
The Influence of Proportional Jitter
Scheduling Algorithms on Differentiated

Services Networks

Vorgelegt von M. S. Thu Ngo Quynh
aus Berlin

Von der Fakultät Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
- Dr. - Ing. -

genehmigte Dissertation

Promotionsausschuss:

Vorzitzender: Prof. Dr. –Ing. Dr.rer.nat. Holger Boche
Berichter: Prof. Dr. – Ing. Adam Wolisz
Berichter: Prof. Dr. rer. nat. Martina Zitterbart

Tag der wissenschaftliche Aussprache: 10. Juni 2003

Berlin 2003
D83

 ii

I

Abstract

The transformation of the Internet into an important commercial infrastructure in
the recent years has led to the emergence of new service needs as it is required to
carry a wide range of application information. It is widely agreed that the Internet
architecture should offer some type of service differentiation, so that some traffic
classes get better QoS (Quality of Service) than others. Currently, the attention of
the research community has been focused on the Differentiated Service
Architectures (DiffServ).

A model attracting much attention from the research communities recently is the
Proportional Differentiated Service Model, which provides proportional services
between different classes. There are some existing studies on mechanisms to
provide the proportional service, such as Proportional Delay Service (PDDM),
Proportional Loss Service, WTP, BPR, MDP, and DDTS etc. Even when such
mechanisms are implemented at every router, it is not always possible to receive
per-class proportional service in an end-to-end manner.

In order to overcome this issue, attention concentrates on developing a new and
simple model (called Proportional Jitter Differentiated Services - PJDM) that does
provide proportional jitter between different classes based on the Jitter
Differentiation Parameters. Unlike other existing approaches, it is unnecessary to
have complicated scheduling algorithms at every router in networks based on
PJDM model. Subsequently, the issue of related packet scheduling problems is
considered: four new schedulers for PJDM model are created in this work. The
Relative Jitter Packet Scheduling (RJPS) and the Proportional Average Jitter
(PAJ) algorithms provide long-term jitter and short-term jitter ratio proportionally
between different classes. Furthermore I consider the use of variable Jitter
Differentiation Parameters in RJPS and PAJ, this idea leads me to create two new
mechanisms, called Adaptive RJPS and Adaptive PAJ, which are more robust
than the previous RJPS/PAJ mechanisms under bursty traffic profiles.

The focus then shifts to a comparison of quality of service provided by PDDM
and PJDM in terms of end-to-end delay. Results received from my simulation
confirm that the topologies based on my new model PJDM achieve significantly
better quality of service than the others, which derive from the old model PDDM.

II

Acknowledgements

Thank you to Professor Adam Wolisz and Professor Klaus Rebensburg, for their
contributions in the development of my research and their guidance in my
professional growth. Without their broad vision and deep insight, their valuable
advice and strong encouragement, and their willingness to provide funding, this
work would not have been possible. I thank them genuinely for everything I have
achieved in my research so far.

The work presented in this thesis was done in the Interdepartmental Research
Centre for Networking and Multimedia Technology, as well as in the
Telecommunication Network Group (TKN) at the Faculty of Electrical
Engineering and Computer Science, Technical University Berlin. I would like to
acknowledge DAAD and all the colleagues, especially Dr. Christa Klaus, who
support my 5-year staying in Germany.

Furthermore, I would like to express many thanks to the Faculty of Electronics
and Telecommunications and the Personnel Department, Hanoi University of
Technology, for supporting me so that I can pursue my research in Germany.

It is a great pleasure to acknowledge my friends, either German or Vietnamese,
for their support and encouragements. Among them, I would like to express my
earnest gratitude to my husband, Dr. Thanh Nguyen-Huu for making our many
long hours at the office endurable and enjoyable. His enthusiasm, patience, work
ethic and especially his love have made my thesis productive and successful.
Without his support, any of my achievements would not have been possible.

I have also had many discussions with Thomas Wolfram on my research issues.
Without his help, his encouragement and his friendship, I could not finish my
work. I have also benefited greatly working with Dr. Holger Karl, who has given
good advice to me about truly experimental system research. I thank Irina Piens
for providing equipment in order to perform simulations.

Last but not least a big thank you to my family in Vietnam. Their support and
encouragement made it possible for me to finish this important step in the career
of a young researcher.

III

Contents
CHAPTER 1 INTRODUCTION... 1

1.1 WHY IP? .. 1
1.2 WHY QOS? .. 2
1.3 WHY DIFFERENTIATED SERVICES (DIFFSERV)? 3
1.4 WHY PLAYOUT BUFFER AT RECEIVER END?... 4
1.5 PROBLEM SPECIFICATION... 4
1.6 CONTRIBUTION OF THIS WORK ... 5

1.6.1 Innovative approaches .. 5
1.6.2 Results ... 7

1.7 STRUCTURE OF THE THESIS .. 8
1.7.1 Terms and Definitions ... 9

CHAPTER 2 BACKGROUND ... 14
2.1 CIRCUIT SWITCHING VS. PACKET SWITCHING.. 14
2.2 IP NETWORK MODEL ... 15
2.3 INTEGRATED SERVICES ARCHITECTURE... 17
2.4 DIFFERENTIATED SERVICES ... 21

2.4.1 Architecture... 23
2.4.2 Complexity... 24
2.4.3 Previous Works on Differentiated Services................................... 28

2.5 RECEIVER... 30

CHAPTER 3 PROPORTIONAL DELAY AND LOSS 32
3.1 RELATIVE DIFFERENTIATION CONDITION .. 32
3.2 PROPORTIONAL DIFFERENTIATION MODEL .. 33
3.3 PREVIOUS WORKS.. 35

3.3.1 On Proportional Delay ... 35
3.3.2 On Proportional Loss.. 38

3.4 PROPORTIONAL DELAY DIFFERENTIATION MODEL................................ 41
3.4.1 Time Dependent Priority Scheduler.. 42
3.4.2 Per-class Average Delays in the PDDM Model 51
3.4.3 Delay Dynamics in the PDDM model ... 51

CHAPTER 4 PLAYOUT BUFFER DELAY ADJUSTMENT
ALGORITHM ... 54

4.1 END-TO-END DELAY CHARACTERISTICS.. 55
4.2 CLASSIFICATION... 55

4.2.1 Influence of Media Type on Classification of Playout Adaptation57
4.2.2 Time-oriented Playout schemes .. 57
4.2.3 Buffer-oriented Playout Schemes.. 64
4.2.4 Comparisons of Playout Buffer Delay Adjustment algorithms 68

4.3 RELATED WORKS... 71

IV

4.3.1 Influence of FEC on Playout Schedulers 72
4.3.2 Influence of Video Caching on Playout Schemes.......................... 73

4.4 PERFORMANCE OF A PLAYOUT SCHEMES ... 73
4.5 CONCORD ALGORITHM... 75

4.5.1 Why Concord?... 75
4.5.2 Basic Characteristics .. 76

CHAPTER 5 PROPORTIONAL JITTER DIFFERENTIATION MODEL
(PJDM) ... 86

5.1 PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)................... 86
5.2 SOME PROPERTIES.. 87
5.3 METHODOLOGY ... 89

5.3.1 Method for Performance Evaluation of Schedulers within Single
Hop ... 89
5.3.2 Method for Performance Evaluation and Comparison of PJDM
and PDDM .. 91

CHAPTER 6 NEW SCHEDULING ALGORITHMS AND
PERFORMANCE EVALUATION OF PJDM AND PDDM MODELS 100

6.1 RELATIVE JITTER PACKET SCHEDULING ALGORITHM (RJPS).............. 100
6.1.1 Algorithm Description... 100
6.1.2 Simulations.. 105

6.2 PROPORTIONAL AVERAGE JITTER SCHEDULING ALGORITHM (PAJ) 113
6.2.1 Algorithm Description... 113
6.2.2 Simulations.. 114

6.3 ADAPTIVE DIFFERENTIATION PARAMETER... 121
6.3.1 Algorithm Description... 121
6.3.2 Simulations.. 124

6.4 PERFORMANCE EVALUATION OF PJDM AND PDDM MODELS 129
6.4.1 Comparison between Proportional Delay and Proportional Jitter
Network ... 129
6.4.2 Simulations.. 130

CHAPTER 7 SUMMARY ... 145
7.1 SUMMARY.. 145
7.2 SUGGESTION FOR FUTURE WORK... 146

BIBLIOGRAPHY ... 148

V

List of Figures

Figure 1 Architecture of a conventional IP router ... 17
Figure 2 Architectural layout of an IntServ router ... 18
Figure 3 Architectural layout of a DiffServ router ... 22
Figure 4 Architecture of a Differentiated Services network 24
Figure 5 Playout buffer delay adjustment algorithm.. 30
Figure 6 Proportional delay scheduler... 35
Figure 7 Proportional loss rate dropper .. 38
Figure 8 Description of the PLR(∞) dropper .. 39
Figure 9 Two class TDP where b1 < b2 ... 43
Figure 10 Packet voice with receiver jitter compensation.................................... 54
Figure 11 Different playout buffer time .. 54
Figure 12 A general classification of playout schedulers..................................... 56
Figure 13 Network delays fall in one of three possible regions. 63
Figure 14 The watermark-based playout scheduler of Rothermel and Helbig..... 66
Figure 15 Timing associated with the i-th packet in the k-th talkspurt 74
Figure 16 PDD constructed by Concord algorithm ... 78
Figure 17 Concord algorithm .. 85
Figure 18 Network topology ... 90
Figure 19 Network elements ... 92
Figure 20 Network based on the PDDM model, type 1 .. 93
Figure 21 Network based on the PDDM model, type 2 .. 93
Figure 22 Network based on the PJDM model, type 1 ... 94
Figure 23 Network based on the PJDM model, type 2 ... 94
Figure 24 Different network topologies en details ... 96
Figure 25 RJPS scheduler... 101
Figure 26 Packets in the class .. 102
Figure 27 RJPS algorithm .. 105
Figure 28 Network topology ... 105
Figure 29 Variation of long-term jitter ratio with constant packet’s size and heavy
load.. 106
Figure 30 Variation of short-term jitter ratio with constant packet's size and
heavy load ... 107
Figure 31 Average delay of different classes.. 107
Figure 32 Long-term jitter ratio with variable packet's size 109
Figure 33 Short-term jitter ratio with variable packet's size.............................. 109
Figure 34 Long-term jitter ratio with variation of link utilization 110
Figure 35 Short-term jitter ratio between different classes with variation of link
utilization... 111
Figure 36 Long-term jitter ratio with variable window's size 112
Figure 37 Short-term jitter ratio with variable windows size............................ 112
Figure 38 PAJ algorithm .. 114
Figure 39 Network topology ... 115

VI

Figure 40 Long term jitter ratio of the PAJ scheduler.. 116
Figure 41 Short-term jitter ratio of the PAJ scheduler....................................... 116
Figure 42 Average delay... 117
Figure 43 Different load distribution between classes 118
Figure 44 Different traffic profiles ... 120
Figure 45 Adaptive-RJPS algorithm... 123
Figure 46 Adaptive-PAJ algorithm... 123
Figure 47 Network topology ... 124
Figure 48 Performance comparison of Adaptive RJPS and RJPS algorithm..... 125
Figure 49 Performance comparison between RJPS and Adaptive-RJPS 126
Figure 50 Performance comparison between RJPS and Adaptive RJPS 127
Figure 51 Performance comparison between Adaptive- PAJ and PAJ 128
Figure 52 Performance comparison between Adaptive-PAJ and PAJ 128
Figure 53 Network topology ... 131
Figure 54 Long-term jitter ratio between class 2 and 0, large topology
(predefined: 0.5).. 131
Figure 55 Long-term jitter ratio between class 1 and 0, large topology
(predefined: 0.667).. 132
Figure 56 Network Topology, type 1... 132
Figure 57 Network topologies... 133
Figure 58 Network delay of class 0... 134
Figure 59 Normalized end-to-end delay of two topologies................................. 134
Figure 60 Network topology ... 135
Figure 61 Network topology ... 136
Figure 62 Normalized end-to-end delay ... 137
Figure 63 Normalized end-to-end delay ... 140
Figure 64 Mixture of PDDM and PJDM models.. 141
Figure 65 Network topology ... 142
Figure 66 Normalized end-to-end delay ... 143
Figure 67 Performance comparison between different network topologies....... 144

VII

List of Tables
Table 1 Overview of time-oriented schedulers.. 70
Table 2 Overview of surveyed buffer-oriented schedulers.................................... 71
Table 3 Basic notation .. 76
Table 4 Performance of the RJPS algorithm .. 108
Table 5 Performance of the RJPS algorithm .. 110
Table 6 Performance of the RJPS algorithm .. 111
Table 7 Different traffic profiles ... 119
Table 8 Traffic profiles.. 125
Table 9 Traffic profile ... 126
Table 10 Traffic profile ... 127
Table 11 Comparison between the PDDM and the PJDM model 130
Table 12 Traffic profiles.. 137
Table 13 Comparison of normalized end-to-end delay....................................... 144

VIII

IX

Acronyms
ADD: Average Drop Distance
Adaptive-PAJ or A-PAJ: Adaptive Proportional Average Jitter
API: Application Programming Interfaces
Adaptive-RJPS or A-RJPS: Adaptive Relative Jitter Packet Scheduling
ARQ: Automatic Repeat Request
ATM: Asynchronous Transfer Mode
BB: Bandwidth Broker
BPR: Backlog Proportional Rates
CBP: Complete Buffer Partitioning
CBQ: Class Based Queuing
CBR: Constant Bit Rate
CSC: Class Selector Compliant
DDP: Delay Differentiation Parameters
DDTS: Differentiated Delay and Throughput Scheduler
DiffServ: Differentiated Service
DoP: Distorsion of Playout
DS: Differentiated Service Field
DSCP: Differentiated Service Code Point
FEC: Forward Error Correction
FIFO: First In First Out
GPS: Generalized Processor Sharing
HOL: Head of Line
HTTP: HyperText Transport Protocol
HWM: High Water Mark
IETF: Internet Engineering Task Force
IntServ: Integrated Service
IP: Internet Protocol
Ipv4: Internet Protocol version 4
JDP: Jitter Differentiation Parameters
JoBS: Joint Buffer Management and Scheduling
LDP: Loss Differentiation Parameters.
LHT: Loss History Table
LPF: Lowest Priority First
LTB: Lower Target Boundary
LWM: Low Water Mark
MU: Media Unit
NEVOT: Network Voice Terminal
NN: Neural Network
NT: Network Topologies
PAJ: Proportional Average Jitter
PBS: Partial Buffer Sharing
PDD: Packet Delay Distribution

X

PDDM : Proportional Delay Differentiation Model
PHB: Per Hop Behaviors
PJDM or PJD: Proportional Jitter Differentiation Model
PLR: Proportional Loss Rate
PQ: Priority Queuing
PMP: Paris Metro Pricing
QoS: Quality of Service
QM: Queuing Monitoring
RED: Random Error Detection
RJPS: Relative Jitter Packet Scheduling
RSVP: Resource Reservation Protocol
RTT: Round Trip Time
SLA: Service Level Agreement
SLS: Service Level Specification
TCP: Transfer Control Protocol
TDP: Time Dependent Priority
USD: User Share Differentiation
UTB: Upper Target Boundary
VD: Virtual Delay
VLL: Virtual Leased Line
VOD: Video on Demand
WDM: Wave Division Multiplexing
WFQ: Weighted Fair Queuing
WRR: Weighted Round Robin
WTP: Waiting Time Priority
WWW: World Wide Web

CHAPTER 1 - INTRODUCTION

1

Chapter 1 Introduction

This chapter presents the IP interworking environments as well as Quality of
Service (QoS) support in such environments. It also addresses the needs of
building a QoS architecture based on the Differentiated Services architecture and
Playout buffer delay adjustment algorithms. Finally, it outlines problems to be
solved and describes the major contribution of this thesis to the state-of-the-art.

1.1 Why IP?

Packet networks are able to transfer different types of information, such as E-
mail, WWW pages, voice, music, video etc. In general, if an information unit can
be digitally represented, it can also be assembled into packets, and can be
transferred through a network. The Internet as an interconnection of many
different networks is based on the Internet Protocol (IP) [Clark88]. Internet was
mainly used for E-mail and File Transfer in the eighties. Later in the nineties,
WWW access significantly contributed to the traffic, and recently new
applications like conferencing and multimedia streaming became more and more
important. This fact especially leads to relevance of the topic “QoS”.

In order to transfer packets through networks, it is necessary to have a sequence
of links and routers from senders to receivers. Links are used to interconnect end
users and routers with each others. Routers are nodes where packets from an input
link are forwarded to output links. Source or destination addresses and application
port numbers are stored in packet headers and they address a path and services
which packets obtain in networks.

In an IP router, packets arrive at an input interface and they depart from an output
interface. The output interface is specified by a forwarding table. An important
feature of an IP router is the fact that packet queues are inevitable, and they can
cause delay and packet losses, which are major performance-degradation factors
in packet networks. Another important performance factor in packet networks is
rate, usually called bandwidth, at which routers can forward and transmit packets.
The operation that routers perform choosing a packet from buffer in order to put it
to the free output links is called scheduling.

The Internet Protocol is based on connectionless mode (vs. connection oriented)
and can be used to communicate across any set of interconnected networks. The
major advantages of the Internet Protocol are its flexibility and scalability. There
is no requirement to maintain state for individual connections. Neither a
connection setup nor a teardown for packet forwarding does exist. IP and its
auxiliary protocol features communicate with remote sites without a detailed

2

knowledge of a particular vendor’s network hardware. IP is able to operate over a
very wide range of underlying network technologies. In addition, IP supports a
wide range of applications and institutions, from commercial use to research. The
vitality and scalability of the Internet Protocol is demonstrated by the rapid
expansion of the Internet every day. The most important reason why IP scales
well from small local area networks to worldwide networks with millions of users
lies in its connectionless nature. In case of failures the network decides which
way the message will take from sender to receiver.

However, IP has also two main disadvantages. First, different quality-of-services
requirements from the user can hardly be supported due to very simple
forwarding mechanisms where packets are treated equal. Second, the concept of
IP routing was designed more towards flexibility than rate.

1.2 Why QoS?

Quality of Service (QoS) is a generic term which takes into account several
techniques and strategies that could assure application and users a predictable
service from the network and other components involved, such as operating
systems.

The reasons for supporting QoS models in the future are the appearance of time-
sensitive applications, and the more and more ubiquitous use of Internet as work
tool, congestion and uncertainties in delay and delay variation. The traditional
Internet, storing and forwarding packets without guaranteed service can provide
best-effort service only, and cannot provide acceptable performance. New real-
time applications, which are less elastic and less tolerant to delay, packet losses
and delay variations cannot be handled properly within the traditional data service
architecture.

It is a hotly debated issue if the support of QoS is needed. One example is the
Wavelength Division Multiplexing (WDM) that makes the future bandwidth so
abundant, ubiquitous and cheap. When the link utilization is low or even
moderate observed, it is unlikely that packets are lost or heavily delayed. QoS will
be the same for all connections regardless of their QoS requirements. Due to large
bandwidth, there will be no communication delays other than the speed of light.
However, even if bandwidth would eventually become abundant and cheap, it is
not going to happen soon. Moreover, bandwidth provided as a network service is
not likely to become so cheap that wasting it will be the most cost-effective
design principle.

In addition, different services with different price patterns are required from the
Internet by the users because the users want to choose one service appropriate for

CHAPTER 1 - INTRODUCTION

3

its capability. Within the same type of service requirements, there might be
several service classes to be required. Some users, who are not so tolerant to
packet loss and delay, need to choose a strictly guaranteed service with higher
price, while others, who are tolerate to some degradation, will use a less
guaranteed and cheaper service class.

Recent experience in the Internet indicates that it is ill suited to handle time and
loss sensitive applications. This is due not only to the inadequate bandwidth
provided by the Internet but also because the Internet does not provide the right
support in the form of end-to-end protocols and adequate service to the new
applications. Thus service providers have to not only provision higher link
capacity but more important, they need also to introduce more sophisticated
service models and architectures that can satisfy varied QoS requirements.

1.3 Why Differentiated Services (DiffServ)?

In order to provide QoS support in the Internet, two service architectures - the
Integrated Service (IntServ) [Brad, Wrocl11] and the Differentiated Services
(DiffServ) architectures - have been developed [Nich98].

The IntServ approach supports some quantified services such as minimum-service
rate or a maximum tolerable end-to-end delay or loss rate for application sessions.
In order to support this type of service, each router in the network has to maintain
state and control information for each flow, which is a stream of packets belong to
the same application session. This approach seems to be unfeasible for routers to
perform all the above actions efficiently when there are millions of flows
traversing through the network simultaneously.

The other approach, DiffServ, is newer than the IntServ approach. It proposes a
coarser notion of quality of service, focusing primarily on classes, and intends to
qualitatively differentiate services between classes rather than to provide absolute
per-flow QoS guarantees. In particular, access routers process packets on the basis
of finer traffic granularity such as per-flow or per-organization while routers at
the core network do not maintain fine-grained state, but process traffic based on a
small number of Per Hop Behaviors (PHBs) encoded in the packet header.

A DiffServ model that draws much attention from the research communities
recently is the Proportional Differentiated Services Model [Dov3], which
provides proportional services between different classes. There exist some studies
on mechanisms to provide the proportional service, such as Proportional Delay
Service (PDDM) and Proportional Loss Service [Dov2]. Waiting Time Priority
WTP or Backlog Proportional Rates BPR are scheduling mechanisms designed
specially for the PDDM model in [Dov3]. Even when such mechanisms are

4

implemented at every router, it is not always possible to receive per-class
proportional service in an end-to-end manner.

1.4 Why Playout Buffer at receiver end?

Although such QoS architecture should be implemented in the Internet to
guarantee QoS, the total end-to-end delay experienced by each packet is a
function of variable delays due to physical media access and queuing delay. This
variation of delay is considered as a big disadvantage for a stream of multimedia
packets, because it influences the quality of audio-visual applications.

In order to compensate for these delay variations, a smoothing buffer (called
playout buffer) is thus typically used at a receiver. Received packets are first
queued into the playout buffer and the periodic playout of packets is delayed for
some amount of time, called playout delay. That means: a playout buffer is
responsible for holding each packet within an amount of buffer time so that the
end-to-end delay is the same for every incoming packet without excessively
delaying the packet. Clearly, the longer the playout delay, the more likely it is that
a packet will have arrived before its scheduled playout time. Excessively long
playout delay, however, can significantly impair human conversations. There is
thus a critical tradeoff between the length of playout delay and the amount of loss
(due to late packet arrival) that is incurred. The algorithm that controls this buffer
time is called playout buffer delay adjustment algorithm.

1.5 Problem Specification

This thesis deals with the issues of providing DiffServ in an IP backbone network.
These issues raise some general questions as below:

1. How to create a new and simple DiffServ model that

• is simpler than the existing DiffServ models?

• collaborates well with the playout buffer delay adjustment

algorithms implemented at receiver?

• produces better end-to-end QoS than the existing DiffServ models?

2. Which playout buffer delay adjustment algorithm should be used at the
receiver end for cooperating with the designed DiffServ model?

CHAPTER 1 - INTRODUCTION

5

3. How to design different scheduling algorithms in routers in order to

transport IP packets successfully through this DiffServ model?

4. How to evaluate and compare and the performance of my new model and
of the existing models?

5. How to improve the disadvantages of my new model and the existing

models?

I believe that the problem of network-architecture design is very complex and
cannot be solved satisfactorily without dealing with other problems in networks.
There are at least following components, which are intricately associated with the
problem of network-architecture design:

The first question deals with the problem of network-architecture design, e.g.,
how to design a new architecture, which is able to simplify the components.

The second question is concerning with the existing playout buffer delay
adjustment algorithms: how to choose an appropriate mechanism, which performs
a good trade-off between packet delay and loss rate.

The third question implies the problem how to design different schedulers that
produce proportional jitter?

For the fourth question, the objective is to establish methods in order to evaluate
the quality of these models. It concerns with the choice of network topologies
used in my simulations, with the setup traffic parameters, with the performance
criterion for comparing the quality of my scheduling algorithms with the existing
ones. Based on these methods, the quality of my new model and the existing
models are evaluated.

For the last question, it is necessary to establish a combination of my new model
and the existing model.

1.6 Contribution of this work

1.6.1 Innovative approaches

This work provides some innovative approaches to the issues addressed above,
creating:

6

• First, a new model for Proportional Differentiated Services – Proportional
Jitter Differentiated Model (PJDM). Unlike the PDDM model that
performs proportional delay, this model provides proportional jitter in the
network. Hence PJDM is simpler than the PDDM model because it is not
necessary to implement special scheduling algorithms at every router in
the network. Furthermore, by controlling the proportional jitter in the
network, PJDM is also more efficient than PDDM because it can
cooperate well with the playout buffer at receiver in order to produce
better end-to-end quality of service. In addition, I analyse the existing
playout schemes in order to choose an appropriate adaptation for PJDM. It
was decided to choose Concord mechanism [Shiv95] for implementing at
the receiver in my networks.

