
session starts and have to be maintained during the session. Resource reservations 
are realised by a signalling protocol, which is responsible to transfer the 
requirement of the application and traffic characteristics on quality of service 
from senders to routers along the path of a flow. If there is a single router on the 
path, which is not able to satisfy the necessary conditions then end hosts are 
informed about the deny of the connection by this signalling protocol. This 
operation is called admission control [Jam97]. The signalling protocol called 
Resource Reservation Protocol (RSVP) [Zhang2, Brad97] has been designed for 
this purpose. Its substantial per-flow processing at the control-plane raised 
concerns about the IntServ scalability.  
 
The possibility of providing strict QoS guarantees for IntServ comes along with 
costs: complexity at the router, hence its deployment by network providers has 
been quite limited. In addition to the issues of inter-domain deployment and 
RSVP overhead as being discussed earlier, in IntServ there are also issues of 
scalability and manageability [Mank97]. As mentioned before scalability 
concerns are raised because the IntServ requires that routers maintain and process 
data and control state for every active flow. Gigabit or terabit links carry millions 
of simultaneously active flows, making it difficult to build IntServ-capable 
routers. Next-generation routers will be able to accommodate millions of flows by 
maintaining per-flow state at the edge routers only [Stoika1, Stoika2], adding to 
the term flow a more coarse granularity [Kum98], or they will use approximations 
of the ideal algorithms [Shree95]. 
 
Because of the conventional opinion that an IntServ network is harder to install, 
to debug and to operate there are raised severe manageability concerns (IntServ 
requires admission control, signalling, per-flow accounting, and the configuration 
of several router mechanisms). Additionally routes may dynamically change in an 
IP network. Routing changes usually do not occur in the Internet very often, but 
there are certain links in which this happens quite regularly [Paxs96]. If a certain 
end-to-end QoS is assured to a flow, the architecture should be able to either 
forbid routing changes for that flow (route-pinning) [Guer97] or to reserve the 
required forwarding resources in the flow’s new path while the session is in 
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progress,. Both operations are hard to implement in practice. Similar complexities 
also arise when IntServ flows need fault tolerance [Dov4]. 
 
Another factor contributes to the weak deployment of IntServ – first, it requires 
new Application Programming Interfaces (APIs) at the end-hosts (especially for 
multimedia applications [Gop98]) and - second it can provide true end-to-end 
service guarantees only if similar resource-reservation mechanisms are deployed 
in the servers [Bha99] and the end-host operating systems [Yau97].  
 
These problems were the reasons why the IETF and the research community 
considered simpler and more scalable service-differentiation architectures such as 
the technologies discussed below. 
 

2.4 Differentiated Services 
 
In order to overcome the disadvantages of IntServ a new architecture for the 
Internet has been proposed [Nich98], which is called Differentiated Services 
(DiffServ). Initially the purpose of DiffServ was a more scalable, manageable and 
easily deployable architecture for service differentiation in IP networks.  
 
It is very important to note that in DiffServ individual flows with similar QoS 
requirements can be aggregated in larger traffic sets (or class). All packets in this 
traffic set are submitted to the same ‘’forwarding behavior’’ in routers. A traffic 
set is the minimum level of granularity in a DiffServ network in terms of service 
differentiation. Each traffic set uses a certain class or Per-hop Behavior (PHB). A 
PHB is identified by a short label (currently six bits) in the IPv4 header, which is 
called Differentiated Services Code Point (DSCP). 
 
Providers and customers negotiate agreements with respect to the services to be 
provided at the customer/provider boundary. These agreements are commonly 
referred to as Service Level Agreements (SLA). The subject of the SLA, which 
provides the technical specification of the service, will be referred to as Service 
Level Specification (SLS).  
 
Individual flows are aggregated into traffic sets at the edges of a DiffServ 
network. The edge routers can be the host-network interface or the router that 
connects a flow-aware network to a DiffServ network. The mapping from 
individual flow to traffic sets is called flow classification.  
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Figure 3 Architectural layout of a DiffServ router 
 
Figure 3 shows the main architectural blocks in a DiffServ router. The 
aggregation of packet flows into different classes in the DiffServ architecture 
improves the scalability issue in IntServ architecture, since routers need to 
maintain only states for a few classes. Similar to IntServ, the operations for 
processing the packets in a DiffServ-capable router could be also scheduling, 
classification, buffer management, traffic shaping or policing etc., but these 
operations become much simpler and faster than IntServ. In addition the 
management of networks becomes much simpler because operators have to 
control and monitor just the state of a few classes rather than millions of flows. 
Third, network pricing/accounting operations are simpler, because users do not 
need to be billed for each session, or flow, but for the aggregated traffic. In 
addition, DiffServ could be broadly classified to absolute (or quantitative) and 
relative (or qualitative) service differentiation. Obviously, the fundamental 
drawback of aggregation is that the network cannot guarantee QoS to a flow. 
Obviously, it is difficult for a DiffServ network to guarantee QoS quantitatively in 
an end-to-end manner. 
 
An absolute service model in DiffServ is a model that provides a quantitative 
guarantee level for each class, such as a minimum bandwidth, a maximum delay 
or a maximum loss rate. This model demands some form of admission control or 
policing for supervising users so that they do not send traffic at a higher rate than 
their traffic contracts.  
 
Contrary to the above service model the relative service model guarantees that a 
lower class gets worse QoS than a higher class [Dov1]. There are no precise 
values of QoS, which are defined for each class; the values of QoS vary with load 
conditions and service differentiation mechanisms implemented in the network. 
For users, who have absolute QoS demands but make use of the relative model, it 
is possible to meet these requirements by dynamically adjusting the class that 
reaches their QoS and pricing constraints. This relative differentiation model does 
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not require resource reservations, admission control, signalling or fixed routing, 
and so it is considered as simpler to manage and deploy. 
 
An example of the relative DiffServ is the Proportional Differentiated Services 
model, which provides proportional-performance metrics for bandwidth, delay or 
loss for different classes. I will focus on this model in Chapter 3. 
 

2.4.1 Architecture  
 
There is a distinction between edge and core mechanisms in a Differentiated 
Services network (Figure 4). 
 

•  Edge Mechanisms: Edge routers can be categorized into ingress and 
egress nodes. Traffic enters the DiffServ domain at an ingress node and 
leaves the domain at an egress node. In ingress nodes the operations such 
as packet classifications and traffic conditioning are implemented at per-
flow level. The packet-classification operation identifies the class of a 
packet. Traffic conditioning contains metering, marking, shaping and 
dropping. Metering is an operation, which measures traffic. If this traffic 
is not compliant to a traffic profile then marking, shaping and/or dropping 
operations are invoked. In order to set the DS field of each packet to an 
appropriate DS code point for demoting out-of profile traffic to a different 
PHB, or for ensuring that only valid code points are used within a domain, 
the function of marking is defined. A shaping operation shapes the input 
traffic in a manner that the submitted traffic conforms to the agreed traffic 
profile. A dropping operation is necessary for dropping the out-of-profile 
packets.  
In egress node, it is expected that egress nodes remark, police and shape 
the outgoing traffic so that it conforms to an SLA of the next DiffServ 
domain. 
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Figure 4 Architecture of a Differentiated Services network 
 

•  Core Mechanisms: Two mechanisms alternatively are implemented at the 
core router: buffering and scheduling, both in order to guarantee that 
service requirements offered by SLS are met. Unlike at the edge routers, 
these operations are done at a per-class level.   

 

2.4.2 Complexity  
 
As written above DiffServ routers are developed to overcome the scalability 
problem raised in the IntServ model. DiffServ supports a limited class of service 
only. Classification, traffic shaping, and other per-flow operations are done at 
edge routers of the DiffServ network. At the core network, where the amount of 
traffic is large, routers are responsible for traffic aggregations of classes of service 
only. 
 
I believe that the complexity of a DiffServ router depends on different factors, 
such as on the lookup operation, packet classification, scheduling or on buffer 
management. I will now focus on the complexity of the scheduling- and buffer-
management algorithms because they are very much related to my research. 
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2.4.2.1 Buffer Management 
 
Buffer management is used for monitoring buffers at input or output interfaces in 
an IP router.  Practically, buffers have limited spaces. When buffers are full, the 
arriving packets should be dropped. That means there is a possibility of packet 
loss in routers.  
 
Key mechanisms of buffer-management algorithms are the backlog controller, 
which specifies the time instances when traffic should be dropped, and the 
dropper, which specifies the traffic to be dropped. In an IP network, the buffer 
management algorithms have to focus mainly on different issues, such as: avoid 
congestion, reduce the packet transfer delay and keeping the queue length at low 
levels.   
 
Backlog Controller: Among backlog controllers for IP network, Random Early 
Detection [Sally2] is probably the best-known algorithm. RED was motivated by 
the goal to improve TCP throughput in highly loaded networks. RED operates by 
probabilistically dropping traffic arrivals, when the backlog at a node grows large. 
RIO [Clark98] and Multiclass RED [Card02] are extensions to RED, which aim at 
class-based service differentiation. Both schemes have different dropping 
thresholds for different classes in order to ensure loss differentiation. 
 
Droppers: The simplest and most widely used dropping scheme is Drop-Tail, 
which discards arrivals to full buffer. For a long time, discarding arrivals was 
thought to be the only viable solution for high-speed routers. Recent 
implementation studies demonstrated that more complex dropping schemes, 
which discard packets which are already present in the buffer (push-out), are 
viable design choices at high data rates [Kron91].  
 
Push-out techniques include mechanisms like Complete Buffer Partitioning 
[Lin91] and Partial Buffer Sharing [Kron91]. CBP assigns a dedicated amount of 
buffer space to each class and it drops traffic when this dedicated buffer is full. 
PBS uses a partitioning scheme similar to CBP; but the decision to drop is done 
after having looked at the aggregated backlog of all classes. 
 
Simple buffer-management algorithms could be implemented by using a single 
queue shared by all classes. With these schemes, the routers could provide only 
simple network services. For more sophisticated network services, such as per-
class bandwidth and delay guarantees, it is necessary to implement complex 
algorithms in routers, which could demand and manage separate queue for each 
class. Buffer management algorithms become very complicated if the router has 
to choose from which queue it has to drop a packet. For example, an algorithm 
that implements a policy that drops the packet from the longest queue has O(log 
n) complexity, where n is the number of non-empty queues. However, in practice, 
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this complexity can be significantly reduced by grouping the queues, which have 
the same size or by approximating the algorithm [Odl99]. 
 

2.4.2.2 Packet Scheduling 
 
In routers that maintain a per-class state packet scheduling is accomplished in two 
steps: The first step is to select a class that has a packet to send, and the second 
step is to transmit a packet from the class’s queue. 
 
Normally, scheduling contains two types: work conserving and non-work 
conserving. The work-conserving packet-scheduling algorithm will always 
transfer packets to certain outputs if there is at least one packet in the system. In 
other words output links are busy as long as there are packets in queues. Opposed 
to a work-conserving scheduler, non-work conserving scheduling algorithms 
could keep output idle even though there are packets destined for that output.  
 
It is also very important to know that a scheduling discipline has to be designed in 
order to ensure that each class gets a fair access to network resources and in order 
to prevent a bursty class from consuming more than its fair share of output port 
bandwidth, i.e., the bursty class has bad influence on other classes. Such 
mechanisms belong to the class of fair-scheduling algorithms. 
 
A simple scheduling algorithm is the FIFO (First In - First Out) mechanism. In 
FIFO queuing all packets are treated equal by placing them into a single queue, 
then servicing them in the order of their arriving time.  
 
Priority Queuing (PQ) is the basis for a class of queue-scheduling algorithms, 
which are designed to provide a relatively simple method of supporting 
Differentiated Services classes. In classic PQ [Zhang1] packets are first classified 
by the system and then placed into different priority queues. Packets are 
scheduled from the head of a given queue only if all queues of higher priority are 
empty. Within each of the priority queues packets are scheduled in FIFO order.  
 
Weighted Fair Queuing (WFQ) was developed independently in 1989 [Dem90]. It 
supports flows with different bandwidth requirements by giving each queue a 
weight that assigns it a different percentage of output port bandwidth. 
 
In Weighted Round Robin queuing WRR [Fran93], packets are first classified 
into various service classes (for example, real-time, interactive, and file transfer) 
and then they are assigned to a queue that is specifically dedicated to that service 
class. Each of the queues is serviced in a round-robin order. Weighted round-
robin queuing is also referred to as class-based queuing (CBQ) or custom 
queuing. 
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WRR queuing supports the allocation of different amounts of bandwidth to 
different service class by either: 
 

•  allowing higher-bandwidth queues to send more than a single packet each 
time it is visited during a service round, or 
   

•  allowing each queue to send a single packet each time it is visited, but to 
visit higher-bandwidth queues multiple times in a single service round. 

 
Many of simple algorithms as FIFO could be easily implemented by constant-
time algorithms, i.e., algorithms that take O(1) time to process each packet. On 
the other hand, more complex scheduling algorithms such as Weighted Fair 
Queuing are not so easy to implement in routers. In general, the algorithms to 
implement these disciplines assign to each class a unique parameter that is used to 
select the class to be served. Examples of such a parameter are the class’s priority, 
and the deadline of the packet at the head of each queue. Class selection is usually 
implemented by selecting the class with the largest or the smallest value. This 
could be accomplished by maintaining a priority queue data structure in which the 
time complexity of selecting a class is O(log n) where n represent the number of 
classes in the queue. 
 
Non-work conserving algorithms can be more complex than work-conserving 
disciplines, because it is necessary to maintain the time information for each 
class. The goal of this time information is to determine the time when a class with 
a non-empty queue is eligible to send packets. The packet at the head of the queue 
will be transmitted if its eligible time is smaller or equal to the system time. In 
some cases in order to implement such scheduling algorithms it is necessary to 
have two elements: a rate controller, which is responsible to buffer packets until 
they become eligible, and a work-conserving scheduler that chooses the flow’s 
packet to be transmitted based on the first parameter. Because the rate controller 
is implemented normally by constant-time algorithms, the total complexity of 
selecting a packet is generally dominated by the scheduling algorithm. 
 
Once a class is selected, one of its packets is transmitted - usually the packet at 
the head of the queue. After that, the parameter(s) associated with the class are 
eventually updated. 
 
In summary, packet classification is the most complex operation, compared to 
other router operations. The algorithms to solve this problem require at least 
O(logn) time and )( FnO  space or, alternatively, at least )(log 1−FO  time and O(n) 
space, where n represents the number of classes, and F represents the number of 
fields in a filter. 
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In contrast to packet classification most buffer management- and packet-
scheduling algorithms have O(n) space complexity and O(logn) time complexity. 
By trading the resource utilisation for speed the time complexity to O(loglogn) or 
even O(1) can be reduced. 
 

2.4.3 Previous Works on Differentiated Services 
 
The two DiffServ models which received major attention so far are the Virtual 
Leased Line (VLL) service and the Assured Service. I will analyse and present 
them next, discussing their advantages as well as their disadvantages. 
 

2.4.3.1 Virtual Leased Line (VLL) Service 
 
Van Jacobson [Jac99] proposed the model of the VLL service, or Premium 
Service. It was the first model, which was designed in DiffServ. VLL service 
focuses on guaranteeing peak-bandwidth services with marginal queuing delays 
and losses. Therefore this service is similar to a leased line in circuits-switched 
networks. At the ingress router the network controls the peak rate of VLL traffic 
(R) that is contracted between service provider and customers using traffic 
shaping at edge routers. The shapers need to verify whether packet bursts are 
delivered into networks. VLL traffic could not exceed this rate at network ingress. 
The rate R will be provisioned and reserved in network cores along its path, this 
traffic is classified with a highest priority. As a major benefit of the VLL service I 
can state that users will not experience any considerable queuing delays or losses. 
 
Unfortunately research in [Charn00] shows that this objective of the VLL service 
can not always be realised: Even though an amount of VLL traffic is provisioned 
at network edges and reserved in network cores with highest priorities, traffic 
burst could exist somewhere in networks. The authors explained the reason of this 
problem as follows: multiplexing of VLL traffic from different input interfaces in 
core routers can make traffic become very bursty, and these bursts could cause 
queuing delays and packet losses. The size of burstiness is decided by VLL load, 
numbers of hops of VLL macro-flows, and shaping parameters at network 
ingress. Therefore in order to guarantee low queuing delays, the VLL load has to 
be a moderate portion of the network capacity only [Stoika4]. In certain cases, 
some experiments [Ferr00] of the VLL model do produce inadequate quality with 
very high queuing delay and losses. It does not satisfy the condition of VLL 
service. Latest research [Guer00] improved the performances of the VLL model 
with re-shaping at boundaries between network domains in order to provide 
constant bandwidth with low delay and low loss service. Unfortunately, re-
shaping that requires some data about states of micro-flows could not yet be 
implemented in high-speed links due to its complexity. 
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The VLL service requires some form of semi-static bandwidth reservations, set up 
by a bandwidth broker protocol or agent in each domain [Jac99]. Between 
domains, reservations should also be accepted upon and harmonized with 
agreements of individual bandwidth brokers [Terz99]. The bandwidth broker is a 
centralized control point for monitoring and controlling bandwidth utilisation and 
reservations of links within a network. This approach poses concerns about the 
scalability and fault-tolerant ability of the network [Stoika4]. It is still difficult to 
implement a complex bandwidth-broker architecture i.e. a distributed broker. 
Another drawback of the VLL service is that for holding VLL traffic in links, 
where bandwidth reservations have been set-up, it is necessary to have some form 
of route pinning even though the route changes could be found in IP networks.  
 
Despite all the disadvantages listed previously, the VLL service is one of the best 
DiffServ models in the Internet. There already exist some routers that are able to 
provide VLL service. Furthermore, there have been some experiments with the 
VLL in Qbone [Teit99] and in other networks. 
 

2.4.3.2 Assured Service 
 
This model, which is originally called Expected-Capacity framework, has been 
introduced by David Clark [Clark98]. The idea of the original Assure Service is 
quite straightforward. A sender requires a certain bandwidth from networks, let us 
say R. If the bandwidth generated by the sender is smaller than R, this traffic will 
be marked as IN traffic. Otherwise network marks it as OUT traffic. This marking 
is used in case of congestions in order to distinguish the treatment of the IN and 
OUT traffic: the IN traffic will be dropped with smaller probability than the other 
traffic. Accordingly, when network load is low, higher throughput than the profile 
R of users is accepted, but users are limited to the IN traffic if congestion occurs.  
 
The most important idea of this model is the guarantee of no-dropping treatment 
for the IN traffic so that each user will get a contracted bandwidth profile. In 
order to realise this idea networks need to provide resources sufficiently in 
advance so that IN traffic will not be dropped. Network providers have to reserve 
the profiles of different users and different routes that IN traffic passes through. 
More concretely, this reservation is done for reserving an adequate bandwidth in 
each network link. Furthermore, the Assured Service model was studied in the 
context of TCP transfers [Clark98], especially on specific marking procedures for 
TCP traffic. 
 
However, recent research shows some difficulties in designing provisioning 
algorithms, which possess a service quality with large spatial granularity and 
high-resource utilisation [Stoika3]. Moreover, it is also necessary to have some 
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forms of route-pinning for implementing Assured Services because the provision 
assumes fixed routing and steady load in each network link.  
 
In conjunction with TCP transfers [Yeom00] and [Sahu00] showed that in some 
cases, it is impossible to provide a certain throughput of the Assured Service to a 
TCP connection, even though networks are well provisioned before. The Assured 
Service has been also analytically studied in [May99, Sahu99] with simple 
queuing models in order to quantify assurance levels of the provided bandwidth 
profiles. 
 

2.5 Receiver 
 
The Internet and other packet networks are used to transport audio and video 
streams, supporting applications such as conferencing and telephony the total 
delay experienced by each packet is a function of variable delays due to physical 
media access and queuing in routers and switches, in addition to fixed 
propagation delays, even though the routers implement such complicated 
schedulers and buffer management algorithms. Variation of delay (jitter) is a 
major disadvantage for streams of multimedia packets, because of its influence on 
qualities of audio-visual applications. In order to smooth these variations, there 
are some buffers, called playout buffers that are responsible of queuing and 
holding each packet within an amount of buffer time. The amount of buffer time, 
or playout-buffer delay, helps to compensate network delay variances without 
excessively delaying the playout. 
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Figure 5 Playout buffer delay adjustment algorithm 
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If every packet is buffered such that the sum of its network delay and its buffer 
delay is equal to the maximum network delay, the receiver will reproduce a jitter-
free play back. This is called playout buffer delay adjustment algorithm (Figure 
5). 
 
If the inter-packet delay exceeds the buffer time the buffer will starve and 
decoders will not have any packet to play. Packets that arrive too late are 
considered to be lost. The amount of buffer time could be determined manually, 
or adaptively. Clearly, the longer this delay the more packets will arrive before 
their scheduled playout time and the better the jitter compensation will be. A good 
playout scheme should be able to trade-off playout delay and packet-loss rates in 
order to packet voice to be successful. 
 
Common playout-buffer delay-adjustment algorithms are classified into two 
broad approaches. Fixed approaches are the mechanisms whose range of delay is 
predictable and which use static buffer size and schedule. Reactive approaches 
that are generally used in the Internet will use instantaneous jitter for dynamically 
adjusting the buffer size and playout the packet to alleviate the lateness. Fixed 
playout-buffer delay-adjustment algorithms have known buffering delay but they 
produce potentially large packet latency while reactive mechanisms do improve 
the loss rate. But this improvement comes at the expense of potentially very high 
buffering delays.  
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Chapter 3 Proportional Delay and Loss 
 
This chapter provides an overview on Proportional Differentiation Model, in 
terms of delay and loss. It also presents a glance at the existing works on these 
two models. In addition, I continue to focus on the properties of the Proportional 
Delay Model because it is related to my new architecture – namely the 
Proportional Jitter Model. 
 

3.1 Relative Differentiation Condition 
 
As noted in the previous chapter, there exist two distinct models in the DiffServ 
architecture: the absolute differentiation and the relative differentiation. The 
absolute model provides an absolute or quantitative performance level to each 
class by using some forms of admission control. In the following paragraph I 
focus on the relative differentiation model. The relative model provides some 
service level (or classes) that is relatively differentiated. In the relative 
differentiation model, higher class receives better performance than lower class in 
the expense of higher cost. The actual performance of a class could be bandwidth, 
delay, delay jitter or loss. These performance parameters of a class in the relative 
model cannot be known quantitatively in advance. 
 
For the relative differentiation model, it is unnecessary to have admission 
controls, bandwidth brokers and resource reservations or signalling between users 
and networks. Route pinning or provisioning is also not required. Consequently, 
this model is simpler and easier to deploy and manage [Dov1]. 
 
The central premise of the relative differentiation is that N classes of service are 
ordered in the following sense: 
 

Class i provides better (or at least no worse) performance than class j, for 
i>j, in terms of per-hop queuing delays and packet losses. 

 
There are eight relative differentiation classes, called Class Selector Compliant 
Per-Hop-Behaviors (CSC PHBs), or simply Class Selectors [Nich98], which are 
standardized by the IETF. Even though the use of the precedence bits has been 
limited in the past, there have been certain links or networks that deployed simple 
DiffServ schemes (such as providing higher priority to Telnet traffic) [Mills91]. 
 
For mapping packets to a certain Class Selector, several selections could be done: 
at application level, at operating system of end-hosts, or at edge routers. The case 
of mapping at the application level could be illustrated by an example that a 
WWW server classifies requested HTTP transactions, based on user-subscription 
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levels, so that non-members are mapped to the lowest class, while members get 
better services of a higher class [Bha99]. Or, in the case of mapping at operating 
systems, a policy-based classification of packets may be performed at local hosts 
of an academic organization, so that faculty uses the highest service class, 
graduate students a middle service class, while the undergraduate students the 
lowest class. For the last case, when the mapping could be done at end-hosts, a 
commercial network may classify ingress traffic at corresponding edge routers 
based on class prices and the maximum tariff that users are willing to pay. In 
order to map packets to different classes, different flow classification techniques 
[Beg99, Srin99] could be used. 
 
The relative model could be used for providing absolute QoS requirements, when 
applications and users have some mechanisms that allow themselves to adapt 
dynamically to a class with an acceptable QoS level and within acceptable price 
range. For applications and users, which do not have requirements on absolute 
QoS guarantees, their classes can be fixed based on the performance versus cost 
trade-off. 
 