• Second, in contrast to existing schedulers that provide proportional delay

between classes, designing four new schedulers in order to be
implemented in the PJDM model, which facilitates proportional jitter. The
first algorithm, which is called Relative Jitter Packet Scheduling (RJPS),
maintains the short-term jitter and long-term jitter of different classes
proportionally. This is a simple mechanism, which can be implemented
easily at high-speed routers. The second algorithm, called Proportional
Average Jitter (PAJ), is also designed for PJDM. This scheduler is simpler
than RJPS, and hence easier to implement at network routers based on
PJDM model. The two last algorithms (Adaptive RJPS and Adaptive PAJ,
called Adaptive-RJPS and Adaptive-PAJ) are different from their original
algorithms. These mechanisms use Adaptive Jitter Differentiation
Parameters instead of fixed parameters as feedback signal for controlling
the jitter ratio between different classes; hence improve the quality of jitter
ratio under bursty load conditions.

• Third, focus on the methods of the performance evaluation. In order to

analyse and compare different algorithms (as RJPS, PAJ, Adaptive-RJPS
and Adaptive-PAJ) in different models (PDDM and PJDM), two methods
are proposed. One compares the quality of my scheduling algorithms
within only one hop and the other is for comparing the performance of
PDDM and PJDM, which will contain different schedulers in a multi-hop
network. The results from my simulations will show that two algorithms
Adaptive-RJPS and Adaptive-PAJ achieve better quality in terms of jitter
ratio than RJPS and PAJ, but they are also more complicated and hence,
more difficult to implement in the ‘’real world’’. In addition, the
simulations based on the second comparison method indicate that the new
model PJDM that uses my new scheduling mechanisms achieve better
end-to-end performance than the old model PDDM.

CHAPTER 1 - INTRODUCTION

7

• Finally, design new network topologies based on both PJDM and PDDM
models in order to overcome the disadvantages of PJDM and PDDM. I
evaluate these new nework topologies and compare them with the existing
topologies.

1.6.2 Results

The specific contributions of this work are the followings:

• Analysis about the relative DiffServ architecture and all the existing works
on Proportional Differentiated Services Architecture.

• The development of a new model for relative DiffServ-PJDM.

• Analysis of the existing playout buffer delay adjustment algorithms.

Among them, the Concord algorithm is used in my new model at the
receiver, because of its good trade-off between the end-to-end delay and
loss rate.

• The design of four new schedulers, which can be implemented, in my new

model PJDM.

• The development of a comparative method to evaluate the quality of these
four schedulers.

• Developing a comparative method to examine the performance of the new

model PJDM with the existing model PDDM.

• Performance evaluation and comparison of my new four schedulers under
different contexts within only one hop.

• Performance comparison of my new model PJDM with the existing model

PDDM (by using different scheduling mechanisms) through a multi-hop
network. Results show that my model PJDM achieves better end-to-end
quality of service than the old model PDDM.

• Design new network topologies based on both PJDM and PDDM for

overcoming the disadvantage of PJDM and PJDM models.

8

1.7 Structure of the Thesis

The overall structure of the thesis is organized as follows:

• Part I (Chapter 2, 3, 4) will present the background information and state
of the art of my new research.

• Part II (Chapter 5, 6, 7) will present the new research issue and discuss it

in depth.

Chapter 2 gives an overview about general issues, mechanisms and service
models for providing quality of service in the Internet. Then mechanisms such as
congestion control, traffic shaping, call admission control, resource reservation
and service scheduling that are deployed in the service architectures are
discussed. The next part of the chapter presents two service models, namely
Integrated Service and Differentiated Services model. Advantages and
disadvantages of the two models are also be analysed in this chapter.

Chapter 3 continues to focus on the proportional differentiation model, in terms of
delay and loss. Existing works on proportional delay and proportional loss are
also described. In addition, the chapter concentrates on proportional delay issues
by presenting its properties.

Chapter 4 provides an overview about the importance of playout buffer delay
adjustment algorithm. The taxonomy of existing adaptation schemes are
presented. Furthermore, the trade-offs between playout buffer delay and loss rate
are analysed. After analysing the existing algorithms, I decide to use Concord
algorithm at the receiver end in my work. The properties and characterizations of
the Concord algorithm are also described.

In Chapter 5, I will develop a new model for relative DiffServ, which is called
Proportional Jitter Differentiation Model (PJDM). This is a new architecture that
provides proportional jitter between different classes. After that I establish the
performance evaluation methodology used in order to examine and compare the
quality of my new schedulers in PJDM model.

Chapter 6 then describes four new scheduling algorithms are developed for this
new PJDM architecture. The first one is called Relative Jitter Packet Scheduling
(RJPS) algorithm, and its properties under different context as variable packet
size, variable window size, and variable load distributions are also examined. The
second one, which is simpler than the previous RJPS algorithm is also created and
called Proportional Average Jitter (PAJ) algorithm.

CHAPTER 1 - INTRODUCTION

9

The RJPS and PAJ algorithms use Jitter Differentiation Parameters as fixed
variables for controlling and monitoring the jitter ratios at the output link, so that
the jitter ratios between different classes stay proportionally with each other. In
this chapter, I also present two new variants of these algorithms, which do not use
these variables as fixed but adaptive variables. The performance of the two new
variants, called Adaptive-RJPS and Adaptive-PAJ are compared to the
performance of there original algorithm RJPS and PAJ.

In the last section of this chapter, the performance of the two models PDDM and
PJDM using different scheduling algorithms is evaluated and compared in terms
of end-to-end delay. This comparison is done based on the methodology
described in the previous chapter. Finally, I propose new networks based on both
PDDM and PJDM in order to overcome their disadvantages.

Finally, Chapter 7 states some conclusions about the works covered in this thesis
and suggests proposals for future works in this direction.

1.7.1 Terms and Definitions

Before going to next chapters, I would like to define some of the important and
most frequency used terms throughout this work in order to make it easier to read.

Accounting: The collection of resource consumption data for the purposes of
capacity and trend analysis, cost allocation…Accounting management requires
that resource consumption be measured, rated, assigned, and communicated
between appropriate parties.

Admission control: is a set of actions taken by the network during the call setup
phase to determine whether a new flow can be accepted. Call admission control is
especially necessary for real-time flows.

Bandwidth: The difference between the highest and lowest frequencies of a
transmission channel.

Bandwidth broker: QoS architectures are designed with agents called bandwidth
brokers, that can be configured with organizational policies, keep track of the
current allocation of marked traffic, and interpret new requests to mark traffic in
light of the policies and current allocation

Best-effort service: This service does not make any promise of whether a packet
is actually delivered to the destination, or whether the packets are delivered in
order or not.

10

Circuit switching: A method of guiding traffic through a switching centre, from
local users or from other switching centres, whereby a connection is established
between the calling and called stations until the connection is released by the
called or calling station.

Congestion control: is a mechanism used in a network such that the network can
operate at an acceptable performance level when the demand exceeds or is near
the capacity of the network resources.

Delay or latency: In a network, latency, a synonym for delay, is an expression of
how much time it takes for a data packet to get from one designated point to
another.

Domains: A DiffServ-capable domain; a contiguous set of nodes, which operate
with a common set of service provisioning policies and PHB definitions.

Dropping: the process of discarding packets based on specified rules.

Egress node: A DiffServ boundary node in its role in handling traffic as it leaves
a DiffServ domain.

Flow classification: to identify the flow to which a packet belongs.

Flow: is a stream of packets belonging to the same application sessions.

Ingress node: A DiffServ boundary node in its role in handling traffic as it enters
a DiffServ domain.

Links: are direct connections between end users or routers.

Marking: A process of setting the DiffServ code point in a packet based on
defined rules.

Metering: the process of measuring the temporal properties (e.g., rate) or a traffic
stream selected by a classifier. The instantaneous state of this process may by
used to affect the operation of a marker, shaper, dropper, and or may be used for
accounting and measurement purposes.

Multiplexing (MUXing): Combining/mixing two or more information channels
onto a common transmission medium.

Network congestion occurs when packets arrive at an output port of a router
faster than they can be transmitted.

CHAPTER 1 - INTRODUCTION

11

Packet classification: is the process of sorting packets based on the contents of
packet headers according to defined rules.

Packet headers: Information such as the source or destination addresses and the
application port numbers is stored in the packet headers and serves as the
determination of the path and the service that packets receive in networks.

Packet switching networks: A switched network that transmits data in the form
of packets.

Packets: In general, if an information unit can be digitally represented, it can also
be assembled into packets, and transferred through a network

Per-hop behavior: a description of the externally observable forwarding
treatment applied at a single node to a behavior aggregate.

Playout buffer delay: Enforced delay at the receive side for interactive real-time
communication in order to smooth delay variation.

Policing: The process of delaying or discarding packets of a traffic stream (by a
dropper) in accordance to the state of a corresponding meter enforcing a traffic
profile.

Policy control: the process of discarding packets (by a dropper) within a traffic
stream in accordance with the state of a corresponding meter enforcing a traffic
profile.

Provisioning: is a policy, which defines how traffic are configured on DiffServ
boundary nodes and how traffic streams are mapped to DiffServ behavior
aggregates to achieve a range of service.

QoS: On the Internet and in other networks, QoS (Quality of Service) is the idea
that transmission rates, error rates, and other characteristics can be measured,
improved, and, to some extent, guaranteed in advance. QoS is of particular
concern for the continuous transmission of high-bandwidth video and multimedia
information. Transmitting this kind of content dependably is difficult in public
networks using ordinary "best-effort" protocols.

Resource reservation: reserves different resources for a flow at the network node
so that its quality of service is maintained.

Route pinning: Receivers or routers can request that once the reservation along a
path has been set up, the path does not automatically change when a better path is
available.

12

Routers is a physical device that joints multiple networks together.

Routing lookup: For forwarding packets, it is necessary to search and find the
appropriate output interface, and this operation is called routing lookup, which is
the main and most complex operation in routers today.

Routing: The process to determine and prescribe the path or method to be used
for forwarding messages.

Scheduling: is the policy to choose from multiple packets, which exist in a buffer
and which share a common outgoing link, the next one for service.

Service classes: Class of service is the ability of a service provider to categorize
user’s application into separate classes, each class correspond to one type of
service requirement.

Service level agreement: A service contract between a customer and a service
provider that specifies the forwarding service a customer should receive. A
customer may be a user organization (source domain) or another DiffServ
domain.

Service profile: the service contract between a customer and the DiffServ
network or ISP is called the service profile. A service profile is usually defined in
absolute bandwidth and relative loss.

Shaping: is the process of delaying packets within a traffic stream to cause it to
conform to some defined traffic profile.

Signalling protocol: A protocol responsible for transfering the requirement of the
application and traffic characteristics on quality of service from senders to routers
along the path of this flow and to the receiver.

Speedup: in a switching fabric is the term that describes how much faster the
switching fabric operates than the native line rate it supports.

Statistical multiplexing: is a method of making the most efficient use of the
bandwidth available for transponder or cable transmission, whilst maintaining a
quality of service across all of the multiplexed channels. It is the process of
dynamically allocating bandwidth where it is needed most.

Switching fabric: Switching fabric is the combination of hardware and software
that moves data coming in to a network node out by the correct port (door) to the
next node in the network.

CHAPTER 1 - INTRODUCTION

13

Traffic conditioning: control functions that can be applied to aggregation,
application flow, or other operationally useful subset of traffic, e.g., routing
updates. These may include metering, policing, shaping and packet marking.
Traffic conditioning is used to enforce agreements between domains and to
condition traffic to receive a differentiated service within a domain by marking
packets with the appropriate code point in the DiffServ field and by monitoring
and altering the temporal characteristics of the aggregate where necessary.

Traffic profile: a description of the temporal properties of a traffic stream such as
rate and burst size.

WDM: Fibre-optic modulation scheme where data channels are put on different
light wavelengths (or colours).

Work conserving: A property of a scheduling algorithm such that it services a
packet, if one is available, at every transmission opportunity.

14

Chapter 2 Background

In this chapter, I firstly provide an overview of the two switching techniques,
namely circuit switching and packet switching. It then presents the basic
mechanisms of the Internet. The next part of the chapter presents two service
models, namely Integrated Service and Differentiated Services model.
Advantages and disadvantages of the two models are also analysed in this chapter.
Then such mechanisms as congestion control, traffic shaping, call admission
control, resource reservation and service scheduling that are deployed in the
service architectures are discussed. After analysing these operations, I present
some existing work in DiffServ architecture. Finally, the importance of playout
buffer delay adjustment algorithm at the receiver is also discussed.

2.1 Circuit Switching vs. Packet Switching

Generally, there are two major important switching techniques that are used in
communication networks: packet switching or circuit switching. A very good
example for circuit switching is the telephone network, which was developed
more than 100 years ago. In a telephone network, a circuit will be established for
any two end points, which want to communicate with each other. The two end
points remain connected with each other until the circuit is switched off.

In packet switching networks, information streams are transmitted in form of
small packets, which are switched and transferred based on the information
contained in packet headers. At receiver end, packets are put together for
receiving the original information. An example of such networks is the Internet
Protocol (IP) [Clark88] network.

Compared to circuit-switching network, a packet-switching network is capable of
statistical multiplexing, which means that the active traffic sources can use any
additional capacity made available by the inactive traffic sources. Statistical
multiplexing can significantly increase network utilisation. More concretely,
recent research has demonstrated that the ratio between peak and average rate is
3:1 for audio traffic, and as high as 15:1 for data traffic [Robert].

Unfortunately, this statistical multiplexing has its own disadvantage: congestion.
Network congestion appears when packets coming from multiple inputs arrive at
an output port of a router faster than they can be transmitted. In such a case, the
network will have to buffer and in some cases to drop some traffic. Furthermore,
the sender is required to cooperate with the network to reduce the congestion by
decreasing its rate upon detection of congestion.

CHAPTER 2 - BACKGROUND

15

2.2 IP Network Model

The Internet has a hierarchical architecture where major backbone networks are
connected to smaller regional networks, which then are interconnected with even
smaller local networks. The most important service of today’s IP network is to
deliver packets between different nodes in the Internet with reasonable QoS
[Gup99]. As noted before, it is the router, which makes this job available. Each
router needs to have at least two interfaces to interconnect networks. In order to
forward packets the router uses the destination address in the packet’s header.
That is why each router needs to maintain a table, called forwarding table, which
maps an IP address to an interface attached to the routers. Furthermore, routers
run a routing protocol based on a distributed algorithm. The main function of this
algorithm is to enable routers to learn to know the reachability of any host in the
Internet along a good path, or the shortest path. Hence, a packet will be
transferred from its source to the destination theoretically via the shortest path.

As mentioned previously, a router has in general a set of input interface(s) and a
set of output interface(s) or both. Packets will reach the router at input interfaces
and leave the router at output interfaces. A switching fabric is responsible to
transfer packets from inputs to outputs [Patr94]. For each switching fabric, there
is a main parameter called the speedup. Speedup in a switching fabric is the term
that describes how much faster the switching fabric operates than the native line
rate of supported inputs/outputs.

In routers, packets could either be stored at the input interface or at the output
interface or at both before going to the output link. According to the place where
the packets are stored, there are three possibilities of routers, so they are classified
as input queuing, output queuing or input-output queuing.

In an output-queuing router, packets are transferred immediately to the
corresponding output when they arrive at the inputs. Packets will be queued and
scheduled at the output interfaces only. Most of the analytical studies assume an
output-queuing router model because of the simplicity of this model. “Simple”
routers additionally need a speedup of n, where n is the number of input links.
Routers have to work at this speed in cases when all inputs need to process
packets simultaneously for the same output. Since inputs do not have buffers, the
output must receive n packets from this inputs simultaneously, which I call a
speedup of n. In high-speed networks, high speedups lead to technically costly
output-queuing routers. That is why the market prefers input-output queuing
types.

Input-output queuing routers use to store packets at the input, and the speedup of
the switching fabric is decreased significantly. Unfortunately, this advantage at
the same time increases the complexity of the router: since only the output has

16

complete knowledge of how packets are scheduled, complex and distributed
algorithms in order to control the packet transfer from input to output have to be
implemented. Furthermore this makes the routers much more complicated to be
understood. To conclude, output-queuing routers are more tractable for analysis;
the input and input-output queuing routers are more scalable and therefore easier
to design.

Recently, researches in [Chua99, Stoika1] have proved that an input-output
queuing router, which has an internal speedup of 2 only, is able to emulate a large
class of scheduling algorithms of output queuing routers. That is why, at least in
principle, it is possible to build scalable input-output queuing routers, which can
emulate the behavior of output-queuing routers. For this reason in this work I will
focus on the output-queuing router architecture only.

Figure 1 shows the architectural layout of an IP router [Kesh98], especially the
queuing components. Technical parameters are the reason why packets can be
delayed and lost. Queuing delay and packet loss (locally or per-hop) are
substantial reasons for performance-degradation factors of each IP router. If
routers have sufficient forwarding resources at their disposal, packet flow can
receive adequate performance from routers, and on the other hand, if routers are
not able to transfer packets fast enough (packets then have to stay in routers) then
performance will be degraded.

Major resource types within a router are on the one side the rate at which it can
forward and transmit packets (usually called bandwidth) and on the other side the
size of packet buffers in the router queues. In summary, traffic performance
decreases when there is contention for either of these resources.

A disadvantage of the IP network, which provides best-effort service only, is the
fact that all packets are treated equal in terms of bandwidth, delay or loss etc.,
even though not every application has the same requirements from the network. A
packet of an interactive voice session has the same performance considering delay
as packets of the file transfer protocol application.

CHAPTER 2 - BACKGROUND

17

Routing Module

Swiching Fabric

Input
 Interfaces

Output
InterfacesInput

Queues
Output
Queues

Figure 1 Architecture of a conventional IP router

Nowadays demands for more than best-effort services are coming up - towards
e.g. guaranteed services and differentiated services, while today’s Internet is
evolving to a global architecture. Guaranteed services are able to ensure specific
performance parameters such as bandwidth and delay on a per-flow basis. For
example it should be guaranteed that all packets of a flow receive a delay smaller
than a specified threshold, which implies that this specific flow receives at least a
certain amount of bandwidth. This kind of service would provide support for new
applications such as IP telephony, video-conferencing, and remote diagnostics.
Differentiated services are able to provide different services, in terms of
bandwidth, loss, and delay for different traffic classes. As an example it can be
useful to allocate twice as much bandwidth on every link in networks to a single
organization than to another organization.

Providing these services in packet-switched networks such as the Internet has
been one of the major challenges in the network research over the past decade. To
address this challenge, a plethora of techniques and mechanisms have been
developed. Among these techniques I will examine Integrated Services and
Differentiated Services architectures.

2.3 Integrated Services Architecture

There is a need for the provision of new services, which are more sophisticated
than best-effort service because new applications such as IP telephony, video-
conferencing and distributed games are currently growing in the Internet. These
new applications have special requirements on performance parameters, such as
delay and bandwidth compared to previous applications such as file transfer. For
example, interactive applications demand an end-to-end delay smaller than
approximately 100 ms. In global networks the propagation delay can be as much

18

as 100 ms. Thus, coping with these tight delay requirements is a very challenging
task.

In order to support these new applications, the Internet Engineering Task Force
(IETF) proposed a new service model called Integrated Service or IntServ
[Brad94, Wrocl10, Whit97]. This architecture was developed within the IETF in
the mid-nineties and has its roots in earlier research results [Ban96, Par93, Cruz1,
Cruz2, Enw95]. IntServ provides two services besides the traditional best-effort
service: Guaranteed and Controlled-Load services.

• Guaranteed Service: Among the services applied by IntServ and Internet,
this service is the strongest semantic service so far [Shenk12] and is able
to provide per-flow bandwidth and delay guarantees. Particularly,
guaranteed service guarantees a minimum amount of bandwidth to a flow,
even in a worst-case situation. Thus delay is bounded under a given arrival
process of the flow. Hence, Guaranteed service is an ideal service for
supporting real-time applications such as IP telephony, or videoconference
etc.

Routing Module

Swiching Fabric

Input
 Interfaces

Output
Interfaces

Per-Flow Data and
Control state

Signalling Admission
Control

Per-Flow
Billing

Scheduler
Per-Flow Queues

Figure 2 Architectural layout of an IntServ router

• Controlled Load Service: The controlled Load Service is a less strict

service provided in the IntServ framework. Wroclawski has defined
Controlled-Load service in [Wrocl11] as: ‘’tightly approximates the
behavior visible to applications receiving best-effort service under
unloaded conditions from the same series of network element’’. The
Controlled-Load service guarantees that packet loss is not significantly
larger than basic error rate of the transmission medium and the end-to-end
delay experienced by a very large percentage of packets does not greatly
exceed the end-to-end propagation delay. The main idea of this type of

CHAPTER 2 - BACKGROUND

19

service is to provide better support for broad class of applications that
have been developed in the Internet. Some examples of such applications
could be adaptive and real-time applications, such as video and audio
streaming.

The services mentioned above have been standardized in the IntServ architecture
and they include a maximum end-to-end delay [Shenk15], a sufficiently low loss
rate [Wrocl11] and minimum end-to-end rate [Bak96]. They are based on the
IntServ architectural principle: service differentiations are accomplished with per-
flow end-to-end resource reservations. These critical issues have important
implications on the strengths and the weakness of IntServ, which are discussed
next.

IntServ has a flow-centric property. That means the service-differentiation router
mechanisms are applied to individual flows, i.e., to streams of packets, which
belong to the same application session. In an IntServ router (Figure 2) it is
necessary to perform the following operations on packets of a flow:

• Flow Classification, to identify the flow in which a packet belongs to
[Lak98, Srin99]

• Scheduling, to provide a certain delay deadline or rate to a flow [Step99,

Stil98].

• Buffer Management: to allocate a number of buffers to a flow. [Suter98]

• Traffic Shaping or Policing, to control certain traffic characteristics of a
flow [Chao92, Step99].

• Admission Control determines whether the requested QoS to a flow can be

granted without affecting other flows in the network [Jam97].

• Resource Reservation is performed on a per-flow basis to provide
guarantees to the established flows in the network [Whit97]

These operations, such as flow classification, scheduling, buffer management and
traffic shaping or policing play an important role for the data-plane per-flow state
of a router. Besides per-flow operations at the data plane described above, a router
has to maintain and to process information for each flow at the control-plane. The
control-plane of IntServ is responsible for resource reservations and signalling
operations as well as for per-flow accounting [Edel99] and policy control
[Raj99].
In addition, IntServ is an end-to-end architecture. In order to provide an end-to-
end service guarantee it requires the cooperation between network providers. If

20

one of these networks is not able to provide this service type requested by a user
then it will not be able to provide this service guarantee end-to-end.

Additionally the hierarchical architecture of the Internet significantly contributes
to the difficulty to implement an IntServ model. Hence the establishment of the
required multilateral agreements for enabling end-to-end services is a very
difficult task in practice [Ferg98].

Resource reservation mechanisms in IntServ as a consequence lead to a certain
amount of resources (bandwidth and buffer) to be allocated to a flow before the
session starts and have to be maintained during the session. Resource reservations
are realised by a signalling protocol, which is responsible to transfer the
requirement of the application and traffic characteristics on quality of service
from senders to routers along the path of a flow. If there is a single router on the
path, which is not able to satisfy the necessary conditions then end hosts are
informed about the deny of the connection by this signalling protocol. This
operation is called admission control [Jam97]. The signalling protocol called
Resource Reservation Protocol (RSVP) [Zhang2, Brad97] has been designed for
this purpose. Its substantial per-flow processing at the control-plane raised
concerns about the IntServ scalability.

The possibility of providing strict QoS guarantees for IntServ comes along with
costs: complexity at the router, hence its deployment by network providers has
been quite limited. In addition to the issues of inter-domain deployment and
RSVP overhead as being discussed earlier, in IntServ there are also issues of
scalability and manageability [Mank97]. As mentioned before scalability
concerns are raised because the IntServ requires that routers maintain and process
data and control state for every active flow. Gigabit or terabit links carry millions
of simultaneously active flows, making it difficult to build IntServ-capable
routers. Next-generation routers will be able to accommodate millions of flows by
maintaining per-flow state at the edge routers only [Stoika1, Stoika2], adding to
the term flow a more coarse granularity [Kum98], or they will use approximations
of the ideal algorithms [Shree95].

Because of the conventional opinion that an IntServ network is harder to install,
to debug and to operate there are raised severe manageability concerns (IntServ
requires admission control, signalling, per-flow accounting, and the configuration
of several router mechanisms). Additionally routes may dynamically change in an
IP network. Routing changes usually do not occur in the Internet very often, but
there are certain links in which this happens quite regularly [Paxs96]. If a certain
end-to-end QoS is assured to a flow, the architecture should be able to either
forbid routing changes for that flow (route-pinning) [Guer97] or to reserve the
required forwarding resources in the flow’s new path while the session is in

CHAPTER 2 - BACKGROUND

21

progress,. Both operations are hard to implement in practice. Similar complexities
also arise when IntServ flows need fault tolerance [Dov4].

Another factor contributes to the weak deployment of IntServ – first, it requires
new Application Programming Interfaces (APIs) at the end-hosts (especially for
multimedia applications [Gop98]) and - second it can provide true end-to-end
service guarantees only if similar resource-reservation mechanisms are deployed
in the servers [Bha99] and the end-host operating systems [Yau97].

These problems were the reasons why the IETF and the research community
considered simpler and more scalable service-differentiation architectures such as
the technologies discussed below.

2.4 Differentiated Services

In order to overcome the disadvantages of IntServ a new architecture for the
Internet has been proposed [Nich98], which is called Differentiated Services
(DiffServ). Initially the purpose of DiffServ was a more scalable, manageable and
easily deployable architecture for service differentiation in IP networks.

It is very important to note that in DiffServ individual flows with similar QoS
requirements can be aggregated in larger traffic sets (or class). All packets in this
traffic set are submitted to the same ‘’forwarding behavior’’ in routers. A traffic
set is the minimum level of granularity in a DiffServ network in terms of service
differentiation. Each traffic set uses a certain class or Per-hop Behavior (PHB). A
PHB is identified by a short label (currently six bits) in the IPv4 header, which is
called Differentiated Services Code Point (DSCP).

Providers and customers negotiate agreements with respect to the services to be
provided at the customer/provider boundary. These agreements are commonly
referred to as Service Level Agreements (SLA). The subject of the SLA, which
provides the technical specification of the service, will be referred to as Service
Level Specification (SLS).

Individual flows are aggregated into traffic sets at the edges of a DiffServ
network. The edge routers can be the host-network interface or the router that
connects a flow-aware network to a DiffServ network. The mapping from
individual flow to traffic sets is called flow classification.

22

Routing Module

Swiching Fabric

Input
 Interfaces

Output
Interfaces

Dropper and
Scheduler

Per-Class
Data and

Control State

Figure 3 Architectural layout of a DiffServ router

Figure 3 shows the main architectural blocks in a DiffServ router. The
aggregation of packet flows into different classes in the DiffServ architecture
improves the scalability issue in IntServ architecture, since routers need to
maintain only states for a few classes. Similar to IntServ, the operations for
processing the packets in a DiffServ-capable router could be also scheduling,
classification, buffer management, traffic shaping or policing etc., but these
operations become much simpler and faster than IntServ. In addition the
management of networks becomes much simpler because operators have to
control and monitor just the state of a few classes rather than millions of flows.
Third, network pricing/accounting operations are simpler, because users do not
need to be billed for each session, or flow, but for the aggregated traffic. In
addition, DiffServ could be broadly classified to absolute (or quantitative) and
relative (or qualitative) service differentiation. Obviously, the fundamental
drawback of aggregation is that the network cannot guarantee QoS to a flow.
Obviously, it is difficult for a DiffServ network to guarantee QoS quantitatively in
an end-to-end manner.

An absolute service model in DiffServ is a model that provides a quantitative
guarantee level for each class, such as a minimum bandwidth, a maximum delay
or a maximum loss rate. This model demands some form of admission control or
policing for supervising users so that they do not send traffic at a higher rate than
their traffic contracts.

Contrary to the above service model the relative service model guarantees that a
lower class gets worse QoS than a higher class [Dov1]. There are no precise
values of QoS, which are defined for each class; the values of QoS vary with load
conditions and service differentiation mechanisms implemented in the network.
For users, who have absolute QoS demands but make use of the relative model, it
is possible to meet these requirements by dynamically adjusting the class that
reaches their QoS and pricing constraints. This relative differentiation model does

CHAPTER 2 - BACKGROUND

23

not require resource reservations, admission control, signalling or fixed routing,
and so it is considered as simpler to manage and deploy.

An example of the relative DiffServ is the Proportional Differentiated Services
model, which provides proportional-performance metrics for bandwidth, delay or
loss for different classes. I will focus on this model in Chapter 3.

2.4.1 Architecture

There is a distinction between edge and core mechanisms in a Differentiated
Services network (Figure 4).

• Edge Mechanisms: Edge routers can be categorized into ingress and
egress nodes. Traffic enters the DiffServ domain at an ingress node and
leaves the domain at an egress node. In ingress nodes the operations such
as packet classifications and traffic conditioning are implemented at per-
flow level. The packet-classification operation identifies the class of a
packet. Traffic conditioning contains metering, marking, shaping and
dropping. Metering is an operation, which measures traffic. If this traffic
is not compliant to a traffic profile then marking, shaping and/or dropping
operations are invoked. In order to set the DS field of each packet to an
appropriate DS code point for demoting out-of profile traffic to a different
PHB, or for ensuring that only valid code points are used within a domain,
the function of marking is defined. A shaping operation shapes the input
traffic in a manner that the submitted traffic conforms to the agreed traffic
profile. A dropping operation is necessary for dropping the out-of-profile
packets.
In egress node, it is expected that egress nodes remark, police and shape
the outgoing traffic so that it conforms to an SLA of the next DiffServ
domain.

24

Edge Routers

Core Router

Core Network

Core Router

Core Router

Ingress
Router

Egress
Router

Packet Classification
Marking
Shapping
Dropping

Buffer Management
Scheduling

Figure 4 Architecture of a Differentiated Services network

• Core Mechanisms: Two mechanisms alternatively are implemented at the
core router: buffering and scheduling, both in order to guarantee that
service requirements offered by SLS are met. Unlike at the edge routers,
these operations are done at a per-class level.

2.4.2 Complexity

As written above DiffServ routers are developed to overcome the scalability
problem raised in the IntServ model. DiffServ supports a limited class of service
only. Classification, traffic shaping, and other per-flow operations are done at
edge routers of the DiffServ network. At the core network, where the amount of
traffic is large, routers are responsible for traffic aggregations of classes of service
only.

I believe that the complexity of a DiffServ router depends on different factors,
such as on the lookup operation, packet classification, scheduling or on buffer
management. I will now focus on the complexity of the scheduling- and buffer-
management algorithms because they are very much related to my research.

CHAPTER 2 - BACKGROUND

25

2.4.2.1 Buffer Management

Buffer management is used for monitoring buffers at input or output interfaces in
an IP router. Practically, buffers have limited spaces. When buffers are full, the
arriving packets should be dropped. That means there is a possibility of packet
loss in routers.

Key mechanisms of buffer-management algorithms are the backlog controller,
which specifies the time instances when traffic should be dropped, and the
dropper, which specifies the traffic to be dropped. In an IP network, the buffer
management algorithms have to focus mainly on different issues, such as: avoid
congestion, reduce the packet transfer delay and keeping the queue length at low
levels.

Backlog Controller: Among backlog controllers for IP network, Random Early
Detection [Sally2] is probably the best-known algorithm. RED was motivated by
the goal to improve TCP throughput in highly loaded networks. RED operates by
probabilistically dropping traffic arrivals, when the backlog at a node grows large.
RIO [Clark98] and Multiclass RED [Card02] are extensions to RED, which aim at
class-based service differentiation. Both schemes have different dropping
thresholds for different classes in order to ensure loss differentiation.

Droppers: The simplest and most widely used dropping scheme is Drop-Tail,
which discards arrivals to full buffer. For a long time, discarding arrivals was
thought to be the only viable solution for high-speed routers. Recent
implementation studies demonstrated that more complex dropping schemes,
which discard packets which are already present in the buffer (push-out), are
viable design choices at high data rates [Kron91].

Push-out techniques include mechanisms like Complete Buffer Partitioning
[Lin91] and Partial Buffer Sharing [Kron91]. CBP assigns a dedicated amount of
buffer space to each class and it drops traffic when this dedicated buffer is full.
PBS uses a partitioning scheme similar to CBP; but the decision to drop is done
after having looked at the aggregated backlog of all classes.

Simple buffer-management algorithms could be implemented by using a single
queue shared by all classes. With these schemes, the routers could provide only
simple network services. For more sophisticated network services, such as per-
class bandwidth and delay guarantees, it is necessary to implement complex
algorithms in routers, which could demand and manage separate queue for each
class. Buffer management algorithms become very complicated if the router has
to choose from which queue it has to drop a packet. For example, an algorithm
that implements a policy that drops the packet from the longest queue has O(log
n) complexity, where n is the number of non-empty queues. However, in practice,

26

this complexity can be significantly reduced by grouping the queues, which have
the same size or by approximating the algorithm [Odl99].

2.4.2.2 Packet Scheduling

In routers that maintain a per-class state packet scheduling is accomplished in two
steps: The first step is to select a class that has a packet to send, and the second
step is to transmit a packet from the class’s queue.

Normally, scheduling contains two types: work conserving and non-work
conserving. The work-conserving packet-scheduling algorithm will always
transfer packets to certain outputs if there is at least one packet in the system. In
other words output links are busy as long as there are packets in queues. Opposed
to a work-conserving scheduler, non-work conserving scheduling algorithms
could keep output idle even though there are packets destined for that output.

It is also very important to know that a scheduling discipline has to be designed in
order to ensure that each class gets a fair access to network resources and in order
to prevent a bursty class from consuming more than its fair share of output port
bandwidth, i.e., the bursty class has bad influence on other classes. Such
mechanisms belong to the class of fair-scheduling algorithms.

A simple scheduling algorithm is the FIFO (First In - First Out) mechanism. In
FIFO queuing all packets are treated equal by placing them into a single queue,
then servicing them in the order of their arriving time.

Priority Queuing (PQ) is the basis for a class of queue-scheduling algorithms,
which are designed to provide a relatively simple method of supporting
Differentiated Services classes. In classic PQ [Zhang1] packets are first classified
by the system and then placed into different priority queues. Packets are
scheduled from the head of a given queue only if all queues of higher priority are
empty. Within each of the priority queues packets are scheduled in FIFO order.

Weighted Fair Queuing (WFQ) was developed independently in 1989 [Dem90]. It
supports flows with different bandwidth requirements by giving each queue a
weight that assigns it a different percentage of output port bandwidth.

In Weighted Round Robin queuing WRR [Fran93], packets are first classified
into various service classes (for example, real-time, interactive, and file transfer)
and then they are assigned to a queue that is specifically dedicated to that service
class. Each of the queues is serviced in a round-robin order. Weighted round-
robin queuing is also referred to as class-based queuing (CBQ) or custom
queuing.

CHAPTER 2 - BACKGROUND

27

WRR queuing supports the allocation of different amounts of bandwidth to
different service class by either:

• allowing higher-bandwidth queues to send more than a single packet each
time it is visited during a service round, or

• allowing each queue to send a single packet each time it is visited, but to
visit higher-bandwidth queues multiple times in a single service round.

Many of simple algorithms as FIFO could be easily implemented by constant-
time algorithms, i.e., algorithms that take O(1) time to process each packet. On
the other hand, more complex scheduling algorithms such as Weighted Fair
Queuing are not so easy to implement in routers. In general, the algorithms to
implement these disciplines assign to each class a unique parameter that is used to
select the class to be served. Examples of such a parameter are the class’s priority,
and the deadline of the packet at the head of each queue. Class selection is usually
implemented by selecting the class with the largest or the smallest value. This
could be accomplished by maintaining a priority queue data structure in which the
time complexity of selecting a class is O(log n) where n represent the number of
classes in the queue.

Non-work conserving algorithms can be more complex than work-conserving
disciplines, because it is necessary to maintain the time information for each
class. The goal of this time information is to determine the time when a class with
a non-empty queue is eligible to send packets. The packet at the head of the queue
will be transmitted if its eligible time is smaller or equal to the system time. In
some cases in order to implement such scheduling algorithms it is necessary to
have two elements: a rate controller, which is responsible to buffer packets until
they become eligible, and a work-conserving scheduler that chooses the flow’s
packet to be transmitted based on the first parameter. Because the rate controller
is implemented normally by constant-time algorithms, the total complexity of
selecting a packet is generally dominated by the scheduling algorithm.

Once a class is selected, one of its packets is transmitted - usually the packet at
the head of the queue. After that, the parameter(s) associated with the class are
eventually updated.

In summary, packet classification is the most complex operation, compared to
other router operations. The algorithms to solve this problem require at least
O(logn) time and)(FnO space or, alternatively, at least)(log 1−FO time and O(n)
space, where n represents the number of classes, and F represents the number of
fields in a filter.

28

In contrast to packet classification most buffer management- and packet-
scheduling algorithms have O(n) space complexity and O(logn) time complexity.
By trading the resource utilisation for speed the time complexity to O(loglogn) or
even O(1) can be reduced.

2.4.3 Previous Works on Differentiated Services

The two DiffServ models which received major attention so far are the Virtual
Leased Line (VLL) service and the Assured Service. I will analyse and present
them next, discussing their advantages as well as their disadvantages.

2.4.3.1 Virtual Leased Line (VLL) Service

Van Jacobson [Jac99] proposed the model of the VLL service, or Premium
Service. It was the first model, which was designed in DiffServ. VLL service
focuses on guaranteeing peak-bandwidth services with marginal queuing delays
and losses. Therefore this service is similar to a leased line in circuits-switched
networks. At the ingress router the network controls the peak rate of VLL traffic
(R) that is contracted between service provider and customers using traffic
shaping at edge routers. The shapers need to verify whether packet bursts are
delivered into networks. VLL traffic could not exceed this rate at network ingress.
The rate R will be provisioned and reserved in network cores along its path, this
traffic is classified with a highest priority. As a major benefit of the VLL service I
can state that users will not experience any considerable queuing delays or losses.

Unfortunately research in [Charn00] shows that this objective of the VLL service
can not always be realised: Even though an amount of VLL traffic is provisioned
at network edges and reserved in network cores with highest priorities, traffic
burst could exist somewhere in networks. The authors explained the reason of this
problem as follows: multiplexing of VLL traffic from different input interfaces in
core routers can make traffic become very bursty, and these bursts could cause
queuing delays and packet losses. The size of burstiness is decided by VLL load,
numbers of hops of VLL macro-flows, and shaping parameters at network
ingress. Therefore in order to guarantee low queuing delays, the VLL load has to
be a moderate portion of the network capacity only [Stoika4]. In certain cases,
some experiments [Ferr00] of the VLL model do produce inadequate quality with
very high queuing delay and losses. It does not satisfy the condition of VLL
service. Latest research [Guer00] improved the performances of the VLL model
with re-shaping at boundaries between network domains in order to provide
constant bandwidth with low delay and low loss service. Unfortunately, re-
shaping that requires some data about states of micro-flows could not yet be
implemented in high-speed links due to its complexity.

CHAPTER 2 - BACKGROUND

29

The VLL service requires some form of semi-static bandwidth reservations, set up
by a bandwidth broker protocol or agent in each domain [Jac99]. Between
domains, reservations should also be accepted upon and harmonized with
agreements of individual bandwidth brokers [Terz99]. The bandwidth broker is a
centralized control point for monitoring and controlling bandwidth utilisation and
reservations of links within a network. This approach poses concerns about the
scalability and fault-tolerant ability of the network [Stoika4]. It is still difficult to
implement a complex bandwidth-broker architecture i.e. a distributed broker.
Another drawback of the VLL service is that for holding VLL traffic in links,
where bandwidth reservations have been set-up, it is necessary to have some form
of route pinning even though the route changes could be found in IP networks.

Despite all the disadvantages listed previously, the VLL service is one of the best
DiffServ models in the Internet. There already exist some routers that are able to
provide VLL service. Furthermore, there have been some experiments with the
VLL in Qbone [Teit99] and in other networks.

2.4.3.2 Assured Service

This model, which is originally called Expected-Capacity framework, has been
introduced by David Clark [Clark98]. The idea of the original Assure Service is
quite straightforward. A sender requires a certain bandwidth from networks, let us
say R. If the bandwidth generated by the sender is smaller than R, this traffic will
be marked as IN traffic. Otherwise network marks it as OUT traffic. This marking
is used in case of congestions in order to distinguish the treatment of the IN and
OUT traffic: the IN traffic will be dropped with smaller probability than the other
traffic. Accordingly, when network load is low, higher throughput than the profile
R of users is accepted, but users are limited to the IN traffic if congestion occurs.

The most important idea of this model is the guarantee of no-dropping treatment
for the IN traffic so that each user will get a contracted bandwidth profile. In
order to realise this idea networks need to provide resources sufficiently in
advance so that IN traffic will not be dropped. Network providers have to reserve
the profiles of different users and different routes that IN traffic passes through.
More concretely, this reservation is done for reserving an adequate bandwidth in
each network link. Furthermore, the Assured Service model was studied in the
context of TCP transfers [Clark98], especially on specific marking procedures for
TCP traffic.

However, recent research shows some difficulties in designing provisioning
algorithms, which possess a service quality with large spatial granularity and
high-resource utilisation [Stoika3]. Moreover, it is also necessary to have some

30

forms of route-pinning for implementing Assured Services because the provision
assumes fixed routing and steady load in each network link.

In conjunction with TCP transfers [Yeom00] and [Sahu00] showed that in some
cases, it is impossible to provide a certain throughput of the Assured Service to a
TCP connection, even though networks are well provisioned before. The Assured
Service has been also analytically studied in [May99, Sahu99] with simple
queuing models in order to quantify assurance levels of the provided bandwidth
profiles.

2.5 Receiver

The Internet and other packet networks are used to transport audio and video
streams, supporting applications such as conferencing and telephony the total
delay experienced by each packet is a function of variable delays due to physical
media access and queuing in routers and switches, in addition to fixed
propagation delays, even though the routers implement such complicated
schedulers and buffer management algorithms. Variation of delay (jitter) is a
major disadvantage for streams of multimedia packets, because of its influence on
qualities of audio-visual applications. In order to smooth these variations, there
are some buffers, called playout buffers that are responsible of queuing and
holding each packet within an amount of buffer time. The amount of buffer time,
or playout-buffer delay, helps to compensate network delay variances without
excessively delaying the playout.

S e n d e r

R e c e iv e r

P la y o u t

D 1 D 2

D 3

D 1 : N e tw o r k D e la y
D 2 : B u ffe r D e la y
D 3 : E n d to E n d D e la y

D 1 : N e tw o r k D e la y
D 2 : P la y o u t B u ffe r D e la y

D 3 : E n d - to -E n d D e la y

T im e

T im e

T im e

Figure 5 Playout buffer delay adjustment algorithm

CHAPTER 2 - BACKGROUND

31

If every packet is buffered such that the sum of its network delay and its buffer
delay is equal to the maximum network delay, the receiver will reproduce a jitter-
free play back. This is called playout buffer delay adjustment algorithm (Figure
5).

If the inter-packet delay exceeds the buffer time the buffer will starve and
decoders will not have any packet to play. Packets that arrive too late are
considered to be lost. The amount of buffer time could be determined manually,
or adaptively. Clearly, the longer this delay the more packets will arrive before
their scheduled playout time and the better the jitter compensation will be. A good
playout scheme should be able to trade-off playout delay and packet-loss rates in
order to packet voice to be successful.

Common playout-buffer delay-adjustment algorithms are classified into two
broad approaches. Fixed approaches are the mechanisms whose range of delay is
predictable and which use static buffer size and schedule. Reactive approaches
that are generally used in the Internet will use instantaneous jitter for dynamically
adjusting the buffer size and playout the packet to alleviate the lateness. Fixed
playout-buffer delay-adjustment algorithms have known buffering delay but they
produce potentially large packet latency while reactive mechanisms do improve
the loss rate. But this improvement comes at the expense of potentially very high
buffering delays.

32

Chapter 3 Proportional Delay and Loss

This chapter provides an overview on Proportional Differentiation Model, in
terms of delay and loss. It also presents a glance at the existing works on these
two models. In addition, I continue to focus on the properties of the Proportional
Delay Model because it is related to my new architecture – namely the
Proportional Jitter Model.

3.1 Relative Differentiation Condition

As noted in the previous chapter, there exist two distinct models in the DiffServ
architecture: the absolute differentiation and the relative differentiation. The
absolute model provides an absolute or quantitative performance level to each
class by using some forms of admission control. In the following paragraph I
focus on the relative differentiation model. The relative model provides some
service level (or classes) that is relatively differentiated. In the relative
differentiation model, higher class receives better performance than lower class in
the expense of higher cost. The actual performance of a class could be bandwidth,
delay, delay jitter or loss. These performance parameters of a class in the relative
model cannot be known quantitatively in advance.

For the relative differentiation model, it is unnecessary to have admission
controls, bandwidth brokers and resource reservations or signalling between users
and networks. Route pinning or provisioning is also not required. Consequently,
this model is simpler and easier to deploy and manage [Dov1].

The central premise of the relative differentiation is that N classes of service are
ordered in the following sense:

Class i provides better (or at least no worse) performance than class j, for
i>j, in terms of per-hop queuing delays and packet losses.

There are eight relative differentiation classes, called Class Selector Compliant
Per-Hop-Behaviors (CSC PHBs), or simply Class Selectors [Nich98], which are
standardized by the IETF. Even though the use of the precedence bits has been
limited in the past, there have been certain links or networks that deployed simple
DiffServ schemes (such as providing higher priority to Telnet traffic) [Mills91].

For mapping packets to a certain Class Selector, several selections could be done:
at application level, at operating system of end-hosts, or at edge routers. The case
of mapping at the application level could be illustrated by an example that a
WWW server classifies requested HTTP transactions, based on user-subscription

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

33

levels, so that non-members are mapped to the lowest class, while members get
better services of a higher class [Bha99]. Or, in the case of mapping at operating
systems, a policy-based classification of packets may be performed at local hosts
of an academic organization, so that faculty uses the highest service class,
graduate students a middle service class, while the undergraduate students the
lowest class. For the last case, when the mapping could be done at end-hosts, a
commercial network may classify ingress traffic at corresponding edge routers
based on class prices and the maximum tariff that users are willing to pay. In
order to map packets to different classes, different flow classification techniques
[Beg99, Srin99] could be used.

The relative model could be used for providing absolute QoS requirements, when
applications and users have some mechanisms that allow themselves to adapt
dynamically to a class with an acceptable QoS level and within acceptable price
range. For applications and users, which do not have requirements on absolute
QoS guarantees, their classes can be fixed based on the performance versus cost
trade-off.

Thus a Differentiated Services network based on the relative model will provide
per-hop delay, bandwidth or delay jitter and loss differentiation. A higher class
will receive better performance than lower classes. The applications, however,
hope that they perform well in terms of end-to-end delay and loss rate. In this
case, the receiver needs to monitor end-to-end performance and notifies the
sender about current performances through a feedback channel. Based on this
information, the sender will make a decision whether to stay in this class, or to
move to a higher or lower class. If the user wishes to minimize the cost of
sessions, the application will ask for the least expensive class that meets
acceptable delays and losses.

3.2 Proportional Differentiation Model

In this section, I resume the Proportional Differentiation model as an alternative
to the relative model. The meaning of the proportional differentiation here is
explained as follows: the spacing between classes should follow proportional
constraints on the class performance levels. Formally, the proportional
differentiation model of the performance of class i is illustrated by the following
equation:

Nji
j

i

j

i ≤≤= ,1,
π
π

φ
φ

 (3.1)

34

where iπ is the differentiation parameter of class i, and iφ is the performance
metric of the class, such as average delay, delay jitter or loss rate. Note that if
lower values of iφ lead to better performance, I must have that ji ππ < if i>j.

The class, which has lower differentiation parameters, will get better performance
(delay, delay jitter or loss) than the classes that have higher differentiation
parameters. These proportional differentiation parameters are used to adjust
performances of classes so that they stay proportional with each other. One
crucial task of the proportional differentiation model is that the service
differentiation between classes must be independent class load distribution. That
means network operator is responsible for providing certain spacing between
classes, even though load conditions vary dynamically or are not known in
advance.

The spacing between classes could be expressed as delay, delay jitter or packet
losses. Because delay and loss are two major issues of the performance
degradation factors in packet networks, the author in [Dov3] has applied the
proportional differentiation model in terms of both queuing delays and packet
losses.

Specifically, let id be the average queuing delay of packets served in class i. The
proportional differentiation model in contexts of queuing delays requires that:

Nji
d
d

j

i

j

i ≤≤= ,1,
δ
δ

 (3.2)

Where iδ is the Delay Differentiation Parameter (DDP) for class i. The DDPs are
ordered as 0...21 >>>> Nδδδ .

Similar to the proportional delay differentiation model, the proportional
differentiation model, in case of packet drops, requires that the class loss rates be
spaced as:

 Nji
l
l

j

i

j

i ≤≤= ,1,
σ
σ

 (3.3)

Where il is the loss rate of class i. The parameters iσ are the Loss Rate
Differentiation Parameters (LDPs).