Thus a Differentiated Services network based on the relative model will provide 
per-hop delay, bandwidth or delay jitter and loss differentiation. A higher class 
will receive better performance than lower classes. The applications, however, 
hope that they perform well in terms of end-to-end delay and loss rate. In this 
case, the receiver needs to monitor end-to-end performance and notifies the 
sender about current performances through a feedback channel. Based on this 
information, the sender will make a decision whether to stay in this class, or to 
move to a higher or lower class. If the user wishes to minimize the cost of 
sessions, the application will ask for the least expensive class that meets 
acceptable delays and losses. 
 

3.2 Proportional Differentiation Model 
 
In this section, I resume the Proportional Differentiation model as an alternative 
to the relative model. The meaning of the proportional differentiation here is 
explained as follows: the spacing between classes should follow proportional 
constraints on the class performance levels. Formally, the proportional 
differentiation model of the performance of class i is illustrated by the following 
equation: 
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where iπ  is the differentiation parameter of class i, and iφ  is the performance 
metric of the class, such as average delay, delay jitter or loss rate. Note that if 
lower values of iφ  lead to better performance, I must have that ji ππ <  if  i>j. 
 
The class, which has lower differentiation parameters, will get better performance 
(delay, delay jitter or loss) than the classes that have higher differentiation 
parameters. These proportional differentiation parameters are used to adjust 
performances of classes so that they stay proportional with each other. One 
crucial task of the proportional differentiation model is that the service 
differentiation between classes must be independent class load distribution. That 
means network operator is responsible for providing certain spacing between 
classes, even though load conditions vary dynamically or are not known in 
advance. 
 
The spacing between classes could be expressed as delay, delay jitter or packet 
losses. Because delay and loss are two major issues of the performance 
degradation factors in packet networks, the author in [Dov3] has applied the 
proportional differentiation model in terms of both queuing delays and packet 
losses. 
 
Specifically, let id  be the average queuing delay of packets served in class i. The 
proportional differentiation model in contexts of queuing delays requires that: 
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Where iδ is the Delay Differentiation Parameter (DDP) for class i. The DDPs are 
ordered as 0...21 >>>> Nδδδ . 
 
Similar to the proportional delay differentiation model, the proportional 
differentiation model, in case of packet drops, requires that the class loss rates be 
spaced as: 
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Where il  is the loss rate of class i. The parameters iσ  are the Loss Rate 
Differentiation Parameters (LDPs). 
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3.3 Previous Works 
 
In this section, I summarize the existing works on proportional delay service, and 
on proportional loss. 
 

3.3.1 On Proportional Delay 
 
In Chapter 1 I present the existing studies in DiffServ architecture. This section 
will provide a summary on scheduling algorithms that can produce proportional 
delay between different classes. Figure 6 shows the structure of a Proportional 
Delay Scheduler. Each delay class is served by a FIFO packet queue. All flows 
with the same class specification share the same FIFO queue at the router. At each 
time when the output link is free, the scheduler should decide which packet will 
be scheduled next if there are packets at the input queues. 
 
 

Proportional
Delay

Scheduler OutputInput

N FIFO Queues

 
Figure 6 Proportional delay scheduler 

 

The Asymmetric Best-effort described in [Bou99] is a model, which contains two 
service classes: one for real-time applications (such as IP telephony), and another 
for applications, which require some levels of throughput, such as data transfer. 
 
In case of relative Differentiated Services model, the User Share Differentiation 
(USD) [Wang98] is a very good example, which guarantees that per-hop 
distribution of bandwidth is scheduled proportionally to profiles that user 
demands. A similar of relative service model has been studied for USD, too. 
 
In addition, it is necessary to say about the Paris Metro Pricing (PMP) model 
[Odl99], which is a variant of relative Differentiated Services model. The 
fundamental idea of this model is to provide differentiation based on pricing, 
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instead of special router forwarding mechanisms. For implementing this model, 
the class, which pays more, receives higher loads, or better performance. 
However, the idea of differentiation based on pricing is only useful over relatively 
long timescales, in particular when class tariffs cannot be frequently modified. If 
higher classes become overloaded (because for example many rich users become 
active at the same time) they will offer worse performance than lower classes. 
This would be an instance of inconsistent or unpredictable relative differentiation, 
as I discussed. 
 
Unlike the Paris Metro Pricing model, whose differentiation is based on 
bandwidth, Constatinos Dovrolis [Dov3] created another model, called 
Proportional Delay Differentiation Model, whose differentiation is based on 
queuing delay. In order to implement this type of service, there are two 
possibilities: WTP and BPR schedulers [Dov3], which are proposed by the same 
author. I discuss now the advantages and disadvantages of WTP and BPR 
schedulers and how they can support various service profiles. 
 
WTP is a scheduling algorithm, which calculates priority of a packet 
proportionally with its waiting time.  The priority of a Head of Line (HOL) packet 
in queue i at time t is defined as follows: 
 

i
i twtp

δ
1).()( =          (3.4) 

 
Where )(tw  is the waiting time of Head of Line packet, and iδ  is the Delay 
Differentiation Parameter of class i. The most important advantage of WTP 
scheduler is the consistent when approximating the proportional delay 
differentiation model, in particular when load condition and traffic patterns vary. 
However, WTP decouples delay from service rate, and that is why it is not so easy 
to realize different service performance types, as throughput differentiation and 
delay differentiation… at the same time without using multi-level scheduling 
architecture. 
 
Usually, if a connection receives less delay than other connections, it will imply 
that more bandwidth is allotted to these connections, but this property is not 
always true. This problem is illustrated by the experiments realized in [Nguy01]. 
Suppose that I have four users, which use TCP service. These four users send data 
and the traffic produced by these four users passes through a node, which uses 
WTP scheduler. For each user, I assign a class of service, from class 1 to class 4, 
respectively. Accordingly, the four Delay Differentiation Parameters of these 
classes are 11 =δ , 212 =δ , 313 =δ , 414 =δ . The user, which uses the highest 
priority class, hopes that he will receive more bandwidth. But results shown in 
two tested scenarios lead to a conclusion that throughput performance is quite 
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different between the both scenarios: while the bandwidth performance in 
scenario 1 is what I expected, the fourth user in scenario 2 got actually less 
bandwidth than other users. That means WTP could provide delay differentiation, 
but this scheduling algorithm is not stable for providing bandwidth differentiation. 
This is a reason that leads to a new scheduling algorithm, called Differentiated 
Delay and Throughput Scheduler (DDTS) in [Nguy01]. This is a scheduling 
algorithm, which provides simultaneously delay and throughput differentiation 
and link sharing. The scheduling policies are integrated in a single service 
discipline. Under certain cases, the delay service discipline in DDTS provides 
better performance than the WTP scheduler. 
 
Unlike the WTP, BPR is originally derivate from the Generalized Processor 
Sharing- GPS [Par93] scheduling. This GPS system schedules the packet based 
on the rate allotted to the packet’s session and the queue backlog of that session at 
the time packet arrives. The scheduling mechanism of BPR is based on the 
reallocation of rates to its classes of service proportionally to their backlog. 
Suppose that )(tri  be the service rate assigned to queue at time t, )(tqi  be the 
queue i backlog at time t. For two backlogged queues i and j, the service rate 
allocation in BPR satisfies the proportional constraints: 
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i =           (3.5) 

 
Where is  are the Scheduler Differentiation Parameters, that are related directely 
to the Delay Differentiation Parameters. Because BPR algorithm is done by the 
rate-allocation, one can think about the possibility of integration of link sharing 
policies and throughput differentiation policies into BPR. However, the 
performance of BPR in terms of proportional delay differentiation is noteworthy 
worse than WTP, especially when the load distribution between classes of service 
is not symmetric. 
 
A novel algorithm for buffer management and packet scheduling is proposed in 
[Lieb01], called JoBS (Joint Buffer Management and Scheduling). This new 
proposition could provide loss and delay differentiation simultaneously for traffic 
classes at a network router. The model of network using JoBS requires no 
admission control and policing. The novel property of the JoBS algorithm is that 
scheduling and buffer management decisions are done in a single step. 
Furthermore, both relative and absolute QoS requirements of classes are 
supported. 
 
In order to evaluate and compare the performance of our new model PJDM with 
the existing model PDDM, I decide to choose WTP as the scheduling mechanism 
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implemented in PDDM since it is the simple algorithm that can maintain 
proportional delay ratio stably [Lieb01]. 
 

3.3.2 On Proportional Loss 
 

Scheduler

Aggregate
Backlog

Controller

Proportional
Loss Rate
Dropper

OutputInput

Drop Signal

 
 

Figure 7 Proportional loss rate dropper 
 
Figure 7 shows the architecture of a proportional loss rate dropper, similar to 
proportional delay module. Suppose that there are N classes of service, the model 
of proportional loss differentiation is described as follows. For each FIFO queue, 
a logical queue is created. When a packet arrives, it will be queued to the 
appropriated queue based on class marking. The scheduler module is responsible 
for determining which packet will be scheduled when outgoing links are available 
for achieving the necessary delay or delay jitter differentiation between classes. 
Another important module, which is called backlog controller, controls backlog of 
these logical queues, and take a decisions whether a packet should be dropped or 
not, and which packet should be dropped. 
 
The most straightforward example of this backlog controller is Drop-Tail 
algorithm. This simple mechanism drops packets when the buffer space is higher 
than a threshold, or when there is no more available space. There exist also other 
complex buffer management schemes, such as RED or its variants. 
 
When it is necessary to discard a packet, a backlogged queue will be selected by 
the packet dropper module, a packet from this backlogged queue will be dropped. 
That means the backlog controller will monitor aggregate backlog in forwarding 
engine, and the dropper module is responsible for controlling the loss rate 
differentiation between classes. This dropper module could remove a packet from 
the tail, from the head of line position…of queue. 
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3.3.2.1 Proportional Loss Rate (PLR) Droppers [Dov2] 
 
For achieving the model of proportional differentiation in terms of loss, the 
normalized loss rate iil σ/  should be equal for all classes. PLR dropper maintains 
a running estimated il  of loss rate in each class. When there is a need to discard a 
packet, PLR dropper will select a backlogged class with the minimum iil σ/   
ratio. In other words, PLR dropper will throw up a packet from a backlogged 

class j with 
i

i
i

l
j

σ
minarg= . This operation is explained as discarding a packet 

from class j will reduces the difference of iil σ/  from the normalized loss rates of 
the other classes, and tending to equalize them. 
 

3.3.2.2 Proportional Loss Rate Dropper with infinite memory PLR(∞∞∞∞) 
[Dov2] 

This dropper is a version of the PLR dropper, it uses the loss rate estimate il , 
which is the long-term fraction of packets from class i that have been removed. 
This loss rate counter can be calculated using a single parameter for the arrivals 
and drops in each class. This element is called a dropper with infinite memory, 
because the loss rate is calculated from the entire history of previous arrivals and 
drops. The complete algorithm is shown as follows: 
 

 
B(t): Set of backlogged classes at time t 

iA : Counter of packet arrivals in class i 

iD : Counter of packet drops from class i 
 
1.  Packet arrival in class i: 

++iA  
2. Packet drop from class j at time t: 

ii

i
tBi A

D
j

σ)(minarg ∈=
 

++jD  
 

Figure 8  Description of the PLR(∞) dropper 
 
The length of two parameters iA  and iD  of the PLR(∞) dropper is an important 
point, especially when counters overflows. One solution for this overflow 
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problem is to reset all counters, and enter a cold start phase, when any of arrival 
counters overflows. For example, if counters are 32-bit, the counter iA  will 
overflow after at least four billion packet arrivals. It is anyway advantageous 
when the counter is reset over shorter intervals, so that the dropper is more 
adaptive to changing class distributions. 
 
For implementing the algorithm in reality, it is necessary to realise N 
multiplications and N divisions every time a packet needs to be dropped. This 
operation could be generally in floating-point arithmetic. An optimisation that 
avoids the multiplications would be to increase iA  by iσ  every time a packet 
arrives in class i. If a single-precision division take 40 cycles, the calculation of 
the normalized loss rates for 8 classes would take 320 cycles, and with a 700MHz 
CPU the selection of the drop-target class would require about 0.5micros. 
 

3.3.2.3 PLR(M): Proportional Loss Rate Dropper with memory M 
[Dov2] 

 
The estimation of class loss rate based on long history of packet arrivals is the 
most important disadvantage of the PLR(∞) dropper, which makes it less adaptive 
to changing class load distributions. 
 
In contrast to PLR(∞) dropper, this algorithm defines the loss rate of class i as the 
fraction of dropped packets from class i in the last M arrivals. For doing this, a 
table, called Loss History Table LHT, records the class index 

{ } ),...,1].[( NclassiLHT ∈  and the drop status { } )1,0].[( ∈dropiLHT of each packet 
in the last M arrivals. 
 
Using counters in this table LHT, the dropper maintains a knowledge about 
number of arrivals )(MAi  and number of drops )(MDi from class i in the last M 
arrived packets. 
 
This scheme is different from the PLR(∞) in the way of counting packets: it resets 
counters after every M arrivals and tries to achieve the proportional loss rate 
differentiation model in every time window of M arrivals while PLR(∞) tries to 
achieve proportional loss rate differentiations in successive time windows. 
 
In order to implement PLR(M), it is necessary to have internally in routers a 
packet tag, which are rewritten when packets are dropped. This element is the 
main implementation complexity of PLR(M) compared to PLR(∞). Furthermore, 
it has to be noted that such temporary packets tags, attached to packets in routers 
while packets are being forwarded, are not uncommon in switch and router 
designs. 
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Another important issue concerning to designs problem is the length of window 
M. This parameter should be large enough so that a dropped packet is always one 
of the last M arrived packets; otherwise, it will cause deviations of the LHT-based 
loss rate from its actual value. This constraint is met in practice, even for small 
values of M, when the dropped packets are removed from the tail of the queues. A 
more tight constraint on M is that it should be large enough so that the specified 
LDPs are feasible, with a given current load distribution and aggregate loss rate. 
Intuitively, if M is not large enough, the PLR(M) dropper cannot remember 
enough the previous arrivals and drops in order to adjust the loss rates based on 
proportional constraints. 
 

3.3.2.4 Average Delay Distance [Bod01] 
 
Unlike the previous algorithms, ADD is a mechanism, which uses an estimator on 
average drop distance (ADD) for controlling loss-rate. For each drop precedence 
level, an ADD covers a history, whose length is defined in number of drops. This 
makes the ADD algorithm more adaptive to history lengths at each level to 
changing load distributions. The history covered by this estimator can be set short 
without risking estimated loss-rates to be zero for some traffic loads. By using 
this type of estimators, the history length simply determines how fast the 
changing traffic load conditions are detected. Hence, the ADD estimators do not 
have the same trade-off in choosing history length as the LHT estimator. 
 

3.4 Proportional Delay Differentiation Model 
 
The Proportional Delay Differentiation (PDDM) model intends to space the 
average queuing delays so that the ratios of these average queuing delay stay 
proportional with each other, based on Delay Differentiation Parameters (DDPs) 

},...,1,{ Nii =δ . 
 
In detail, suppose that id  is the average queuing delay, or simply average delay of 
the class i packets. The PDDM model, which requires that the ratio of average 
delays between two classes i and j fixed to the ratio of the corresponding DDSs, is 
formally illustrated by the following question: 
 

Nji
d
d

j

i

j

i ≤≤= ,1,
δ
δ

          (3.6) 
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The model of PDDM has two objectives. First, this model should produce 
consistent service differentiation between classes. That means a class with higher 
advertised quality should consistently outperform a class with lower advertised 
quality. In addition, it should allow the possibility of adjusting quality spacing 
between classes, based on pricing and other criteria. Furthermore, these two goals 
should be met even for sharing over short timescales. 
 
The scheduling algorithms as WTP or BPR, proposed in [Dov3], are created 
specially for this PDDM model. The first approach, WTP, is based on Kleinrock’s 
Time-Dependent-Priorities algorithm [Leung00], and is shown to be highly 
effective in [Dov3]. Because WTP is derived from TDP algorithm in [Leung00], I 
summarize some related works of TDP on feasibility conditions for achieving 
proportional delay. 
 

3.4.1 Time Dependent Priority Scheduler 
 
This section will outline some results for TDP scheduling. The necessary and 
sufficient conditions for a given delay spacing to be feasible under TDP for two 
traffic classes are analysed here. These characterizations are later extended for N 
classes. 
 
TDP is a packet scheduling algorithm that uses a set of control variables ib , 

Ni ≤≤1  where Nbbb ≤≤≤≤ ...0 21  (in the PDDM model, these variables are 

called 








= Ni
i

,...,1,1
δ

. These parameters are the dynamic priorities of class i 

packets. Formally, if the k-th packet of the class i arrives at its queue at time kτ , 
then its priority at time t (for kt τ≥ ), denoted by )(tq k

i , is: 
 

ik
k
i bttq )()( τ−=  
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Figure 9 Two class TDP where b1 < b2 

 
In Figure 9, I have a TDP scheduler with only two classes. The first packet of 
class 1 arrives in system at time 0, and the class 2 has the first packet with 
arriving time 1t . These two packets will reside in system until time 3t . From the 
time 0 to 1t , there is only one packet of class 1 in systems. Within the time 
interval ],( 21 tt , the first packet of class 1 has a larger priority than the first packet 
of class 2. But after time 2tt > , the control parameter 2b  becomes higher than 1b , 
that means higher priority. 
 
Suppose that )(tNi  is the number of packets of class i in the queue at time t. The 
conception of TDP scheduler is to select the HOL packet with highest priority, 
when the outgoing link is able to transmit a packet. It is necessary to note that for 
a same class the HOL packet is chosen, because the earlier arrival packets always 
have higher priorities than the later arrival packets. 
 
Formally, the TDP scheduler will choose a packet from class i* satisfied the 
following conditions, when server is ready to transmit a packet: 
 

)}(max{arg)(* 0)(,...1 tqti itNNi i >==  
 
where )(tqi  is defined as priority of the packet at the head of the class i queue. 
 
By serving the packet that has been waiting the longest in system, the average 
delay of this class is reduced. After this the server stays idle and it will react when 
there is new arriving packets. It is very important to note that in the TDP 
scheduler, a class packet increases in priority at a faster rate ( ib ) than packets of 
any class j<i. 
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The long-term waiting time of each class of traffic under the TDP scheduling 
algorithm could be also analysed. Suppose that each class i traffic has Poisson 
arrival process with an average rate of iλ . In addition, the services time of class i 
packets follows general distribution with the first and second moments, designed 
respectively as ix  and 2

ix . The TDP system utilization, named as ρ , will be the 

sum of iρ  (∑ =

N

i i1
ρ ), where iii xλρ = . A closed form expression for the average 

long-term waiting time for class i packets is derived in [Leung00] as the following 
equation: 
 

         Ni
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Where ∑ =
= N

i ii xd
1

2
0 2

1 λ  is the expected residual service time. The above 

equation was derived by assuming that packet service times are exponentially 
distributed and is also valid for any general service time distribution (see 
[Nett79]). 
 
An important advantage of the TDP scheduler is that it is able to maintain certain 
proportional differentiations of waiting times between different traffic classes. For 
doing this, it is only necessary to control the control parameters ib  so that the 
average delay ratio achieves the desired values. Let tr 2,1  be the target long-term 

average waiting time ratio between class i and class j traffic, and ar 2,1  be the 
achieved long-term average waiting time ratio between class i and class j traffic 

(i.e., 
j

ia
ji d

dr =, ). The goal of proportional delay Differentiated Services is to make 

the achieved long-term waiting time ratio equal to the target long-term waiting 
time ratio, that means t

ji
a
ji rr ,, = . 

 

3.4.1.1 2 Classes-Case 
 
Theorem 1: Suppose that tr 2,1  is the target ratio of the average waiting time of 

class 1 traffic to that of class 2 traffic. The equation ta rr 2,12,1 =  is feasible if and 
only if the system utilization ρ  satisfies: 
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111
2,1

<<− ρtr  
 
Proof: At first, if 1<ρ , then the system does not stay stable. That means 1<ρ  is 
the required condition so that the stable situation of system is maintained. 
 
Now, the only if part will be demonstrated. From the equation (3.7), the average 
waiting times of these two classes are received as: 
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If submit 1d  into the equation of 1d  into 2d , 2d  could be written as the following 
equation: 

)]/(1[1
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The achieved long-term average waiting time ratio between class 1 and class 2 is 
described as: 
 

)]/(1[1
1

212

1
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==
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If the target ratio is achieved, that is, ta rr 2,12,1 = , then: 
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1
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−−
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After rearranging the above equation, the following relation is gained: 
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Since 210 bb << , this implies that 1
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2 >
− bb
b

. Therefore tr 2,1

11−>ρ . 
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Next, the if part will be proved (i.e., if 111
2,1

<<− ρtr
), then ta rr 2,12,1 = . If 

tr 2,1

11−>ρ , then ρ  could be described as follows: 

 

)11(
2,112

2
trbb

b
−

−
=ρ  

 
Here, the parameters 1b  and 2b are some constants such that 210 bb << . Buy 
submitting it into equation (3.7), the equation ta rr 2,12,1 =  is obtained. 
 
Remark: This theorem shows that for achieving the target ratio, it is necessary to 
have sufficient amount of traffic and enough packets, which are backlogged in the 
system. For example, if the requirement is 10, then the system has to be at least 
90% utilized so as to achieve the desired waiting time spacing. In other words, if 
the system utilization is less than 90%, then the target ratio 10 could not be 
achieved. 
 

Corollary 1: If 11 =b , )11/(
2,1

2 tr
b +−= ρρ , and 111

2,1

<<− ρtr
, then ta rr 2,12,1 = . 

 

Proof: By replacing 11 =b ,  )11/(
2,1

2 tr
b +−= ρρ  into equation (3.7), the relation 

ta rr 2,12,1 =  could be achieved. 
 

Corollary 2: If 111
2,1

<<− ρtr
, then any 1b  and 2b  such that 

ρρ /)11(/
2,1

21 tr
bb +−=  can achieve ta rr 2,12,1 = . 

 
Proof: First, the author in TDP scheduling algorithm states that for two TDP 
systems A and B wherein the control parameters for system A are ib  and the 
control parameter for system B are íb′ . If the following liaison is kept: 
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Then iW  in  A will be equal to 1W ′  in B. In other words, the average waiting time 
of TDP system depends not on the exact value of the control parameters ib  but 
rather depends on the ratios of ib  . 
 

If 111
2,1

<<− ρtr
, from the corollary 1, 11 =b  and )11/(

2,1
2 tr

b +−= ρρ  can 

achieve ta rr 2,12,1 = . As TDP system depends on the ratios of ib ’s only, any 1b  and 

2b  such that: 
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can achieve ta rr 2,12,1 = . 
 

3.4.1.2 N Classes-Case 
 
Generally, when the TDP system server has more than 2 classes, for example N 
classes, the problem becomes very complicated to solve, because to answer the 
question how the values of the control parameters ib  should be for satisfying the 
equation (3.3), it is necessary to solve a system of N non-linear equations. On the 
other side, when the configuration of the system ( iρ  and 0d ) is known before, it 
is possible to determine id  by using the conservation law principle. 
 
Recall that according to the conservation law [Klein76], if a scheduling discipline 
is independent of the service time of jobs, then the weighted average of waiting 
times of all classes are invariant, and it is equal to the average waiting time of an 
M/G/1 system. Formally, the conservation law is described by the following 
equation: 
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If is  is defined as t
NN

t
ii

t
iii rrrs ,12,11, ... −+++= , and if the equation ta rr 2,12,1 =  could be 

achieved, then 
N

i
i d

ds = . That means it is possible to express all id ’s by the 

relationship with Nd  and is : Nii dsd =  for all i=1,2,…N. 
 
By replacing the parameters id ’s from equations (3.8) in the conservation law, 
the following equation is obtained: 
 

∑ =
=

−
N

i Nii dsd
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id  can be expressed in terms of is , iρ  and 0d  as: 
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From the above equation, if ta rr 2,12,1 =  is achieved, the only unknown in equation 
(3.7) is the vector ],...,,[ 21 Nbbbb = . Now, setting all ib ’s in equation (3.7) on the 
left hand side, the following equation is obtained: 
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This is a system of non-linear equations for solving the ib . Because all the values 
of ib  should be positive, the parameters of iρ  and is must satisfy a condition. 
 
Theorem:  For receiving the positive values of all the ib , the necessary condition 
is that R(1)>0 and R(N)<0. 
 
Proof: For receiving the positive values of all the ib , the necessary condition is 
that R(1)>0 and R(N)<0. 
 
Case 1: For i=1, I have B(1)=0, which implies that: 
 

)1(
)1(

A
Rbi =  

 
Since 01 >b , this in turn implies that R(1)>0 
 
Case 2: For 1<i<N, the result from equation (3.20) is used and: 
 

0)()()( 2 =−− iBbiRbiA ii  
 
Because the parameters { ib }’s should be positive, its will receive the following 
values: 
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Because 22 )()()(4)( iRiBiAiR >+ , therefore )()(4)()( 2 iBiAiRiR +< . Hence: 
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In summary, for 1<i<N, ib  is always greater than zero even when R(i) is 
negative. 
 
Case 3. For i=N, I have A(N)=0, which implies that: 
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Since 0>Nb  and B(N)>0, I conclude R(N)<0. 
 
Remarks: The implication of the above theorem is: a necessary condition for a 
feasible region (e.g., a region wherein a positive solution of ib ’s exist) is R(1) >0 
and R(N)<0. If the system configuration ( iρ  and is ) falls outside of this region, it 
is possible that there exist no positive values of the ib ’s for which the TDP 
scheduler can obtain the target waiting time ratios. 
 
The first condition R(1)>0 implies: 
 

        ∑ =
−>

− N

i id
d

2
1

0 1
)1/( ρρ

         (3.9) 

 
where )1/(0 ρ−d  is the average waiting time of the aggregate traffic. If I want a 
large waiting time differentiation, 1d  has to be larger than id , i=1,2…N. Since 

Nddd ≥≥≥ ...21 , this implies the fraction on the left hand side of equation (3.9) 

to be small. Thus, ∑ =

N

i i2
ρ should be close to one to make the inequality hold. The 

physical meaning is that to have a large waiting time differentiation, there should 
be a sufficient amount of higher class packets to keep the system busy so that the 
lower class packets are delayed adequately. 
 
The second condition is 0)( <NR , which implies: 
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By the conservation law, i
N
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ρρ . If I put it back into equation 

(3.10), I have: 
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Since Nddd ≥≥≥ ...21 , to make the right hand side of equation (3.11) positive, 
one way is for ρ  to be large. If ρ  tends to 1, the value of the left hand side in 
equation (3.10) will be large. To make the inequalities hold, the value of the right 
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hand side in equation (3.9) should be larger. Since Nddd ≥≥≥ ...21  and the 

major part N
N

i ii dd +∑
−

=

1

1
ρ  is the weighted average of the mean waiting time of 

the first N-1 classes, to attain a large value, iρ  should be large, especially for the 
lower traffic classes. The physical meaning is that in order to have a large waiting 
time differentiation, the server has to delay packets of the lower classes so as to 
have large waiting times id , i=1,2…N-1. If their traffic loading is high, many of 
them will be backlogged and their waiting time will increase. Last but not least, 
another important implication of the above necessary conditions is that even 
though the system utilization ρ  remains unchanged, it is still possible that certain 
distributions of iρ ’s will not lead to a positive solution of ib ’s. In such case, the 
system cannot achieve the target waiting time ratios. 
 

3.4.2 Per-class Average Delays in the PDDM Model 
 
In given load conditions, the N-1 ratios of the PDDM model specify uniquely the 
average delays of the N classes. The key additional relation in mappings from 
delay ratios to class delays is the conservation law, which constrains the average 
class delays in any work-conserving scheduler S. The conservation law holds 
under arbitrary distributions for the packet inter arrivals and packet sizes, as long 
as the first moment of these distributions and the second moment of the packet 
size distribution exist, and the packet scheduling discipline S is independent of the 
packet sizes. 
 

3.4.3 Delay Dynamics in the PDDM model 
 
Property 1: Increasing the input rate of a class, increase (in the wide sense) the 
average delay of all classes. 
 
In the other words, there is always a link or relationship between classes that is 
expected due to the relative differentiation nature of the model. When the input 
rate of a class increases, the load of this class is added, and the delays of all 
classes will also encounter an increase. 
 
Property 2: Increasing the rate of a higher class causes a larger increase in the 
average class delays than increasing the rate of a lower class. 
 
In the simplest case, when there are only 2 classes. Assume that the following two 
cases occur: 
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•  ελλ +=′ 11  and 22 λλ =′  
•  11 λλ =′′  and ελλ +=′′ 22  

 
with a condition that ε >0. According to the conservation law, the weighted 
average of the class delays is the same in both cases: 
 

22112211 WWWW ′′′′+′′′′=′′+′′ λλλλ  
 
From the above equations, it is clearly to see that because of the PDDM 
constraints, the class average delays in the second case are larger, i. e. 

11 WW ′′>′ and 22 WW ′>′′ . 
 
This property shows that higher classes cost more, in terms of queuing delay, than 
lower classes. 
 
Property 3: Decreasing the delay differentiation parameters of a class increases 
(in the wide sense) the average delay of all other classes, and decreases (in the 
wide sense) the average delay of that class. 
 
That means if I diminish the delay of a class by minimizing its Delay 
Differentiation Parameters, it will imply that the delay of all other classes will 
increase. 
 
Now, assume that the class load distribution changes from { }nλ  to { }nλ ′ , with 

ελλ −=′ ii ; ελλ +=′ jj , and kk λλ =′  for all ik ≠ , j ( 0>ε ). nW ′  is the average 
delay in class n when the class load distribution is { }nλ ′ . The following properties 
are important in case of Dynamic Class Selection (when a class chooses a higher 
or lower class for achieving end-to-end guarantees): 
 
Property 4:  If i>j then nn WW ≤'  for all n=1…N. Similarly, if i<j then nn WW ≥' . 
 
Property 5: If i>j then ij WW ≤' . Similarly if i<j then ij WW ≤' . 
 
Property 6: Delay has accumulated property. 
 
It is easy to see that delay has accumulated property. That means the delay of a 
class or flow through a network is the sum of the queuing delays at each router 
and the propagation time, which is considered small compared to the queuing 
delays. Hence there is a need to implement proportional delay scheduling 
algorithms at every router in a network based on PDDM model for receiving 
proportional delay between different classes. However, in the case of the 
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existence of proportional delay scheduling schemes at every router, each packet 
transfers through network along different paths that contain different hops 
numbers. That is why the proportional property of queuing delay is just 
maintained for only one local hop, but the sum of queuing delay of one class does 
not stay proportional with other classes any more. In other words, such networks 
can not guarantee the proportional property of delay between different classes. 
This is a big disadvantage of the PDDM model. 
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Chapter 4 Playout Buffer Delay Adjustment 
Algorithm 

 
Chapter 4 provides background information about the importance of the playout-
buffer adjustment algorithm. It gives an overview about the existing playout 
schemes and also emphasizes the trade-offs between playout buffer delay and loss 
rate. After analysing the existing algorithms, I have decided to use Concord 
algorithm at the receiver end in my work. Properties and characterizations of the 
Concord algorithm are also analysed. 
 

Internet

Playout Buffer

Sender Receiver

 
Figure 10 Packet voice with receiver jitter compensation 

 
Usually it is required to have a playout buffer at the receiver end for audio or 
video signal in order to smooth the jitter produced by different networks because 
this jitter can degrade the quality of audio and video stream heavily. 
 
Figure 11 illustrates how the playout buffer stores the arriving packets and 
calculates appropriate playout-delay time so that the total end-to-end delay of 
packets is smoothed: 
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Figure 11 Different playout buffer time 
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As indicated in the above figures, different packets arrive at playout buffer each at 
a different time. Depending on the algorithm used at this receiver, the playout 
buffer delays these packets by different playout delays so that the jitter of the 
stream is reduced. 
 

4.1 End-to-End Delay Characteristics 
 
A lot of previous studies [Bol93] demonstrated the presence of “spikes” within 
the problem of end-to-end Internet delays. A spike is a sudden, large increase in 
end-to-end network delays, followed by a series of packets arriving almost 
simultaneously, leading to the completion of the spike. 
 
With periodically generated packets, the initial steep rise in the delay spike and 
the linear, monotonic decrease after the initial rise, is due to ‘’probe 
compression’’- the accumulation of a number of packets from the connection 
under consideration (the audio session, in my case) in a router queue behind a 
large number of packets from other sources. Probe compression is a plausible 
conjecture about the cause of delay spikes. 
 

4.2 Classification 
 
As noted above, it is necessary to have a playout buffer at receiver side, which 
stores temporarily incoming Media Units (MUs), and a playout scheduler, whose 
the role is to provide a presentation schedule that resembles as much as possible 
the temporal relationship that was created by the encoding process.  
 
Some applications, such as desktop videoconferencing require very strict latency, 
for example a few hundreds of milliseconds. Other unidirectional applications, 
such as video on demand (VOD) are more tolerant with larger latencies that range 
from around 1second for responsible Web-based distribution of short video clips 
to several minutes in near-VOD systems. That means there is some compromise 
between the intra-stream synchronization quality and the increase of end-to-end 
delay due to the buffering of MUs. If the receiver is has no buffer, the scheduler 
provides minimal stream delay by presenting frames as soon as they arrive. 
Another example of a playout buffer, which eliminates completely the effects of 
jitter at the expense of a long stream delay, is the assured synchronization 
method. 
 
Various playout schedulers differ from each other in the usage of timing 
information. Time-oriented playout schemes put timestamps on MUs and use 
clocks at the sender and receiver in order to measure the network delay or 
differential network delay (jitter). Buffer-oriented schemes do not use timing 
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information. Instead, they implicitly assess the current level of network jitter by 
observing the occupancy of the playout buffer. In the both of cases, the level of 
synchronization between the sender and receiver influence strongly the design 
and capabilities of the system. 
 

Playout schedules

Time-oriented Buffer-oriented

Global clock Approximated
clock

synchronization

No clock
synchronization

Regulation of
MU durations

Pause/drop
(on MU scale)

 
 

Figure 12 A general classification of playout schedulers 
 
Figure 12 shows different types of playout schedulers. Systems that use their 
clock for the synchronization protocol are called having a global clock. The 
global clock measures exactly the network transfer delay of an MU and along 
with the buffering delay at the receiver end, the total end-to-end delay of the MU 
is smoothed. With such knowledge, the receiver can then guarantee that an MU is 
delivered before an available (requested) end-to-end delay budget is exhausted. 
Other methods, such as differential delay methods cannot measure precisely the 
network delay of an MU because of not using a global clock. They operate 
namely on delay variations (capture by the difference between subsequent delay 
measurements) and try to maintain a fixed trade-off between the perceived delay 
and the synchronization quality of the stream across time-varying jitter.  
 
The playout algorithm, which uses approximated clock synchronization, tries to 
bind the offset between the two clocks by using the virtual clock algorithm. Under 
the virtual clock, the clock of the receiver adopts as local time the timestamp form 
a reference packet sent by the sender.  
 
The previous schemes as global clock and approximated clock detect increases in 
end-to-end latency, and belong to time-oriented type. Time-oriented systems can 
realise if an MU is ‘’late’’ by comparing its arrival timestamp with its scheduled 
playout time. Unlike time-oriented system, buffer-oriented system will determine 
a latency increase by detecting an overbuilt queue of MUs waiting to be 
displayed. In addition, it is able to treat late MUs through two ways: delay-
preserving and non-delay-preserving schemes. The first category, called delay-
preserving schemes, in which all late frames are discarded to preserve the delay 
requirements of the stream; and non-delay-preserving schemes, in which some or 
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all late packets are accepted for presentation in order to protect the continuity of 
the stream from further degradation due to discarding MUs that are late.  
 
In general, playout buffer schemes control the occupancy of the playout buffer 
with the variation of network delay jitter. If the delay variability increases, the 
playout buffer is also increased in order to smooth this variation. Contrarily, in 
time of reduced jitter, this playout buffer is decreased as well.  
 
Packet-audio systems with silence detection technique modify the playout buffer 
by taking advantage of silence periods, which they use to make adjustments on a 
per-talkspurt basis. There are two types of buffer-oriented systems: systems with 
pause/drop method usually drop a frame to reduce latency, or stop the 
presentation of frames for one frame period (a pause), and systems that change 
the occupancy of playout buffer by regulating the duration of video frames (they 
present frames faster instead of dropping to reduce latency, and present frames 
slower to avoid underflows). 
 

4.2.1 Influence of Media Type on Classification of Playout 
Adaptation 

 
Differential media types play an important role for the classification of the 
playout adaptation methods. Normally, there are two media types: continuous or 
semi-continuous.  
 
A Continuous media stream is a media type with a regular inter-MU interval, 
while semi-continuous media type is described by inactivity periods that intervene 
between periods of continuous MU flow. Some examples of continuous media are 
streaming video (live or stored) and streaming audio (Web radio). Spoken voice 
with silence detection is a typical example for semi-continuous media. 
 
The important characterization of a semi-continuous media type is that the 
inactivity periods give the playout scheduler the opportunity to adjust the playout 
point for the imminent activity period without affecting its continuity. Unlike the 
semi-continuous media type, playout schedulers for continuous media do not have 
inactivity periods, but could act on inter-MU intervals to adjust the playout point. 
 

4.2.2 Time-oriented Playout schemes 
 
This section presents common time-oriented playout schedulers, that is, 
schedulers which timestamp MUs and which make use of local or global clocks to 
determine the presentation instant and duration of each MU. 
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4.2.2.1 Assured Synchronization under Bounded Delay Jitter 
 
The most important role of playout adaptation is to restore the stream to its initial 
form and to eliminate any kind of distortion in the temporal relationships of MUs. 
This goal could not be achieved easily because MUs have variable network 
transfer delays. The network transfer delay contains two components: a static 
propagation delay and a variable queuing delay caused by variable waiting times 
in the queues of intermediate network nodes. If the delay variation is not limited 
or an infinitely long inter-arrival period may appear, the length of buffer becomes 
infinite for eliminating the discontinuities from the reconstruction process. 
 
For the guaranteed service defined by IETF or constant bit rate CBR of ATM, the 
maximum delay difference is bounded by the network and that is why the total 
resynchronisation is feasible. This optimal synchronization is called assured 
synchronization.  
 
For the implementation of assured synchronization two different approaches 
apply. The following notations are used to describe these two variants of the 
assured synchronization: 
 

•  inD , is the network delay of the ith MU. 
•  ibD , is the buffering delay of the ith MU. 
•  itotD , is the total end-to-end delay of the ith MU. 
•  min,nD is the minimum network delay. 
•  max,nD is the maximum network delay. 
•  maxJ is the maximum different in any two network delays. 

 
In [Nayl82, San93, Shiv95, Fran93], the authors say that if the ith MU causes a 
synchronization loss event when its network delay, inD , , is larger than all 
previous network delays, jnD , : 1<=j<i, plus the initial buffering delay for the 
first MU, ibD , . Hence, in order to ensure that there is no loss of synchronization, 
it is necessary to guarantee that the first MU incurs a total delay 1,1,, bnitot DDD +=  
that is no less than max,nD . The total delay of the stream is then equal to the total 
delay of the first MU 1,tottot DD = . 
 
The following two approaches, which differ from each other on the use of known 
or unknown 1,nD , are used for assured synchronization. This synchronization is 
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done by adding an appropriate 1,bD  to the first MU. The first method needs to 
have known maxJ , the second requires that max,nD  should be known.  
 
Unknown 1,nD : In this case the scheduler could not measure precisely 1,nD . Thus 
in order to guarantee the assured synchronization, the scheduler must keep the 
first MU in the buffer for an interval equal to the maximum delay difference (i.e., 

max1, JDb = ) before the presentation of frames is initiated by extracting frames 
from the head of the playout buffer [Gey96].  
 
This initial buffering delay protects the synchronization of the stream against the 
worst possible scenario, which corresponds to the first MU experiencing the 
minimum network delay, min,nD , while a subsequent frame experiences the 
maximum network delay, max,nD . 
 
The total end-to-end delay of the stream is now max1,1, JDDD ntottot +== , taking 
values in ],[ maxmax,maxmin, JDJD nn ++ , since max,1,min, nnn DDD ≤≤ .  
 
By doing that, the total end-to-end delay 1,totD  of the first MU is not less than the 
maximum network delay max,nD , so it is guaranteed that no packet will arrive late. 
 
Known 1,nD : This approach uses timestamps and a global clock that make the 
measure of the delay of the first MU possible. It adds the minimum buffering 
delay that makes the total delay of the first MU exactly equal to max,nD . The 
implementation in [Bald00] performs a potentially smaller end-to-end delay, 
while continuing to guarantee absolute synchronization at the receiver. Because of 
knowing 1,nD  before, the scheduler keeps the first MU in the playout buffer for an 
additional interval 1,bD  so that the total delay of the MU becomes 

max,1,1,1, nbntot DDDD =+= . It can guarantee that no MU will experience a larger 
delay; thus, no loss of synchronization will appear.  
 

4.2.2.2 Allowing for Latency/ Synchronization Trade-off by Allowing 
for Loss due to MU Lateness. 

 
The most important disadvantage of the assured synchronization method is the 
poor delay performance that makes this method inadequate for interactive 
applications, even the improved version of this method, which uses a global 
clock, produces a prohibitive end-to-end delay. Nowadays, almost modern packet 
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networks cannot guarantee an upper bound on delay [Paxs97, Kali94]. In 
addition, modern video and audio codecs can accept a substantial amount of 
packet loss with acceptable degradation of the perceived quality. This property of 
new applications leads to the fact that playout schedulers can accept a certain 
amount of lost MUs, in order to reduce the overall delay of the stream and 
effectively support real-time applications. 
 
For bi-directional interactive real-time applications, the designed schedulers 
utilize precise timing information for providing a small constant total end-to-end 
delay totD . In [Bald00], the authors demonstrated that given a small network 
delay, a system can be configured (packetization, compression, rendering) to 
provide a total delay as small as 100ms; and the scheduler will discard the packets 
that have a network delay larger than totD . totD  controls the trade-off between 
intra-stream synchronization quality and delay. When the sender and receiver 
timestamps (used for measurement of the network delay) come from 
synchronized clock (GPS [Mills91]), it is guaranteed that any played MU will be 
delivered with an accurate totD  (e.g., the Concord algorithm [Shiv95]). 
 

4.2.2.3 Playout Mechanisms without Global Clock 
 
For applications which demand that all MUs have a constant (small) delay or are 
dropped, it is necessary to use a global clock because it can provide the utmost 
interactivity precision. Unfortunately, it is not so easy to have a global clock in 
network; that is why almost the playout scheduler schemes, which do not require 
a constant end-to-end delay guarantee, operate on delay differences, and not on 
absolute delays. In this case, the two clocks need to run at approximately the same 
speed, and they need not to be synchronized, since their offset is cancelled when 
taking differences of timestamp values. The basic idea of these schemes is that the 
total delay of MUs are not constant or confined under an absolute value. In 
addition, this delay can fluctuate in response to changes in network delay 
variability, so a level of synchronization (e.g., percentage of late packets) or the 
more relaxed requirement of a constant trade-off  between continuity and delay 
can be maintained. Network delay differences are used as indications of the 
current jitter level, and drive the regulation of the playout buffer.  
 
An example of such schemes is done by Naylor and Kleinrock [Klein76]. In this 
method, the first packet of a talkspurt is delayed adaptively based on recent jitter 
measurements. In detail, the receiver logs the last m delays of MUs prior to the 
initiation of a new talkspurt and extracts the k partial range, D(m,k), which is the 
maximum difference between the m samples having first discarded the k largest 
delays. The first MU of the talkspurt is delayed for D(m,k). The partial range is 
used for eliminating isolated cases of extremely large delay that do not have a 
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significant impact on the probability of a late arrival. The relation between gap 
probability and delay is controlled by the level of conservatism in the partial 
range. Some packet lateness can occur because D(m,k) is smaller than the 
maximum network delay. 
 
There are two methods for the handling of late packets: method E extends the 
delay of the stream by presenting late frames (data-preserving method) and 
method I preserves the delay of the stream by discarding late packets (delay-
preserving method). 
 
A well-known method in this field uses timestamps to approximate the one-way 
network delay d̂  and its variability v̂ . The presentation time of the first MU of a 
talkspurt, ip , is scheduled for: 
 

     iiii vdtp ˆ.ˆ β++=           (4.1) 
 
when it  is the generation time of the ith MU according to the sender’s clock The 
coefficient ß controls the synchronization/latency trade-off. In [Ram94], the 
authors developed four algorithms that differ only in the way they derive the 
estimate id̂ . The evaluation is performed on a per-packet basis, using as input the 
network delay of the ith MU, id , while delay adjustments are applied on a per-
talkspurt basis. id  is the difference between the arrival timestamp ia  and 
generation timestamp it : 
 

iii ddd ).1(ˆ.ˆ
1 αα −+= −          (4.2) 

iiii ddvv −−+= −
ˆ).1(ˆ.ˆ 1 αα          (4.3) 

 
Two of the proposed algorithms are based on the linear recursive estimator of the 
above equation. The third algorithm is adopted from the NEVoT (Network Voice 
Terminal) audio tool, and a fourth is a novel algorithm with delay spike detection 
capabilities and dual mode of operation, aimed at improving performance in delay 
environments with sharp delay spikes. 
 
Moon et al in [Moon98] developed another algorithm that replaces the linear 
recursive estimators of id̂  and iv̂  with the calculation of a percentile point q of 
the underlying network delay distribution. This is done by logging the last w 
packet delays (no clock synchronization) and using their qth percentile point as 
the playout delay for the next talkspurt.  
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4.2.2.4 Playout Schedulers with Approximated Synchronization-
Virtual clocks 

 
The playout adaptation with approximated clock synchronization can not maintain 
a delivery delay in absolute values because of not using a global clock. Such 
schemes produce a soft guarantee that is more specific than the freely fluctuating 
delay of differential delay systems, where the network delay component is 
completely unknown. The total delivery delay is bounded by measuring the 
round-trip time (RTT) between the communicating end points. This assures that 
no MU will be presented with a delay exceeding some expression that involves 
the RTT. 
 
Roccetti et al in [Rocc01] use probe packets for measuring exactly the RTT 
between the communicating endpoints. Synchronization between the clocks of 
sender and receiver is realized by adopting the timestamps of the probe packets as 
local time. This immediately leads to a clock offset equal to the one-way network 
delay of the probe packet, 0t . A playout delay of 0t  would be too small, leading 
to increased packet lateness. Thus, the clock of the receiver is delayed by an 
additional RTT, as measured by the latest probe packet, that gives an overall time 
gap between the two clocks equal to 0t +RTT, that is, the clock of the receiver 
falls 0t +RTT time units behind the clock of the sender. Packets that have 
timestamp larger than the local clock are buffered and packets that have 
timestamps smaller than the local clock are considered lost and are dropped. In 
the buffer, if the local clock equals their timestamp, packets will be extracted. The 
algorithm controls the playout point in accordance with the current network delay 
by refreshing the RTT every second. 
 
Another similar example is done by Alvarex-Cuevas et al [Alv93]. The authors 
use also a probe packet, but rather at the beginning of every silence period. After 
measuring RTT, RTT/2 is considered as one-way delay of the talkspurt and is sent 
to the receiver. At the receiver, this RTT/2 is used as the estimate of the network 
delay and add an additional delay component so that a fixed target end-to-end 
delay totD  that results in only 1%  packet lateness. 
 
The additional delay up to totD  should be maxJ , where maxJ denotes the maximum 
delay variability ( min,max, nn DD − ). However, 2/maxJ  is not known a priori, but is 
approximated and corrected by observing the extent of synchronization errors and 
increasing totD  accordingly. By dynamically measuring RTT and adjusting totD , 
the algorithm adapts to network delay fluctuations and maintains the targeted 
synchronization quality. In the same work, a second method of estimating the 
target totD  is described. It identifies the ‘’fastest’’ packet - the one with the 
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smallest delay (propagation only) - by looking for the packet that incurs the 
largest waiting time in the buffer; it is assumed that this is the fastest packet. totD  
is approximated as the network delay of the fastest packet plus the largest 
observed difference in buffering delays, which should approach maxJ , resulting in 
approximately 1% packet lateness. Both methods can be improved by applying 
the method of hop-by-hop network delay accumulation, which results in very 
accurate network delay estimations (only the local clocks of intermediate nodes 
are involved; each node accumulates its own added delay [Mont83]). 
 

4.2.2.5 Non Delay-preserving Playout Schemes 
 
A delay-preserving method is a method that does not produce late MUs, and a 
non-delay-preserving method may have late MUs instead of dropping them for 
protecting the continuity of the stream from further degradation. 
 