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

35

3.3 Previous Works

In this section, I summarize the existing works on proportional delay service, and
on proportional loss.

3.3.1 On Proportional Delay

In Chapter 1 I present the existing studies in DiffServ architecture. This section
will provide a summary on scheduling algorithms that can produce proportional
delay between different classes. Figure 6 shows the structure of a Proportional
Delay Scheduler. Each delay class is served by a FIFO packet queue. All flows
with the same class specification share the same FIFO queue at the router. At each
time when the output link is free, the scheduler should decide which packet will
be scheduled next if there are packets at the input queues.

Proportional
Delay

Scheduler OutputInput

N FIFO Queues

Figure 6 Proportional delay scheduler

The Asymmetric Best-effort described in [Bou99] is a model, which contains two
service classes: one for real-time applications (such as IP telephony), and another
for applications, which require some levels of throughput, such as data transfer.

In case of relative Differentiated Services model, the User Share Differentiation
(USD) [Wang98] is a very good example, which guarantees that per-hop
distribution of bandwidth is scheduled proportionally to profiles that user
demands. A similar of relative service model has been studied for USD, too.

In addition, it is necessary to say about the Paris Metro Pricing (PMP) model
[Odl99], which is a variant of relative Differentiated Services model. The
fundamental idea of this model is to provide differentiation based on pricing,

36

instead of special router forwarding mechanisms. For implementing this model,
the class, which pays more, receives higher loads, or better performance.
However, the idea of differentiation based on pricing is only useful over relatively
long timescales, in particular when class tariffs cannot be frequently modified. If
higher classes become overloaded (because for example many rich users become
active at the same time) they will offer worse performance than lower classes.
This would be an instance of inconsistent or unpredictable relative differentiation,
as I discussed.

Unlike the Paris Metro Pricing model, whose differentiation is based on
bandwidth, Constatinos Dovrolis [Dov3] created another model, called
Proportional Delay Differentiation Model, whose differentiation is based on
queuing delay. In order to implement this type of service, there are two
possibilities: WTP and BPR schedulers [Dov3], which are proposed by the same
author. I discuss now the advantages and disadvantages of WTP and BPR
schedulers and how they can support various service profiles.

WTP is a scheduling algorithm, which calculates priority of a packet
proportionally with its waiting time. The priority of a Head of Line (HOL) packet
in queue i at time t is defined as follows:

i
i twtp

δ
1).()(= (3.4)

Where)(tw is the waiting time of Head of Line packet, and iδ is the Delay
Differentiation Parameter of class i. The most important advantage of WTP
scheduler is the consistent when approximating the proportional delay
differentiation model, in particular when load condition and traffic patterns vary.
However, WTP decouples delay from service rate, and that is why it is not so easy
to realize different service performance types, as throughput differentiation and
delay differentiation… at the same time without using multi-level scheduling
architecture.

Usually, if a connection receives less delay than other connections, it will imply
that more bandwidth is allotted to these connections, but this property is not
always true. This problem is illustrated by the experiments realized in [Nguy01].
Suppose that I have four users, which use TCP service. These four users send data
and the traffic produced by these four users passes through a node, which uses
WTP scheduler. For each user, I assign a class of service, from class 1 to class 4,
respectively. Accordingly, the four Delay Differentiation Parameters of these
classes are 11 =δ , 212 =δ , 313 =δ , 414 =δ . The user, which uses the highest
priority class, hopes that he will receive more bandwidth. But results shown in
two tested scenarios lead to a conclusion that throughput performance is quite

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

37

different between the both scenarios: while the bandwidth performance in
scenario 1 is what I expected, the fourth user in scenario 2 got actually less
bandwidth than other users. That means WTP could provide delay differentiation,
but this scheduling algorithm is not stable for providing bandwidth differentiation.
This is a reason that leads to a new scheduling algorithm, called Differentiated
Delay and Throughput Scheduler (DDTS) in [Nguy01]. This is a scheduling
algorithm, which provides simultaneously delay and throughput differentiation
and link sharing. The scheduling policies are integrated in a single service
discipline. Under certain cases, the delay service discipline in DDTS provides
better performance than the WTP scheduler.

Unlike the WTP, BPR is originally derivate from the Generalized Processor
Sharing- GPS [Par93] scheduling. This GPS system schedules the packet based
on the rate allotted to the packet’s session and the queue backlog of that session at
the time packet arrives. The scheduling mechanism of BPR is based on the
reallocation of rates to its classes of service proportionally to their backlog.
Suppose that)(tri be the service rate assigned to queue at time t,)(tqi be the
queue i backlog at time t. For two backlogged queues i and j, the service rate
allocation in BPR satisfies the proportional constraints:

)(
)(

)(
)(

tq
tq

s
s

tr
tr

j

i

j

i

j

i = (3.5)

Where is are the Scheduler Differentiation Parameters, that are related directely
to the Delay Differentiation Parameters. Because BPR algorithm is done by the
rate-allocation, one can think about the possibility of integration of link sharing
policies and throughput differentiation policies into BPR. However, the
performance of BPR in terms of proportional delay differentiation is noteworthy
worse than WTP, especially when the load distribution between classes of service
is not symmetric.

A novel algorithm for buffer management and packet scheduling is proposed in
[Lieb01], called JoBS (Joint Buffer Management and Scheduling). This new
proposition could provide loss and delay differentiation simultaneously for traffic
classes at a network router. The model of network using JoBS requires no
admission control and policing. The novel property of the JoBS algorithm is that
scheduling and buffer management decisions are done in a single step.
Furthermore, both relative and absolute QoS requirements of classes are
supported.

In order to evaluate and compare the performance of our new model PJDM with
the existing model PDDM, I decide to choose WTP as the scheduling mechanism

38

implemented in PDDM since it is the simple algorithm that can maintain
proportional delay ratio stably [Lieb01].

3.3.2 On Proportional Loss

Scheduler

Aggregate
Backlog

Controller

Proportional
Loss Rate
Dropper

OutputInput

Drop Signal

Figure 7 Proportional loss rate dropper

Figure 7 shows the architecture of a proportional loss rate dropper, similar to
proportional delay module. Suppose that there are N classes of service, the model
of proportional loss differentiation is described as follows. For each FIFO queue,
a logical queue is created. When a packet arrives, it will be queued to the
appropriated queue based on class marking. The scheduler module is responsible
for determining which packet will be scheduled when outgoing links are available
for achieving the necessary delay or delay jitter differentiation between classes.
Another important module, which is called backlog controller, controls backlog of
these logical queues, and take a decisions whether a packet should be dropped or
not, and which packet should be dropped.

The most straightforward example of this backlog controller is Drop-Tail
algorithm. This simple mechanism drops packets when the buffer space is higher
than a threshold, or when there is no more available space. There exist also other
complex buffer management schemes, such as RED or its variants.

When it is necessary to discard a packet, a backlogged queue will be selected by
the packet dropper module, a packet from this backlogged queue will be dropped.
That means the backlog controller will monitor aggregate backlog in forwarding
engine, and the dropper module is responsible for controlling the loss rate
differentiation between classes. This dropper module could remove a packet from
the tail, from the head of line position…of queue.

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

39

3.3.2.1 Proportional Loss Rate (PLR) Droppers [Dov2]

For achieving the model of proportional differentiation in terms of loss, the
normalized loss rate iil σ/ should be equal for all classes. PLR dropper maintains
a running estimated il of loss rate in each class. When there is a need to discard a
packet, PLR dropper will select a backlogged class with the minimum iil σ/
ratio. In other words, PLR dropper will throw up a packet from a backlogged

class j with
i

i
i

l
j

σ
minarg= . This operation is explained as discarding a packet

from class j will reduces the difference of iil σ/ from the normalized loss rates of
the other classes, and tending to equalize them.

3.3.2.2 Proportional Loss Rate Dropper with infinite memory PLR(∞∞∞∞)
[Dov2]

This dropper is a version of the PLR dropper, it uses the loss rate estimate il ,
which is the long-term fraction of packets from class i that have been removed.
This loss rate counter can be calculated using a single parameter for the arrivals
and drops in each class. This element is called a dropper with infinite memory,
because the loss rate is calculated from the entire history of previous arrivals and
drops. The complete algorithm is shown as follows:

B(t): Set of backlogged classes at time t

iA : Counter of packet arrivals in class i

iD : Counter of packet drops from class i

1. Packet arrival in class i:

++iA
2. Packet drop from class j at time t:

ii

i
tBi A

D
j

σ)(minarg ∈=

++jD

Figure 8 Description of the PLR(∞) dropper

The length of two parameters iA and iD of the PLR(∞) dropper is an important
point, especially when counters overflows. One solution for this overflow

40

problem is to reset all counters, and enter a cold start phase, when any of arrival
counters overflows. For example, if counters are 32-bit, the counter iA will
overflow after at least four billion packet arrivals. It is anyway advantageous
when the counter is reset over shorter intervals, so that the dropper is more
adaptive to changing class distributions.

For implementing the algorithm in reality, it is necessary to realise N
multiplications and N divisions every time a packet needs to be dropped. This
operation could be generally in floating-point arithmetic. An optimisation that
avoids the multiplications would be to increase iA by iσ every time a packet
arrives in class i. If a single-precision division take 40 cycles, the calculation of
the normalized loss rates for 8 classes would take 320 cycles, and with a 700MHz
CPU the selection of the drop-target class would require about 0.5micros.

3.3.2.3 PLR(M): Proportional Loss Rate Dropper with memory M
[Dov2]

The estimation of class loss rate based on long history of packet arrivals is the
most important disadvantage of the PLR(∞) dropper, which makes it less adaptive
to changing class load distributions.

In contrast to PLR(∞) dropper, this algorithm defines the loss rate of class i as the
fraction of dropped packets from class i in the last M arrivals. For doing this, a
table, called Loss History Table LHT, records the class index

{ }),...,1].[(NclassiLHT ∈ and the drop status { })1,0].[(∈dropiLHT of each packet
in the last M arrivals.

Using counters in this table LHT, the dropper maintains a knowledge about
number of arrivals)(MAi and number of drops)(MDi from class i in the last M
arrived packets.

This scheme is different from the PLR(∞) in the way of counting packets: it resets
counters after every M arrivals and tries to achieve the proportional loss rate
differentiation model in every time window of M arrivals while PLR(∞) tries to
achieve proportional loss rate differentiations in successive time windows.

In order to implement PLR(M), it is necessary to have internally in routers a
packet tag, which are rewritten when packets are dropped. This element is the
main implementation complexity of PLR(M) compared to PLR(∞). Furthermore,
it has to be noted that such temporary packets tags, attached to packets in routers
while packets are being forwarded, are not uncommon in switch and router
designs.

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

41

Another important issue concerning to designs problem is the length of window
M. This parameter should be large enough so that a dropped packet is always one
of the last M arrived packets; otherwise, it will cause deviations of the LHT-based
loss rate from its actual value. This constraint is met in practice, even for small
values of M, when the dropped packets are removed from the tail of the queues. A
more tight constraint on M is that it should be large enough so that the specified
LDPs are feasible, with a given current load distribution and aggregate loss rate.
Intuitively, if M is not large enough, the PLR(M) dropper cannot remember
enough the previous arrivals and drops in order to adjust the loss rates based on
proportional constraints.

3.3.2.4 Average Delay Distance [Bod01]

Unlike the previous algorithms, ADD is a mechanism, which uses an estimator on
average drop distance (ADD) for controlling loss-rate. For each drop precedence
level, an ADD covers a history, whose length is defined in number of drops. This
makes the ADD algorithm more adaptive to history lengths at each level to
changing load distributions. The history covered by this estimator can be set short
without risking estimated loss-rates to be zero for some traffic loads. By using
this type of estimators, the history length simply determines how fast the
changing traffic load conditions are detected. Hence, the ADD estimators do not
have the same trade-off in choosing history length as the LHT estimator.

3.4 Proportional Delay Differentiation Model

The Proportional Delay Differentiation (PDDM) model intends to space the
average queuing delays so that the ratios of these average queuing delay stay
proportional with each other, based on Delay Differentiation Parameters (DDPs)

},...,1,{ Nii =δ .

In detail, suppose that id is the average queuing delay, or simply average delay of
the class i packets. The PDDM model, which requires that the ratio of average
delays between two classes i and j fixed to the ratio of the corresponding DDSs, is
formally illustrated by the following question:

Nji
d
d

j

i

j

i ≤≤= ,1,
δ
δ

 (3.6)

42

The model of PDDM has two objectives. First, this model should produce
consistent service differentiation between classes. That means a class with higher
advertised quality should consistently outperform a class with lower advertised
quality. In addition, it should allow the possibility of adjusting quality spacing
between classes, based on pricing and other criteria. Furthermore, these two goals
should be met even for sharing over short timescales.

The scheduling algorithms as WTP or BPR, proposed in [Dov3], are created
specially for this PDDM model. The first approach, WTP, is based on Kleinrock’s
Time-Dependent-Priorities algorithm [Leung00], and is shown to be highly
effective in [Dov3]. Because WTP is derived from TDP algorithm in [Leung00], I
summarize some related works of TDP on feasibility conditions for achieving
proportional delay.

3.4.1 Time Dependent Priority Scheduler

This section will outline some results for TDP scheduling. The necessary and
sufficient conditions for a given delay spacing to be feasible under TDP for two
traffic classes are analysed here. These characterizations are later extended for N
classes.

TDP is a packet scheduling algorithm that uses a set of control variables ib ,

Ni ≤≤1 where Nbbb ≤≤≤≤ ...0 21 (in the PDDM model, these variables are

called








= Ni
i

,...,1,1
δ

. These parameters are the dynamic priorities of class i

packets. Formally, if the k-th packet of the class i arrives at its queue at time kτ ,
then its priority at time t (for kt τ≥), denoted by)(tq k

i , is:

ik
k
i bttq)()(τ−=

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

43

t

Instantaneous priority

slope

slope

)(1
1 tq)(1

2 tq

2b

1b

1t 2t 3t

Figure 9 Two class TDP where b1 < b2

In Figure 9, I have a TDP scheduler with only two classes. The first packet of
class 1 arrives in system at time 0, and the class 2 has the first packet with
arriving time 1t . These two packets will reside in system until time 3t . From the
time 0 to 1t , there is only one packet of class 1 in systems. Within the time
interval],(21 tt , the first packet of class 1 has a larger priority than the first packet
of class 2. But after time 2tt > , the control parameter 2b becomes higher than 1b ,
that means higher priority.

Suppose that)(tNi is the number of packets of class i in the queue at time t. The
conception of TDP scheduler is to select the HOL packet with highest priority,
when the outgoing link is able to transmit a packet. It is necessary to note that for
a same class the HOL packet is chosen, because the earlier arrival packets always
have higher priorities than the later arrival packets.

Formally, the TDP scheduler will choose a packet from class i* satisfied the
following conditions, when server is ready to transmit a packet:

)}(max{arg)(* 0)(,...1 tqti itNNi i >==

where)(tqi is defined as priority of the packet at the head of the class i queue.

By serving the packet that has been waiting the longest in system, the average
delay of this class is reduced. After this the server stays idle and it will react when
there is new arriving packets. It is very important to note that in the TDP
scheduler, a class packet increases in priority at a faster rate (ib) than packets of
any class j<i.

44

The long-term waiting time of each class of traffic under the TDP scheduling
algorithm could be also analysed. Suppose that each class i traffic has Poisson
arrival process with an average rate of iλ . In addition, the services time of class i
packets follows general distribution with the first and second moments, designed
respectively as ix and 2

ix . The TDP system utilization, named as ρ , will be the

sum of iρ (∑ =

N

i i1
ρ), where iii xλρ = . A closed form expression for the average

long-term waiting time for class i packets is derived in [Leung00] as the following
equation:

 Ni
bb

bbdd
d N

ik kik

i

k ikkk
i ,...,1

)]/(1[1

)]/(1[)]1/([

1

1

10 =
−−

−−−
=

∑

∑

+=

−

=

ρ

ρρ
 (3.7)

Where ∑ =
= N

i ii xd
1

2
0 2

1 λ is the expected residual service time. The above

equation was derived by assuming that packet service times are exponentially
distributed and is also valid for any general service time distribution (see
[Nett79]).

An important advantage of the TDP scheduler is that it is able to maintain certain
proportional differentiations of waiting times between different traffic classes. For
doing this, it is only necessary to control the control parameters ib so that the
average delay ratio achieves the desired values. Let tr 2,1 be the target long-term

average waiting time ratio between class i and class j traffic, and ar 2,1 be the
achieved long-term average waiting time ratio between class i and class j traffic

(i.e.,
j

ia
ji d

dr =,). The goal of proportional delay Differentiated Services is to make

the achieved long-term waiting time ratio equal to the target long-term waiting
time ratio, that means t

ji
a
ji rr ,, = .

3.4.1.1 2 Classes-Case

Theorem 1: Suppose that tr 2,1 is the target ratio of the average waiting time of

class 1 traffic to that of class 2 traffic. The equation ta rr 2,12,1 = is feasible if and
only if the system utilization ρ satisfies:

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

45

111
2,1

<<− ρtr

Proof: At first, if 1<ρ , then the system does not stay stable. That means 1<ρ is
the required condition so that the stable situation of system is maintained.

Now, the only if part will be demonstrated. From the equation (3.7), the average
waiting times of these two classes are received as:

)/(1[1
)]1/([

212

0
1 bb

dd
−−
−

=
ρ

ρ

)]/(1[)]1/([211102 bbddd −−−= ρρ

If submit 1d into the equation of 1d into 2d , 2d could be written as the following
equation:

)]/(1[1
)]/(1[1

)]1/([
212

21
02 bb

bbdd
−−
−−

−=
ρ
ρρ

The achieved long-term average waiting time ratio between class 1 and class 2 is
described as:

)]/(1[1
1

212

1
2,1 bbd

dr a

−−
==

ρ

If the target ratio is achieved, that is, ta rr 2,12,1 = , then:

)]/(1[1
1

21
2,1 bb

r t

−−
=

ρ

After rearranging the above equation, the following relation is gained:

)11(
2,112

2
trbb

b
−

−
=ρ

Since 210 bb << , this implies that 1
12

2 >
− bb
b

. Therefore tr 2,1

11−>ρ .

46

Next, the if part will be proved (i.e., if 111
2,1

<<− ρtr
), then ta rr 2,12,1 = . If

tr 2,1

11−>ρ , then ρ could be described as follows:

)11(
2,112

2
trbb

b
−

−
=ρ

Here, the parameters 1b and 2b are some constants such that 210 bb << . Buy
submitting it into equation (3.7), the equation ta rr 2,12,1 = is obtained.

Remark: This theorem shows that for achieving the target ratio, it is necessary to
have sufficient amount of traffic and enough packets, which are backlogged in the
system. For example, if the requirement is 10, then the system has to be at least
90% utilized so as to achieve the desired waiting time spacing. In other words, if
the system utilization is less than 90%, then the target ratio 10 could not be
achieved.

Corollary 1: If 11 =b ,)11/(
2,1

2 tr
b +−= ρρ , and 111

2,1

<<− ρtr
, then ta rr 2,12,1 = .

Proof: By replacing 11 =b ,)11/(
2,1

2 tr
b +−= ρρ into equation (3.7), the relation

ta rr 2,12,1 = could be achieved.

Corollary 2: If 111
2,1

<<− ρtr
, then any 1b and 2b such that

ρρ /)11(/
2,1

21 tr
bb +−= can achieve ta rr 2,12,1 = .

Proof: First, the author in TDP scheduling algorithm states that for two TDP
systems A and B wherein the control parameters for system A are ib and the
control parameter for system B are íb′ . If the following liaison is kept:

11 ++ ′
′

=
i

i

i

i

b
b

b
b

 for i=1,2,…,N

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

47

Then iW in A will be equal to 1W ′ in B. In other words, the average waiting time
of TDP system depends not on the exact value of the control parameters ib but
rather depends on the ratios of ib .

If 111
2,1

<<− ρtr
, from the corollary 1, 11 =b and)11/(

2,1
2 tr

b +−= ρρ can

achieve ta rr 2,12,1 = . As TDP system depends on the ratios of ib ’s only, any 1b and

2b such that:

ρ

ρ

ρρ

t

t

r

r
b
b 2,1

2,1

2

1

11

)11/(

1
+−

=
+−

=
′
′

can achieve ta rr 2,12,1 = .

3.4.1.2 N Classes-Case

Generally, when the TDP system server has more than 2 classes, for example N
classes, the problem becomes very complicated to solve, because to answer the
question how the values of the control parameters ib should be for satisfying the
equation (3.3), it is necessary to solve a system of N non-linear equations. On the
other side, when the configuration of the system (iρ and 0d) is known before, it
is possible to determine id by using the conservation law principle.

Recall that according to the conservation law [Klein76], if a scheduling discipline
is independent of the service time of jobs, then the weighted average of waiting
times of all classes are invariant, and it is equal to the average waiting time of an
M/G/1 system. Formally, the conservation law is described by the following
equation:

ρρ

ρ
−

=∑ = 1
0

1

ddi
N

i
i (3.8)

48

If is is defined as t
NN

t
ii

t
iii rrrs ,12,11, ... −+++= , and if the equation ta rr 2,12,1 = could be

achieved, then
N

i
i d

ds = . That means it is possible to express all id ’s by the

relationship with Nd and is : Nii dsd = for all i=1,2,…N.

By replacing the parameters id ’s from equations (3.8) in the conservation law,
the following equation is obtained:

∑ =
=

−
N

i Nii dsd
1

0 1
1

ρ
ρρ

id can be expressed in terms of is , iρ and 0d as:

∑ =
−

−
= N

i iiii sdsd
1

10)(
1

ρ
ρ

ρ
 for i=1,2,…,N

From the above equation, if ta rr 2,12,1 = is achieved, the only unknown in equation
(3.7) is the vector],...,,[21 Nbbbb = . Now, setting all ib ’s in equation (3.7) on the
left hand side, the following equation is obtained:

∑∑∑∑ +=

−

=

−

=+=
−−−

−
=− N

ik ik
i

k kkkk
i

k k
i

N

ik
k

k
ii dd

d
bd

bb
db

1

1

1
01

11
)1(

1
)(1)(ρρ

ρ
ρρ

Suppose that:

∑ +=
= N

ik
k

k
i b

diA
1

)(
ρ

; ∑
−

=
= 1)(i

ik kkk bdiB ρ ;

∑∑ +=

−

=
−−−

−
= N

ik ik
i

k kk dddiR
1

1

1
0)1(

1
)(ρρ

ρ
,

Then:

)()()(iR
b

iBbiA
i

i =− i=1,2,…,N

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

49

This is a system of non-linear equations for solving the ib . Because all the values
of ib should be positive, the parameters of iρ and is must satisfy a condition.

Theorem: For receiving the positive values of all the ib , the necessary condition
is that R(1)>0 and R(N)<0.

Proof: For receiving the positive values of all the ib , the necessary condition is
that R(1)>0 and R(N)<0.

Case 1: For i=1, I have B(1)=0, which implies that:

)1(
)1(

A
Rbi =

Since 01 >b , this in turn implies that R(1)>0

Case 2: For 1<i<N, the result from equation (3.20) is used and:

0)()()(2 =−− iBbiRbiA ii

Because the parameters { ib }’s should be positive, its will receive the following
values:

)(2
)()(4)()(2

iA
iBiAiRiR

bi
++

=

Because 22)()()(4)(iRiBiAiR >+ , therefore)()(4)()(2 iBiAiRiR +< . Hence:

0
)(2

)()(
≥

+
>

iA
iRiR

bi

In summary, for 1<i<N, ib is always greater than zero even when R(i) is
negative.

Case 3. For i=N, I have A(N)=0, which implies that:

)(
)(

NR
NBbN −=

50

Since 0>Nb and B(N)>0, I conclude R(N)<0.

Remarks: The implication of the above theorem is: a necessary condition for a
feasible region (e.g., a region wherein a positive solution of ib ’s exist) is R(1) >0
and R(N)<0. If the system configuration (iρ and is) falls outside of this region, it
is possible that there exist no positive values of the ib ’s for which the TDP
scheduler can obtain the target waiting time ratios.

The first condition R(1)>0 implies:

 ∑ =
−>

− N

i id
d

2
1

0 1
)1/(ρρ

 (3.9)

where)1/(0 ρ−d is the average waiting time of the aggregate traffic. If I want a
large waiting time differentiation, 1d has to be larger than id , i=1,2…N. Since

Nddd ≥≥≥ ...21 , this implies the fraction on the left hand side of equation (3.9)

to be small. Thus, ∑ =

N

i i2
ρ should be close to one to make the inequality hold. The

physical meaning is that to have a large waiting time differentiation, there should
be a sufficient amount of higher class packets to keep the system busy so that the
lower class packets are delayed adequately.