Figure 13 illustrates the different regions of a scheduler. In delay-preserving 
playout schedulers, the arrival time of a MU could fall into two regions: the 
acceptance region and the discard region. The acceptance region is bounded by 
the targeted end-to-end delay where an MU waits in the playout buffer for its 
playout time. The discard region is for arrivals with a total delay longer than the 
targeted totD . 
 
C. Liu et al in [Liu96] introduce the no-wait region, which lies between the other 
two regions. The packets arriving in this region will be extracted immediately. An 
arriving MU with delay that is placed in the no wait-region is an MU that has 
missed its targeted totD , but not enough to be discarded, so it is played 
immediately to prevent further degradation of synchronization caused by MU 
discard. 
 
 

Acceptance region No wait region Discard region

Buffering Immediate playout Discard

Boundary 1 Boundary 2

Network Delay

 
Figure 13 Network delays fall in one of three possible regions.  
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MUs are buffered if they arrive early ( nD in the acceptance region), presented 
immediately if they are slightly late ( nD in the no wait region) and discarded if 
they arrive too late ( nD in the discard region). 
 
The playout scheduler proposed by H. Liu et al [Liu99] is also a non-delay-
preserving. After each late packet a synchronization recovery phase is used for the 
scheduler and the presentation for the duration of the late frame is determined 
during this phase. A full presentation duration is undesirable because it increases 
the end-to-end delay of subsequent frames. Otherwise, a truncated presentation-up 
to the scheduled presentation instant of the next frame might truncate the late 
frame excessively causing motion jerkiness that is easily detected by the end user. 
The scheduler has a limited minimum-frame duration so that motion jerkiness is 
not detectable and he can choose to apply it to a series of frames following the 
late arrival, thus progressively reducing the additional delay. This approach 
reduces delay successfully and at the same time protects the quality of intra-
stream synchronization by introducing a rather ‘’mild’’ delay-control function. 
Another interesting feature of the scheduler is that it uses a second-order 
continuity metric called RMSE. A user-requested threshold RMSE is maintained 
by the scheduler across different transmission conditions by regulating the 
buffering delay accordingly.       
 

4.2.3 Buffer-oriented Playout Schemes 
 
Similar to time-oriented schedulers that use differential delay methods, buffer-
oriented schedulers adjust the playout point by observing the occupancy of the 
playout buffer. The lack of timing information precludes any kind of absolute 
total end-to-end delay guarantees for the MU presentation epochs. The only 
‘’visible’’ delay component for the scheduler is the buffering delay of the MUs at 
the playout buffer. 
 
Various buffer-oriented schemes which differ in the trade-off between media 
continuity and buffering delay are developed. The total end-to-end delay although 
unknown (and fluctuating) can be controlled as a consequence of the regulation of 
the buffering delay component; the suppression (expansion) of the buffering delay 
leads to the suppression (expansion) of the total end-to-end delay with a 
subsequent cost (gain) in intra-stream synchronization quality. 
 
With this method, delay guarantee can be approached but is not guaranteed in 
absolute values. Due to this uncertainty concerning the interactivity of the system 
buffer-oriented schedulers are usually applied in video applications where the 
interactivity requirements are more relaxed than in audio applications. 
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4.2.3.1 Non initial Buffering: Self-adjusting and Bufferless 
schedulers 

 
This method is a good solution (if there is no jitter) because it produces a 
potentially low initial delay (only the network part) by presenting the first MU as 
soon as it arrives. But when jitter exists, the first underflow will occur as soon as 
some MU experiences a network delay greater than the delay of the first MU. The 
self-adjusting schedulers present all MUs that arrive at the receiver; thus, the 
playout buffer builds up as a natural effect of the induced underflows (since the 
mean arrival rate equals the mean presentation rate and an underflow is analogous 
to a ‘’server vacation’’). This leads in a stream presentation with a small initial 
delay (no initial buffering) but also an initially poor synchronization quality 
(frequent underflows); continuity improves with time, since the jitter buffer 
expands with underflows, but this also increases the perceived delay. For 
regulating delay some of the MUs must be discarded. Delay regulation depends 
on the current buffer occupancy. 
 

4.2.3.2 Buffer Occupancy Control: Queue Monitoring and 
Watermark-based Schedulers 

 
Stone and Jeffay in [Ston95] show that it is able to measure the impact of delay 
jitter on a receiver by observing the occupancy of the playout buffer over time. 
This policy is called as Queue Monitoring (QM). With QM, a continuous 
sequence of video frames has the meaning that the queue was never found empty 
following the completion of a presentation. In addition, this continuous sequence 
of frames is used as indication of reduced delay variability and triggers a 
reduction of the end-to-end delay of the stream by discarding the newest frame 
from the buffer.  By selecting the duration of the gap-free interval, it is possible to 
control how aggressively QM tends to reduce latency and is thus the 
synchronization/latency trade-off parameter. For deciding which frame should be 
discarded, a series of thresholds and associated counters is used. Increasing 
network jitter causes buffer underflows and naturally increases the occupancy 
with the acceptance and presentation of ‘’late’’ frames. That is, QM is to some 
extent data-preserving, on some occasions presenting late frames.  
 
For the adjustment of delay, QM uses a window mechanism; however, many 
buffer-oriented schedulers are given the freedom to adjust the playout point in a 
per-MU fashion [Roth95, Bier96, Yua96,  Laout1]. The authors in [Roth95] 
introduce the idea of occupancy watermarks (high-watermark, HWM, and low-
watermark, LWM) in order to define a range of desired playout buffer 
occupancies that balance the risk between buffer underflow and overflow. A 
targeted area, lying between the HWM and LWM levels, is defined by the upper 
target boundary (UTB) and lower target boundary (LTB). The positioning and 
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width of the targeted area (inside the watermark limits) reflect the desired 
synchronization/ delay compromise. For example, a minimum delay policy sets 
the LTB equal to the LWM and the UTB to a slightly larger value. When the 
occupancy of the buffer falls outside the targeted area-in the so called critical 
buffer regions- the scheduler enters an adaptation phase with the aim of returning 
the occupancy inside the targeted area. This is accomplished by modifying the 
receiver’s consumption rate until the occupancy returns in the targeted area. The 
width of the targeted area determines the aggressiveness of the buffer control 
algorithm, while the selection of watermarks mostly contributes to the data loss 
rate. The watermarks are fixed in [Roth95], but it is noted that the scheduler can 
be make adaptive by dynamically regulating the watermarks in response to jitter 
effects (e.g., MU loss). 
 

HW M

UTP

LTB

LW M

Overflow damger

Targeted Area

Underflow danger

Buffer occupancy

 
Figure 14 The watermark-based playout scheduler of Rothermel and Helbig.  

 
The selection of watermarks mainly affects the underflow and overflow 
probabilities. The positioning of the target area, inside HWM and LWM, 
regulates the trade-off between intra-stream synchronization and stream latency. 
 
Another method of Biersack et al [Bier96] uses the rate adaptation mechanism at 
the sender (which is a VOD server) rather than at receiver. In order to smooth out 
occupancy fluctuations caused by short-term jitter the receiver uses a gradient 
descent estimator of the buffer occupancy. If the smoothened buffer occupancy is 
within the critical region (outside LWM. HWM) then the receiver sends a signal 
to the sender suggesting that the latter should adjust its rate so that the smooth 
occupancy returns into the targeted area. The sender either skips some frames or 
pauses (pause/drop method) to adjust its rate. Source-rate adaptation that affects 
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the encoding process could also be used but the author does not consider it due to 
high implementation complexity. 
 
In [Orion00], a low complexity algorithm for detecting clock skew in network 
audio applications that function with local clocks and in the absence of a 
synchronization mechanism is presented. In addition, a companion algorithm to 
perform skew compensation is also described. For the skew detection algorithm, 
high and low water mark are employed in order to limit the number of 
compensating actions to keep the computational cost low and to reduce sensitivity 
to the transient transit variations. When  the skew detection algorithm indicates 
that the number of samples in the receiver´s playout buffer requries adjustment, 
the compensation mechanism is applied.  
 

4.2.3.3 Buffer Occupancy Control with Dynamic Regulation of the 
Duration of MUs 

 
The above schedulers base on the slotted approach in the regulation of the 
buffering delay. That means they increase or decrease it in constant amounts that 
equal the duration of an MU. Discarding ‘’late’’ frames [Bier96] and the tail-drop 
from overbuilt queues [Ston95] lead to sharp delay reduction jumps of duration T, 
equal to the duration of a video frame. And when the playout buffer empties, the 
presentation resumes after one or more MU periods [Bier96]. This approach has 
the advantage: easy implementation, but it can be also quite crude, especially in 
the case of low-frame-rate streams where the slot (video frame) has a significant 
duration. 
 
In [Yua96, Yua97] Yang and others improved the perceptual quality of video 
achieved by a fine-grained regulation of playout durations based on the current 
occupancy of the playout buffer. Another method, called threshold-based is also 
proposed in [Yua96]. This scheme uses reduced playout rates aimed at avoiding 
large underflow discontinuities as the buffer occupancy i drops below a threshold 
value TH. The selection of TH is done prior to stream initiation and remains 
unchanged despite jitter fluctuations; it governs the trade-off between stream 
continuity and reduction of playout rate. Stream continuity is described by two 
disjoint metrics: the probability of an empty buffer and the frame-loss probability 
due to buffer overflow. The work has been enhanced in [Yua97] by introducing a 
dynamic playout scheduler that uses a window to optimise some quality metric by 
responding to changing network jitter conditions. The window is actually a time-
varying dynamic version of the threshold approach. A neural network (NN) traffic 
predictor and an NN window determinator are being used for online estimation of 
traffic characteristics and for the regulation of window size. The value derived for 
the window is compared to the current buffer occupancy resulting in the selection 
of playout durations for the buffered frame. Stream continuity is described by a 
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second-order metric, the variance of discontinuity (VOD), which accounts for 
underflow occurrences and discontinuities due to reduced playout rates. A number 
of playout schedulers are derived, each providing a different trade-off between 
playout continuity (captured by VOD) and reduction of mean playout rate. 
 
The method in [Laout1] is an extension of Laoutaris and Starvrakakis that uses a 
compact and fair continuity metric distortion of playout (DoP). The definition of 
DoP has been motivated by experimental perceptual results for video 
transportation over packet network s conducted by Claypool and Tanner [Clay99],   
reporting that jitter degrades the perceptual quality of video nearly as much as 
packet loss. The study has limited the range of the threshold parameters TH by 
identifying a range of values when there is no beneficial trade-off between 
continuity and reduction of mean playout rate - the two antagonistic metrics of the 
Internet. Interestingly, it has been shown that this range of values changes with 
the burstiness of the frame arrival process, revealing the danger of an initially 
meaningful TH appearing in the undesirable area due to a change of arrival 
burstiness. Finally, the work is supplemented with online algorithms for the 
detection and maintenance of the operational parameter TH within the area of 
beneficial trade-off across unknown non stationary delay jitter. 
 
Finally, by solving an appropriate optimisation problem, Laoutaris and 
Stavrakakis have developed a scheduler that outperforms the earlier scheduler of 
[Laout2]. Stream continuity is described by using the first two moments of the 
DoP metric. This approach allows a fine-grained optimisation of stream 
continuity by catering to a combination of the expected frequency of 
synchronization loss and its appearance pattern. It is noticed that the minimization 
of the expected value of DoP and of the variability of DoP are two contradicting 
objectives. It is concluded that for a perceptually optimal result the scheduler 
must be allowed to increase the frequency of discontinuities, if this increase is 
providing a smooth spacing between discontinuity occurrences and thus helps in 
concealing them. The Markov decision theory is applied for the derivation of the 
optimal playout policy for some common levels of network jitter, a playout 
scheduler can use a jitter estimator and adaptively ‘’load’’ the appropriate offline-
computed optimal policy and thus can approach the optimal performance in a 
dynamic environment with low complexity (no online optimisation required). 
 

4.2.4 Comparisons of Playout Buffer Delay Adjustment 
algorithms 

 
In general, time-oriented schedulers are prefered when there is an interactivity 
requirement, in most cases in systems that handle spoken voice. Buffer-oriented 
systems are employed in video communication systems, where some compromise 
in delay is acceptable, even in interactive systems, if this is to provide for a 
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smooth presentation of frames. Bidirectional, interactive audio applications 
usually implement time-oriented playout schedulers.  
 
Streaming of stored content can be carried out by using the assured 
synchronization under bounded delay jitter algorithms which provide for an 
absolute re-synchronization at the lowest possible end-to-end delay. In the real 
world, implemented systems seldom use these algorithms, mainly because they  
induce an initial delay that is up to the maximum network jitter which in most 
cases is unknown. The assured synchronization under bounded delay jitter 
algorithms provide no packet late (loss rate is 0%),  and this is the most ideal 
case, but they are considered inadequate for interactive applications due to the 
total stream delay is seconds, but the acceptable delay is only milliseconds. 
Furthermore, the algorithms that do not know the network delay of the first packet  
are unflexible due to fixed end-to-end delay, while the assured algorithms that  
know this delay before are more efficient to be implemented than the previous 
case and their end-to-end delay is reduced.  
 
Unlike the assured synchronization approach, the playout schemes that allow for 
the latency/synchronization tradeoff by allowing for loss due to MU lateness can 
have loss rate. Hence they can support real-time applications better because the 
overal end-to-end delay is decreased. It is also necessary to note that both the 
assured synchronization and this class of time-oriented scheme need to have a 
global clock in order to determine the network delay of each packet.  
 
The other type of time-oriented schedulers is the scheme that does not require a 
global clock. All of these playout schedulers are based on per-talkspurt basis and 
they try to determine the playout buffer time based on network jitter estimated. 
These schemes differ from each other only in the way of estimating this network 
jitter.  
 
In addition, schedulers with approximated clock synchronization fill the gap 
between the two extreme approaches. Such systems do not require a global clock, 
so they cannot guarantee a delivery delay in absolute values, but they provide a 
soft delivery guarantee that is more specific than the freely fluctuating delay of 
differential-delay systems, where the network delay component is completely 
unknown.  
 
The following table summarizes the characteristics of different time-oriented 
playout schemes. 
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Author Media Global 
clock 

Delay 
Performance 

Synchronization 
Performance 

Delay 
Adaptation 

Geyer 
[Geyer96] 

Audio/video Not 
assumed 

Dn,1 + Jmax No loss of 
synchronization 

Delay static 
during 

connection 
Baldi  

 [Bald00] 
Audio/video Assumed Dn,max No loss of 

synchronization 
Delay static 

during 
connection 

Concord 
[Shiv95] 

Audio/video Assumed variable→min Static-guaranteed Based on 
PDD 

estimation 
Naylor and 
Kleinrock 
[Klein76] 

Audio+sil. 
Det. 

Not 
assumed 

Stat. tradepff Stat. tradeoff Per talkspurt 
(partial range 

filter) 
Ramjee 

[Ram94] 
Audio+sil. 

Det. 
Not 

assumed 
Stat. tradeoff Stat. tradeoff Per talkspurt 

(recursive 
filter) 

Moon 
[Moon98] 

Audio+sil. 
Det. 

Not 
assumed 

Stat. tradeoff Stat. tradeoff Per talkspurt 
(percentile 

point) 
Roccetti 
[Rocc01] 

Audio+sil. 
Det. 

VC, t0 + 
RTT 

Stat. tradeoff Stat. tradeoff1 Periodic 
(1sec) (RTT 

based) 
Alvarez-Cuevas 

[Alv93] 
Audio+sil. 

Det. 
VC, RTT/2 variable→min 1%MU lateness Per talkspurt 

(RTT based) 
C. Liu 

[Liu96] 
Audio/video VC variable→min Satisfy user input Per MU 

(delay region 
based) 

H. Liu 
[Liu99] 

Audio/video VC variable→min Satisfy user input Per MU↑ , per 
W MUs↓  

Table 1   Overview of time-oriented schedulers. The abreviation VC indicates 
Virtual Clock synchronization method, with some approximated offset. The label 
stat. Tradeoff identifies systems where a constant tradeoff between 
synchronization and delay is maintained across different levels of jitter. 

 
Bidirectional video applications are usually less demanding, as far as interactivity 
is concerned, compared to their audio counterparts. The buffer-less approach is 
very simple and provides for the best interactivity (frames are displayed as soon 
as they arrive), but the synchronization quality quickly degrades with jitter, as 
there is no dejitter buffer. The self-adjusting buffer is also quite simple to 
implement, and assuming a small amoount of jitter, provides a very good 
synchronization/delay tradeoff as the buffer quickly adjusts to an occupancy that 
eliminates all jitter, at a small delay. The downside is that it is sensitive to rate 
occurrences of unusually large jitter; in such cases the delay of the stream will 
rise and willl remain large since there is no delay control function to restore it. 
Neither scheme employs smoothing of long-lasting discontinuities. Dynamic 
regulation of MU durations can be used to improve the intrastream 
synchronization quality. The threshold-based schemes are also quite simple to 
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implement while systems that require some offline optimization are more 
complex. 
 
The following table overviews the buffer-oriented playout schedulers: 
 

Author Buffer control Delay 
performance 

Intrastream 
sync. mectric 

Evaluation 

Stone and Jeffay 
(QM) [Ston95] 

Tail dropping Try to reduce Gap freq., 1st 
order 

Experimental 

Rothermel and 
Helbig [Roth95] 

Adjust playout 
rate 

Predefined (static 
tradeoff) 

Gap prob., 1st 
order 

Simulation 

Biersack 
[Bier96] 

Adjust source 
rate 

Predefined (static 
tradeoff) 

Gap prob., 1st 
order 

Experimental 

Yuang 
[Yua96] 

Static threshold Threshold 
dependent 

Gap prob., 1st 
order 

Analytical 

Yuang 
[Yua97] 

NN dynamic 
threshold 

Variable delay 2nd order Simulation 

Laoutaris and 
Stavrakakis 

(Laout1] 

 
Adaptive 
threshold 

Small initial 
increase 

2nd order Analytical 

Laoutaris 
[Laout2] 

Offline optimal 
policy 

Policy dependent Combined 1st, 2nd 
order 

Analytical 

 

Table 2 Overview of surveyed buffer-oriented schedulers. In the buffer control 
column, a slow (fast) in parentheses, denotes that the scheduler is able to apply 
reduced (increased) playout rate. 

 
Among all these playout schemes, I see that the Concord algorithm is an very 
good example in order to be implemented in our system, because it plays a direct 
tradeoff between end-to-end delay of system and the loss rate predefined at the 
playout buffer. By adjusting the loss rate at playout buffer, I can control the end-
to-end delay directly. Furthermore, the Concord algorithm can remove the short-
term jitter produced in the network and hence it can improve the quality of 
interactive applications considerably. 
 

4.3 Related Works 
 
There are two important research areas that play an important role for the playout 
adaptation: Forward Error Correction (FEC) and Video Caching (or proxying). 
FEC and its coupling with playout adaptation is a research topic that has recently 
attracted much attention perhaps due to the fact that FEC plays a significant role 
in enabling packet-video communications in wireless environments. Video 
caching appears to be a very attractive way to provide high-quality non-
interactive streaming content in a cost-effective manner. 
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4.3.1 Influence of FEC on Playout Schedulers 
 
A lot of adaptation algorithms do not pay attention on packet losses that appear in 
the network due to congestion. Network losses are assumed to be out of the scope 
of playout adaptation, and compensation for losses is left to various FEC 
mechanisms [Carl97, Perk98, Liu97] that operate in isolation from the playout-
adaptation algorithm. Recently research demonstrated that a considerable 
performance gain can be expected from combining delay-oriented playout 
adaptation and loss-oriented FEC [Ros00, Hart00]. 
 
Rosenberg et al. [Ros00] study the effect of (n-k) Reed-Solomon correction codes 
on existing and new playout algorithms and they show that performance 
improvement is achieved when considering the coupling between jitter and loss 
compensation. Existing playout algorithms [Ram94, Moon98] are made FEC-
aware by substituting the network delay ( nD ) of a packet with the virtual network 
delay ( nVD ), which is either nD  or the extended recovery delay (recovery time-
generation time). If no error does occur in the network the recovery time of an 
MU coincides with its arrival time; otherwise the recovery time is the time when 
the reception of some redundant FEC packet allows the correct decoding of the 
corrupted (or lost ) MU. The targeted end-to-end delay totD  is shaped by nVD  
which depends on the FEC algorithm and thus the coupling. Several new 
adaptation algorithms have been proposed. The adaptively virtual algorithm 
targets a desirable packet loss probability. It is based on [Ram94], and uses virtual 
delays to dynamically adjust the variation multiplier b of Equation (4.1) in order 
to achieve a targeted loss rate. Another algorithm is the so called Previous 
Optimal algorithm; it determines the optimal (minimal) delay for the previous 
talkspurt such that a specific application loss rate be maintained, and applies it to 
the next talkspurt; hence the Previous in the algorithm name. Finally, the authors 
describe an analytical framework for the expression of the total end-to-end delay 
as a function of the application-level reception probability (in the presence of 
FEC), the network delay distribution, and the network loss probability. 
 
Intra-stream synchronization has been studied for wireless receivers by Liu and 
Zarki [Liu99]. In the wireless environment, the media synchronisation module 
must be coupled with the Automatic Repeat Request (ARQ) of the wireless link. 
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4.3.2 Influence of Video Caching on Playout Schemes 
 
As with traditional data objects of established protocols like http and ftp, real-time 
objects (mostly stored video) are being cached, or proxied, with the aim of 
reducing network traffic and improving the interactivity of content delivery 
[Gar99, Wang01, Chua00, Kang01]. Unlike popular web proxies video proxies 
typically store a portion of a video clip only - the initial part usually (called the 
prefix [Gar99, Wang01]) - since the entire video object is too lengthy to be 
replicated on a typical proxy and replication is the most cost-effective alternative 
[Gar99]. Video proxies improve the quality of video delivery in many ways. First 
they reduce the network transfer delay since proxies are located closer to end 
clients, so the stream travels just a few network hops before delivery. Second, 
proxies assist in improvement of intra-stream synchronization quality. If the 
prefix of a video takes a long time within the range of minutes then the amount of 
proxied data completely smoothes out the jitter in the data path from the server to 
the proxy. This is important because it relieves a receiver of a large fraction of 
jitter - only the jitter in the access part remains from the proxy to the receiver 
which is usually small and easily can be smoothed out with a small playout buffer 
at the receiver. The reduction of the playout buffer also reduces total delay thus 
improving the responsiveness of the service. Even if the amount of prefix 
corresponds to the duration on the same timescale as the network jitter at the core 
network then it will again absorb some portion of the delay variability and thus 
decrease the size of the playout buffer at the receiver. For a given synchronization 
quality the existence of the prefix helps by hiding some portion of the total delay. 
                                            

4.4 Performance of a Playout Schemes 
 
In order to compare one adaptive playout-buffer delay-adjustment algorithm with 
another the trade-off between average playout delays and loss is used as a 
performance measure. These parameters should be considered on per-packet 
rather than per-talkspurt because the lengths of talkspurts depend on silence 
detection algorithms. Per-talkspurt playout-buffer delay is thus closely tied to 
silence detection algorithms used. More importantly, different talkspurts have 
different lengths. 
 
End-to-end application delay is defined as difference time between playout time 
at receivers and generation time at senders. Figure 15 shows timing information 
of audio packets and formally defines average playout delay [Moon98]. 
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Figure 15 Timing associated with the i-th packet in the k-th talkspurt 

 
Suppose that there is a trace consisting of M talkspurts. The following quantities 
are defined: 
 
- i

kt : sender timestamp of the i-th packet in the k-th talkspurt. 
- i

ka : receiver timestamp of the i-the packet in the k-th talkspurt, 
- kn : number of packets in the k-th talkspurt. Hence I only consider those packets 
actually received at receivers. 
- N:  total number of packets in a trace. 
 

∑ =
= M

k knN
1

 
 
The algorithm used in receivers to estimate playout delay of the packet decides its 
amount of playout time.  Suppose that the playout algorithm is A. Then  )(Api

k  is 
the playout timestamp of the i-th packet in the k-th talkspurt under A. If the i-th 
packet of the k-th talkspurt arrives later than )(Api

k   (i.e., i
k

i
k aAp <)( ), it is 

considered lost. Otherwise, it is played out with the playout delay of ( i
k

i
k tAp −)( ). 