The second condition is 0)(<NR , which implies:

∑
−

=
+<

−
1

1
0

1
N

i Nii ddd ρ
ρ

 (3.10)

By the conservation law, i
N

i
i dd ∑ =

=−
10)1/(

ρ
ρρ . If I put it back into equation

(3.10), I have:

Ni
N

i i
N

i i
i ddd +<∑∑

−

==

1

11
ρ

ρ
ρ

))1((0 1

1
ρρ −−<∑

−

=

N

i iNi dd (3.11)

Since Nddd ≥≥≥ ...21 , to make the right hand side of equation (3.11) positive,
one way is for ρ to be large. If ρ tends to 1, the value of the left hand side in
equation (3.10) will be large. To make the inequalities hold, the value of the right

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

51

hand side in equation (3.9) should be larger. Since Nddd ≥≥≥ ...21 and the

major part N
N

i ii dd +∑
−

=

1

1
ρ is the weighted average of the mean waiting time of

the first N-1 classes, to attain a large value, iρ should be large, especially for the
lower traffic classes. The physical meaning is that in order to have a large waiting
time differentiation, the server has to delay packets of the lower classes so as to
have large waiting times id , i=1,2…N-1. If their traffic loading is high, many of
them will be backlogged and their waiting time will increase. Last but not least,
another important implication of the above necessary conditions is that even
though the system utilization ρ remains unchanged, it is still possible that certain
distributions of iρ ’s will not lead to a positive solution of ib ’s. In such case, the
system cannot achieve the target waiting time ratios.

3.4.2 Per-class Average Delays in the PDDM Model

In given load conditions, the N-1 ratios of the PDDM model specify uniquely the
average delays of the N classes. The key additional relation in mappings from
delay ratios to class delays is the conservation law, which constrains the average
class delays in any work-conserving scheduler S. The conservation law holds
under arbitrary distributions for the packet inter arrivals and packet sizes, as long
as the first moment of these distributions and the second moment of the packet
size distribution exist, and the packet scheduling discipline S is independent of the
packet sizes.

3.4.3 Delay Dynamics in the PDDM model

Property 1: Increasing the input rate of a class, increase (in the wide sense) the
average delay of all classes.

In the other words, there is always a link or relationship between classes that is
expected due to the relative differentiation nature of the model. When the input
rate of a class increases, the load of this class is added, and the delays of all
classes will also encounter an increase.

Property 2: Increasing the rate of a higher class causes a larger increase in the
average class delays than increasing the rate of a lower class.

In the simplest case, when there are only 2 classes. Assume that the following two
cases occur:

52

• ελλ +=′ 11 and 22 λλ =′
• 11 λλ =′′ and ελλ +=′′ 22

with a condition that ε >0. According to the conservation law, the weighted
average of the class delays is the same in both cases:

22112211 WWWW ′′′′+′′′′=′′+′′ λλλλ

From the above equations, it is clearly to see that because of the PDDM
constraints, the class average delays in the second case are larger, i. e.

11 WW ′′>′ and 22 WW ′>′′ .

This property shows that higher classes cost more, in terms of queuing delay, than
lower classes.

Property 3: Decreasing the delay differentiation parameters of a class increases
(in the wide sense) the average delay of all other classes, and decreases (in the
wide sense) the average delay of that class.

That means if I diminish the delay of a class by minimizing its Delay
Differentiation Parameters, it will imply that the delay of all other classes will
increase.

Now, assume that the class load distribution changes from { }nλ to { }nλ ′ , with

ελλ −=′ ii ; ελλ +=′ jj , and kk λλ =′ for all ik ≠ , j (0>ε). nW ′ is the average
delay in class n when the class load distribution is { }nλ ′ . The following properties
are important in case of Dynamic Class Selection (when a class chooses a higher
or lower class for achieving end-to-end guarantees):

Property 4: If i>j then nn WW ≤' for all n=1…N. Similarly, if i<j then nn WW ≥' .

Property 5: If i>j then ij WW ≤' . Similarly if i<j then ij WW ≤' .

Property 6: Delay has accumulated property.

It is easy to see that delay has accumulated property. That means the delay of a
class or flow through a network is the sum of the queuing delays at each router
and the propagation time, which is considered small compared to the queuing
delays. Hence there is a need to implement proportional delay scheduling
algorithms at every router in a network based on PDDM model for receiving
proportional delay between different classes. However, in the case of the

CHAPTER 3 - PROPORTIONAL DELAY AND LOSS

53

existence of proportional delay scheduling schemes at every router, each packet
transfers through network along different paths that contain different hops
numbers. That is why the proportional property of queuing delay is just
maintained for only one local hop, but the sum of queuing delay of one class does
not stay proportional with other classes any more. In other words, such networks
can not guarantee the proportional property of delay between different classes.
This is a big disadvantage of the PDDM model.

54

Chapter 4 Playout Buffer Delay Adjustment
Algorithm

Chapter 4 provides background information about the importance of the playout-
buffer adjustment algorithm. It gives an overview about the existing playout
schemes and also emphasizes the trade-offs between playout buffer delay and loss
rate. After analysing the existing algorithms, I have decided to use Concord
algorithm at the receiver end in my work. Properties and characterizations of the
Concord algorithm are also analysed.

Internet

Playout Buffer

Sender Receiver

Figure 10 Packet voice with receiver jitter compensation

Usually it is required to have a playout buffer at the receiver end for audio or
video signal in order to smooth the jitter produced by different networks because
this jitter can degrade the quality of audio and video stream heavily.

Figure 11 illustrates how the playout buffer stores the arriving packets and
calculates appropriate playout-delay time so that the total end-to-end delay of
packets is smoothed:

Sender

Receiver

''A'' ''B'' ''C'' ''D''

''A''

play A play B play C
(missed)

play D

Time

''B'' ''D''

Figure 11 Different playout buffer time

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

55

As indicated in the above figures, different packets arrive at playout buffer each at
a different time. Depending on the algorithm used at this receiver, the playout
buffer delays these packets by different playout delays so that the jitter of the
stream is reduced.

4.1 End-to-End Delay Characteristics

A lot of previous studies [Bol93] demonstrated the presence of “spikes” within
the problem of end-to-end Internet delays. A spike is a sudden, large increase in
end-to-end network delays, followed by a series of packets arriving almost
simultaneously, leading to the completion of the spike.

With periodically generated packets, the initial steep rise in the delay spike and
the linear, monotonic decrease after the initial rise, is due to ‘’probe
compression’’- the accumulation of a number of packets from the connection
under consideration (the audio session, in my case) in a router queue behind a
large number of packets from other sources. Probe compression is a plausible
conjecture about the cause of delay spikes.

4.2 Classification

As noted above, it is necessary to have a playout buffer at receiver side, which
stores temporarily incoming Media Units (MUs), and a playout scheduler, whose
the role is to provide a presentation schedule that resembles as much as possible
the temporal relationship that was created by the encoding process.

Some applications, such as desktop videoconferencing require very strict latency,
for example a few hundreds of milliseconds. Other unidirectional applications,
such as video on demand (VOD) are more tolerant with larger latencies that range
from around 1second for responsible Web-based distribution of short video clips
to several minutes in near-VOD systems. That means there is some compromise
between the intra-stream synchronization quality and the increase of end-to-end
delay due to the buffering of MUs. If the receiver is has no buffer, the scheduler
provides minimal stream delay by presenting frames as soon as they arrive.
Another example of a playout buffer, which eliminates completely the effects of
jitter at the expense of a long stream delay, is the assured synchronization
method.

Various playout schedulers differ from each other in the usage of timing
information. Time-oriented playout schemes put timestamps on MUs and use
clocks at the sender and receiver in order to measure the network delay or
differential network delay (jitter). Buffer-oriented schemes do not use timing

56

information. Instead, they implicitly assess the current level of network jitter by
observing the occupancy of the playout buffer. In the both of cases, the level of
synchronization between the sender and receiver influence strongly the design
and capabilities of the system.

Playout schedules

Time-oriented Buffer-oriented

Global clock Approximated
clock

synchronization

No clock
synchronization

Regulation of
MU durations

Pause/drop
(on MU scale)

Figure 12 A general classification of playout schedulers

Figure 12 shows different types of playout schedulers. Systems that use their
clock for the synchronization protocol are called having a global clock. The
global clock measures exactly the network transfer delay of an MU and along
with the buffering delay at the receiver end, the total end-to-end delay of the MU
is smoothed. With such knowledge, the receiver can then guarantee that an MU is
delivered before an available (requested) end-to-end delay budget is exhausted.
Other methods, such as differential delay methods cannot measure precisely the
network delay of an MU because of not using a global clock. They operate
namely on delay variations (capture by the difference between subsequent delay
measurements) and try to maintain a fixed trade-off between the perceived delay
and the synchronization quality of the stream across time-varying jitter.

The playout algorithm, which uses approximated clock synchronization, tries to
bind the offset between the two clocks by using the virtual clock algorithm. Under
the virtual clock, the clock of the receiver adopts as local time the timestamp form
a reference packet sent by the sender.

The previous schemes as global clock and approximated clock detect increases in
end-to-end latency, and belong to time-oriented type. Time-oriented systems can
realise if an MU is ‘’late’’ by comparing its arrival timestamp with its scheduled
playout time. Unlike time-oriented system, buffer-oriented system will determine
a latency increase by detecting an overbuilt queue of MUs waiting to be
displayed. In addition, it is able to treat late MUs through two ways: delay-
preserving and non-delay-preserving schemes. The first category, called delay-
preserving schemes, in which all late frames are discarded to preserve the delay
requirements of the stream; and non-delay-preserving schemes, in which some or

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

57

all late packets are accepted for presentation in order to protect the continuity of
the stream from further degradation due to discarding MUs that are late.

In general, playout buffer schemes control the occupancy of the playout buffer
with the variation of network delay jitter. If the delay variability increases, the
playout buffer is also increased in order to smooth this variation. Contrarily, in
time of reduced jitter, this playout buffer is decreased as well.

Packet-audio systems with silence detection technique modify the playout buffer
by taking advantage of silence periods, which they use to make adjustments on a
per-talkspurt basis. There are two types of buffer-oriented systems: systems with
pause/drop method usually drop a frame to reduce latency, or stop the
presentation of frames for one frame period (a pause), and systems that change
the occupancy of playout buffer by regulating the duration of video frames (they
present frames faster instead of dropping to reduce latency, and present frames
slower to avoid underflows).

4.2.1 Influence of Media Type on Classification of Playout
Adaptation

Differential media types play an important role for the classification of the
playout adaptation methods. Normally, there are two media types: continuous or
semi-continuous.

A Continuous media stream is a media type with a regular inter-MU interval,
while semi-continuous media type is described by inactivity periods that intervene
between periods of continuous MU flow. Some examples of continuous media are
streaming video (live or stored) and streaming audio (Web radio). Spoken voice
with silence detection is a typical example for semi-continuous media.

The important characterization of a semi-continuous media type is that the
inactivity periods give the playout scheduler the opportunity to adjust the playout
point for the imminent activity period without affecting its continuity. Unlike the
semi-continuous media type, playout schedulers for continuous media do not have
inactivity periods, but could act on inter-MU intervals to adjust the playout point.

4.2.2 Time-oriented Playout schemes

This section presents common time-oriented playout schedulers, that is,
schedulers which timestamp MUs and which make use of local or global clocks to
determine the presentation instant and duration of each MU.

58

4.2.2.1 Assured Synchronization under Bounded Delay Jitter

The most important role of playout adaptation is to restore the stream to its initial
form and to eliminate any kind of distortion in the temporal relationships of MUs.
This goal could not be achieved easily because MUs have variable network
transfer delays. The network transfer delay contains two components: a static
propagation delay and a variable queuing delay caused by variable waiting times
in the queues of intermediate network nodes. If the delay variation is not limited
or an infinitely long inter-arrival period may appear, the length of buffer becomes
infinite for eliminating the discontinuities from the reconstruction process.

For the guaranteed service defined by IETF or constant bit rate CBR of ATM, the
maximum delay difference is bounded by the network and that is why the total
resynchronisation is feasible. This optimal synchronization is called assured
synchronization.

For the implementation of assured synchronization two different approaches
apply. The following notations are used to describe these two variants of the
assured synchronization:

• inD , is the network delay of the ith MU.
• ibD , is the buffering delay of the ith MU.
• itotD , is the total end-to-end delay of the ith MU.
• min,nD is the minimum network delay.
• max,nD is the maximum network delay.
• maxJ is the maximum different in any two network delays.

In [Nayl82, San93, Shiv95, Fran93], the authors say that if the ith MU causes a
synchronization loss event when its network delay, inD , , is larger than all
previous network delays, jnD , : 1<=j<i, plus the initial buffering delay for the
first MU, ibD , . Hence, in order to ensure that there is no loss of synchronization,
it is necessary to guarantee that the first MU incurs a total delay 1,1,, bnitot DDD +=
that is no less than max,nD . The total delay of the stream is then equal to the total
delay of the first MU 1,tottot DD = .

The following two approaches, which differ from each other on the use of known
or unknown 1,nD , are used for assured synchronization. This synchronization is

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

59

done by adding an appropriate 1,bD to the first MU. The first method needs to
have known maxJ , the second requires that max,nD should be known.

Unknown 1,nD : In this case the scheduler could not measure precisely 1,nD . Thus
in order to guarantee the assured synchronization, the scheduler must keep the
first MU in the buffer for an interval equal to the maximum delay difference (i.e.,

max1, JDb =) before the presentation of frames is initiated by extracting frames
from the head of the playout buffer [Gey96].

This initial buffering delay protects the synchronization of the stream against the
worst possible scenario, which corresponds to the first MU experiencing the
minimum network delay, min,nD , while a subsequent frame experiences the
maximum network delay, max,nD .

The total end-to-end delay of the stream is now max1,1, JDDD ntottot +== , taking
values in],[maxmax,maxmin, JDJD nn ++ , since max,1,min, nnn DDD ≤≤ .

By doing that, the total end-to-end delay 1,totD of the first MU is not less than the
maximum network delay max,nD , so it is guaranteed that no packet will arrive late.

Known 1,nD : This approach uses timestamps and a global clock that make the
measure of the delay of the first MU possible. It adds the minimum buffering
delay that makes the total delay of the first MU exactly equal to max,nD . The
implementation in [Bald00] performs a potentially smaller end-to-end delay,
while continuing to guarantee absolute synchronization at the receiver. Because of
knowing 1,nD before, the scheduler keeps the first MU in the playout buffer for an
additional interval 1,bD so that the total delay of the MU becomes

max,1,1,1, nbntot DDDD =+= . It can guarantee that no MU will experience a larger
delay; thus, no loss of synchronization will appear.

4.2.2.2 Allowing for Latency/ Synchronization Trade-off by Allowing
for Loss due to MU Lateness.

The most important disadvantage of the assured synchronization method is the
poor delay performance that makes this method inadequate for interactive
applications, even the improved version of this method, which uses a global
clock, produces a prohibitive end-to-end delay. Nowadays, almost modern packet

60

networks cannot guarantee an upper bound on delay [Paxs97, Kali94]. In
addition, modern video and audio codecs can accept a substantial amount of
packet loss with acceptable degradation of the perceived quality. This property of
new applications leads to the fact that playout schedulers can accept a certain
amount of lost MUs, in order to reduce the overall delay of the stream and
effectively support real-time applications.

For bi-directional interactive real-time applications, the designed schedulers
utilize precise timing information for providing a small constant total end-to-end
delay totD . In [Bald00], the authors demonstrated that given a small network
delay, a system can be configured (packetization, compression, rendering) to
provide a total delay as small as 100ms; and the scheduler will discard the packets
that have a network delay larger than totD . totD controls the trade-off between
intra-stream synchronization quality and delay. When the sender and receiver
timestamps (used for measurement of the network delay) come from
synchronized clock (GPS [Mills91]), it is guaranteed that any played MU will be
delivered with an accurate totD (e.g., the Concord algorithm [Shiv95]).

4.2.2.3 Playout Mechanisms without Global Clock

For applications which demand that all MUs have a constant (small) delay or are
dropped, it is necessary to use a global clock because it can provide the utmost
interactivity precision. Unfortunately, it is not so easy to have a global clock in
network; that is why almost the playout scheduler schemes, which do not require
a constant end-to-end delay guarantee, operate on delay differences, and not on
absolute delays. In this case, the two clocks need to run at approximately the same
speed, and they need not to be synchronized, since their offset is cancelled when
taking differences of timestamp values. The basic idea of these schemes is that the
total delay of MUs are not constant or confined under an absolute value. In
addition, this delay can fluctuate in response to changes in network delay
variability, so a level of synchronization (e.g., percentage of late packets) or the
more relaxed requirement of a constant trade-off between continuity and delay
can be maintained. Network delay differences are used as indications of the
current jitter level, and drive the regulation of the playout buffer.

An example of such schemes is done by Naylor and Kleinrock [Klein76]. In this
method, the first packet of a talkspurt is delayed adaptively based on recent jitter
measurements. In detail, the receiver logs the last m delays of MUs prior to the
initiation of a new talkspurt and extracts the k partial range, D(m,k), which is the
maximum difference between the m samples having first discarded the k largest
delays. The first MU of the talkspurt is delayed for D(m,k). The partial range is
used for eliminating isolated cases of extremely large delay that do not have a

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

61

significant impact on the probability of a late arrival. The relation between gap
probability and delay is controlled by the level of conservatism in the partial
range. Some packet lateness can occur because D(m,k) is smaller than the
maximum network delay.

There are two methods for the handling of late packets: method E extends the
delay of the stream by presenting late frames (data-preserving method) and
method I preserves the delay of the stream by discarding late packets (delay-
preserving method).

A well-known method in this field uses timestamps to approximate the one-way
network delay d̂ and its variability v̂ . The presentation time of the first MU of a
talkspurt, ip , is scheduled for:

 iiii vdtp ˆ.ˆ β++= (4.1)

when it is the generation time of the ith MU according to the sender’s clock The
coefficient ß controls the synchronization/latency trade-off. In [Ram94], the
authors developed four algorithms that differ only in the way they derive the
estimate id̂ . The evaluation is performed on a per-packet basis, using as input the
network delay of the ith MU, id , while delay adjustments are applied on a per-
talkspurt basis. id is the difference between the arrival timestamp ia and
generation timestamp it :

iii ddd).1(ˆ.ˆ
1 αα −+= − (4.2)

iiii ddvv −−+= −
ˆ).1(ˆ.ˆ 1 αα (4.3)

Two of the proposed algorithms are based on the linear recursive estimator of the
above equation. The third algorithm is adopted from the NEVoT (Network Voice
Terminal) audio tool, and a fourth is a novel algorithm with delay spike detection
capabilities and dual mode of operation, aimed at improving performance in delay
environments with sharp delay spikes.

Moon et al in [Moon98] developed another algorithm that replaces the linear
recursive estimators of id̂ and iv̂ with the calculation of a percentile point q of
the underlying network delay distribution. This is done by logging the last w
packet delays (no clock synchronization) and using their qth percentile point as
the playout delay for the next talkspurt.

62

4.2.2.4 Playout Schedulers with Approximated Synchronization-
Virtual clocks

The playout adaptation with approximated clock synchronization can not maintain
a delivery delay in absolute values because of not using a global clock. Such
schemes produce a soft guarantee that is more specific than the freely fluctuating
delay of differential delay systems, where the network delay component is
completely unknown. The total delivery delay is bounded by measuring the
round-trip time (RTT) between the communicating end points. This assures that
no MU will be presented with a delay exceeding some expression that involves
the RTT.

Roccetti et al in [Rocc01] use probe packets for measuring exactly the RTT
between the communicating endpoints. Synchronization between the clocks of
sender and receiver is realized by adopting the timestamps of the probe packets as
local time. This immediately leads to a clock offset equal to the one-way network
delay of the probe packet, 0t . A playout delay of 0t would be too small, leading
to increased packet lateness. Thus, the clock of the receiver is delayed by an
additional RTT, as measured by the latest probe packet, that gives an overall time
gap between the two clocks equal to 0t +RTT, that is, the clock of the receiver
falls 0t +RTT time units behind the clock of the sender. Packets that have
timestamp larger than the local clock are buffered and packets that have
timestamps smaller than the local clock are considered lost and are dropped. In
the buffer, if the local clock equals their timestamp, packets will be extracted. The
algorithm controls the playout point in accordance with the current network delay
by refreshing the RTT every second.

Another similar example is done by Alvarex-Cuevas et al [Alv93]. The authors
use also a probe packet, but rather at the beginning of every silence period. After
measuring RTT, RTT/2 is considered as one-way delay of the talkspurt and is sent
to the receiver. At the receiver, this RTT/2 is used as the estimate of the network
delay and add an additional delay component so that a fixed target end-to-end
delay totD that results in only 1% packet lateness.

The additional delay up to totD should be maxJ , where maxJ denotes the maximum
delay variability (min,max, nn DD −). However, 2/maxJ is not known a priori, but is
approximated and corrected by observing the extent of synchronization errors and
increasing totD accordingly. By dynamically measuring RTT and adjusting totD ,
the algorithm adapts to network delay fluctuations and maintains the targeted
synchronization quality. In the same work, a second method of estimating the
target totD is described. It identifies the ‘’fastest’’ packet - the one with the

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

63

smallest delay (propagation only) - by looking for the packet that incurs the
largest waiting time in the buffer; it is assumed that this is the fastest packet. totD
is approximated as the network delay of the fastest packet plus the largest
observed difference in buffering delays, which should approach maxJ , resulting in
approximately 1% packet lateness. Both methods can be improved by applying
the method of hop-by-hop network delay accumulation, which results in very
accurate network delay estimations (only the local clocks of intermediate nodes
are involved; each node accumulates its own added delay [Mont83]).

4.2.2.5 Non Delay-preserving Playout Schemes

A delay-preserving method is a method that does not produce late MUs, and a
non-delay-preserving method may have late MUs instead of dropping them for
protecting the continuity of the stream from further degradation.

Figure 13 illustrates the different regions of a scheduler. In delay-preserving
playout schedulers, the arrival time of a MU could fall into two regions: the
acceptance region and the discard region. The acceptance region is bounded by
the targeted end-to-end delay where an MU waits in the playout buffer for its
playout time. The discard region is for arrivals with a total delay longer than the
targeted totD .

C. Liu et al in [Liu96] introduce the no-wait region, which lies between the other
two regions. The packets arriving in this region will be extracted immediately. An
arriving MU with delay that is placed in the no wait-region is an MU that has
missed its targeted totD , but not enough to be discarded, so it is played
immediately to prevent further degradation of synchronization caused by MU
discard.

Acceptance region No wait region Discard region

Buffering Immediate playout Discard

Boundary 1 Boundary 2

Network Delay

Figure 13 Network delays fall in one of three possible regions.

64

MUs are buffered if they arrive early (nD in the acceptance region), presented
immediately if they are slightly late (nD in the no wait region) and discarded if
they arrive too late (nD in the discard region).

The playout scheduler proposed by H. Liu et al [Liu99] is also a non-delay-
preserving. After each late packet a synchronization recovery phase is used for the
scheduler and the presentation for the duration of the late frame is determined
during this phase. A full presentation duration is undesirable because it increases
the end-to-end delay of subsequent frames. Otherwise, a truncated presentation-up
to the scheduled presentation instant of the next frame might truncate the late
frame excessively causing motion jerkiness that is easily detected by the end user.
The scheduler has a limited minimum-frame duration so that motion jerkiness is
not detectable and he can choose to apply it to a series of frames following the
late arrival, thus progressively reducing the additional delay. This approach
reduces delay successfully and at the same time protects the quality of intra-
stream synchronization by introducing a rather ‘’mild’’ delay-control function.
Another interesting feature of the scheduler is that it uses a second-order
continuity metric called RMSE. A user-requested threshold RMSE is maintained
by the scheduler across different transmission conditions by regulating the
buffering delay accordingly.

4.2.3 Buffer-oriented Playout Schemes

Similar to time-oriented schedulers that use differential delay methods, buffer-
oriented schedulers adjust the playout point by observing the occupancy of the
playout buffer. The lack of timing information precludes any kind of absolute
total end-to-end delay guarantees for the MU presentation epochs. The only
‘’visible’’ delay component for the scheduler is the buffering delay of the MUs at
the playout buffer.

Various buffer-oriented schemes which differ in the trade-off between media
continuity and buffering delay are developed. The total end-to-end delay although
unknown (and fluctuating) can be controlled as a consequence of the regulation of
the buffering delay component; the suppression (expansion) of the buffering delay
leads to the suppression (expansion) of the total end-to-end delay with a
subsequent cost (gain) in intra-stream synchronization quality.

With this method, delay guarantee can be approached but is not guaranteed in
absolute values. Due to this uncertainty concerning the interactivity of the system
buffer-oriented schedulers are usually applied in video applications where the
interactivity requirements are more relaxed than in audio applications.