Let )(Ar i
k  be an indicator variable for whether the i-th packet of the k-th talkspurt 

arrives before its playout time, as computed by playout algorithm A: 
 



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=
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aAp
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i
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i
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N(A) is denoted as the total number of packets played under algorithm A and 
computed using )(Ark : 
 

)()(
1 1

ArAN M

k

n

i
i

k
k

∑ ∑= =
=  

 
Then the average playout delay of those played-out packets is defined as: 
 

))()((
)(

1
1 1

i
k

M

k

n

i
i
k

i
k tApAr

AN
k −∑ ∑= =

 

 
If there are N packets in a trace and, among them, N(A) packets are played out 
under algorithm A the loss percentage l is: 
 

100*)(
N

ANNl −=  

 

4.5 Concord algorithm  
 

4.5.1 Why Concord? 
 
The Concord playout buffer delay adjustment algorithm described in [Shiv95] 
constructs a probability delay distribution (PDD), an estimate of the probable 
delays suffered by packets in the network over a time window. This PDD may 
draw on existing traffic conditions, history information or any negotiated service 
characteristics to derive estimate for minimum, maximum and/or mean delay 
distributions. From the PDD distribution, this algorithm will determine the total 
end-to-end delay based on a given loss rate. According to this end-to-end delay, it 
then adjust the playout buffer delay of each packet is adjusted.  
 
In other words, the Concord mechanism try to reduce short-term jitter by 
performing a direct trade-off between loss rate at receiver and the total end-to-end 
delay. The direct trade-off between jitter produced by network, total end-to-end 
delay and loss rate of the Concord algorithm leads me to an interesting idea: 
design a new relative DiffServ model that controls the proportional jitter in the 
networks and verify the influence of this jitter at playout buffer on the total end-
to-end delay. 
 
Furthermore, the Concord algorithm anticipates short-term network delay with the 
aim of not responding too quickly to short-lived variations. This algorithm is 
considered as a very suitable scheme for applications, which do not tolerate high 
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delays but conceal a small amount of late packets. Nowaday, a lot of voice and 
video coding algorithms can reach satisfactory output, and hence the expense of 
increasing the loss rate of the Concord algorithm causes no negative impact for 
voice and video-coding applications. That means using of Concord algorithm at 
receiver end is very appropriate for the DiffServ network that provide different 
types of voice service. Finally, it is very remarkable, because it defines a single 
framework to deal with both forms of synchronization, and operates under 
influences of parameters, which can be supplied by the applications involved.  
 
These reasons leads me to choose Concord algorithm as playout buffer delay 
adjustment algorithm in the receiver of my network. 
 

4.5.2 Basic Characteristics  
 
This section summarizes some features of the Concord algorithm, which uses a 
predictive approach to playout-buffer management. 
 

Name Description 
PDD  Packet Delay Distribution 

sted  Total end-to-end delay for stream s 

smad  Maximum acceptable delay for stream s 

sbs  Buffer size for stream s 
i
snd  

Network delay for packet i of stream s 
s
ibd  

Buffer delay for packet i of stream s 

smlp  Maximum late packet (%) for stream s 
alp  Actual late packets (%) 
Cdf  Cumulative distribution function 

)(xH i  Function of histogram after its aging 

)(xPi  PDD function after the aging ( 1)(0 ≤≤ xPi )  
F  Aging Factor 
S  Sum of bin value in histogram 
c  Aging coefficient 10 ≤≤ c  
f  Aging frequency (in packet spacing) 

1r  Ratio of old aged data to the newly arrived packet 

2r  Ratio of old aged data to subsequent packets until next 
aging 

 
Table 3 Basic notation 
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4.5.2.1 Function 
 
The Concord algorithm describes a stream as a sequence of packets, which are 
produced within periods and which are marked with sequence numbers. For each 
stream there are two important parameters: the maximum acceptable delay 
( smad ) it can suffer, and the maximum late-packets ( smlp ) percentage it can 
accept or tolerate. In addition a packet-delay distribution (PDD), which is a 
statistical representation of network delays for packets in that stream is also set 
up. This approximate distribution is reconstructed or updated periodically so that 
it adapts to actual situations. The speed of getting this process established can be 
accelerated by having an initial approximation for the Packet Delay Distribution, 
perhaps based on recent observations. 
 
The most basic and important job of the Concord algorithm is to determine the 
minimum buffer size at receivers so that the network jitter is smoothed out and 
the requirements of the maximum adaptive delay smlp  and the maximum late 
packet smad  are satisfied. In other words, it is necessary to find the minimum 
buffer size sbs  which satisfies the following conditions: 
 

•  For every packet i: s
i

s
i bdnd + is a value of sted , where sted  is the total 

end-to-end delay, s
ind is the network delay suffered by packet i, and i

sbd  is 
the induced buffer delay for i. 

 
•  The chosen sted  is less than the smad of the stream 

 
•  The chosen sted  does not lead to more than smlp percent of packets being 

thrown away 
 
Figure 16 shows an example of calculating total end-to-end delays form the PDD. 
With this example, it is easy to recognize that if a packet has a delay higher than 
ted, it will be declared as late. From this property, the amount of late packets will 
be (1-Cdf(ted)), where Cdf is the cumulative distribution function on the Packet-
Delay Distribution. The behavior of the Concord algorithm is analysed by 
choosing a value of ted so that either mlp or ted is minimized (best visualized by 
moving the ted line in Figure 16 to the right or left, respectively). 
 
Concord chooses the value for ted by using available information on delay 
probabilities such that the required conditions for mlp and mad parameters, which 
are supplied by application are satisfied. In this section the dynamic mode of the 
operation of Concord is analysed under the condition that the value of ted is re-
updated from time to time. Basically, this algorithm demands receivers to 
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construct and maintain a historical record of observed nd (network delay) values 
in the form of a measured histogram. Over time, the quality of the algorithm is 
improved as this structure is set up. So obvious optimisation possibilities exist by  
initialising it appropriately - if reasonable information is available. The recorded 
historical information is used from time to time to revise the actual ted if 
necessary to reach the application QoS parameters.  
 
For controlling the dynamic behaviors of the Concord algorithm, two parameters 
are used. The first one is a threshold factor which decides when ted is 
recalculated.  The second controls relevance of the histogram data by aging its 
contents over time with the aim of more accurate behavior. The execution 
overhead can be reduced by choosing a threshold factor, which results in a 
smaller number of ted recalculations - but of course this may result in decreased 
effectiveness. 

 

Figure 16 PDD constructed by Concord algorithm 
 

4.5.2.2 Control of Statistical Historical Information 
 
In order to process statistical trends, several approaches based on observed 
measurements are investigated. Among these researches full aggregation is an 
example, whose data is recorded and accumulated into a probability distribution 
over a window time in which the algorithm is running. This type of processing 
statistical data gives same weights for recent information and old information in 
terms of their influence on the probability distribution. Hence this reason leads it 
to less adaptive to changes of systems. For overcoming this disadvantage of the 
full aggregation approach, the flush and refreshes method is created. This scheme 
stores statistical samples for a period of time, then flush and refresh them 
periodically. However, in this scheme the periodic flush results in a complete loss 
of historic information and can introduce boundary effects at the flush instances. 
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It is necessary to create an appropriate statistical scheme, which can anticipate 
future network delays by analysing historical and current information. This 
scheme must examine, maintain, register and rewrite the statistical bias of 
network delays. In Concord - by using a measured histogram in order to 
approximate the PDD function - network tendency is recorded and tracked. This 
histogram bins store frequency of delay patterns where bin width means the range 
of network delays grouped together to represent one pattern in the histogram. It is 
clear to recognize that the increase of bins leads to a decrease of the width of the 
bins. Because conditions of network change by time this historical information 
will also vary widely and the current information is very important for the 
Concord algorithm to be successful. Thus, it demands an update and operation for 
each bins in order to reduce effects of older information. This activity of the 
Concord algorithm is called aging, which is described in the next section.  
 
To allow accurate precise delay estimation, the aging operation ages the older 
samples gradually. In other words, the older information is not discarded but 
gradually retired. The balance between bin width and accuracy is then discussed 
in a subsequent section. 
 

4.5.2.3 Aging Function 
 
This function contributes a very important part to the success of the Concord 
algorithm. For this function, it is necessary to have a frequency called aging 
frequency, which is set up by users or applications in order to determine how 
often the aging function should be called. If users and applications set it at high 
frequency that means that data is updated in short time scale and the system is 
able to react quickly to changes - otherwise the reaction to changes is very slow. 
 
Several approaches exist for the implementation of aging functions. A simple 
method could discard all data prior to a certain threshold, which is a moving 
window of fixed size to the current time. In addition this threshold could be based 
on time or on a packet count. This solution maintains better history information 
than the flush and refresh method, and hence it contains a high overhead. Such 
methods are very difficult to implement because it requires complete data to be 
kept rather than statistical approximation. Furthermore as addressed before this 
approach does not discard the older data entirely but reduces its effect on the 
statistical distribution gradually by periodically scaling down the existing 
distribution by an aging coefficient. This aging coefficient is determined by a user 
or an application while continuing to add new sample data with a constant weight. 
This decreases progressively the influence of the older samples and gives the 
newer ones larger effect.  
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The Concord algorithm uses aging coefficients provided by users or applications 
as a corresponding aging factor. This factor can be interpreted as a mathematical 
quantity used in order to scale the PDD histograms. Depending on how to 
translate this factor, there are three different algorithms, which are described later. 
The value of aging coefficient is chosen as a number between 0 and 1, which is 
determined by application and is used to diminish the effect of older statistical 
date. The aging factor is defined as a scaling factor used by Concord to scale 
down the value of each bin in histogram. 
 
The aging function could be calculated based on a number of packets received. 
One example is applying aging to every packet arrival, while another one could 
age the statistical data every 1000 packets and increment the bin corresponding to 
each packet’s delay by one whenever a packet arrives. 
 
There are three aging algorithms, which are described next. Algorithm 1 is the 
basic method while algorithm 2 is the improved version of algorithm 1 and 
algorithm 3 is a variant of algorithm 2. 
 
Algorithm 1:This algorithm defines aging factor as: 
 

     F=c        
 
Where c is the aging coefficient, and F is the aging factor.  
 
As described in the previous section, aging factor is a real value, and this value is 
used to scale down each bin while aging coefficient is provided by users or 
applications, which are identical in this algorithm. However, this relation will not 
be the same in algorithm 2 and 3.  
 
In this approach, the total count is readjusted by the aging coefficient. Then the 
algorithm extends the bin corresponding to new packet’s delay by one. After 
aging, all subsequent packets to arrive cause the corresponding bin to be 
incremented by one until aging happens again.  
 
Suppose that )(xH i is the function of the histogram after the ith aging and nd is 
the network delay of new packet. The following relation is received: 
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The ratio of old aged data to the newly arrived packet is defined as 1r : 
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The ratio of old aged data to the newly arrived packet is defined as 2r : 
 

∫
∞
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f
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where f is the aging frequency in packet spacing. Let )(xPi  be the Packet Delay 
Distribution function after the ith aging, hence: 
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where ∫
∞

=
0

ˆ)ˆ( xdxHS i  

 
For implementing, the continual function )(∫  could be calculated by a discrete 
function )(∑ . In addition, y can be limited to the upper and lower bounds of 
network delay, which can be rewritten whenever every packets come in. )(xH i  is 
a function of the actual number of packets in the histogram. )(xPi  normalizes 

)(xH i so that 1)(
0

=∫
∞

dxxPi . The following conditions must be satisfied by mlp: 
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In this condition, t is the chosen ted (Figure 16). 1c and 2c  now are called two 
different aging coefficients. If mlp value is set the same for both of them, the 
following relation could be received when nd<t in equation (4.8): 
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Suppose that 021 >> cc , this relation is: 



 
 
82

  

   ∫ ∫
∞ ∞

−− <
1 2

)()( 11t t ii dxxHdxxH            (4.9) 

 
In contrast, for the case where tnd ≥ , this equation is obtained: 
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Because 021 >> cc , the result of equation (4.9) can be derived for this case also. 
Thus, it is easy to conclude that 21 tt > when 21 cc >  from equation (4.9). This 
means decreasing aging coefficient decrease the value of ted. 
 
In this algorithm, the bin values are delayed or scaled down by the aging 
coefficient when aging happens. When the number of samples increases then the 
corresponding bin value also increases, the packet arriving after aging plays a less 
important roll to the histogram in comparison the old gagged data in histogram, 
which have just been scaled down (see equation 4.6).  
 
I.e. if the total of histogram bin values is 10 this is scaled down by 0.9 after aging. 
The new packet then contributes one the histogram. The ratio of the old aged data 
to the newly arrived packet is 9. After some time, the sum of the bins in histogram 
may be 10000. After aging by 0.9, the ratio of the old aged data to the newly 
arrived packet is 9000, which is different with the previous ones. This can be seen 
in equation (4.6) that 1r  is changing based on the value of old aged data in 
histogram. 
 
Algorithm 2: The idea of this algorithm is to maintain a constant ratio of old aged 
data to the newly arrived packet through the time of synchronization stream. 
When aging happens, the next packet will contribute one to the histogram, but the 
old statistical data prior to aging are scaled down by the following factor: 
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       (4.10) 

 
By scaling down the old bins by equation (4.10), the ratio of old aged data to the 
newly added bin is always constant, which is represented by: 
 

c
cr
−

=
11  

 
That is why at each aging the ratio of old aged data to the new arrival’s bin is not 
dependent on the lifetime of the stream. Each arriving packet has the same 
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weight, which is (1-c) to the new statistical data. The old aged data has also the 
same weight c.  
 
This algorithm has an advantage, because data may still be up-to-date and can 
react quickly to the changes of the system. The ratio of old aged data to 
subsequent packets until the next aging is: 
 

)1(2 cf
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Following the same deviation from equations (4.5), (4.7) and (4.8), I obtain the 
following relation: 
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Thus, for the case nd<t, the same result in equation (4.9) could be received. A 
similar procedure can be used to derive an identical result for the case of tnd ≥ . 
Hence I come to the same conclusion in the aging Algorithm 1 that 21 tt >  when 

21 cc >  can be obtained. 
 
Algorithm 3: Algorithm 1 calculates the aging coefficient without considering 
the ratio of old aged data to a new packet. Algorithm 2 scales down each bin by 
the factor described in the previous section (Equation (4.10)), which keeps the 
ratio 1r  constant. This ratio, in its turns, does not consider the aging frequency. 
 
The third algorithm modifies Equation (4.10) in previous section as follows: 
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In this equation, f is the aging frequency in packet spacing. Even if the aging 
frequency changes dynamically, the ratio of old aged data to the subsequent 
packets until next aging is constant, by scaling down the bin value by this 
equation (4.11). The aging could be done every f packets. The goal of Algorithm 
3 is to maintain the same weight to the new statistical data for the sum of all 
subsequent packets. The ratio of old aged data to subsequent arrived packets is 
defined as:  
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However, the ratio of old aged data to a new packet depends on the aging 
frequency: 
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The following equation can be obtained: 
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When if  is fixed, 21 tt > , if 21 cc > . Similarly, 21 tt > if 21 ff > when c is fixed. 
This indicates that more frequent aging allows a smaller value of ted. 
 
The three aging methods are different from each other only in the way of aging 
which happens with different frequencies. For example in case all of them do 
aging in 100 packets: in the arrival of 100th packet, they age the histogram by 
scaling down each bin with different factors. For the intervening packets between 
the two successive agings the corresponding bin in the histogram is increased by 
one for each packet. Algorithm 3 takes frequency (100 in this example) into 
account for the factor but Algorithms 1 and 2 do not. The next section discusses 
histogram bin width, which is strongly related to the accuracy of histogram data. 
 
Bin Width of Histogram: As described in previous section, bin width is defined 
as the range of network delay grouped together to represent one pattern in 
histogram, and is connected directly to the accuracy of data stored. The value of 
bin width could be set to 10 milliseconds. Another value of bin width 205 
milliseconds can be chosen to represent the network delay in the range of 200-209 
milliseconds.  
 
If the bin is narrow then the accuracy will be better for the case of wider bins. 
Anyway, when the width of the bins is narrower then the required number of bins 
will also be increased. In the previous section, the number of bins may range from 
0 to ∞  depending on the network delay. Under congestion condition the network 
delays fluctuate widely thus it is necessary to reduce the number of bins. For 
reducing the number of bins and increasing the bin width each packet delay being 
stored to the histogram is calculated as follows: 
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In this equation nd is the network delay w is the bin width, and b is the 
corresponding bin in histogram. The function in the above question is floor 
function. This is the reason why network delay stay in w range, it is represented 
by only one bin. It is still necessary to recalculate the network delay, after storing 
the network delay of the packet to the corresponding bin: 
 






 −=
2

* wwbnd        (4.12) 

 
Equation (4.12) takes the mean value of this range to represent the network delay 
for this bin. One can also choose the maximum or minimum value that is (b*w-1) 
and [(b-1)*w], respectively. Another alternative is to calculate the real mean 
value of delay in this range. This approach however requires additional overhead 
and memory to keep track and store the mean value of delay for each bin. This 
may not be suitable since an aim of wide bins is to reduce the memory needs. 
 
Concord has a disadvantage, namely multiple successive packets can be 
discarded. These burst loss quantities were not significant as shown in the current 
results. In this section, Concord algorithm for synchronizing networked-
multimedia streams is described. Concord is notable because it defines a solution 
for synchronization, which operates under the direct influence of application-
supplied parameters for QoS control. In particular these parameters are used to 
facilitate a trade-off between the packet lateness rates, total end-to-end delay and 
skew. Thus an application can directly indicate an acceptable lost packet rate, 
rather than by having the synchronization mechanism operate by always trying to 
minimize losses due to lateness. 
 

%  of
Packets

Network Delay

ted

1-Cdf(ted)

 
 

Figure 17  Concord algorithm 
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Chapter 5 Proportional Jitter Differentiation Model  
(PJDM) 

 
 
The subject of this chapter is the queuing-jitter differentiations. After analysing 
the PDDM model in the previous chapter, I propose a new architecture, which is 
called Proportional Jitter Differentiation Model (PJDM), as a means for 
controllable and predictable jitter differentiation. I then discuss some properties of 
this model. 
 
Subsequently, I focus on the methods of the performance evaluation. Two 
methods to analyse and compare different scheduling algorithms (as RJPS, PAJ, 
Adaptive-RJPS and Adaptive-PAJ that are described in the Chapter 6) in different 
models (PDDM and PJDM), two methods are proposed. The first one is for 
comparing the quality of my scheduling algorithms within only one hop and the 
other is for comparing the performance of PDDM and PJDM in a multi-hop 
network. 
 
 The content of this chapter is based on my work published in [Ngo3, Ngo4] 
 

5.1 Proportional Jitter Differentiation Model (PJDM) 
 
The PJDM aims to control the ratio of average jitter between classes based on the 
Jitter Differentiation Parameters (JDPs). Specifically, let ij be the average 
queuing delay jitter, or simply the average jitter over time window (t, t+τ). The 
PJDM model requires that the ratio of average jitter between two classes i and j is 
fixed to the inverse ratio of the corresponding JDPs: 
 

i

j

j

i

ttj
ttj
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          (5.1) 

 
where parameters }{ i∆  are the Jitter Differentiation Parameters (JDPs) and 

),( τ+ttji  is the average queuing delay jitter of class i’ s packets over time 
window (t, t+τ). In this model, I say that class i is better than class j if ji ∆>∆ , or 
the Jitter Differentiation Parameter of one class can be called the weight of this 
class.  
 
In detail, I can write: the Relative Proportional Differentiated Services Model for 
jitter is characterized by the following (N-1) equations: 
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      2211 ),(),( ∆+=∆+ ττ ttjttj  
     3322 ),(),( ∆+=∆+ ττ ttjttj                                      (5.2) 

.... 
NNNN ttjttj ∆+=∆+ −− ),(),( 11 ττ  

 
Leaving the problem of delay and jitter measure for further studies, I assume that 
jitter of one packet in a queue is the difference of queuing delay of this packet and 
the preceding packet in this class (this definition is based on the standards of IP 
performance metrics working group of IETF) 
 

   1−−= k
i

k
i

k
i ddj           (5.3) 

 
Where k

id  is the queuing delay of packet number k of class i  and k
ij  is the jitter 

of this packet.  
 

5.2 Some Properties  
 
I consider a packet scheduler that services N queues, one for each class.  
 
Property 1: For a non-work-conserving scheduler, it is possible to set the delay 
spacing between classes to arbitrary levels, so that the delays of each class stays 
proportional with each other. On the other hand - when the delay of each packet 
of each class is proportional to the other classes then its delay difference or jitter 
also becomes proportional. That means intuitively it is always possible to realise a 
non-work-conserving proportional jitter scheduler. 
 
Definition 1: I say that a set of JDPs is feasible if there exists a work-conserving 
scheduler that can set the average jitter of each class as in equation (5.1). So the 
set of JDPs is feasible when the set of class jitters is feasible. Some examples of 
feasible sets of  JDPS can be found in the Chapter 6 by simulations. 
 
Definition 2: An ideal proportional delay scheduler is a scheduler, which 
produces delay proportionally for each packet of all the classes. See equation 
(3.2). 
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Where k

id  is the queuing delay of packet number k of class i . 
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Property 2: An ideal proportional delay scheduler, which produces proportional 
delay for each packet is a proportional jitter scheduler with the Differentiation 

Parameters defined as 
i

i δ
1=∆ . 

 

For the packet number k, I have: 
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And for the packet number k+1, I have  
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From these equations, I have: 
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Note that for the PJDM model Jitter Differentiation Parameters i∆  are the 
importance or weight of class i, while for the PDDM model the importance or 
weight of each class is defined as 

iδ
1 . 

 
Property 3: Delay accumulates, jitter, however, does not. 
 
It is easy to see that delay has accumulated property. That means that the delay of 
a class or flow through a network is the sum of the queuing delays at each router 
and the propagation time, which is considered small compared to the queuing 
delays. In addition, we assume that we cannot have any type of signaling in the 
proportional Diffserv model in order to carry control information for realising 
proportional delay at only egress router. Hence there is a need to implement 
proportional delay scheduling algorithms at every router in a network based on 
PDDM model for receiving proportional delay between different classes.  
 
However, in the case of the existence of proportional delay scheduling schemes at 
every router, each packet transfers through network along different paths. 
Furthermore, each path can contain different hops numbers. In addition, it is 
important to recall that the local delays of each class at each hop is proportional 
with the delays of the other classes, and the network delay of each class is the sum 
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of local delays of all the hops that the path contains. When each path of each 
packet can contain different numbers of hops, the sums of local delays (or 
network delay) will not stay proportional with each other any more. That means 
the network delay of each class become unproportional with each other.  
 
 That is why the proportional property of queuing delay is just maintained for 
only one local hop, but the sum of queuing delay of one class does not stay 
proportional with other classes any more. In other words, such networks can not 
guarantee the proportional property of delay between different classes. 
 
Jitter however is not accumulated and if there is proportional jitter scheduling 
mechanism at every router in the network, the jitter of each class after the egress 
router is not the sum of the jitter of each router produced within the network. 
Intuitively, the more the routers with proportional jitter scheduling algorithm are 
near the side of receiver end, the more strongly it will influence the playout delay 
adjustment algorithm implemented at receiver.  
 
Finally, I believe that only work-conserving forwarding mechanism will be used 
in practice, because of the competition for the best possible service between 
service providers; this is mainly a non-technical issue however. Furthermore, for a 
non-work conserving scheduler, it is possible to set the jitter spacing between 
classes to arbitrary levels. For this reason, from now on  I will only focus on the 
algorithms that belong to work-conserving type. 
 

5.3 Methodology 
 
Before going to the new scheduling algorithms in detail, it is necessary to 
establish the method for performance evaluation and comparison. At the 
beginning I focus on the method of evaluating the schedulers within only a single 
hop and then on the method of performance comparison of PJDM and PDDM 
models in multi-hop networks. 
 

5.3.1 Method for Performance Evaluation of Schedulers within 
Single Hop 

 
In this section, the methodology used to analyse and compare the behaviors of my 
new schedulers within only one hop is presented. It comprises performance 
criterion, network topology, simulation tool and traffic model. 
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5.3.1.1 Performance Criteria 
 
All of my algorithms aim to produce proportional jitter between different classes. 
Hence in order to evaluate and compare these schemes, I need to use jitter ratio as 
the main performance criterion. A critical issue is not only to exam whether these 
schedulers can approximate long-term jitter ratio (calculated from the beginning 
of the simulation) but also short-term jitter (calculated over a moving window). 
Another important performance criterion is the average delay of each class 
produced by each algorithm. 
 

5.3.1.2 Network Topology, Simulation tool and Traffic Model 
 
In this section, I use only a simple network topology that is shown in the 
following Figure 18. The links are all 6 Mbps with a latency of 10 ms. The classes 
are numbered from 0 to 1 and 2. Each class contains some flows that are 
described more concretely in each simulation. Each flow is characterized by a 
sender Si and a receiver Di. My new algorithms are implemented at Router R1, 
while the FIFO scheme is used at the second router R2. I run and collect my 
simulation in 100 seconds. 
 
In addition, I employ the Network Simulator ns-2 [NS2]. The traffic that is 
appropriate for voice sources can be well modeled by on/off sources. In the 
simulator, packets arrive in an on/off pattern. This type of traffic has different 
parameters, such as: rate, on-time and off-time. The talkspurt length (on period) 
and the gap length (off period) of speech signal is exponentially distributed. 
During the on-time, packets are generated with this predefined rate.  The transport 
protocol used is UDP protocol. The FIFO scheduling is placed at the end The 
details of traffic model is described concretely in each simulation. 

Si

S2 R 1
(R JPS,
PA J, A -
R JPS or
A -PA J )

R 1
(R JPS,
PA J, A -
R JPS or
A -PA J )

Si Source of flow   i D i Receiver of flow   i
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FIFO

D 2

S1 D 1

D i

.
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.
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.

 
Figure 18 Network topology 
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In my simulation, I will set all the parameters so that the load in the links achieve 
high condition (approximately from 80 to 100%). This is based on the reason that 
the proportional jitter schedulers work only stable when there are enough packets 
in the queue. With light load, the packets should be scheduled immediately, the 
queuing delay stays small, jitter stays small, too, and no jitter differentiation is 
probably needed.  
 
The average size of packet for UDP traffic is set based on the measurement in 
[Mc00]. 
 

5.3.2 Method for Performance Evaluation and Comparison of 
PJDM and PDDM  

 
After analysing and comparing the quality of my new mechanisms within only 
one hop, it is also important to examine their performance in multi-hop networks 
based on PJDM and to compare with performance of networks based on PDDM. 
For this issue, I presents the necessary network topology, performance criteria in 
the following.  

5.3.2.1 Network Topologies 
 
It is necessary to explain the notion of networks based on PJDM and PDDM 
models. The networks, which uses only proportional delay scheduling scheme (as 
WTP) in their routers, are called based on PDDM. The networks using only 
proportional jitter scheduling algorithms (as RJPS, PAJ, Adaptive-RJPS and 
Adaptive-PAJ) are called based on PJDM.   
 
Before going to simulative results, it is necessary to create some concrete 
conditions for the context of my experiments, especially the required elements for 
my system. 
 
To simulate, there is a need to choose a precise system. It is noteworthy to say 
that my system contains the following elements (Figure 19): 
 

•  Sender 
•  Network based on the PJDM or PDDM model 
•  Playout buffer controlled by Concord, as playout buffer delay adjustment 

algorithm 
•  Receiver 
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Sender
Network (based

on PJDM or
PDDM models)

Playout Buffer
(Concord
algorithm)

Receiver

 
 

Figure 19 Network elements 
 
In order to create appropriate topologies, it is now necessary to repeat some 
arguments described already in Chapter 4: 
 

•  Delay has accumulated property. That means the delay of a class or flow 
through a network is the sum of the queuing delays at each router and the 
propagation time, which is considered small compared to the queuing 
delays in case of congestion. Hence there is a need to implement 
proportional delay scheduling algorithms at every router in a PDDM 
model for receiving proportional delay between different classes. 
However, in the case of the existence of proportional delay scheduling 
schemes at every router, each packet can transfer through network along 
different paths that can contain different hops numbers. That is why the 
proportional property of queuing delay is just maintained for only one 
local hop, but the sum of queuing delay of one class does not stay 
proportional any more. In other words, such networks can not guarantee 
the proportional property of delay between different classes. 

 
•  Jitter, however, is not accumulated and if there is proportional jitter 

scheduling mechanism at every router in the network, the jitter of each 
class after the egress router is not the sum of the jitter of each router 
produced within the network. Furthermore, the more the routers with 
proportional jitter scheduling algorithm are near the side of receiver end, 
the more strongly it will influence the playout delay adjustment algorithm.  

 
These two reasons lead me to an interesting idea: to implement proportional jitter 
scheduling schemes at different positions of networks (core or egress routers) in 
order to examine the influence of the proportional jitter schedulers of the PJDM 
model at the receiver end. In addition, it is also interesting to compare the 
performance of such topologies based on PJDM model with similar topologies 
based on PDDM model (WTP).  
 
Independent of implementing the model of Relative Proportional Differentiated 
Services considering delay(PDDM) or jitter (PJDM), the objective of these 
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models is to improve end-to-end quality of service, or end-to-end delay. In other 
words, the model that produces smaller end-to-end delay is better. 
 
In the rest of my thesis, I am just interested in network approaches, which contain 
either proportional jitter or delay schedulers at all the router or only at the egress 
router. These reasons lead us to create two approaches for each PJDM or PDDM 
models, as shown in Figure 20, 21, 22, 23. 
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Router
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Router
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Figure 20 Network based on the PDDM model, type 1 

 

Network based
on the PDDM model

Ingress
Router

Egress
Router

FIFO

FIFO
FIFO

Proportional
Delay

Scheduling
Algorithm (as

WTP)
 

 
 

Figure 21 Network based on the PDDM model, type 2 
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With the PDDM model, the first type contains proportional delay schedulers at 
every router of its network (Figure 20). The second type (Figure 21) contains only 
proportional router scheduling scheme at the egress router. 
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Figure 22 Network based on the PJDM model, type 1 
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Figure 23 Network based on the PJDM model, type 2 
 
Similarly to the PDDM model, there are also two types for the PJDM. The first 
type contains proportional scheduling algorithms at every router of its network 
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(Figure 22). The second type contains only proportional scheduling algorithm at 
the egress router (Figure 23). 
 
Starting from this network types, I receive a total of 10 Network Topologies 
(Figure 24) by replacing proportional delay mechanisms by WTP and 
proportional jitter schemes by RJPS, PAJ, Adaptive-RJPS or Adaptive-PAJ. The 
two first ones are based on the PDDM model, and contain WTP at every router or 
only at the egress router. The others are based on the PJDM model, and contain 
RJPS, PAJ, Adaptive-RJPS or Adaptive-PAJ at every router of the network or 
only at the egress router.  
 
These configurations are illustrated in the Figure 24: 
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Figure 24 Different network topologies en details 
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There are 10 network configurations, which are illustrated in Figure 24. The two 
first ones are network topologies based on the PDDM model, because they use  
proportional delay scheduling algorithm WTP. In contrast, the other topologies 
are based on the PJDM model, because of the use proportional jitter scheduling 
algorithms as RJPS, PAJ, Adaptive-RJPS and Adaptive-PAJ in its routers.  
 
On the other side, these network topologies differ from the use of proportional 
delay or proportional jitter scheduling algorithms at all routers or only at the 
egress network. Network Topologies numbered 1, 3, 5, 7 or 9 use this scheduling 
algorithm at all the positions of the networks, but Network Topologies numbered 
2, 4, 6, 8 or 10 use this scheduling algorithms only at the egress routers.  
 

5.3.2.2 Performance Criteria 
 
In a multi-hop network based on PJDM model, it is important to examine the 
jitter ratio between different classes. In addition, independent of implementing 
the model of PJDM or PDDM in the networks, the application users want to 
receive better end-to-end quality of service. The most important end-to-end 
quality of service is end-to-end delay. Hence I intend to examine also end-to-end 
delay as performance metric in order to compare the quality of different networks 
based on PDDM or PJDM. End-to-end delay can be considered as the sum of 
network delay and playout buffer delay 
 
Suppose that the routers in my experiments use proportional delay scheduling 
scheme (as WTP) or proportional jitter scheduling mechanisms (as RJPS, PAJ, 
Adaptive-RJPS or Adaptive-PAJ) in order to schedule packets proportionally 
between different classes. There are a total of N classes.  Each class i (i is from 1 
to N) has a weight i∆ .  For the PDDM model, this weight is the inverse ratio of 
the Delay Differentiation Parameter, while for the PJDM model this weight 
relates directly to the Jitter Differentiation Parameter. Through my network, each 
packet numbered n of class i suffers a network delay ninetworkD ,, . 

 
At receiver, I use Concord mechanism as playout adaptation in order to smooth 
the jitter produced by the network. The packet numbered n in class i is buffered, 
and its playout buffer delay is called niferPlayoutbufD ,, . niferPlayoutbufD ,,  depends on 

delay variation )(, tJ inetwork , loss rate iL  and window w (The PDD distribution 
defined by Concord algorithm is calculated over this window).  
 

niferPlayoutbufD ,, = )),(,( ,
i

inetworkferPlayoutbuf
PDD LtJwf  
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The end-to-end delay of this packet is calculated as the sum of network delay and 
playout buffer delay: 

 
TED= niendtoend

iD ,, = 
ninetworkD ,, + niferPlayoutbufD ,, = ninetworkD ,, + )),(,( ,

i
inetworkferPlayoutbuf

PDD LtJwf  

 
 
Finally, in order to estimate the average end-to-end delay of one class, I average 
the end-to-end delay of n packets belong to this class: 
 

n

D
D n

niendtoend

iendtoend
∑

=

,,

,  

Let me suppose that I have N classes. Each class has a weight of i∆ , and network 

topology numbered j produces ),...,,(
1,1,0, −Nendtoend

NTj
endtoend
NTj

endtoend
NTj DDD  end-to-end 

delays for N classes when the loss rate is L%. Under the same conditions (the 
same load, the same loss rate, the same load distribution between different 
classes), Network configuration numbered k produces 

),...,,(
1,1,0, −Nendtoend

NTk
endtoend
NTk

endtoend
NTk DDD  end-to-end delay for these N classes.  

 
The problem of comparing two network topologies numbered k or j, in terms of 
end-to-end delay, is now explained as the comparison of two sets of end-to-end 
delays of N classes, produced by these two topologies 

),...,,(
1,1,0, −Nendtoend

NTj
endtoend
NTj

endtoend
NTj DDD  and ),...,,(

1,1,0, −Nendtoend
NTk

endtoend
NTk

endtoend
NTk DDD .  

 
I believe that the question of comparing these two sets of end-to-end delays of 
any two network configurations is complicated because it depends on cost 
structures and on weight of each class. One possibility is to introduce a cost for 
each byte in one class, and to compare the gain I receive. An alternative is to 
introduce profit for decreasing the delay in the higher class and a loss for 
decreasing the delay in the lower class. 
 
In order to resolve this problem, I propose a simple criterion, which is based on 
the set of end-to-end delays of N classes and on the weights of each class. It is 
described as follows: 
 
Let me suppose that each class has its own weight that describes its importance 
level. For example, if Class 1 has a weight of 1 and Class 2 has a weight of 2, that 
means Class 2 is as twice important as Class 1. This observation leads me to the 
normalization of end-to-end delay of each class with its weight. In other words, 
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the normalized end-to-end delay of one class is the product of its end-to-end delay 
and its weight. Furthermore, the topology, which produces a smaller sum of all 
these normalized end-to-end delays than the other topologies, has better end-to-
end quality of service, or better performance.  
 
Briefly, in order to compare the performance of different network topologies I use 
the sum of all normalized end-to-end delays produced by this topology as 
comparison criterion. This performance criterion (called normalized end-to-end 
delay) of one topology is formally described by the following equation: 
 

∑
∑

=

=
∆

∆
= N

i N

i i

i
iendtoend

NTk
k

DP
1

1

,
*

 

 
where kP  is the normalized end-to-end delay of Network Topology numbered k. 
And I say that a Network Topology is better, whose normalized end-to-end delay 
is smaller. 
  
I decide to choose normalized end-to-end delay as the first performance criterion 
for comparison because end-to-end delay is considered more important than jitter, 
specially for interactive applications as voice. The reason of this assumption is 
that small delay with high long-term jitter is better than high but stable delay, 
because intractive applications such as voice is only sensitive with short-term 
jitter and can tolerate long-term jitter. 
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Chapter 6 New Scheduling Algorithms and 
Performance Evaluation of PJDM and PDDM 
models 

 
Starting from the PJDM model, I design some proportional jitter differentiation 
scheduling mechanisms. 
 
Originally, there are two schemes, which are proposed in this work: Relative Jitter 
Packet Scheduling (RJPS) and Proportional Average Jitter algorithms (PAJ).  
 
Subsequently, I describe new adaptive Jitter Differentiation Parameters that are 
changeable in these schemes. The performance of RJPS and PAJ using these 
variable parameters are also compared with its original mechanisms, based on the 
methodology described in Chapter 5. The two new mechanisms are called 
Adaptive-RJPS and Adaptive-PAJ. 
 
I then focus on the evaluation and comparison of performance of PJDM and 
PDDM model. Finally, I propose a combination of PJDM and PDDM models in 
order to overcome their disadvantages. 
 
The content of this chapter is based on my work published in [Ngo1, Ngo2, 
Ngo3]. 
 

6.1 Relative Jitter Packet Scheduling Algorithm (RJPS) 
 
In this section, RJPS algorithm with its behaviors under different contexts is 
described. 
 

6.1.1 Algorithm Description 
 
Suppose that each router has a prespecified number of jitter classes N. Each jitter 
class is served by a single first-in-first-out (FIFO) packet queue (Figure 25). 
Packets of a flow belonging to a jitter class i are queued in the corresponding 
queue in each router that the flow passes through. All flows with the same jitter 
class specification share the same FIFO queue at the router. The goal of my 
scheduling algorithm is to serve the packets such that the short-term average jitter 
and long-term average jitter experienced by packets in jitter class satisfy equation 
(5.1) for all pairs of  i and  j. In other words, queues of different classes are served 
such that the average jitter experienced by packets in a class is inversely 
proportional to the jitter weight of the class.  
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Class 1

Class 2

Class N

RJPS
Scheduler

RJPS
Scheduler

Packets in Packets out

 
 

Figure 25 RJPS scheduler 
 
This above observation is illustrated by the equation: 0)()( →∆−∆ jjii tjtj . A 
simple heuristic to achieve this is to serve the class with the maximum value of 

ii tj ∆)(  at any time t. Because the Jitter Differentiation Parameters are all known 
before, now the question is: how to evaluate the average jitter of each class? In 
the following, I will present the way that average jitter of each class is evaluated. 
 
Note that for the class i, at any time t, there are packets that have been served and 
there are packets that are still in the queue. For the packets that have been served, 
their queueing delays, and thus, their jitters are determined. In addition, the 
queueing delays, and the jitters of packets that are still in the queue are  unknown. 
In order to evaluate average jitter of each class, I will try to evaluate the jitters of 
the packets that are still in the queue. 
 
Assuming that: in class i at time t, for each packet number k I know the arrival 
time k

it , the starting time of transmission k
iT and the transmission time k

iTS . 
 

•  For all packets that have already been served, I call )(* tji  the aggregate 
jitter experienced by all packets that have been served in the queue i at 
time t. This value is already determined, because all packets were served, 
and thus the queuing delays of these packets are already determined, too. 

 

∑∑ ∑ =
−−

=
− −−−=−=−−−= )(

1
11)(

1
1* )()()( ts

k
k
i

k
i

k
i

k
i

k

ts

k
k
i

k
ii

ii tTtTddpacketeachofjittertj
 

 
Where k

id  is the queuing delay of packet number k in class i, )(tsi  is the number 
of packets served from jitter class i till time t. 
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•  For all packets that are now queued in, I call )(min tji  minimum jitter for all 
packets that have already arrived. Assuming that no other packet arrives 
for this class i in the future, this value can be calculated as: 

 

∑
+

+=
−−−= )()(

1)(
1min )()( tqts

tsk
k
i

k
i

k
ii

ii

i
ttTStj        (6.1) 

 
Where k

iTS  is the transmission time of packet number k in the queue i, )(tqi  is 
the number of packets that are now queued in this class. This formula is illustrated 
in Figure 26. 
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Figure 26 Packets in the class 

 
Following this example, the packets number 1 and 2 of this class have already 
been served and their queuing delays are determined. In this class there are still 
packets number 3, 4, 5 that should be scheduled (I have here 2)( =tsi  and 

3)( =tqi ). Recall that jitter of one packet in a queue is the difference of queuing 
delay of this packet and the previous packet in this class: 
 

1−−= k
i

k
i

k
i ddj

 
 
Because of a work-conserving scheduler, packets numbered 3, 4, 5 achieve 
minimum jitter )(min tji  when all theses packets 3, 4, 5 are transmitted back-to-
back in order to assure minimum assumed queering delays. That means: 
 

∑ =
−−= 5

3
1min )(

k
k
i

k
ii ddtj
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If all packets 3, 4, 5 are transmitted back-to-back. 
 
In Figure 26, I can rewrite: 
 

)()()( 1111 −−−− −−=−−−=− k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i ttTStTtTdd

 
 
That means I can have: 
 

∑
+

+=
−−−= )()(

1)(
1min )()( tqts

tsk
k
i

k
i

k
ii

ii

i
ttTStj

 
 
I can evaluate the value of average jitter )(tji for all the packets in class i at time t 
as: 
 

)()(
)()()(

min*

tqts
tjtjtj

ii

ii
i +

+
≥

 
 

And 
)()(

)()()(
min*

min

tqts
tjtjtj

ii

ii
i +

+
=  

 
In my scheduler, I set the priority of the Head of Line packet in class i at time t to: 
 

 iii tjtp ∆= )()( min          (6.2) 
 
Recall that the goal of my scheduler is to serve the packets such that the short-
term average jitter and long-term average jitter experienced by packets in a jitter 
class satisfy Equation (5.1) for all pairs of i and j. A simple heuristic to achieve 
this equation is to serve the jitter class with the maximum value of )(tpi at any 
time t. In other words, the router selects the HOL packet of class i for which its 
priority is a maximum among all backlogged classes. 
 
Using this priority structure, after a time t, every class’s jitter converges to the 
value: 
 

NNi jjj ∆==∆=∆ ...221   
 
That means the average jitter for each class is proportional to its weights, 
satisfying equation (5.1). 
 
From equation (6.2) I have: 
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         (6.3) 

 
It is necessary to note that I should maintain a window of packets in order to 
address the inaccuracies caused by non-backlogged queues and accumulated 
history because when I do not maintain this window, as the number of packets 
that are served increases, the current queue sizes start to have minimal impact on 
the service order. Note that I will also use this window for the purpose of 
evaluation of average short-term jitter ratio. In conclusion, the following remarks 
are implied from the above equation: 
 

•  The change in size of packets makes its transmission time k
iTS , and 

hence, the priority of HOL packet calculated in (6.3.), vary quickly, too. 
That means the packet sizes is an influence factor on the algorithm. 

 
•  Link utilization plays an important role for the behavior of RJPS 

scheduler. If there are not enough packets in backlogged classes, the 
average jitter calculated in (6.3.) is based only on the history situation of 
the system and cannot response quickly to the changes of current load 
conditions. In other words, if the link utilization is high, it is easier to 
achieve proportional jitter between different classes than lower link 
utilization. 

 
•  The quality of RJPS scheduler decreases when the window’s size 

decreases, because the width of window determines how closely the 
average jitter value follows the short-term variation of jitter. The increase 
of window size improves the quality of RJPS in expense of 
implementation cost. 

 
•  The spaces between the weights of different classes have an influence on 

the calculation of this priority. That means when these spaces are high 
then it is difficult to realise the above equation, or to realise the PJDM 
model. 

 
Figure 27 describes the necessary operations of RJPS algorithm : 
 
 
 
 
 
 
 



 
 

 
CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE 

EVALUATION OF PJDM AND PDDM MODELS 

 
 

105

           Receive (packet) 
1 1+← ii qq ; 
2 queue in corresponding jitter class; 
 

Select_packet_to_transmit() 
3 })({maxarg

min
iii tjk ∆= ; 

4 transmit from jitter class k; 
5 1)()( −← tqtq ii ; 
6 1)()( +← tsts ii ; 
7 foreach jitter class i; 
8 )()()()( 11** k

i
k

i
k
i

k
iii tTtTtjtj −−−+← ++ ; 

9 )()()( 11minmin k
i

k
i

k
iii ttTStjtj −−+← ++ ; 

 
 

Figure 27 RJPS algorithm 

6.1.2 Simulations 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 28 Network topology 
 
The simulation model is as follows. The topology used is shown in Figure 28. The 
links are 6 Mbps with a latency of 10ms. There are a total of 3 classes 0, 1 and 2. 
Flow 1 from S1 to D1 (1.5 Mbps) and Flow 2 from S2 to D2 (2 Mbps) belong to 
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class 0, while Flow 3 from S3 to D3 (0.5 Mbps) and Flow 4 from S4 to D4 (0.5 
Mbps) belong to class 1 and Flow 5 from S5 to D5 (2 Mbps) belong to class 2.  
 
The objective of this simulation study is to evaluate the behavior of RJPS 
scheduler in terms of long-term and short-term jitter ratio. 
 

6.1.2.1 Behavior of RJPS with Constant Size of Packets and Heavy 
Load 

 
In this simulation, the jitter differentiation parameters of classes 0, 1, 2 are 
respectively 1; 1,5 and 3. The predefined jitter ratio between class 0 and class 2 is 
3 and between class 1 and 2 is 2. The window’s size is set to 200 packets and all 
packets have a size of 160 bytes (this moving window is used in order to evaluate 
the short term jitter). I intended to test the performance of RJPS in terms of 
average long-term jitter and average short-term jitter. The link utilization between 
the RJPS router and the FIFO router in this simulation is set to 100%. 
 
Average long-term jitter: shows that average long-term jitter ratio for 3 classes 
achieve the pre-defined ratio 3 and 2. This ratio is achieved after a time of 
fluctuation of 10 seconds. See Figure 29. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29 Variation of long-term jitter ratio with constant packet’s size and heavy 

load 
Average short-term jitter: Figure 30 shows that the short-term jitter ratio 
fluctuates strongly and can reach up to 45, although the predefined ratio is only 3 
and 2. I can say that my scheduler achieves poor quality with short-term jitter. 
One reason is that I evaluate short-term jitter over my window size of 200 packets 
only.  
 
 

___ class 0/2
(predef 3)

___ class 1/2
(predef 2)

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0

6,2
5

12
,5

18
,8 25 31
,3

37
,5

43
,7 50 56
,2

62
,5

68
,7 75 81
,3

87
,5

93
,8

Time (s)

Lo
ng

ter
mj

itte
rra

tio



 
 

 
CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE 

EVALUATION OF PJDM AND PDDM MODELS 

 
 

107

 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Figure 30 Variation of short-term jitter ratio with constant packet's size and heavy 
load 

Average delay: Clients are satisfied only if they received both better jitter and 
better delay. Hence, it is very important to examine the behavior of RJPS in term 
of delay because if my algorithm works well for proportional jitter, but a class 
with higher weight would receive higher delay, it is difficult to conclude that the 
class with higher weight is better than the class with lower weight. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 31 Average delay of different classes 

 
In this simulation, I evaluate average long-term delay for each class. Figure 31 
shows that delay of a class with higher weight is smaller than delay of a class with 
lower weights. 
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6.1.2.2 Behavior of RJPS Scheduler with Variation of Packet’s Size 
 

Long-term jitter ratio Short-term jitter ratio 
Class 2/ Class 0 
(predefined 0.5) 

Class 1/ Class 0 
(predefined 0.666) 

Class 2/ Class 0 
(predefined 0.5) 

Class 1/Class 0 
(predefined 0.666) 

Chan
ge of 
Pack
et 
Size 

Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max Min 

72 to 
256 

bytes 

0.49
96 

0.50
21 

0.49
8 

0.66
61 

0.676 0.65
79 

0.5331 2.5249 0.245 0.65 5.45
88 

0.1879 

72 to 
512 

bytes 

0.48
39 

0.77
31 

0.46
29 

0.66
69 

1.3032 0.65
43 

0.7384 6.979 0.228 0.82 1026
.4 

0.3557 
 

72 to 
1024 
bytes 

0.47
79 

0.50
13 

0.45
25 

0.66
52 

0.706 0.63
02 

0.6975 23.769 0.1689 0.77 49.5
43 

0.1432 

 
Table 4 Performance of the RJPS algorithm 

 
In this simulation the jitter differentiation parameters of classes 0, 1, 2 are 
respectively 1; 1,5; 2. The predefined ratio between class 2 and 0 is 0.5 and 
between class 1 and 0 is 0.667. Window size is 200 packets. 
 
The packet size plays an important role for the performance of my scheduler, as 
changing packet size makes the time of transmission of packets varying widely, 
and hence it makes the deviation of ∑

−−−=
k

k
i

k
i

k
ii ttTStj )()( 1min  between 

different classes larger. My proportional jitter ratio is difficult to achieve. 
 