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

65

4.2.3.1 Non initial Buffering: Self-adjusting and Bufferless
schedulers

This method is a good solution (if there is no jitter) because it produces a
potentially low initial delay (only the network part) by presenting the first MU as
soon as it arrives. But when jitter exists, the first underflow will occur as soon as
some MU experiences a network delay greater than the delay of the first MU. The
self-adjusting schedulers present all MUs that arrive at the receiver; thus, the
playout buffer builds up as a natural effect of the induced underflows (since the
mean arrival rate equals the mean presentation rate and an underflow is analogous
to a ‘’server vacation’’). This leads in a stream presentation with a small initial
delay (no initial buffering) but also an initially poor synchronization quality
(frequent underflows); continuity improves with time, since the jitter buffer
expands with underflows, but this also increases the perceived delay. For
regulating delay some of the MUs must be discarded. Delay regulation depends
on the current buffer occupancy.

4.2.3.2 Buffer Occupancy Control: Queue Monitoring and
Watermark-based Schedulers

Stone and Jeffay in [Ston95] show that it is able to measure the impact of delay
jitter on a receiver by observing the occupancy of the playout buffer over time.
This policy is called as Queue Monitoring (QM). With QM, a continuous
sequence of video frames has the meaning that the queue was never found empty
following the completion of a presentation. In addition, this continuous sequence
of frames is used as indication of reduced delay variability and triggers a
reduction of the end-to-end delay of the stream by discarding the newest frame
from the buffer. By selecting the duration of the gap-free interval, it is possible to
control how aggressively QM tends to reduce latency and is thus the
synchronization/latency trade-off parameter. For deciding which frame should be
discarded, a series of thresholds and associated counters is used. Increasing
network jitter causes buffer underflows and naturally increases the occupancy
with the acceptance and presentation of ‘’late’’ frames. That is, QM is to some
extent data-preserving, on some occasions presenting late frames.

For the adjustment of delay, QM uses a window mechanism; however, many
buffer-oriented schedulers are given the freedom to adjust the playout point in a
per-MU fashion [Roth95, Bier96, Yua96, Laout1]. The authors in [Roth95]
introduce the idea of occupancy watermarks (high-watermark, HWM, and low-
watermark, LWM) in order to define a range of desired playout buffer
occupancies that balance the risk between buffer underflow and overflow. A
targeted area, lying between the HWM and LWM levels, is defined by the upper
target boundary (UTB) and lower target boundary (LTB). The positioning and

66

width of the targeted area (inside the watermark limits) reflect the desired
synchronization/ delay compromise. For example, a minimum delay policy sets
the LTB equal to the LWM and the UTB to a slightly larger value. When the
occupancy of the buffer falls outside the targeted area-in the so called critical
buffer regions- the scheduler enters an adaptation phase with the aim of returning
the occupancy inside the targeted area. This is accomplished by modifying the
receiver’s consumption rate until the occupancy returns in the targeted area. The
width of the targeted area determines the aggressiveness of the buffer control
algorithm, while the selection of watermarks mostly contributes to the data loss
rate. The watermarks are fixed in [Roth95], but it is noted that the scheduler can
be make adaptive by dynamically regulating the watermarks in response to jitter
effects (e.g., MU loss).

HW M

UTP

LTB

LW M

Overflow damger

Targeted Area

Underflow danger

Buffer occupancy

Figure 14 The watermark-based playout scheduler of Rothermel and Helbig.

The selection of watermarks mainly affects the underflow and overflow
probabilities. The positioning of the target area, inside HWM and LWM,
regulates the trade-off between intra-stream synchronization and stream latency.

Another method of Biersack et al [Bier96] uses the rate adaptation mechanism at
the sender (which is a VOD server) rather than at receiver. In order to smooth out
occupancy fluctuations caused by short-term jitter the receiver uses a gradient
descent estimator of the buffer occupancy. If the smoothened buffer occupancy is
within the critical region (outside LWM. HWM) then the receiver sends a signal
to the sender suggesting that the latter should adjust its rate so that the smooth
occupancy returns into the targeted area. The sender either skips some frames or
pauses (pause/drop method) to adjust its rate. Source-rate adaptation that affects

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

67

the encoding process could also be used but the author does not consider it due to
high implementation complexity.

In [Orion00], a low complexity algorithm for detecting clock skew in network
audio applications that function with local clocks and in the absence of a
synchronization mechanism is presented. In addition, a companion algorithm to
perform skew compensation is also described. For the skew detection algorithm,
high and low water mark are employed in order to limit the number of
compensating actions to keep the computational cost low and to reduce sensitivity
to the transient transit variations. When the skew detection algorithm indicates
that the number of samples in the receiver´s playout buffer requries adjustment,
the compensation mechanism is applied.

4.2.3.3 Buffer Occupancy Control with Dynamic Regulation of the
Duration of MUs

The above schedulers base on the slotted approach in the regulation of the
buffering delay. That means they increase or decrease it in constant amounts that
equal the duration of an MU. Discarding ‘’late’’ frames [Bier96] and the tail-drop
from overbuilt queues [Ston95] lead to sharp delay reduction jumps of duration T,
equal to the duration of a video frame. And when the playout buffer empties, the
presentation resumes after one or more MU periods [Bier96]. This approach has
the advantage: easy implementation, but it can be also quite crude, especially in
the case of low-frame-rate streams where the slot (video frame) has a significant
duration.

In [Yua96, Yua97] Yang and others improved the perceptual quality of video
achieved by a fine-grained regulation of playout durations based on the current
occupancy of the playout buffer. Another method, called threshold-based is also
proposed in [Yua96]. This scheme uses reduced playout rates aimed at avoiding
large underflow discontinuities as the buffer occupancy i drops below a threshold
value TH. The selection of TH is done prior to stream initiation and remains
unchanged despite jitter fluctuations; it governs the trade-off between stream
continuity and reduction of playout rate. Stream continuity is described by two
disjoint metrics: the probability of an empty buffer and the frame-loss probability
due to buffer overflow. The work has been enhanced in [Yua97] by introducing a
dynamic playout scheduler that uses a window to optimise some quality metric by
responding to changing network jitter conditions. The window is actually a time-
varying dynamic version of the threshold approach. A neural network (NN) traffic
predictor and an NN window determinator are being used for online estimation of
traffic characteristics and for the regulation of window size. The value derived for
the window is compared to the current buffer occupancy resulting in the selection
of playout durations for the buffered frame. Stream continuity is described by a

68

second-order metric, the variance of discontinuity (VOD), which accounts for
underflow occurrences and discontinuities due to reduced playout rates. A number
of playout schedulers are derived, each providing a different trade-off between
playout continuity (captured by VOD) and reduction of mean playout rate.

The method in [Laout1] is an extension of Laoutaris and Starvrakakis that uses a
compact and fair continuity metric distortion of playout (DoP). The definition of
DoP has been motivated by experimental perceptual results for video
transportation over packet network s conducted by Claypool and Tanner [Clay99],
reporting that jitter degrades the perceptual quality of video nearly as much as
packet loss. The study has limited the range of the threshold parameters TH by
identifying a range of values when there is no beneficial trade-off between
continuity and reduction of mean playout rate - the two antagonistic metrics of the
Internet. Interestingly, it has been shown that this range of values changes with
the burstiness of the frame arrival process, revealing the danger of an initially
meaningful TH appearing in the undesirable area due to a change of arrival
burstiness. Finally, the work is supplemented with online algorithms for the
detection and maintenance of the operational parameter TH within the area of
beneficial trade-off across unknown non stationary delay jitter.

Finally, by solving an appropriate optimisation problem, Laoutaris and
Stavrakakis have developed a scheduler that outperforms the earlier scheduler of
[Laout2]. Stream continuity is described by using the first two moments of the
DoP metric. This approach allows a fine-grained optimisation of stream
continuity by catering to a combination of the expected frequency of
synchronization loss and its appearance pattern. It is noticed that the minimization
of the expected value of DoP and of the variability of DoP are two contradicting
objectives. It is concluded that for a perceptually optimal result the scheduler
must be allowed to increase the frequency of discontinuities, if this increase is
providing a smooth spacing between discontinuity occurrences and thus helps in
concealing them. The Markov decision theory is applied for the derivation of the
optimal playout policy for some common levels of network jitter, a playout
scheduler can use a jitter estimator and adaptively ‘’load’’ the appropriate offline-
computed optimal policy and thus can approach the optimal performance in a
dynamic environment with low complexity (no online optimisation required).

4.2.4 Comparisons of Playout Buffer Delay Adjustment
algorithms

In general, time-oriented schedulers are prefered when there is an interactivity
requirement, in most cases in systems that handle spoken voice. Buffer-oriented
systems are employed in video communication systems, where some compromise
in delay is acceptable, even in interactive systems, if this is to provide for a

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

69

smooth presentation of frames. Bidirectional, interactive audio applications
usually implement time-oriented playout schedulers.

Streaming of stored content can be carried out by using the assured
synchronization under bounded delay jitter algorithms which provide for an
absolute re-synchronization at the lowest possible end-to-end delay. In the real
world, implemented systems seldom use these algorithms, mainly because they
induce an initial delay that is up to the maximum network jitter which in most
cases is unknown. The assured synchronization under bounded delay jitter
algorithms provide no packet late (loss rate is 0%), and this is the most ideal
case, but they are considered inadequate for interactive applications due to the
total stream delay is seconds, but the acceptable delay is only milliseconds.
Furthermore, the algorithms that do not know the network delay of the first packet
are unflexible due to fixed end-to-end delay, while the assured algorithms that
know this delay before are more efficient to be implemented than the previous
case and their end-to-end delay is reduced.

Unlike the assured synchronization approach, the playout schemes that allow for
the latency/synchronization tradeoff by allowing for loss due to MU lateness can
have loss rate. Hence they can support real-time applications better because the
overal end-to-end delay is decreased. It is also necessary to note that both the
assured synchronization and this class of time-oriented scheme need to have a
global clock in order to determine the network delay of each packet.

The other type of time-oriented schedulers is the scheme that does not require a
global clock. All of these playout schedulers are based on per-talkspurt basis and
they try to determine the playout buffer time based on network jitter estimated.
These schemes differ from each other only in the way of estimating this network
jitter.

In addition, schedulers with approximated clock synchronization fill the gap
between the two extreme approaches. Such systems do not require a global clock,
so they cannot guarantee a delivery delay in absolute values, but they provide a
soft delivery guarantee that is more specific than the freely fluctuating delay of
differential-delay systems, where the network delay component is completely
unknown.

The following table summarizes the characteristics of different time-oriented
playout schemes.

70

Author Media Global
clock

Delay
Performance

Synchronization
Performance

Delay
Adaptation

Geyer
[Geyer96]

Audio/video Not
assumed

Dn,1 + Jmax No loss of
synchronization

Delay static
during

connection
Baldi

 [Bald00]
Audio/video Assumed Dn,max No loss of

synchronization
Delay static

during
connection

Concord
[Shiv95]

Audio/video Assumed variable→min Static-guaranteed Based on
PDD

estimation
Naylor and
Kleinrock
[Klein76]

Audio+sil.
Det.

Not
assumed

Stat. tradepff Stat. tradeoff Per talkspurt
(partial range

filter)
Ramjee

[Ram94]
Audio+sil.

Det.
Not

assumed
Stat. tradeoff Stat. tradeoff Per talkspurt

(recursive
filter)

Moon
[Moon98]

Audio+sil.
Det.

Not
assumed

Stat. tradeoff Stat. tradeoff Per talkspurt
(percentile

point)
Roccetti
[Rocc01]

Audio+sil.
Det.

VC, t0 +
RTT

Stat. tradeoff Stat. tradeoff1 Periodic
(1sec) (RTT

based)
Alvarez-Cuevas

[Alv93]
Audio+sil.

Det.
VC, RTT/2 variable→min 1%MU lateness Per talkspurt

(RTT based)
C. Liu

[Liu96]
Audio/video VC variable→min Satisfy user input Per MU

(delay region
based)

H. Liu
[Liu99]

Audio/video VC variable→min Satisfy user input Per MU↑ , per
W MUs↓

Table 1 Overview of time-oriented schedulers. The abreviation VC indicates
Virtual Clock synchronization method, with some approximated offset. The label
stat. Tradeoff identifies systems where a constant tradeoff between
synchronization and delay is maintained across different levels of jitter.

Bidirectional video applications are usually less demanding, as far as interactivity
is concerned, compared to their audio counterparts. The buffer-less approach is
very simple and provides for the best interactivity (frames are displayed as soon
as they arrive), but the synchronization quality quickly degrades with jitter, as
there is no dejitter buffer. The self-adjusting buffer is also quite simple to
implement, and assuming a small amoount of jitter, provides a very good
synchronization/delay tradeoff as the buffer quickly adjusts to an occupancy that
eliminates all jitter, at a small delay. The downside is that it is sensitive to rate
occurrences of unusually large jitter; in such cases the delay of the stream will
rise and willl remain large since there is no delay control function to restore it.
Neither scheme employs smoothing of long-lasting discontinuities. Dynamic
regulation of MU durations can be used to improve the intrastream
synchronization quality. The threshold-based schemes are also quite simple to

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

71

implement while systems that require some offline optimization are more
complex.

The following table overviews the buffer-oriented playout schedulers:

Author Buffer control Delay
performance

Intrastream
sync. mectric

Evaluation

Stone and Jeffay
(QM) [Ston95]

Tail dropping Try to reduce Gap freq., 1st
order

Experimental

Rothermel and
Helbig [Roth95]

Adjust playout
rate

Predefined (static
tradeoff)

Gap prob., 1st
order

Simulation

Biersack
[Bier96]

Adjust source
rate

Predefined (static
tradeoff)

Gap prob., 1st
order

Experimental

Yuang
[Yua96]

Static threshold Threshold
dependent

Gap prob., 1st
order

Analytical

Yuang
[Yua97]

NN dynamic
threshold

Variable delay 2nd order Simulation

Laoutaris and
Stavrakakis

(Laout1]

Adaptive
threshold

Small initial
increase

2nd order Analytical

Laoutaris
[Laout2]

Offline optimal
policy

Policy dependent Combined 1st, 2nd
order

Analytical

Table 2 Overview of surveyed buffer-oriented schedulers. In the buffer control
column, a slow (fast) in parentheses, denotes that the scheduler is able to apply
reduced (increased) playout rate.

Among all these playout schemes, I see that the Concord algorithm is an very
good example in order to be implemented in our system, because it plays a direct
tradeoff between end-to-end delay of system and the loss rate predefined at the
playout buffer. By adjusting the loss rate at playout buffer, I can control the end-
to-end delay directly. Furthermore, the Concord algorithm can remove the short-
term jitter produced in the network and hence it can improve the quality of
interactive applications considerably.

4.3 Related Works

There are two important research areas that play an important role for the playout
adaptation: Forward Error Correction (FEC) and Video Caching (or proxying).
FEC and its coupling with playout adaptation is a research topic that has recently
attracted much attention perhaps due to the fact that FEC plays a significant role
in enabling packet-video communications in wireless environments. Video
caching appears to be a very attractive way to provide high-quality non-
interactive streaming content in a cost-effective manner.

72

4.3.1 Influence of FEC on Playout Schedulers

A lot of adaptation algorithms do not pay attention on packet losses that appear in
the network due to congestion. Network losses are assumed to be out of the scope
of playout adaptation, and compensation for losses is left to various FEC
mechanisms [Carl97, Perk98, Liu97] that operate in isolation from the playout-
adaptation algorithm. Recently research demonstrated that a considerable
performance gain can be expected from combining delay-oriented playout
adaptation and loss-oriented FEC [Ros00, Hart00].

Rosenberg et al. [Ros00] study the effect of (n-k) Reed-Solomon correction codes
on existing and new playout algorithms and they show that performance
improvement is achieved when considering the coupling between jitter and loss
compensation. Existing playout algorithms [Ram94, Moon98] are made FEC-
aware by substituting the network delay (nD) of a packet with the virtual network
delay (nVD), which is either nD or the extended recovery delay (recovery time-
generation time). If no error does occur in the network the recovery time of an
MU coincides with its arrival time; otherwise the recovery time is the time when
the reception of some redundant FEC packet allows the correct decoding of the
corrupted (or lost) MU. The targeted end-to-end delay totD is shaped by nVD
which depends on the FEC algorithm and thus the coupling. Several new
adaptation algorithms have been proposed. The adaptively virtual algorithm
targets a desirable packet loss probability. It is based on [Ram94], and uses virtual
delays to dynamically adjust the variation multiplier b of Equation (4.1) in order
to achieve a targeted loss rate. Another algorithm is the so called Previous
Optimal algorithm; it determines the optimal (minimal) delay for the previous
talkspurt such that a specific application loss rate be maintained, and applies it to
the next talkspurt; hence the Previous in the algorithm name. Finally, the authors
describe an analytical framework for the expression of the total end-to-end delay
as a function of the application-level reception probability (in the presence of
FEC), the network delay distribution, and the network loss probability.

Intra-stream synchronization has been studied for wireless receivers by Liu and
Zarki [Liu99]. In the wireless environment, the media synchronisation module
must be coupled with the Automatic Repeat Request (ARQ) of the wireless link.

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

73

4.3.2 Influence of Video Caching on Playout Schemes

As with traditional data objects of established protocols like http and ftp, real-time
objects (mostly stored video) are being cached, or proxied, with the aim of
reducing network traffic and improving the interactivity of content delivery
[Gar99, Wang01, Chua00, Kang01]. Unlike popular web proxies video proxies
typically store a portion of a video clip only - the initial part usually (called the
prefix [Gar99, Wang01]) - since the entire video object is too lengthy to be
replicated on a typical proxy and replication is the most cost-effective alternative
[Gar99]. Video proxies improve the quality of video delivery in many ways. First
they reduce the network transfer delay since proxies are located closer to end
clients, so the stream travels just a few network hops before delivery. Second,
proxies assist in improvement of intra-stream synchronization quality. If the
prefix of a video takes a long time within the range of minutes then the amount of
proxied data completely smoothes out the jitter in the data path from the server to
the proxy. This is important because it relieves a receiver of a large fraction of
jitter - only the jitter in the access part remains from the proxy to the receiver
which is usually small and easily can be smoothed out with a small playout buffer
at the receiver. The reduction of the playout buffer also reduces total delay thus
improving the responsiveness of the service. Even if the amount of prefix
corresponds to the duration on the same timescale as the network jitter at the core
network then it will again absorb some portion of the delay variability and thus
decrease the size of the playout buffer at the receiver. For a given synchronization
quality the existence of the prefix helps by hiding some portion of the total delay.

4.4 Performance of a Playout Schemes

In order to compare one adaptive playout-buffer delay-adjustment algorithm with
another the trade-off between average playout delays and loss is used as a
performance measure. These parameters should be considered on per-packet
rather than per-talkspurt because the lengths of talkspurts depend on silence
detection algorithms. Per-talkspurt playout-buffer delay is thus closely tied to
silence detection algorithms used. More importantly, different talkspurts have
different lengths.

End-to-end application delay is defined as difference time between playout time
at receivers and generation time at senders. Figure 15 shows timing information
of audio packets and formally defines average playout delay [Moon98].

74

Sender

Receiver
arrival

playout

k-th talkspurt silence (k+1)-th talkspurt
1
kt

2
kt ... n

kt
1

1+kt
2

1+kt
n
kt 1+...

1
ka 2

ka n
ka 1

1+ka
2

1+ka n
ka 1+

1
kp 2

kp n
kp 1

1+kp
2

1+kp n
kp 1+

Figure 15 Timing associated with the i-th packet in the k-th talkspurt

Suppose that there is a trace consisting of M talkspurts. The following quantities
are defined:

- i

kt : sender timestamp of the i-th packet in the k-th talkspurt.
- i

ka : receiver timestamp of the i-the packet in the k-th talkspurt,
- kn : number of packets in the k-th talkspurt. Hence I only consider those packets
actually received at receivers.
- N: total number of packets in a trace.

∑ =
= M

k knN
1

The algorithm used in receivers to estimate playout delay of the packet decides its
amount of playout time. Suppose that the playout algorithm is A. Then)(Api

k is
the playout timestamp of the i-th packet in the k-th talkspurt under A. If the i-th
packet of the k-th talkspurt arrives later than)(Api

k (i.e., i
k

i
k aAp <)(), it is

considered lost. Otherwise, it is played out with the playout delay of (i
k

i
k tAp −)().

Let)(Ar i
k be an indicator variable for whether the i-th packet of the k-th talkspurt

arrives before its playout time, as computed by playout algorithm A:



 <

=
otherwise

aAp
Ar

i
k

i
ki

k ,1
)(,0

)(

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

75

N(A) is denoted as the total number of packets played under algorithm A and
computed using)(Ark :

)()(
1 1

ArAN M

k

n

i
i

k
k

∑ ∑= =
=

Then the average playout delay of those played-out packets is defined as:

))()((
)(

1
1 1

i
k

M

k

n

i
i
k

i
k tApAr

AN
k −∑ ∑= =

If there are N packets in a trace and, among them, N(A) packets are played out
under algorithm A the loss percentage l is:

100*)(
N

ANNl −=

4.5 Concord algorithm

4.5.1 Why Concord?

The Concord playout buffer delay adjustment algorithm described in [Shiv95]
constructs a probability delay distribution (PDD), an estimate of the probable
delays suffered by packets in the network over a time window. This PDD may
draw on existing traffic conditions, history information or any negotiated service
characteristics to derive estimate for minimum, maximum and/or mean delay
distributions. From the PDD distribution, this algorithm will determine the total
end-to-end delay based on a given loss rate. According to this end-to-end delay, it
then adjust the playout buffer delay of each packet is adjusted.

In other words, the Concord mechanism try to reduce short-term jitter by
performing a direct trade-off between loss rate at receiver and the total end-to-end
delay. The direct trade-off between jitter produced by network, total end-to-end
delay and loss rate of the Concord algorithm leads me to an interesting idea:
design a new relative DiffServ model that controls the proportional jitter in the
networks and verify the influence of this jitter at playout buffer on the total end-
to-end delay.

Furthermore, the Concord algorithm anticipates short-term network delay with the
aim of not responding too quickly to short-lived variations. This algorithm is
considered as a very suitable scheme for applications, which do not tolerate high

76

delays but conceal a small amount of late packets. Nowaday, a lot of voice and
video coding algorithms can reach satisfactory output, and hence the expense of
increasing the loss rate of the Concord algorithm causes no negative impact for
voice and video-coding applications. That means using of Concord algorithm at
receiver end is very appropriate for the DiffServ network that provide different
types of voice service. Finally, it is very remarkable, because it defines a single
framework to deal with both forms of synchronization, and operates under
influences of parameters, which can be supplied by the applications involved.

These reasons leads me to choose Concord algorithm as playout buffer delay
adjustment algorithm in the receiver of my network.

4.5.2 Basic Characteristics

This section summarizes some features of the Concord algorithm, which uses a
predictive approach to playout-buffer management.

Name Description
PDD Packet Delay Distribution

sted Total end-to-end delay for stream s

smad Maximum acceptable delay for stream s

sbs Buffer size for stream s
i
snd

Network delay for packet i of stream s
s
ibd

Buffer delay for packet i of stream s

smlp Maximum late packet (%) for stream s
alp Actual late packets (%)
Cdf Cumulative distribution function

)(xH i Function of histogram after its aging

)(xPi PDD function after the aging (1)(0 ≤≤ xPi)
F Aging Factor
S Sum of bin value in histogram
c Aging coefficient 10 ≤≤ c
f Aging frequency (in packet spacing)

1r Ratio of old aged data to the newly arrived packet

2r Ratio of old aged data to subsequent packets until next
aging

Table 3 Basic notation

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

77

4.5.2.1 Function

The Concord algorithm describes a stream as a sequence of packets, which are
produced within periods and which are marked with sequence numbers. For each
stream there are two important parameters: the maximum acceptable delay
(smad) it can suffer, and the maximum late-packets (smlp) percentage it can
accept or tolerate. In addition a packet-delay distribution (PDD), which is a
statistical representation of network delays for packets in that stream is also set
up. This approximate distribution is reconstructed or updated periodically so that
it adapts to actual situations. The speed of getting this process established can be
accelerated by having an initial approximation for the Packet Delay Distribution,
perhaps based on recent observations.

The most basic and important job of the Concord algorithm is to determine the
minimum buffer size at receivers so that the network jitter is smoothed out and
the requirements of the maximum adaptive delay smlp and the maximum late
packet smad are satisfied. In other words, it is necessary to find the minimum
buffer size sbs which satisfies the following conditions:

• For every packet i: s
i

s
i bdnd + is a value of sted , where sted is the total

end-to-end delay, s
ind is the network delay suffered by packet i, and i

sbd is
the induced buffer delay for i.