My traffic is based on the study of packet size. With UDP traffic the size of 
packets varies around 157 bytes (See [Mc00]). When the size of packets varies, 
the ratio of short-term jitter varies widely. The results in Table 4 show that ratio 
of jitter when packets size varies from 72 to 256 bytes, 72 to 516 bytes and 72 to 
1024 bytes. 
 
Figure 32 and Figure 33 compare the average long-term jitter ratio and short-term 
jitter ratio between different classes. Results derived from theses experiments 
showed that in most cases, the performance of long-term jitter ratio of RJPS stays 
nearly constant. But when the packets with variable sizes come to my router, the 
ratio of short-term jitter fluctuates very strongly. The worst case is when packet 
size varies from 72 to 1024 bytes and the best case appears when packet size 
varies from 72 to 256 bytes. It is noteworthy that the short-term jitter ratio of my 
scheduler depends strongly on the variation of packet size, for example, this ratio 
can fluctuate between 0.1432 and 49.5437 where the predefined ratio is only 0.66 
when the packet size is between 72 and 1024 bytes. 
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Figure 32 Long-term jitter ratio with variable packet's size 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 33 Short-term jitter ratio with variable packet's size 
 
 
 
 
 
 
 
 

0

0,2

0,4

0,6

0,8

72 to 256 72 to 521 72 to 1024

Packet's size

L
o

n
g

te
rm

ji
tt

er
ra

ti
o

class 1/ 0
(predef:0.66)

Class 2/0
(predef 0.5)

0

0,2

0,4

0,6

0,8

72 to 256 72 to 521 72 to 1024

Packet's size

S
ho

rt
te

rm
jit

te
rr

at
io

Class 1/0
(predef 0.667)
Class 2/0
(predef 0.5)



 
 
110

6.1.2.3 Behavior of RJPS with Variation of Link Utilization 
 

Long-term jitter ratio Short-term jitter ratio 
Class 2/ Class 0 
(predefined 0.5) 

Class 1/ Class 0 
(predefined 0.666) 

Class 2/ Class 0 
(predefined 0.5) 

Class 1/Class 0 
(predefined 0.666) 

Lin
k 

util
izat
ion 

Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max Min 

60
% 

0.60
47 

0.60
58 

0.5834 0.90
94 

1.034 0.64
46 

0.62
49 

1.1022 0.407 0.83
7 

1.7735 0.449 

70
% 

0.55
37 

0.56
08 

0.5521 0.73
86 

0.7476 0.72
77 

0.56
09 

1.0633 0.286 0.74
4 

1.3656 0.422 

80
% 

0.50
39 

0.51
31 

0.498 0.67
25 

0.6818 0.67
09 

0.51
57 

1.2803 0.3261 0.68
98 

1.679 0.4276 

90
% 
 

0.50
09 

0.51 0.499 0.66
8 

0.67 0.66
7 

0.51
04 

1.4082 0.3188 0.68 2.33 0.22 

100
% 

0.50
47 

0.50
67 

0.5043 0.66
7 

0.669 0.66
6 

0.50
08 

1.4839 0.31 0.66
7 

2.17 0.3689 

 
Table 5 Performance of the RJPS algorithm 

 
I will now investigate the jitter ratio between different classes where the total 
traffic varies from moderate load to heavy load. In this simulation the jitter 
differentiation parameters of classes 0, 1, 2 are respectively 1; 1,5; 2. The 
predefined ratio between class 2 and 0 is 0.5, between class 1 and 0 is 0.667. The 
results in Table 5 show the performance of jitter ratio in this context. It is 
necessary to note that my scheduler deviates remarkably from the desired values 
at moderate loads, while the proportional jitter differentiation can be maintained 
more accurately in heavy load situations. For example, with load of 60%, the 
average ratio of class 2/0 is 0.6249 (predefined 0.5), while with load of 100%, this 
ratio is 0.5008. Figure 34 and Figure 35 plot the variation of jitter ratio with 
variation of link utilization. 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 34 Long-term jitter ratio with variation of link utilization 
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My scheduler works stable when there are enough packets in the queue. With 
light load, the packets should be scheduled immediately, the queuing delay stays 
small, jitter stays small, too, and no jitter differentiation is probably needed. That 
is why the proportional jitter model works well only under heavy load condition. 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 35 Short-term jitter ratio between different classes with variation of link 
utilization 

 

6.1.2.4 Behavior of RJPS with Variation of Window’s Size 
 

Long-term jitter ratio Short-term jitter ratio 
Class 2/ Class 0 

(predefined 
0.3334) 

Class 1/ Class 0 
(predefined 0.5) 

Class 2/ Class 0 
(predefined 0.3334)

Class 1/ Class 0 
(predefined 0.5) 

Wi
nd
ow 
Siz
e Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max Min 

10
0 

pac
ks 

0.33
402 

0.33
6 

0.33
2 

0.5007
5 

0.50
1 

0.4945 0.33
85 

0.92 0.038 0.503 5.25 0.053 

20
0 

pac
ks 

0.33
302 

0.33
5 

0.33
2 

0.4987
3 

0.49
9 

0.496 0.32
46 

0.6 0.058 0.491 0.86 0.14 

30
0 

pac
ks 

0.33
289 

0.33
4 

0.33
2 

0.5005
4 

0.50
1 
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Table 6 Performance of the RJPS algorithm 
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Figure 36 Long-term jitter ratio with variable window's size 
 
I will now examine the performance of my scheduler when the window size 
varies. In this simulation the jitter differentiation parameters of classes 0, 1, 2 are 
respectively 1, 2, 3. The predefined ratio between class 2 and 0 is 0.333, between 
class 1 and 0 is 0.5, and the size of packet is 160 bytes. 
 
The choice of window size has an important effect on the stability of my 
algorithm because it makes the average jitter vary )(* tji . It is straightforward to 
see that the accuracy of my algorithm increases with the size of window size 
chosen. But when the window size is high then the computation cost grows 
rapidly, too. In the previous simulation I present the result of RJPS scheduler with 
the window of 200 packets. In this section I have evaluated the behavior of RJPS 
in the context of variable window size from 100 packets to 300 packets. The 
performance is shown in the Table 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37  Short-term jitter ratio with variable windows size 
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As I can see, the result of long-term jitter ratio is similar but the maximum of 
short time jitter ratio of class 1/class 0 when the window is 100 packets can 
increase to 5.247. With a window size of 200 packets this maximum value is only 
0.8565 and with a window size of 300 packets this value is 0.7840. My result 
shows that performance of RJPS, especially short-term jitter ratio, increases with 
the packet size while long-term jitter ratio is not influenced by this window size. 
Figure 36 and Figure 37 plot the variation of long-term and short-term jitter ratio 
between different classes. 
 

6.2 Proportional Average Jitter Scheduling Algorithm 
(PAJ) 

6.2.1 Algorithm Description 
 
A way to interpret the Proportional Jitter Differentiation model is that the 
priority )(tpi of class i (defined as iii tjtp ∆= )()( ) must be equal in all classes, 
i.e. 
 

)()()()( tptjtjtp kkkiii =∆=∆=        (6.4) 
 
Similar to RJPS, this new scheduler aims to equalize the priority among all 
classes. I refer to this algorithm as Proportional Average Jitter (PAJ) scheduling 
algorithm. 
 
Assume that there was at least one departure from class i before the time t, the 
priority of class i at time t is 
 

     
)(

)(
)(

1

ts

j

servedpacketsofNumber
servedpacketsallofjitter

tp
i

ts

k
k
i

ii

i

∑∑ ==∆
−−−

−−−−
=         (6.5) 

 
Where )(tsi  is the number of packets served till time t of class i and k

ij  is the 
jitter of packet numbered k of class i. 
 
Suppose that a packet has to be selected for transmission at time t. PAJ chooses 
the backlogged class with the maximum priority at t: 
 

)(maxarg ...1 tpk iNi==         (6.6) 
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The selection of the maximum priority, requires at most N-1 comparisons with N 
is the number of classes, which is a minor overhead for the small number of 
classes I consider here. The main computation overhead of PAJ is a division, after 
each packet departure. 
 
The basic idea in PAJ is that if some packets are serviced from class j with the 
maximum priority, the delays of these packets remain similar and hence its jitter 

does not increase any more and thus the increase of ∑ =

)(

1

ts

k
k
i

i j due to these packets 

are minimized. So serving some packets from class j tends to reduce the 
difference from the priorities of the other classes. In the long run, if the scheduler 
always minimizes the difference between the priorities in this manner, I expect 
that the priorities are about the same. 
 
The similarities of PAJ and RJPS are now obvious. In the same way that PAJ 
chooses for service the class with the maximum priority, RJPS also chooses for 
service the class with the maximum priority. PAJ attempts to minimize in this 
manner the differences of the class priority. RJPS maintains priority of a moving 
window and for all packets in the queue, thus making the forwarding behavior 
more responsive to current queue conditions, but is more complicated than PAJ. 
Here are the necessary operations for the implementation of PAJ in a router: 
 
 

Receive (packet) 
1 1)()( +← tsts ii  
2.   queue in corresponding jitter class; 

Select_packet_to_transmit() 
3 )(maxarg ...1 tpk iNi==  
4 transmit from jitter class k; 
5 foreach jitter class i; 
6 ∑ ∑

+

= =
←1)(

1

)(

1

ts

k

ts

k
k
i

k
i

i i jj  
 

 
Figure 38 PAJ algorithm 

 

6.2.2 Simulations 
 
My simulation study shows that PAJ scheduler approximates the proportional 
jitter differentiation model. 
 
The simulation model is as follows. The topology used is shown in Figure 39. The 
links are 6Mps with a latency of 10ms. There are a total of 2 classes 0 and 1. Flow 
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1 (from S1 to D1) and Flow 2 (from S2 to D2) belong to class 0, while Flow 3 
(from S3 to D3) and Flow 4 (from S4 to D4) belong to class 1.  
The objective of this simulation study is to evaluate the behavior of PAJ scheduler 
in terms of long-term jitter ratio and short-term jitter ratio (this short-term jitter 
ratio is calculated over a moving window of 200 packets) 
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S 1

R1
PAJ

R1
PAJ

S4

Si Source of flow i

Di Receiver of flow i

FIFO
FIFO

S2

D1

D2

D3
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Figure 39 Network topology 

 

6.2.2.1 Behavior of PAJ with Heavy Load 
 
In this simulation, the jitter differentiation parameters of class 0 and 1 are 
respectively 1 and 2. The predefined ratio between class 1 and class 0 is 0.5. The 
link utilization between the PAJ router and FIFO router in this simulation is set to 
100%. Flow 0 and 1 belong to Class 1. Flow 1 has the burst time of 40ms and idle 
time of 10ms. For Flow 2 it is 50ms and 20ms respectively. Flow 3 and 4 belong 
to Class 0. Flow 3 has bursttime of  60ms and idle time of 15ms. Flow 4 has 45ms 
burst time and 20ms idle time. The total speed of class 0 and class 1 is 3.5 Mps. 
The first experiment intended to test the performance of PAJ scheduler in terms of 
long-term jitter ratio and short-term jitter ratio. 
 
Average long-term jitter: Figure 40 shows that average long-term jitter ratio for 
2 classes achieve the predefined ratio 0,5. This ratio is achieved after a time of 
fluctuation of about 6s seconds. 
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Average short-term jitter: Figure 41 shows that the short-term jitter ratio 
fluctuates strongly and can reach up to 3.5 and down to 0.17, although the 
predefined ratio is only 0.5. 
 
Average delay: Clients can only be satisfied if they receive both better jitter and 
better delay. Hence, it is very important to examine the behavior of PAJ in term of 
delay because if my algorithm works well for proportional jitter, but a class with 
higher weight would receive higher delay, it is difficult to conclude that the class 
with higher weight is better than the class with lower weight. In this simulation, I 
evaluate average long-term delay for each class, too. Figure 42 shows that delay. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 40 Long term jitter ratio of the PAJ scheduler 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 41 Short-term jitter ratio of the PAJ scheduler 
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Figure 42 Average delay 
 

6.2.2.2 Behavior of PAJ Scheduler under Different Load Distribution 
 
The second experiment aimed to investigate the long-term jitter ratio and short-
term jitter ratio between these two classes under different load distributions. 
Similar to the first experiment with the same topology, this scenario is set with the 
predefined jitter ratio 0.5. Flow 1 and 2 belong to Class 1. Flow 1 has the burst 
time of 100ms and idle time of 30ms and Flow 2 it is 90ms and 40ms 
respectively. Flow 3 and 4 belong to Class 0. Flow 3 has burst time of 60ms and 
idle time of 35ms and Flow 4 has 75ms burst time and 30ms idle time. There are 
8 simulations in this scenario, in which the load pattern between two classes 
varied from symmetric to asymmetric distributions. Figure 43 denotes the load 
distribution of these two classes in percentage. 
 
Results derived from these experiments showed that in most cases, the 
performance of long-term jitter ratio of PAJ stays nearly constant. As we see in 
the graph, when the load distribution between classes 0 and 1 is very asymmetric 
(10%-90% or 90%-10%), the PAJ produces a long-term jitter ratio of 0.6753 and 
0,4172, while the predefined ratio is 0.5. In addition, the maximum and minimum 
long-term jitter ratio is very different from the average and predefined ratio, too.  
In the other cases, when the load distribution between classes is symmetric (50%-
50%), the long-term jitter ratio reaches a very good accuracy.  
 
The short-term jitter ratio produced by PAJ fluctuates much more than long-term 
jitter ratio. As shown in the following graphs, the maximum of short-term jitter  
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ratio can reach the value of 87, while the predefined ratio is only 0.5 when the 
load distribution between two classes is 80%-20%. The average short-term jitter 
ratios in these 8 cases are around the predefined ratio 0.47318, 0,48823, 0,4648, 
0,6231, 1.0127, 0.9786, 1.17786, 2.24526, 2.6751 respectively. That means the 
quality of short-term jitter ratio depends strongly on the load distribution between 
classes.  

 
 
 
 
 

              
 
 
 
 
 
                               
                                                                                                        

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 43 Different load distribution between classes 
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6.2.2.3 Behavior of PAJ Scheduler under Different Traffic Conditions 
 
In this section, I investigate the performance of the long-term jitter ratio and 
short-term jitter ratio of PAJ scheduler under different conditions, as the traffic 
profiles varies .The scenario is similar to the network topology shown in Figure 
42, but the traffic profiles are listed in the Table 7. As shown in this table, the 
long-term jitter ratios stay stable, but the short-term jitter ratio varies, too.  
 
 

TRAFFIC PROFILES Flow, on-time, off-time, rate 
Case 1 Flow 1: 40ms, 10ms, 1.5 Mbps Flow 2: 50ms, 20ms, 2 Mbps

Flow 3: 60ms, 15ms, 1.5 Mbps Flow 4: 45ms, 20ms, 2 Mbps
Case 2 Flow 1: 100ms, 30ms, 2.5 Mbps Flow 2: 90ms, 40ms, 2.5 

Mbps 
Flow 3: 60ms, 35ms, 2.5 Mbps Flow 4: 75ms, 30ms, 2.5 

Mbps 
Case 3 Flow 1: 45ms, 15ms, 1.5 Mbps Flow 2: 50ms, 20ms, 2 Mbps

Flow 3: 70ms, 15ms, 1.5 Mbps Flow 4: 45ms, 15ms, 2 Mbps
Case 4 Flow 1: 90ms, 25ms, 2.5 Mbps Flow 2: 90ms, 20ms, 2.5 

Mbps 
Flow 3: 70ms, 40ms, 2.5 Mbps Flow 4: 75ms, 25ms, 2.5 

Mbps 
Case 5 Flow 1: 70ms, 20ms, 2 Mbps Flow 2: 50ms, 10ms, 3 Mbps 

Flow 3: 60ms, 15ms, 0.5 Mbps Flow 4: 80ms, 20ms, 1 Mbps
Case 6 Flow 1: 50ms, 10ms, 2 Mbps Flow 2: 40ms, 20ms, 2 Mbps 

Flow 3: 30ms, 5ms, 1 Mbps Flow 4: 60ms, 10ms, 1Mbps 
 

Table 7 Different traffic profiles 
  
For long-term jitter ratio, as depicted in Figure 44, my PAJ reaches a very good 
quality because this ratio is approximately 0.5, which is predefined ratio, too. But 
the short-term jitter ratio is very unstable. In these 6 cases, the average short-term 
jitter ratio is 0.5165, 0.5369, 0.5037, 1.3695, 0.5524, 0.5912 respectively and the 
maximum value of this ratio can reach particularly to 24.01. The smallest 
minimum value in these 6 cases is 0.01255 (case 4)  
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Figure 44 Different traffic profiles 
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6.3 Adaptive Differentiation Parameter  
 

6.3.1 Algorithm Description 
 
Generally, the goal of Proportional Differentiation Jitter Model is producing  
constant and accurate jitter ratios: 
 

i

j

j

i

ttj
ttj

∆
∆

=
+
+

),(
),(

τ
τ

 or  )()( tptp ji =         (5.1) 

 
Until now, there are some approaches for the Proportional Differentiation Jitter 
Model: RJPS and PAJ. These scheduling algorithms use Jitter Differentiation 
Parameters as the fixed parameters and try to control the estimated normalized 
jitter so that jitter ratios between different class remain constant. 
 
Contrary to RJPS and PAJ, I can use Jitter Differentiation Parameters as variable 
parameters in order to receive constant jitter ratios. This parameters can vary with 
the traffic load so that the constant jitter ratio is achieved under bursty traffic 
context. This idea leads me to create other proportional jitter scheduling algorithm 
that use Adaptive Jitter Differentiation Parameters for reaching the proportional 
jitter condition under different load conditions. 
 
Assume that packet k from queue i leaves the system at time t, the normalized 
average jitter of all classes and the normalized average jitter of class i are 
calculated as follows. I normalize jitter k

ij of packet k of class i with Jitter 
Differentiation Parameter i∆ , and then I calculate the average value of 
normalized jitters over all jitter classes. Let the normalized average jitter of class 
i be )(tj iclassofnormalized

i
−−− , the normalized average jitter of all classes be 

)(tj classesallofnormalized −−− , A(x(t)) be the average function of variable x at time t, I 
have: 

 

    )()( k
ii

classesallofnormalized jAtj ∆=−−−        (6.7) 

    )()( k
i

iclassofnormalized
i jAtj =−−−         (6.8) 

 
In this section, I present a new variant for my previous algorithms, which attempts 
to keep the average short-term and long-term jitter of each class as close to 
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classesallofnormalizedj −−−  as possible, that is classesallofnormalizediclassofnormalized
ii jj −−−−−− →∆ . 

The adaptive jitter differentiation parameter )(tadaptive
i∆  is defined as below: 
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            (6.9) 

 
In this section I use )(tadaptive

i∆  (Adaptive Jitter Differentiation Parameters-AJDP) 
instead of i∆  (Jitter Differentiation Parameters-JDP). 
 
The deployment of the AJDPs )(tadaptive

i∆  instead of JDPs is a mechanism to 
provide consistent proportional jitter between different classes, independent of 
varied load patterns. I verify it in next section. 
 
It is noted that different average function A(.) can be used. In my approach I use 
the simple average value from the previous algorithm of RJPS and PAJ. 
           

   
∑ =

−

−

∆

∆
=∆ N

l l
termlong

l

i
termlong

iadaptive
i

tj
Ntjt

1

2

)(
**)(

)(       (6.10) 

 
Another possibility could be the use of exponential averaging. This algorithm is 
based on the exponential averaging technique proposed by Jacobson and Karels 
for estimating TCP round trip times. 
 
From these AJDPs, I create two new algorithms, Adaptive-RJPS and Adaptive- 
PAJ. These two new algorithms are based on RJPS and PAJ, but make use of 
AJDPs instead of JDPs.  
 
In the following figures (Figure 45 and 46), the operations of Adaptive-RJPS and 
Adaptive-PAJ are described. 
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 Receive (packet) 
1 1+← ii qq ; 
2 queue in corresponding jitter class; 
           Select_packet_to_transmit() 
3  ))()((maxarg)}({maxarg min ttjtpk adaptive

iiiii ∆==  
4 transmit from jitter class k; 
5 1)()( −← tqtq ii ; 
6 1)()( +← tsts ii ; 
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Figure 45 Adaptive-RJPS algorithm 

 
 
            Receive (packet) 
1 1+← ii PP ; 
2.   queue in corresponding jitter class; 
 

Select_packet_to_transmit() 
3 )(maxarg ...1 tpk iNi== ; 
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Figure 46 Adaptive-PAJ algorithm 
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6.3.2 Simulations 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 47 Network topology 
 
I evaluate the performance of my adaptive algorithms and compare it with the 
previous original mechanisms. There are total of 2 classes 0 and 1. Flow 1 (from 
S1 to D1) and Flow 2 (from S2 to D2) belong to class 0, while Flow 3 (from S3 to 
D3) and Flow 4 (from S4 to D4) belong to class1 (see Figure 47). 
 
Figure 48 compares the performances of RJPS and Adaptive RJPS in the same 
context. The predefined long-term jitter ratio is 0.2. The traffic of type on-off is 
quite bursty. Flow 1 has a rate of 0.5 Mbps, on time is 30ms and off time 100ms. 
Flow 2 has a rate of 0.5 Mbs, on time is 65ms and off time 100ms. Flow 3 has a 
rate of 6 Mbps, on time is 45ms and off time is 90ms. Flow 4 has a rate of 6 
Mbps, on time of 35ms and off time 80ms. As we see in the results, the long-term 
jitter ratio of Adaptive RJPS achieves better quality than the RJPS algorithm.   
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Figure 48 Performance comparison of Adaptive RJPS and RJPS algorithm. 
 
 
 
The following experiments intend to test and compare the long-term jitter ratio of 
Adaptive-RJPS and RJPS under different context. The traffic pattern is described 
in the following table (Table 8): 
 
 

Traffic 
Profile 

Flow, on-time, off-time, rate 

Case 1 Flow 1: 40ms, 150ms, 0.5 Mbps; Flow 2: 35ms, 110ms, 0.5 Mbps 
Flow 3: 25ms, 150ms, 6 Mbps; Flow 4: 17ms, 100ms, 6 Mbps 

Case 2 Flow 1: 30ms, 100ms, 0.5 Mbps; Flow 2: 65ms, 100ms, 0.5 Mbps 
Flow 3: 45ms, 90ms, 6 Mbps; Flow 4: 35ms, 80ms, 2.5 Mbps 

Case 3 Flow 1: 30ms, 170ms, 0.5 Mbps; Flow 2: 25ms, 150ms, 0.5 Mbps 
Flow 3: 38ms, 130ms, 6 Mbps; Flow 4: 27ms, 105ms, 6 Mbps 

Case 4 Flow 1: 20ms, 200ms, 0.5 Mbps; Flow 2: 29ms, 169ms, 0.5 Mbps 
Flow 3: 33ms, 145ms, 6 Mbps; Flow 4: 47ms, 156ms, 6 Mbps 

 
Table 8 Traffic profiles 

 
 
As we see in Figure 49, the Adaptive-RJPS algorithm produces better 
performance than the RJPS algorithm, when the traffic is very bursty. The  
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Figure 49 Performance comparison between RJPS and Adaptive-RJPS 
 
 
predefined long-term jitter ratio is 0.2, and the Adaptive-RJPS always performs a 
better long-term jitter ratio than RJPS. It means that using Adaptive Jitter 
Differentiation Parameters increases the quality of the original algorithm RJPS. 
 
Now I investigate the result of long-term jitter ratio when the packet size changes 
quickly. The traffic profile is showed in the following table (Table 9). At the 
beginning I set the packet size 160bytes, and this size is changed as indicated in 
the table. The predefined jitter ratio is 0.5 and the traffic is set to be consistent for 
verifying only the influence of packet size on the behaviors of my algorithms. 
Figure 50 points the performance of long-term jitter ratio along the time. Results 
from this experiment showed that in most cases, the performance of Adaptive-
RJPS is better than the RJPS algorithm. 
 

 
TRAFFIC PROFILE 

 

 
Flow, on-time, off-time, rate. The change of packet size at time 

Case 1 Flow 1: 200ms, 5ms, 3 Mbps. 10s 1024bytes; 30s  512bytes; 50s  
256bytes. 

Flow 2: 150ms, 10ms, 3 Mbps. 35s 512bytes; 50s 216 bytes; 60s 
1024bytes; 80s 96 bytes. 

Flow 3: 180ms, 5ms, 6 Mbps. 20s 128 bytes; 35s: 96bytes; 50s 
512 bytes; 69s 1024 bytes; 85s 2045 bytes. 

Flow 4: 170ms, 10ms, 6 Mbps. 20s: 96 bytes; 40s 256bytes; 55s 
1024 bytes; 75s 2056 bytes. 

 
Table 9 Traffic profile 
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Figure 50 Performance comparison between RJPS and Adaptive RJPS 
 
Similarly, I examine now the performance of Adaptive-PAJ and PAJ algorithm. I 
use the same network topology as in Figure 47, which contains only two classes. 
The two first flows belong to class 0, the others belong to class 1. The predefined 
jitter ratio is defined as 0.5. The traffic profile is chosen to be not very consistent, 
and is described in the following table. 
 
 

 
TRAFFIC PROFILES 

 

 
Flow, on-time, off-time, rate 

Case 1 Flow 1: 80ms, 100ms, 0.75 Mbps. Flow 2: 60ms, 100ms, 
0.75 Mbps. Flow 3: 40ms, 70ms, 4 Mbps. Flow 4: 35ms, 

65ms, 4 Mbps. 
Case 2 Flow 1: 80ms, 60ms, 1 Mbps. Flow 2: 60ms, 50ms, 1 Mbps. 

Flow 3: 50ms, 50ms, 3 Mbps. Flow 4: 45ms, 45ms, 3 Mbps. 
 

Table 10 Traffic profile 
 
 
In Figure 51 I see the variation of long-term jitter ratio of these two algorithms 
along the time when the traffic profile is indicated as in Case 1. This result points 
out that the use of Adaptive Jitter Differentiation Parameters improves the quality 
of jitter ratio, especially when the traffic is very bursty. 
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When the traffic pattern changes from Case 1 to Case 2, I receive the same result 
(Figure 52). The meaning of this figure states that in this case the PAJ algorithm 
receives worse quality than the other.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 51 Performance comparison between Adaptive- PAJ and PAJ 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 52 Performance comparison between Adaptive-PAJ and PAJ 
 
 
In conclusion, the use of AJDPs in RJPS and PAJ helps to improve the 
performance of jitter ratio, specially when the traffic is bursty, but it makes the 
new schemes (Adaptive-RJPS and Adaptive-PAJ) also more complicated than its 
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original variants. The implementation costs of these two new algorithms therefore 
become higher. 
 

6.4 Performance Evaluation of PJDM and PDDM models 
 
This section will present results on performance evaluation and comparison of 
PJDM model using my new scheduler algorithms with the PDDM model using 
WTP. The network topologies and performance criteria used in my simulations 
are described previously. The content of this section is based on my work 
published in [Ngo1, Ngo5]. 
 

6.4.1 Comparison between Proportional Delay and Proportional 
Jitter Network 

 
The Proportional Delay Differentiated Services Model PDDM is complex because 
it is necessary to have proportional-delay scheduling schemes at every router of 
the network. And even though I have such complicated scheduling algorithm at 
every router in a PDDM model, each packet is transmitted to the sender through 
various ways where the number of hops differs from each other. Hence, at the 
receiver, the sum of packet delay in one class does not stay proportional to the 
sum of packet delay of other classes any more. It leads me to conclusion that I 
will not receive proportional delay in a PDDM model except for the case that all 
packets of one class belong to the same route, so that the number of hops remains 
unchanged. In addition, when the transmission delay becomes larger compared to 
the queuing delay in a network, the sum of delay of one class in a PDDM model 
will not remain proportional any more to each other. 
 
Caused by the need of implementing a complicated proportional-delay scheduling 
algorithm at all the routers of the network, the PDDM model is not as flexible at 
high-speed network as the PJDM model. 
 
Finally, although the PDDM model is more complex than the PJDM model, at the 
receiver the end-to-end delay produced by PJDM model is better than delay 
produced by PDDM model under some cases. 
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 Proportional Delay DiffServ 
Model 

Proportional Jitter DiffServ 
Model 

Complexity Need to have complex scheduling 
algorithms at all the routers 

 

Properties 
 

Providing proportional delay 
between different classes locally 

Providing proportional jitter 
between different classes 

locally 
Scalability 

 
When the transmission delay are 

dominated and packets have 
different routes, difficult to 
achieve proportional delay 
between different classes 

 

Efficiency for high 
speed network 

Appropriate at high-speed network Very appropriate for 
high-speed network 

Quality of Service 
 

Provide poor end-to-end delay Provide better end-to-end delay in 
some cases 

 
Table 11 Comparison between the PDDM and the PJDM model 

 

6.4.2 Simulations 
 

6.4.2.1 Jitter Ratio Evaluation through Multi-hop Networks based on 
PJDM model 

 
As noted above, the jitter ratio produced by schedulers RJPS, PAJ, Adaptive-
RJPS and Adaptive-PAJ remain stable under different context when the network 
contains only one hop. In this section, I present the result of long-term jitter ratio 
at different routers via a larger topology. This topology is shown in Figure 53. 
 
My network is enlarged and RJPS is used in three routers: R17, R18, R19 while 
the others are FIFO only. There are six more flows. The two first flows belong to 
class 0, the next flows belong to class 2 and the two last flows belong to class 1. 
The weight of classes 0, 1 and 2 are respectively 1; 1,5; 2. The predefined jitter 
ratio between class 2 and class 0 is 0,5, while the predefined jitter ratio between 
class 1 and 0 is 0,667. All the links are 6 Mbps with a latency of 10ms, but I am 
only interested in the jitter differentiation in the routers R17, R18, R19. The 
packets have a size of 160 bytes, and window size is 200. The total link utilization 
is 99%. 
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Figure 53 Network topology 
 
 
Figure 54 and Figure 55 show that my scheduler achieves approximately the long-
term jitter differentiation ratio via different routers. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 54 Long-term jitter ratio between class 2 and 0, large topology 
(predefined: 0.5) 
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Figure 55 Long-term jitter ratio between class 1 and 0,  large topology 
(predefined: 0.667) 

 
As shown in these two figures, the long-term jitter ratios achieve their predefined 
value: 0.5 and 0.667. 
 

6.4.2.2 Comparison of PDDM and PJDM when Scheduling is 
implemented at Every Router (type 1). 

 
In this simulation, I compare the performance of PDDM and PJDM model in case 
when scheduling is implemented at every router (type 1). PDDM uses WTP as 
scheduling algorithm, while PJDM uses RJPS. The topologies are illustrated in 
the following figure: 

WTP WTP WTP

 

RJPS RJPS RJPS

 
Figure 56 Network Topology, type 1 
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Figure 57 Network topologies 
 
 
The topology used is shown in Figure 57. The links are 6 Mps with a latency of 
10ms. There is a total of 3 classes 0, 1, 2. Flow 1 (S1- D1), 2 (S2- D2), 6 (S6-D1) 
and 9 (S9- D1) belong to class 1, while flow 3 (S3- D3) , 4 (S4- D4), 7 (S7- D2) 
and 10 (S10- D2) belong to class 2 and flow 5 (S5- D5), 8 (S8- D3) and 11 (S11- 
D3) belongs to class 0. The weights of class 0, 1, 2 are 1, 1.5 and 2 respectively. 
 
Figure 58 shows the network delay of class 0. This network delay is produced 
after three routers R17, R18 and R19 at the topology above. The result shows that 
network that contains only RJPS produces smaller network delay than network 
that contains WTP. But as we can see, RJPS fluctuates much more than WTP, 
which is a very stable mechanism.  
 
The normalized end-to-end delay of this topology (Figure 59) shows that network 
that contains my algorithm RJPS produces smaller normalized end-to-end delay, 
that means better end-to-end quality of service. In my simulation I use a window 
of size from 3000 packets for updating the network delay of Concord algorithm 
and this window is calculated once pro 200 packets for saving the cost of 
computation. The predefine loss rate is chosen 10%. 
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Figure 58 Network delay of class 0 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 59 Normalized end-to-end delay of two topologies 
 
 
 
 
 
 
 

0
1
2
3
4
5
6
7
8
9

10

0

8,
79

17
,6

26
,4

35
,2 44

52
,7

61
,5

70
,3

79
,1

87
,9

96
,7

10
5

11
4

Time (s)

N
et

w
or

k 
D

el
ay

 (s
)

Class 0
(WTP+WTP+WTP)

Class 0
(RJPS+RJPS+RJPS)

0

0,5

1

1,5

2

2,5

3

3,5

0

5,
64

11
,3

16
,9

22
,6

28
,2

33
,8

39
,5

45
,1

50
,8

56
,4 62

67
,7

73
,3 79

84
,6

90
,2

95
,9

Time (s)

No
rm

ali
ze

d 
En

dt
oE

nd
 D

ela
y

WTP+WTP+WTP

RJPS+RJPS+RJPS



 
 

 
CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE 

EVALUATION OF PJDM AND PDDM MODELS 

 
 

135

6.4.2.3 Comparison of PDDM and PJDM when Scheduling is 
implemented at Every Router (type 1) or only at Egress 
Router (type 2). 
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Figure 60 Network topology 

 
I simulated a network of 3 routers. The algorithm PAJ, RJPS, Adaptive-RJPS, 
Adaptive-PAJ and WTP are implemented at different positions of this network, 
core or egress, according to the network topologies in Figure 61. 
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Figure 61 Network topology 
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TRAFIC PROFILES 

 

 
Flow, on-time, off-time, rate 

At R1 Flow 1: 80ms, 5ms, 2 Mbps Flow 2: 70ms, 5ms, 2 Mbps 
Flow 3: 70ms, 5ms, 2 Mbps Flow 4: 60ms, 5ms, 2 Mbps 

At R2 Flow 1: 80ms, 5ms, 6 Mbps 
Flow 2: 200ms, 5ms, 6 Mbps 

At R3 Flow 1: 200ms, 5ms, 6 Mbps 
Flow 2: 200ms, 5ms, 6 Mbps 

Table 12 Traffic profiles 
 
The simulation scenario is described as follows. The rate of the links from R1 to 
R2 and from R2 to R3 is 6 Mpbs, 3 Mpbs and 1.5 Mpbs, respectively. There are a 
total of 2 classes: Class 0 and 1 with the weight of 1.0 and 3.0. At the R1 there are 
4 flows, at the R2 and R3 there are only 2 flows. I run and collect my simulations 
in 100 seconds. The traffic profiles are described in the Table 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 62 Normalized end-to-end delay  
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The size of the moving window used at the playout buffer is 3000 packets, and 
the loss ratio is set to 15%. The normalized end-to-end delay is shown in Figure 
62. 
 
It is necessary to say that in order to compare the normalized end-to-end delay of 
two networks, I say that the network that produces small but fluctuating delay is 
better than the network that has stable but high delay. This observation is based 
on the following reason. For the interactive application, the variation of delay 
over long-term scale (seconds, in my simulations) do not have bad impact on the 
quality of service. In contrast to the long-term scale, the variation of delay over 
short-term scale will degrade the quality of service of these interactive 
applications considerably.  Fortunately, the variation over short-term scale 
produced by networks are removed by the Concord algorithm used at receiver 
end.  
 
From the above case, we can see that the topology that provides the best 
performance is the case with only Adaptive-PAJ in its routers. The normalized 
end-to-end delay produced by this case is small and very stable, while the 
performance produced by FIFO+FIFO+Adaptive-PAJ is also stable but much 
higher. Compared to other topologies, the network that implements only 
Adaptive-PAJ has the best performance.  
 
Unlike the stable case of Adaptive-PAJ, the second case is the networks that use 
Adaptive-RJPS algorithm. As shown in the previous figure, the normalized end-
to-end delay produced by the only Adaptive-RJPS case is better than 
FIFO+FIFO+Adaptive-RJPS but worse than the only Adaptive-PAJ case, and 
fluctuate also very quickly. 
 
The PAJ+PAJ+PAJ case has a very unstable performance, and it is still worse 
than the only Adaptive-PAJ case. The yellow curve that is the normalized end-to-
end delay produced by FIFO+FIFO+PAJ topology is high, and oscillates quickly. 
As you see in the figure, the yellow curve is some times higher than all the rest 
curves. 
 
Now, I examine the peformance of the network that has RJPS algorithm in its 
routers. The FIFO+FIFO+RJPS has an approximate performance as the 
FIFO+FIFO+Adaptive-PAJ. The only RJPS case produces higher quality than the 
only Adaptive-RJPS case but it is more stable. 
 
Finally, the performance of  the only WTP and the FIFO+FIFO+WTP cases are 
both very high but stable. I can say that these topolgies are worse than all the 
other cases.  
 
I conclude the following: 
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For the PJDM model: 
 

•  FIFO+FIFO+RJPS topology produces high and stable normalized end-to-
end delay. Compared to the previous configuration, RJPS+RJPS+RJPS 
topology improves the normalized end-to-end delay, but this delay 
fluctuates strongly than the others. 

 
•  FIFO+FIFO+PAJ and PAJ+PAJ+PAJ topologies create smaller (in some 

times) but unbalanced normalized end-to-end delay. 
 

•  The best case is Adaptive-PAJ+Adaptive-PAJ+Adaptive-PAJ topology, 
whose delay and jitter are smallest. The case of FIFO+FIFO+Adaptive-
PAJ produces considerable jitter, and its normalized end-to-end delay 
remains high. I can say that the use of Adaptive-PAJ improves the quality 
of PJDM that uses PAJ in its network. 

 
•  Adaptive-RJPS+Adaptive-RJPS+Adaptive-RJPS and 

FIFO+FIFO+Adaptive-RJPS minimize the normalized end-to-end delay. 
However, their jitters still stay considerable. That means compared to 
RJPS, the use of Adaptive-RJPS in PJDM model decreases the normalized 
end-to-end delay, but also make this normalized end-to-end delay 
fluctuate strongly 

 
For the PDDM model: 
 

•  With network topologies of the PDDM model (FIFO+FIFO+WTP and 
WTP+WTP+WTP) delay is stable, but considerable compared to other 
topologies of the PJDM model.  

 
In [Ngo2] the quality of network topologies based of type 1 and 2 using WTP. 
RJPS and PAJ as scheduling algorithm are evaluated. The performance of these 
networks is shown in Figure 63. The loss rate used by Concord is 15%.  
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Figure 63 Normalized end-to-end delay 
 
From the figure 63, I have the following markings: The topology PAJ+PAJ+PAJ 
has the smallest performance compared to all other cases, but this normalized 
end-to-end delay fluctuate strongly, while the FIFO+FIFO+PAJ network 
produces higher and also unstable performance. Compared to PAJ case, the only 
RJPS case has higher normalized end-to-end delay, but does not oscilliate so 
quickly as the only PAJ cases. Compared to all previous cases, the topology 
FIFO+FIFO+RJPS  has the worst but very stable performance. Finally, the 
WTP+WTP+WTP and FIFO+FIFO+WTP cases generate the same quality as the 
FIFO+FIFO+RJPS case. All these conclusions are based on my assumption that is 
already noted above: small delay with high long-term jitter is better than high but 
stable delay. 
 
The simulative results from my simulations show that network topologies of 
PJDM model can produce smaller normalized end-to-end delay in some case, but 
this delay fluctuates strongly. The network topologies based on the PDDM model 
produce stable normalized end-to-end delay, but considerable compared to the 
network topologies based on PJDM model. This observation leads me to an 
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interesting idea in order to benefit these two advantages of PDDM and PJDM 
models: use network topologies of the PDDM model, but implement scheduling 
algorithms of PJDM model at the egress router. Other possibility is using network 
topologies based on PJDM model, but implementing scheduling of PDDM at 
egress router. The following section will evaluate the performance of these 
topologies. 
 

6.4.2.4 Mixture of PJDM and PDDM Models 
 
In this simulation, I create the network topologies, which use both of scheduling 
of PJDM and PDDM models. The RJPS algorithm is chosen for PJDM model, 
and WTP is chosen for the PDDM model. In the following figure we find the 
network topologies that use RJPS and WTP at different position (at egress router, 
at ingress router and at every router): 

RJPS RJPS RJPS

WTP WTP WTP

 

WTP WTP RJPS

 

FIFO FIFO RJPS

 

FIFO FIFO WTP

 

RJPS RJPS WTP

 
Figure 64 Mixture of PDDM and PJDM models 
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The topology in simulation is in the following: 
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Figure 65 Network topology 

 
The simulation model is as follows. The links are 6 Mbps, 3 Mbps, 1.5 and 0.75 
Mbps. The Concord algorithm is used at the receivers. It is necessary to note that I 
should maintain a window of packets in order to calculate the PDD function. In 
my simulations, I use PDD taken over a moving packet window of size 3000 
packets for Concord algorithm. The two classes 0 and 1 have weights of 1 and 3.  
 
Figure 66 shows the variation of the normalized delay P(s) of these network 
topologies while the predefined loss rate at the receiver is 5%. 
 
From this graph, I have the following conclusions: 
 

•  The RJPS+RJPS+RJPS, which uses RJPS at all the routers, produces the 
smallest normalized end-to-end delay, and that means the best 
performance. 

  
•  The last topology RJPS+RJPS+WTP, which contains WTP at the egress 

router and others are RJPS, generates worse quality than 
RJPS+RJPS+RJPS, WTP+WTP+RJPS and FIFO+FIFO+RJPS, but better 
quality than WTP+WTP+WTP and FIFO+FIFO+WTP. 

 
•  The quality of WTP+WTP+RJPS and FIFO+FIFO+RJPS stays between 

the quality of RJPS+RJPS+WTP and RJPS+RJPS+RJPS.  
 

•  The two other  network topologies, WTP+WTP+WTP and 
FIFO+FIFO+WTP, which use all WTP at all its routers or only at egress 
router, receive the biggest normalized end-to-end delay. I could say 
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WTP+WTP+WTP and FIFO+FIFO+WTP generate the worst performance 
in this case. 

 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 66 Normalized end-to-end delay 
 
It is very interesting to note that although FIFO+FIFO+RJPS requires only RJPS 
at its egress router, it could  generate better quality in this case than 
WTP+WTP+WTP, which implements WTP at all its routers. This property allows 
me to say that implement RJPS at the egress router in a DiffServ network 
improves the performance of this network while reducing the implementation cost 
extremely in some cases. 
 
The result in the Table 13 is the average normalized end-to-end delay with 
different loss rate probabilities from 5% to 15%. Figure 67 plots the quality of 
these network topologies and puts it in order of the decreasing quality. Results 
from this figure show that the performance of networks based on PJDM model 
and based on both PDDM and PJDM increases with the loss rate at the receiver.  
 
It is easy to see that in this case the quality of the networks, which contain RJPS 
at its routers increases when the loss rate increases, and compared to others 
topologies, which use WTP at its routers, it achieves higher performance. This 
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result leads me to a conclusion that in certain cases, the network which uses only 
RJPS at its egress router receives better performance quality than the network, 
which uses WTP at all of its routers. On the other hand, the implementation of 
RJPS at the egress router of networks improves the quality of the network while 
reducing the cost of implementation extremely. 
 
  

RJPS+RJPS+RJPS 
 

WTP+WTP+RJPS 
 

FIFO+FIFO+RJPS 
 

RJPS+RJPS+WTP 
 

WTP+WTP+WTP 
 

FIFO+FIFO+WTP 

Loss 
5% 

3,793339778 
 

3,812344756 3,807713956 3,819351 3,835465444 3,8363002 

Loss 
10% 

3,376311822 3,3807564 3,597968467 3,642769022 3,733399022 3,828120133 

Loss 
15% 

2,897365289 2,927831911 2,943926222 3,306512533 3,382277956 3,8363002 

Table 13 Comparison of normalized end-to-end delay 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 67 Performance comparison between different network topologies 
 
As shown in Figure 66, normalized end-to-end delay produced by the network 
topologies based on both of PDDM and PJDM (WTP+WTP+RJPS and 
RJPS+RJPS+WTP) is better but fluctuate more strongly than the network based 
on PDDM (WTP+WTP+WTP). Compared to the topology based on PJDM 
(RJPS+RJPS+RJPS), this normalized end-to-end delay is higher but its jitter is 
improved.  
 
That means by mixing PDDM and PJDM, the end-to-end quality is improved.
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Chapter 7 Summary  
 
 
In this chapter I give some conclusions on my works and outlines further possible 
research on the direction. 
 

7.1 Summary 
 
The objective of this thesis is to develop a service-differentiation architecture for 
the Internet that can improve the end-to-end quality of service as well as easy to 
deploy and to manage.  
 
Because of non-scalability and complexity issues of the IntServ architecture I 
have chosen to follow the framework of DiffServ. In addition the absolute 
differentiation architecture such as Virtual Leased Line or Assured service is not 
taken into my consideration due to its requirement of admission control and inter-
domain resource reservations or careful provisioning. 
 
The architecture that best met my requirements for scalability and simplicity best 
is the relative proportional differentiation model. Quality of service is dependent 
on delay, bandwidth or/and loss. Furthermore the model of proportional-delay 
differentiation PDDM and proportional loss differentiation already exist. This is 
one of different reasons that lead me to design a new architecture – PJDM, which 
does not result in proportional delay or loss rate but proportional jitter between 
classes. Since PJDM controls proportional jitter in the network, it 1) does not 
require to have scheduling mechanism at every router as PDDM and 2) it can 
cooperate well with the playout buffer delay adjustment algorithm implemented at 
the receiver for providing better end-to-end quality of service than PDDM. In 
other words, PJDM can reduce the implementation cost extremely while 
providing better end-to-end quality of service than PDDM 
 
In order to provide proportional jitter in PJDM networks, it is necessary to 
develop different scheduling algorithms that produce proportional jitter between 
classes. In my thesis four packet schedulers are developed: RJPS, PAJ, Adaptive-
RJPS and Adaptive-PAJ. All these four schedulers can be implemented in high-
speed networks. Via simulation, I demonstrate that the algorithm RJPS and PAJ 
can produce accurate proportional jitter ratio under different contexts, as variable 
link utilization, variable window size, variable packet size. The PAJ algorithm is 
shown to be simpler and hence easier to deploy than RJPS algorithm especially at 
high-speed networks. However, these two schemes have a disadvantage: their 
quality depends on link utilization and traffic profile. For example these schemes 
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can only perform a good long-term and short-term jitter ratio when the link 
utilization is more than 80% and the traffic is not bursty. In order to improve the 
quality of RJPS and PAJ under bursty traffic and small link utilization, Adaptive-
RJPS and Adaptive-PAJ have been developed. Results via simulation demonstrate 
that these adaptive mechanisms improve the quality of jitter ratio, especially 
under bursty traffic condition.  
 
The performance of PJDM model and PDDM model is examined in this thesis via 
simulation. My simulative results show that the networks based on PJDM model 
is simpler and can achieve better end-to-end quality of service than networks 
based on PDDM model. In some cases, a PJDM network that uses only RJPS at 
its egress router can produce smaller normalized end-to-end delay than a PDDM 
network that uses WTP at every router. Compared to PJDM using RJPS, the use 
of PAJ in PJDM decreases the normalized end-to-end delay but also increases its 
jitter considerably. In addition, the use of Adaptive-RJPS (or Adaptive-PAJ) 
increases the performance of PJDM model compared to the use of RJPS (or PAJ).  
 
The models PJDM and PDDM have their own disadvantages and advantages: 
PDDM produces high and stable normalized end-to-end delay while PJDM 
produces low but fluctuating normalized end-to-end delay. I then establish a 
combination of PDDM and PJDM models in order to overcome their 
disadvantages. Results from my simulation show that the normalized end-to-end 
delay of new network topologies based on both PDDM and PJDM is smaller than 
the delay produced by PDDM and fluctuates less than the delay produced by 
PJDM. 
 
Finally, the loss rate at the Concord playout buffer can influence the performance 
of networks based on PJDM and on both PJDM and PDDM: when the loss rate 
increases, their performance is also increased. 
 

7.2 Suggestion for Future Work 
 
Throughout the thesis I pointed out specific issues that deserve further research. 
Here I give some suggestion for future work: 
 

•  A valuable simulative study would be carried out larger topologies of 
more than 3 nodes with different loss rates at receiver end and different 
traffic profiles. Can my topologies based on PJDM model achieve better 
performance than the other topologies, which are based on PDDM model 
in such conditions? 

 
•  More experimental study would be carried out to combine the networks 

(based on the PJDM model) with some wireless access networks. It would 
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be an interesting direction since jitter produced in wireless domain is 
considerable so that through my new mechanisms, the gain in terms of 
end-to-end delay would not be small.
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