• The chosen sted is less than the smad of the stream

• The chosen sted does not lead to more than smlp percent of packets being

thrown away

Figure 16 shows an example of calculating total end-to-end delays form the PDD.
With this example, it is easy to recognize that if a packet has a delay higher than
ted, it will be declared as late. From this property, the amount of late packets will
be (1-Cdf(ted)), where Cdf is the cumulative distribution function on the Packet-
Delay Distribution. The behavior of the Concord algorithm is analysed by
choosing a value of ted so that either mlp or ted is minimized (best visualized by
moving the ted line in Figure 16 to the right or left, respectively).

Concord chooses the value for ted by using available information on delay
probabilities such that the required conditions for mlp and mad parameters, which
are supplied by application are satisfied. In this section the dynamic mode of the
operation of Concord is analysed under the condition that the value of ted is re-
updated from time to time. Basically, this algorithm demands receivers to

78

construct and maintain a historical record of observed nd (network delay) values
in the form of a measured histogram. Over time, the quality of the algorithm is
improved as this structure is set up. So obvious optimisation possibilities exist by
initialising it appropriately - if reasonable information is available. The recorded
historical information is used from time to time to revise the actual ted if
necessary to reach the application QoS parameters.

For controlling the dynamic behaviors of the Concord algorithm, two parameters
are used. The first one is a threshold factor which decides when ted is
recalculated. The second controls relevance of the histogram data by aging its
contents over time with the aim of more accurate behavior. The execution
overhead can be reduced by choosing a threshold factor, which results in a
smaller number of ted recalculations - but of course this may result in decreased
effectiveness.

Figure 16 PDD constructed by Concord algorithm

4.5.2.2 Control of Statistical Historical Information

In order to process statistical trends, several approaches based on observed
measurements are investigated. Among these researches full aggregation is an
example, whose data is recorded and accumulated into a probability distribution
over a window time in which the algorithm is running. This type of processing
statistical data gives same weights for recent information and old information in
terms of their influence on the probability distribution. Hence this reason leads it
to less adaptive to changes of systems. For overcoming this disadvantage of the
full aggregation approach, the flush and refreshes method is created. This scheme
stores statistical samples for a period of time, then flush and refresh them
periodically. However, in this scheme the periodic flush results in a complete loss
of historic information and can introduce boundary effects at the flush instances.

PDD

Delay0%

100%

Min

L

TED

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

79

It is necessary to create an appropriate statistical scheme, which can anticipate
future network delays by analysing historical and current information. This
scheme must examine, maintain, register and rewrite the statistical bias of
network delays. In Concord - by using a measured histogram in order to
approximate the PDD function - network tendency is recorded and tracked. This
histogram bins store frequency of delay patterns where bin width means the range
of network delays grouped together to represent one pattern in the histogram. It is
clear to recognize that the increase of bins leads to a decrease of the width of the
bins. Because conditions of network change by time this historical information
will also vary widely and the current information is very important for the
Concord algorithm to be successful. Thus, it demands an update and operation for
each bins in order to reduce effects of older information. This activity of the
Concord algorithm is called aging, which is described in the next section.

To allow accurate precise delay estimation, the aging operation ages the older
samples gradually. In other words, the older information is not discarded but
gradually retired. The balance between bin width and accuracy is then discussed
in a subsequent section.

4.5.2.3 Aging Function

This function contributes a very important part to the success of the Concord
algorithm. For this function, it is necessary to have a frequency called aging
frequency, which is set up by users or applications in order to determine how
often the aging function should be called. If users and applications set it at high
frequency that means that data is updated in short time scale and the system is
able to react quickly to changes - otherwise the reaction to changes is very slow.

Several approaches exist for the implementation of aging functions. A simple
method could discard all data prior to a certain threshold, which is a moving
window of fixed size to the current time. In addition this threshold could be based
on time or on a packet count. This solution maintains better history information
than the flush and refresh method, and hence it contains a high overhead. Such
methods are very difficult to implement because it requires complete data to be
kept rather than statistical approximation. Furthermore as addressed before this
approach does not discard the older data entirely but reduces its effect on the
statistical distribution gradually by periodically scaling down the existing
distribution by an aging coefficient. This aging coefficient is determined by a user
or an application while continuing to add new sample data with a constant weight.
This decreases progressively the influence of the older samples and gives the
newer ones larger effect.

80

The Concord algorithm uses aging coefficients provided by users or applications
as a corresponding aging factor. This factor can be interpreted as a mathematical
quantity used in order to scale the PDD histograms. Depending on how to
translate this factor, there are three different algorithms, which are described later.
The value of aging coefficient is chosen as a number between 0 and 1, which is
determined by application and is used to diminish the effect of older statistical
date. The aging factor is defined as a scaling factor used by Concord to scale
down the value of each bin in histogram.

The aging function could be calculated based on a number of packets received.
One example is applying aging to every packet arrival, while another one could
age the statistical data every 1000 packets and increment the bin corresponding to
each packet’s delay by one whenever a packet arrives.

There are three aging algorithms, which are described next. Algorithm 1 is the
basic method while algorithm 2 is the improved version of algorithm 1 and
algorithm 3 is a variant of algorithm 2.

Algorithm 1:This algorithm defines aging factor as:

 F=c

Where c is the aging coefficient, and F is the aging factor.

As described in the previous section, aging factor is a real value, and this value is
used to scale down each bin while aging coefficient is provided by users or
applications, which are identical in this algorithm. However, this relation will not
be the same in algorithm 2 and 3.

In this approach, the total count is readjusted by the aging coefficient. Then the
algorithm extends the bin corresponding to new packet’s delay by one. After
aging, all subsequent packets to arrive cause the corresponding bin to be
incremented by one until aging happens again.

Suppose that)(xH i is the function of the histogram after the ith aging and nd is
the network delay of new packet. The following relation is received:





=+
≠∞<≤

=
−

−

ndxxHF
ndxxxHF

xH
i

i
i ,1)(*

,0)(*
)(

1

1 (4.5)

The ratio of old aged data to the newly arrived packet is defined as 1r :

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

81

 ∫
∞

−=
0 11)(* dxxHcr i (4.6)

The ratio of old aged data to the newly arrived packet is defined as 2r :

∫
∞

−=
0 12)(* dxxH

f
cr i

where f is the aging frequency in packet spacing. Let)(xPi be the Packet Delay
Distribution function after the ith aging, hence:










=
+

≠∞<≤
=

−

−

ndx
S

xHF

ndxx
S

xHF

xP
i

i

i

,
1)(*

,0,
)(*

)(
1

1

 (4.7)

where ∫
∞

=
0

ˆ)ˆ(xdxHS i

For implementing, the continual function)(∫ could be calculated by a discrete
function)(∑ . In addition, y can be limited to the upper and lower bounds of
network delay, which can be rewritten whenever every packets come in.)(xH i is
a function of the actual number of packets in the histogram.)(xPi normalizes

)(xH i so that 1)(
0

=∫
∞

dxxPi . The following conditions must be satisfied by mlp:










≥

<
=≥

∫

∫
∫ ∞

+
+≠

−

∞

−
∞

−t
S

ndHF
ndx

i

t i

t i

tnddxxH
S
F

tnddxxH
S
F

dxxPmlp
i

,|)(

,)(
)(

1)(*1

1

1

 (4.8)

In this condition, t is the chosen ted (Figure 16). 1c and 2c now are called two
different aging coefficients. If mlp value is set the same for both of them, the
following relation could be received when nd<t in equation (4.8):

∫ ∫
∞ ∞

−− =
1 2

)()(1211 t t ii dxxHcdxxHc

Suppose that 021 >> cc , this relation is:

82

 ∫ ∫
∞ ∞

−− <
1 2

)()(11t t ii dxxHdxxH (4.9)

In contrast, for the case where tnd ≥ , this equation is obtained:

dxxHcndHcdxxHcndHc
t it iii)()()()(
21

12121111 ∫∫
∞

−

∞

−−− +=+

Because 021 >> cc , the result of equation (4.9) can be derived for this case also.
Thus, it is easy to conclude that 21 tt > when 21 cc > from equation (4.9). This
means decreasing aging coefficient decrease the value of ted.

In this algorithm, the bin values are delayed or scaled down by the aging
coefficient when aging happens. When the number of samples increases then the
corresponding bin value also increases, the packet arriving after aging plays a less
important roll to the histogram in comparison the old gagged data in histogram,
which have just been scaled down (see equation 4.6).

I.e. if the total of histogram bin values is 10 this is scaled down by 0.9 after aging.
The new packet then contributes one the histogram. The ratio of the old aged data
to the newly arrived packet is 9. After some time, the sum of the bins in histogram
may be 10000. After aging by 0.9, the ratio of the old aged data to the newly
arrived packet is 9000, which is different with the previous ones. This can be seen
in equation (4.6) that 1r is changing based on the value of old aged data in
histogram.

Algorithm 2: The idea of this algorithm is to maintain a constant ratio of old aged
data to the newly arrived packet through the time of synchronization stream.
When aging happens, the next packet will contribute one to the histogram, but the
old statistical data prior to aging are scaled down by the following factor:

∫

∞

−−
=

0 1)(*)1(dxxHc

cF
i

 (4.10)

By scaling down the old bins by equation (4.10), the ratio of old aged data to the
newly added bin is always constant, which is represented by:

c
cr
−

=
11

That is why at each aging the ratio of old aged data to the new arrival’s bin is not
dependent on the lifetime of the stream. Each arriving packet has the same

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

83

weight, which is (1-c) to the new statistical data. The old aged data has also the
same weight c.

This algorithm has an advantage, because data may still be up-to-date and can
react quickly to the changes of the system. The ratio of old aged data to
subsequent packets until the next aging is:

)1(2 cf
cr
−

=

Following the same deviation from equations (4.5), (4.7) and (4.8), I obtain the
following relation:

∫ ∫
∞ ∞

−− −
=

− 1 0 1
2

2
1

1

1)(
1

)(
1 t ii dxxH

c
cdxxH

c
c

Thus, for the case nd<t, the same result in equation (4.9) could be received. A
similar procedure can be used to derive an identical result for the case of tnd ≥ .
Hence I come to the same conclusion in the aging Algorithm 1 that 21 tt > when

21 cc > can be obtained.

Algorithm 3: Algorithm 1 calculates the aging coefficient without considering
the ratio of old aged data to a new packet. Algorithm 2 scales down each bin by
the factor described in the previous section (Equation (4.10)), which keeps the
ratio 1r constant. This ratio, in its turns, does not consider the aging frequency.

The third algorithm modifies Equation (4.10) in previous section as follows:

∫

∞

−−
=

0 1)(*)1(

*

dxxHc

fcF
i

 (4.11)

In this equation, f is the aging frequency in packet spacing. Even if the aging
frequency changes dynamically, the ratio of old aged data to the subsequent
packets until next aging is constant, by scaling down the bin value by this
equation (4.11). The aging could be done every f packets. The goal of Algorithm
3 is to maintain the same weight to the new statistical data for the sum of all
subsequent packets. The ratio of old aged data to subsequent arrived packets is
defined as:

)1(2 cf
cr
−

=

84

However, the ratio of old aged data to a new packet depends on the aging
frequency:

c
fcr

−
=

1
*

1

The following equation can be obtained:

∫ ∫
∞ ∞

−− −
=

− 1 2

)(
1

*
)(

1
1*

1
2

22
1

1

1

t t ii dxxH
c
cfdxxH

c
cf

When if is fixed, 21 tt > , if 21 cc > . Similarly, 21 tt > if 21 ff > when c is fixed.
This indicates that more frequent aging allows a smaller value of ted.

The three aging methods are different from each other only in the way of aging
which happens with different frequencies. For example in case all of them do
aging in 100 packets: in the arrival of 100th packet, they age the histogram by
scaling down each bin with different factors. For the intervening packets between
the two successive agings the corresponding bin in the histogram is increased by
one for each packet. Algorithm 3 takes frequency (100 in this example) into
account for the factor but Algorithms 1 and 2 do not. The next section discusses
histogram bin width, which is strongly related to the accuracy of histogram data.

Bin Width of Histogram: As described in previous section, bin width is defined
as the range of network delay grouped together to represent one pattern in
histogram, and is connected directly to the accuracy of data stored. The value of
bin width could be set to 10 milliseconds. Another value of bin width 205
milliseconds can be chosen to represent the network delay in the range of 200-209
milliseconds.

If the bin is narrow then the accuracy will be better for the case of wider bins.
Anyway, when the width of the bins is narrower then the required number of bins
will also be increased. In the previous section, the number of bins may range from
0 to ∞ depending on the network delay. Under congestion condition the network
delays fluctuate widely thus it is necessary to reduce the number of bins. For
reducing the number of bins and increasing the bin width each packet delay being
stored to the histogram is calculated as follows:

1+




=
w
ndb

 CHAPTER 4 - PLAYOUT BUFFER DELAY ADJUSTMENT ALGORITHM

85

In this equation nd is the network delay w is the bin width, and b is the
corresponding bin in histogram. The function in the above question is floor
function. This is the reason why network delay stay in w range, it is represented
by only one bin. It is still necessary to recalculate the network delay, after storing
the network delay of the packet to the corresponding bin:






 −=
2

* wwbnd (4.12)

Equation (4.12) takes the mean value of this range to represent the network delay
for this bin. One can also choose the maximum or minimum value that is (b*w-1)
and [(b-1)*w], respectively. Another alternative is to calculate the real mean
value of delay in this range. This approach however requires additional overhead
and memory to keep track and store the mean value of delay for each bin. This
may not be suitable since an aim of wide bins is to reduce the memory needs.

Concord has a disadvantage, namely multiple successive packets can be
discarded. These burst loss quantities were not significant as shown in the current
results. In this section, Concord algorithm for synchronizing networked-
multimedia streams is described. Concord is notable because it defines a solution
for synchronization, which operates under the direct influence of application-
supplied parameters for QoS control. In particular these parameters are used to
facilitate a trade-off between the packet lateness rates, total end-to-end delay and
skew. Thus an application can directly indicate an acceptable lost packet rate,
rather than by having the synchronization mechanism operate by always trying to
minimize losses due to lateness.

% of
Packets

Network Delay

ted

1-Cdf(ted)

Figure 17 Concord algorithm

86

Chapter 5 Proportional Jitter Differentiation Model
(PJDM)

The subject of this chapter is the queuing-jitter differentiations. After analysing
the PDDM model in the previous chapter, I propose a new architecture, which is
called Proportional Jitter Differentiation Model (PJDM), as a means for
controllable and predictable jitter differentiation. I then discuss some properties of
this model.

Subsequently, I focus on the methods of the performance evaluation. Two
methods to analyse and compare different scheduling algorithms (as RJPS, PAJ,
Adaptive-RJPS and Adaptive-PAJ that are described in the Chapter 6) in different
models (PDDM and PJDM), two methods are proposed. The first one is for
comparing the quality of my scheduling algorithms within only one hop and the
other is for comparing the performance of PDDM and PJDM in a multi-hop
network.

 The content of this chapter is based on my work published in [Ngo3, Ngo4]

5.1 Proportional Jitter Differentiation Model (PJDM)

The PJDM aims to control the ratio of average jitter between classes based on the
Jitter Differentiation Parameters (JDPs). Specifically, let ij be the average
queuing delay jitter, or simply the average jitter over time window (t, t+τ). The
PJDM model requires that the ratio of average jitter between two classes i and j is
fixed to the inverse ratio of the corresponding JDPs:

i

j

j

i

ttj
ttj

∆
∆

=
+
+

),(
),(

τ
τ

 (5.1)

where parameters }{ i∆ are the Jitter Differentiation Parameters (JDPs) and

),(τ+ttji is the average queuing delay jitter of class i’ s packets over time
window (t, t+τ). In this model, I say that class i is better than class j if ji ∆>∆ , or
the Jitter Differentiation Parameter of one class can be called the weight of this
class.

In detail, I can write: the Relative Proportional Differentiated Services Model for
jitter is characterized by the following (N-1) equations:

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

87

 2211),(),(∆+=∆+ ττ ttjttj
 3322),(),(∆+=∆+ ττ ttjttj (5.2)

....
NNNN ttjttj ∆+=∆+ −−),(),(11 ττ

Leaving the problem of delay and jitter measure for further studies, I assume that
jitter of one packet in a queue is the difference of queuing delay of this packet and
the preceding packet in this class (this definition is based on the standards of IP
performance metrics working group of IETF)

 1−−= k
i

k
i

k
i ddj (5.3)

Where k

id is the queuing delay of packet number k of class i and k
ij is the jitter

of this packet.

5.2 Some Properties

I consider a packet scheduler that services N queues, one for each class.

Property 1: For a non-work-conserving scheduler, it is possible to set the delay
spacing between classes to arbitrary levels, so that the delays of each class stays
proportional with each other. On the other hand - when the delay of each packet
of each class is proportional to the other classes then its delay difference or jitter
also becomes proportional. That means intuitively it is always possible to realise a
non-work-conserving proportional jitter scheduler.

Definition 1: I say that a set of JDPs is feasible if there exists a work-conserving
scheduler that can set the average jitter of each class as in equation (5.1). So the
set of JDPs is feasible when the set of class jitters is feasible. Some examples of
feasible sets of JDPS can be found in the Chapter 6 by simulations.

Definition 2: An ideal proportional delay scheduler is a scheduler, which
produces delay proportionally for each packet of all the classes. See equation
(3.2).

j

i
k
j

k
i

d
d

δ
δ

= for all pairs of i and j, and for all packets of classes i and j

Where k

id is the queuing delay of packet number k of class i .

88

Property 2: An ideal proportional delay scheduler, which produces proportional
delay for each packet is a proportional jitter scheduler with the Differentiation

Parameters defined as
i

i δ
1=∆ .

For the packet number k, I have:
j

i
k
j

k
i

d
d

δ
δ

=

And for the packet number k+1, I have

j

i
k
j

k
i

d
d

δ
δ

=+

+

1

1

That means: k
j

k
j

k
i

k
i

j

i
k
j

k
i

k
j

k
i

dd
dd

d
d

d
d

−
−

=== +

+

+

+

1

1

1

1

δ
δ

From these equations, I have:
i

j

j

i
k
j

k
j

k
i

k
i

k
j

k
i

dd
dd

j
j

δ

δ
δ
δ

1

1

1

1

1

1

==
−

−
=

+

+

+

+

Note that for the PJDM model Jitter Differentiation Parameters i∆ are the
importance or weight of class i, while for the PDDM model the importance or
weight of each class is defined as

iδ
1 .

Property 3: Delay accumulates, jitter, however, does not.

It is easy to see that delay has accumulated property. That means that the delay of
a class or flow through a network is the sum of the queuing delays at each router
and the propagation time, which is considered small compared to the queuing
delays. In addition, we assume that we cannot have any type of signaling in the
proportional Diffserv model in order to carry control information for realising
proportional delay at only egress router. Hence there is a need to implement
proportional delay scheduling algorithms at every router in a network based on
PDDM model for receiving proportional delay between different classes.

However, in the case of the existence of proportional delay scheduling schemes at
every router, each packet transfers through network along different paths.
Furthermore, each path can contain different hops numbers. In addition, it is
important to recall that the local delays of each class at each hop is proportional
with the delays of the other classes, and the network delay of each class is the sum

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

89

of local delays of all the hops that the path contains. When each path of each
packet can contain different numbers of hops, the sums of local delays (or
network delay) will not stay proportional with each other any more. That means
the network delay of each class become unproportional with each other.

 That is why the proportional property of queuing delay is just maintained for
only one local hop, but the sum of queuing delay of one class does not stay
proportional with other classes any more. In other words, such networks can not
guarantee the proportional property of delay between different classes.

Jitter however is not accumulated and if there is proportional jitter scheduling
mechanism at every router in the network, the jitter of each class after the egress
router is not the sum of the jitter of each router produced within the network.
Intuitively, the more the routers with proportional jitter scheduling algorithm are
near the side of receiver end, the more strongly it will influence the playout delay
adjustment algorithm implemented at receiver.

Finally, I believe that only work-conserving forwarding mechanism will be used
in practice, because of the competition for the best possible service between
service providers; this is mainly a non-technical issue however. Furthermore, for a
non-work conserving scheduler, it is possible to set the jitter spacing between
classes to arbitrary levels. For this reason, from now on I will only focus on the
algorithms that belong to work-conserving type.

5.3 Methodology

Before going to the new scheduling algorithms in detail, it is necessary to
establish the method for performance evaluation and comparison. At the
beginning I focus on the method of evaluating the schedulers within only a single
hop and then on the method of performance comparison of PJDM and PDDM
models in multi-hop networks.

5.3.1 Method for Performance Evaluation of Schedulers within
Single Hop

In this section, the methodology used to analyse and compare the behaviors of my
new schedulers within only one hop is presented. It comprises performance
criterion, network topology, simulation tool and traffic model.

90

5.3.1.1 Performance Criteria

All of my algorithms aim to produce proportional jitter between different classes.
Hence in order to evaluate and compare these schemes, I need to use jitter ratio as
the main performance criterion. A critical issue is not only to exam whether these
schedulers can approximate long-term jitter ratio (calculated from the beginning
of the simulation) but also short-term jitter (calculated over a moving window).
Another important performance criterion is the average delay of each class
produced by each algorithm.

5.3.1.2 Network Topology, Simulation tool and Traffic Model

In this section, I use only a simple network topology that is shown in the
following Figure 18. The links are all 6 Mbps with a latency of 10 ms. The classes
are numbered from 0 to 1 and 2. Each class contains some flows that are
described more concretely in each simulation. Each flow is characterized by a
sender Si and a receiver Di. My new algorithms are implemented at Router R1,
while the FIFO scheme is used at the second router R2. I run and collect my
simulation in 100 seconds.

In addition, I employ the Network Simulator ns-2 [NS2]. The traffic that is
appropriate for voice sources can be well modeled by on/off sources. In the
simulator, packets arrive in an on/off pattern. This type of traffic has different
parameters, such as: rate, on-time and off-time. The talkspurt length (on period)
and the gap length (off period) of speech signal is exponentially distributed.
During the on-time, packets are generated with this predefined rate. The transport
protocol used is UDP protocol. The FIFO scheduling is placed at the end The
details of traffic model is described concretely in each simulation.

Si

S2 R 1
(R JPS,
PA J, A -
R JPS or
A -PA J)

R 1
(R JPS,
PA J, A -
R JPS or
A -PA J)

Si Source of flow i D i Receiver of flow i

FIFO
FIFO

D 2

S1 D 1

D i

.

.

.

.

.

.

Figure 18 Network topology

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

91

In my simulation, I will set all the parameters so that the load in the links achieve
high condition (approximately from 80 to 100%). This is based on the reason that
the proportional jitter schedulers work only stable when there are enough packets
in the queue. With light load, the packets should be scheduled immediately, the
queuing delay stays small, jitter stays small, too, and no jitter differentiation is
probably needed.

The average size of packet for UDP traffic is set based on the measurement in
[Mc00].

5.3.2 Method for Performance Evaluation and Comparison of
PJDM and PDDM

After analysing and comparing the quality of my new mechanisms within only
one hop, it is also important to examine their performance in multi-hop networks
based on PJDM and to compare with performance of networks based on PDDM.
For this issue, I presents the necessary network topology, performance criteria in
the following.

5.3.2.1 Network Topologies

It is necessary to explain the notion of networks based on PJDM and PDDM
models. The networks, which uses only proportional delay scheduling scheme (as
WTP) in their routers, are called based on PDDM. The networks using only
proportional jitter scheduling algorithms (as RJPS, PAJ, Adaptive-RJPS and
Adaptive-PAJ) are called based on PJDM.

Before going to simulative results, it is necessary to create some concrete
conditions for the context of my experiments, especially the required elements for
my system.

To simulate, there is a need to choose a precise system. It is noteworthy to say
that my system contains the following elements (Figure 19):

• Sender
• Network based on the PJDM or PDDM model
• Playout buffer controlled by Concord, as playout buffer delay adjustment

algorithm
• Receiver

92

Sender
Network (based

on PJDM or
PDDM models)

Playout Buffer
(Concord
algorithm)

Receiver

Figure 19 Network elements

In order to create appropriate topologies, it is now necessary to repeat some
arguments described already in Chapter 4:

• Delay has accumulated property. That means the delay of a class or flow
through a network is the sum of the queuing delays at each router and the
propagation time, which is considered small compared to the queuing
delays in case of congestion. Hence there is a need to implement
proportional delay scheduling algorithms at every router in a PDDM
model for receiving proportional delay between different classes.
However, in the case of the existence of proportional delay scheduling
schemes at every router, each packet can transfer through network along
different paths that can contain different hops numbers. That is why the
proportional property of queuing delay is just maintained for only one
local hop, but the sum of queuing delay of one class does not stay
proportional any more. In other words, such networks can not guarantee
the proportional property of delay between different classes.

• Jitter, however, is not accumulated and if there is proportional jitter

scheduling mechanism at every router in the network, the jitter of each
class after the egress router is not the sum of the jitter of each router
produced within the network. Furthermore, the more the routers with
proportional jitter scheduling algorithm are near the side of receiver end,
the more strongly it will influence the playout delay adjustment algorithm.

These two reasons lead me to an interesting idea: to implement proportional jitter
scheduling schemes at different positions of networks (core or egress routers) in
order to examine the influence of the proportional jitter schedulers of the PJDM
model at the receiver end. In addition, it is also interesting to compare the
performance of such topologies based on PJDM model with similar topologies
based on PDDM model (WTP).

Independent of implementing the model of Relative Proportional Differentiated
Services considering delay(PDDM) or jitter (PJDM), the objective of these

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

93

models is to improve end-to-end quality of service, or end-to-end delay. In other
words, the model that produces smaller end-to-end delay is better.

In the rest of my thesis, I am just interested in network approaches, which contain
either proportional jitter or delay schedulers at all the router or only at the egress
router. These reasons lead us to create two approaches for each PJDM or PDDM
models, as shown in Figure 20, 21, 22, 23.

Network based
on the PDDM model

Ingress
Router

Egress
Router

Core
Router

Core
Router

Core
Router

Proportional
Delay

Scheduling
Algorithm (as

WTP)

Figure 20 Network based on the PDDM model, type 1

Network based
on the PDDM model

Ingress
Router

Egress
Router

FIFO

FIFO
FIFO

Proportional
Delay

Scheduling
Algorithm (as

WTP)

Figure 21 Network based on the PDDM model, type 2

94

With the PDDM model, the first type contains proportional delay schedulers at
every router of its network (Figure 20). The second type (Figure 21) contains only
proportional router scheduling scheme at the egress router.

Network based
on the PJDM model

Ingress
Router

Egress
Router

Core
Router

Core
Router

Core
Router

Proportional
Jitter

Scheduling
Algorithm (as
RJPS or PAJ)

Figure 22 Network based on the PJDM model, type 1

Network based
on the PJDM model

Ingress
Router

Egress
Router

FIFO

FIFO
FIFO

Proportional
Jitter

Scheduling
Algorithm (as
RJPS or PAJ)

Figure 23 Network based on the PJDM model, type 2

Similarly to the PDDM model, there are also two types for the PJDM. The first
type contains proportional scheduling algorithms at every router of its network

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

95

(Figure 22). The second type contains only proportional scheduling algorithm at
the egress router (Figure 23).

Starting from this network types, I receive a total of 10 Network Topologies
(Figure 24) by replacing proportional delay mechanisms by WTP and
proportional jitter schemes by RJPS, PAJ, Adaptive-RJPS or Adaptive-PAJ. The
two first ones are based on the PDDM model, and contain WTP at every router or
only at the egress router. The others are based on the PJDM model, and contain
RJPS, PAJ, Adaptive-RJPS or Adaptive-PAJ at every router of the network or
only at the egress router.

These configurations are illustrated in the Figure 24:

WTP
WTP

WTP
WTP

WTP
WTP

WTP
WTP

Network Topology 1

.....

FIFO
FIFO

FIFO
FIFO

FIFO
FIFO

WTP
WTP

Network Topology 2

.....

RJPS
RJPS

RJPS
RJPS

RJPS
RJPS

RJPS
RJPS

Network Topology 3

.....

FIFO
FIFO

FIFO
FIFO

FIFO
FIFO

RJPS
RJPS

Network Topology 4

.....

96

PAJ
PAJ

PAJ
PAJ

PAJ
PAJ

PAJ
PAJ

Network Topology 5

.....

FIFO
FIFO

FIFO
FIFO

FIFO
FIFO

PAJ
PAJ

Network Topology 6

.....

Adaptive-
RJPS

Adaptive-
RJPS Adaptive-

RJPS

Adaptive-
RJPS Adaptive-

RJPS

Adaptive-
RJPS Adaptive-

RJPS

Adaptive-
RJPS

Network Topology 7

.....

FIFO
FIFO

FIFO
FIFO

FIFO
FIFO Adaptive-

RJPS

Adaptive-
RJPS

Network Topology 8

.....

Adaptive-
PAJ

Adaptive-
PAJ Adaptive-

PAJ

Adaptive-
PAJ Adaptive-

PAJ

Adaptive-
PAJ Adaptive-

PAJ

Adaptive-
PAJ

Network Topology 9

.....

FIFO
FIFO

FIFO
FIFO

FIFO
FIFO Adaptive-

PAJ

Adaptive-
PAJ

Network Topology 10

.....

Figure 24 Different network topologies en details

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

97

There are 10 network configurations, which are illustrated in Figure 24. The two
first ones are network topologies based on the PDDM model, because they use
proportional delay scheduling algorithm WTP. In contrast, the other topologies
are based on the PJDM model, because of the use proportional jitter scheduling
algorithms as RJPS, PAJ, Adaptive-RJPS and Adaptive-PAJ in its routers.

On the other side, these network topologies differ from the use of proportional
delay or proportional jitter scheduling algorithms at all routers or only at the
egress network. Network Topologies numbered 1, 3, 5, 7 or 9 use this scheduling
algorithm at all the positions of the networks, but Network Topologies numbered
2, 4, 6, 8 or 10 use this scheduling algorithms only at the egress routers.

5.3.2.2 Performance Criteria

In a multi-hop network based on PJDM model, it is important to examine the
jitter ratio between different classes. In addition, independent of implementing
the model of PJDM or PDDM in the networks, the application users want to
receive better end-to-end quality of service. The most important end-to-end
quality of service is end-to-end delay. Hence I intend to examine also end-to-end
delay as performance metric in order to compare the quality of different networks
based on PDDM or PJDM. End-to-end delay can be considered as the sum of
network delay and playout buffer delay

Suppose that the routers in my experiments use proportional delay scheduling
scheme (as WTP) or proportional jitter scheduling mechanisms (as RJPS, PAJ,
Adaptive-RJPS or Adaptive-PAJ) in order to schedule packets proportionally
between different classes. There are a total of N classes. Each class i (i is from 1
to N) has a weight i∆ . For the PDDM model, this weight is the inverse ratio of
the Delay Differentiation Parameter, while for the PJDM model this weight
relates directly to the Jitter Differentiation Parameter. Through my network, each
packet numbered n of class i suffers a network delay ninetworkD ,, .

At receiver, I use Concord mechanism as playout adaptation in order to smooth
the jitter produced by the network. The packet numbered n in class i is buffered,
and its playout buffer delay is called niferPlayoutbufD ,, . niferPlayoutbufD ,, depends on

delay variation)(, tJ inetwork , loss rate iL and window w (The PDD distribution
defined by Concord algorithm is calculated over this window).

niferPlayoutbufD ,, =)),(,(,
i

inetworkferPlayoutbuf
PDD LtJwf

98

The end-to-end delay of this packet is calculated as the sum of network delay and
playout buffer delay:

TED= niendtoend

iD ,, =
ninetworkD ,, + niferPlayoutbufD ,, = ninetworkD ,, +)),(,(,

i
inetworkferPlayoutbuf

PDD LtJwf

Finally, in order to estimate the average end-to-end delay of one class, I average
the end-to-end delay of n packets belong to this class:

n

D
D n

niendtoend

iendtoend
∑

=

,,

,

Let me suppose that I have N classes. Each class has a weight of i∆ , and network

topology numbered j produces),...,,(
1,1,0, −Nendtoend

NTj
endtoend
NTj

endtoend
NTj DDD end-to-end

delays for N classes when the loss rate is L%. Under the same conditions (the
same load, the same loss rate, the same load distribution between different
classes), Network configuration numbered k produces

),...,,(
1,1,0, −Nendtoend

NTk
endtoend
NTk

endtoend
NTk DDD end-to-end delay for these N classes.

The problem of comparing two network topologies numbered k or j, in terms of
end-to-end delay, is now explained as the comparison of two sets of end-to-end
delays of N classes, produced by these two topologies

),...,,(
1,1,0, −Nendtoend

NTj
endtoend
NTj

endtoend
NTj DDD and),...,,(

1,1,0, −Nendtoend
NTk

endtoend
NTk

endtoend
NTk DDD .

I believe that the question of comparing these two sets of end-to-end delays of
any two network configurations is complicated because it depends on cost
structures and on weight of each class. One possibility is to introduce a cost for
each byte in one class, and to compare the gain I receive. An alternative is to
introduce profit for decreasing the delay in the higher class and a loss for
decreasing the delay in the lower class.

In order to resolve this problem, I propose a simple criterion, which is based on
the set of end-to-end delays of N classes and on the weights of each class. It is
described as follows:

Let me suppose that each class has its own weight that describes its importance
level. For example, if Class 1 has a weight of 1 and Class 2 has a weight of 2, that
means Class 2 is as twice important as Class 1. This observation leads me to the
normalization of end-to-end delay of each class with its weight. In other words,

CHAPTER 5 - PROPORTIONAL JITTER DIFFERENTIATION MODEL (PJDM)

99

the normalized end-to-end delay of one class is the product of its end-to-end delay
and its weight. Furthermore, the topology, which produces a smaller sum of all
these normalized end-to-end delays than the other topologies, has better end-to-
end quality of service, or better performance.

Briefly, in order to compare the performance of different network topologies I use
the sum of all normalized end-to-end delays produced by this topology as
comparison criterion. This performance criterion (called normalized end-to-end
delay) of one topology is formally described by the following equation:

∑
∑

=

=
∆

∆
= N

i N

i i

i
iendtoend

NTk
k

DP
1

1

,
*

where kP is the normalized end-to-end delay of Network Topology numbered k.
And I say that a Network Topology is better, whose normalized end-to-end delay
is smaller.

I decide to choose normalized end-to-end delay as the first performance criterion
for comparison because end-to-end delay is considered more important than jitter,
specially for interactive applications as voice. The reason of this assumption is
that small delay with high long-term jitter is better than high but stable delay,
because intractive applications such as voice is only sensitive with short-term
jitter and can tolerate long-term jitter.

100

Chapter 6 New Scheduling Algorithms and
Performance Evaluation of PJDM and PDDM
models

Starting from the PJDM model, I design some proportional jitter differentiation
scheduling mechanisms.

Originally, there are two schemes, which are proposed in this work: Relative Jitter
Packet Scheduling (RJPS) and Proportional Average Jitter algorithms (PAJ).

Subsequently, I describe new adaptive Jitter Differentiation Parameters that are
changeable in these schemes. The performance of RJPS and PAJ using these
variable parameters are also compared with its original mechanisms, based on the
methodology described in Chapter 5. The two new mechanisms are called
Adaptive-RJPS and Adaptive-PAJ.

I then focus on the evaluation and comparison of performance of PJDM and
PDDM model. Finally, I propose a combination of PJDM and PDDM models in
order to overcome their disadvantages.

The content of this chapter is based on my work published in [Ngo1, Ngo2,
Ngo3].

6.1 Relative Jitter Packet Scheduling Algorithm (RJPS)

In this section, RJPS algorithm with its behaviors under different contexts is
described.

6.1.1 Algorithm Description

Suppose that each router has a prespecified number of jitter classes N. Each jitter
class is served by a single first-in-first-out (FIFO) packet queue (Figure 25).
Packets of a flow belonging to a jitter class i are queued in the corresponding
queue in each router that the flow passes through. All flows with the same jitter
class specification share the same FIFO queue at the router. The goal of my
scheduling algorithm is to serve the packets such that the short-term average jitter
and long-term average jitter experienced by packets in jitter class satisfy equation
(5.1) for all pairs of i and j. In other words, queues of different classes are served
such that the average jitter experienced by packets in a class is inversely
proportional to the jitter weight of the class.

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

101

Class 1

Class 2

Class N

RJPS
Scheduler

RJPS
Scheduler

Packets in Packets out

Figure 25 RJPS scheduler

This above observation is illustrated by the equation: 0)()(→∆−∆ jjii tjtj . A
simple heuristic to achieve this is to serve the class with the maximum value of

ii tj ∆)(at any time t. Because the Jitter Differentiation Parameters are all known
before, now the question is: how to evaluate the average jitter of each class? In
the following, I will present the way that average jitter of each class is evaluated.

Note that for the class i, at any time t, there are packets that have been served and
there are packets that are still in the queue. For the packets that have been served,
their queueing delays, and thus, their jitters are determined. In addition, the
queueing delays, and the jitters of packets that are still in the queue are unknown.
In order to evaluate average jitter of each class, I will try to evaluate the jitters of
the packets that are still in the queue.

Assuming that: in class i at time t, for each packet number k I know the arrival
time k

it , the starting time of transmission k
iT and the transmission time k

iTS .

• For all packets that have already been served, I call)(* tji the aggregate
jitter experienced by all packets that have been served in the queue i at
time t. This value is already determined, because all packets were served,
and thus the queuing delays of these packets are already determined, too.

∑∑ ∑ =
−−

=
− −−−=−=−−−=)(

1
11)(

1
1*)()()(ts

k
k
i

k
i

k
i

k
i

k

ts

k
k
i

k
ii

ii tTtTddpacketeachofjittertj

Where k

id is the queuing delay of packet number k in class i,)(tsi is the number
of packets served from jitter class i till time t.

102

• For all packets that are now queued in, I call)(min tji minimum jitter for all
packets that have already arrived. Assuming that no other packet arrives
for this class i in the future, this value can be calculated as:

∑
+

+=
−−−=)()(

1)(
1min)()(tqts

tsk
k
i

k
i

k
ii

ii

i
ttTStj (6.1)

Where k

iTS is the transmission time of packet number k in the queue i,)(tqi is
the number of packets that are now queued in this class. This formula is illustrated
in Figure 26.

3 in

Time1
it

2
it

3
it

4
it

5
it

1
iT 2

iT 3
iT 4

iT 5
iT

1
id 2

id
3
id

4
id

5
id

1 in 2 in

1 out 2 out

4 in 5 in 3 out (back
to back) 4 out (back

to back)

5 out (back
to back)

Figure 26 Packets in the class

Following this example, the packets number 1 and 2 of this class have already
been served and their queuing delays are determined. In this class there are still
packets number 3, 4, 5 that should be scheduled (I have here 2)(=tsi and

3)(=tqi). Recall that jitter of one packet in a queue is the difference of queuing
delay of this packet and the previous packet in this class:

1−−= k
i

k
i

k
i ddj

Because of a work-conserving scheduler, packets numbered 3, 4, 5 achieve
minimum jitter)(min tji when all theses packets 3, 4, 5 are transmitted back-to-
back in order to assure minimum assumed queering delays. That means:

∑ =
−−= 5

3
1min)(

k
k
i

k
ii ddtj

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

103

If all packets 3, 4, 5 are transmitted back-to-back.

In Figure 26, I can rewrite:

)()()(1111 −−−− −−=−−−=− k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i

k
i ttTStTtTdd

That means I can have:

∑
+

+=
−−−=)()(

1)(
1min)()(tqts

tsk
k
i

k
i

k
ii

ii

i
ttTStj

I can evaluate the value of average jitter)(tji for all the packets in class i at time t
as:

)()(
)()()(

min*

tqts
tjtjtj

ii

ii
i +

+
≥

And
)()(

)()()(
min*

min

tqts
tjtjtj

ii

ii
i +

+
=

In my scheduler, I set the priority of the Head of Line packet in class i at time t to:

 iii tjtp ∆=)()(min (6.2)

Recall that the goal of my scheduler is to serve the packets such that the short-
term average jitter and long-term average jitter experienced by packets in a jitter
class satisfy Equation (5.1) for all pairs of i and j. A simple heuristic to achieve
this equation is to serve the jitter class with the maximum value of)(tpi at any
time t. In other words, the router selects the HOL packet of class i for which its
priority is a maximum among all backlogged classes.

Using this priority structure, after a time t, every class’s jitter converges to the
value:

NNi jjj ∆==∆=∆ ...221

That means the average jitter for each class is proportional to its weights,
satisfying equation (5.1).

From equation (6.2) I have:

104

)()(

)()(

)()(
)()()()(

)()(

1)(
1*min*

min

tqts

ttTStj

tqts
tjtjtjtp

ii

tqts

tsk
k
i

k
i

k
ii

i
ii

ii
iii

ii

i

+

−−+
=∆

+
+

=∆=
∑

+

+=
−

 (6.3)

It is necessary to note that I should maintain a window of packets in order to
address the inaccuracies caused by non-backlogged queues and accumulated
history because when I do not maintain this window, as the number of packets
that are served increases, the current queue sizes start to have minimal impact on
the service order. Note that I will also use this window for the purpose of
evaluation of average short-term jitter ratio. In conclusion, the following remarks
are implied from the above equation:

• The change in size of packets makes its transmission time k
iTS , and

hence, the priority of HOL packet calculated in (6.3.), vary quickly, too.
That means the packet sizes is an influence factor on the algorithm.

• Link utilization plays an important role for the behavior of RJPS

scheduler. If there are not enough packets in backlogged classes, the
average jitter calculated in (6.3.) is based only on the history situation of
the system and cannot response quickly to the changes of current load
conditions. In other words, if the link utilization is high, it is easier to
achieve proportional jitter between different classes than lower link
utilization.

• The quality of RJPS scheduler decreases when the window’s size

decreases, because the width of window determines how closely the
average jitter value follows the short-term variation of jitter. The increase
of window size improves the quality of RJPS in expense of
implementation cost.

• The spaces between the weights of different classes have an influence on

the calculation of this priority. That means when these spaces are high
then it is difficult to realise the above equation, or to realise the PJDM
model.

Figure 27 describes the necessary operations of RJPS algorithm :

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

105

 Receive (packet)
1 1+← ii qq ;
2 queue in corresponding jitter class;

Select_packet_to_transmit()
3 })({maxarg

min
iii tjk ∆= ;

4 transmit from jitter class k;
5 1)()(−← tqtq ii ;
6 1)()(+← tsts ii ;
7 foreach jitter class i;
8)()()()(11** k

i
k

i
k
i

k
iii tTtTtjtj −−−+← ++ ;

9)()()(11minmin k
i

k
i

k
iii ttTStjtj −−+← ++ ;

Figure 27 RJPS algorithm

6.1.2 Simulations

Figure 28 Network topology

The simulation model is as follows. The topology used is shown in Figure 28. The
links are 6 Mbps with a latency of 10ms. There are a total of 3 classes 0, 1 and 2.
Flow 1 from S1 to D1 (1.5 Mbps) and Flow 2 from S2 to D2 (2 Mbps) belong to

R1
RJPS

R1
RJPS FIFO

FIFO

S1

S2

S3

S4

S5

D1

D2

D3

D4

D5Di Receiver of flow i

Si Source of flow i

106

class 0, while Flow 3 from S3 to D3 (0.5 Mbps) and Flow 4 from S4 to D4 (0.5
Mbps) belong to class 1 and Flow 5 from S5 to D5 (2 Mbps) belong to class 2.

The objective of this simulation study is to evaluate the behavior of RJPS
scheduler in terms of long-term and short-term jitter ratio.

6.1.2.1 Behavior of RJPS with Constant Size of Packets and Heavy
Load

In this simulation, the jitter differentiation parameters of classes 0, 1, 2 are
respectively 1; 1,5 and 3. The predefined jitter ratio between class 0 and class 2 is
3 and between class 1 and 2 is 2. The window’s size is set to 200 packets and all
packets have a size of 160 bytes (this moving window is used in order to evaluate
the short term jitter). I intended to test the performance of RJPS in terms of
average long-term jitter and average short-term jitter. The link utilization between
the RJPS router and the FIFO router in this simulation is set to 100%.

Average long-term jitter: shows that average long-term jitter ratio for 3 classes
achieve the pre-defined ratio 3 and 2. This ratio is achieved after a time of
fluctuation of 10 seconds. See Figure 29.

Figure 29 Variation of long-term jitter ratio with constant packet’s size and heavy

load
Average short-term jitter: Figure 30 shows that the short-term jitter ratio
fluctuates strongly and can reach up to 45, although the predefined ratio is only 3
and 2. I can say that my scheduler achieves poor quality with short-term jitter.
One reason is that I evaluate short-term jitter over my window size of 200 packets
only.

___ class 0/2
(predef 3)

___ class 1/2
(predef 2)

0
0,5

1
1,5

2
2,5

3
3,5

4
4,5

5

0

6,2
5

12
,5

18
,8 25 31
,3

37
,5

43
,7 50 56
,2

62
,5

68
,7 75 81
,3

87
,5

93
,8

Time (s)

Lo
ng

ter
mj

itte
rra

tio

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

107

Figure 30 Variation of short-term jitter ratio with constant packet's size and heavy
load

Average delay: Clients are satisfied only if they received both better jitter and
better delay. Hence, it is very important to examine the behavior of RJPS in term
of delay because if my algorithm works well for proportional jitter, but a class
with higher weight would receive higher delay, it is difficult to conclude that the
class with higher weight is better than the class with lower weight.

Figure 31 Average delay of different classes

In this simulation, I evaluate average long-term delay for each class. Figure 31
shows that delay of a class with higher weight is smaller than delay of a class with
lower weights.

____ class 0/2
(predef: 3)

____ class 1/2
(predef: 2)

0
2

4
6
8

10
12
14

0,3
7

8,1
5

15
,9

23
,7

31
,5

39
,3 47 54
,8

62
,6

70
,4

78
,2 86 93
,7

Time (s)

Sh
or

tte
rm

jitt
err

ati
o

___ class 0
___ class 1
____class 2

0

0,0005

0,001

0,0015

0,002

0,0025

0
6,

06
12

,1
18

,2
24

,2
30

,3
36

,4
42

,4
48

,5
54

,5
60

,6
66

,7
72

,7
78

,8
84

,8
90

,9 97

Time (s)

Av
er

ag
e D

ela
y

108

6.1.2.2 Behavior of RJPS Scheduler with Variation of Packet’s Size

Long-term jitter ratio Short-term jitter ratio
Class 2/ Class 0
(predefined 0.5)

Class 1/ Class 0
(predefined 0.666)

Class 2/ Class 0
(predefined 0.5)

Class 1/Class 0
(predefined 0.666)

Chan
ge of
Pack
et
Size

Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max Min

72 to
256

bytes

0.49
96

0.50
21

0.49
8

0.66
61

0.676 0.65
79

0.5331 2.5249 0.245 0.65 5.45
88

0.1879

72 to
512

bytes

0.48
39

0.77
31

0.46
29

0.66
69

1.3032 0.65
43

0.7384 6.979 0.228 0.82 1026
.4

0.3557

72 to
1024
bytes

0.47
79

0.50
13

0.45
25

0.66
52

0.706 0.63
02

0.6975 23.769 0.1689 0.77 49.5
43

0.1432

Table 4 Performance of the RJPS algorithm

In this simulation the jitter differentiation parameters of classes 0, 1, 2 are
respectively 1; 1,5; 2. The predefined ratio between class 2 and 0 is 0.5 and
between class 1 and 0 is 0.667. Window size is 200 packets.

The packet size plays an important role for the performance of my scheduler, as
changing packet size makes the time of transmission of packets varying widely,
and hence it makes the deviation of ∑

−−−=
k

k
i

k
i

k
ii ttTStj)()(1min between

different classes larger. My proportional jitter ratio is difficult to achieve.

My traffic is based on the study of packet size. With UDP traffic the size of
packets varies around 157 bytes (See [Mc00]). When the size of packets varies,
the ratio of short-term jitter varies widely. The results in Table 4 show that ratio
of jitter when packets size varies from 72 to 256 bytes, 72 to 516 bytes and 72 to
1024 bytes.

Figure 32 and Figure 33 compare the average long-term jitter ratio and short-term
jitter ratio between different classes. Results derived from theses experiments
showed that in most cases, the performance of long-term jitter ratio of RJPS stays
nearly constant. But when the packets with variable sizes come to my router, the
ratio of short-term jitter fluctuates very strongly. The worst case is when packet
size varies from 72 to 1024 bytes and the best case appears when packet size
varies from 72 to 256 bytes. It is noteworthy that the short-term jitter ratio of my
scheduler depends strongly on the variation of packet size, for example, this ratio
can fluctuate between 0.1432 and 49.5437 where the predefined ratio is only 0.66
when the packet size is between 72 and 1024 bytes.

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

109

Figure 32 Long-term jitter ratio with variable packet's size

Figure 33 Short-term jitter ratio with variable packet's size

0

0,2

0,4

0,6

0,8

72 to 256 72 to 521 72 to 1024

Packet's size

L
o

n
g

te
rm

ji
tt

er
ra

ti
o

class 1/ 0
(predef:0.66)

Class 2/0
(predef 0.5)

0

0,2

0,4

0,6

0,8

72 to 256 72 to 521 72 to 1024

Packet's size

S
ho

rt
te

rm
jit

te
rr

at
io

Class 1/0
(predef 0.667)
Class 2/0
(predef 0.5)

110

6.1.2.3 Behavior of RJPS with Variation of Link Utilization

Long-term jitter ratio Short-term jitter ratio
Class 2/ Class 0
(predefined 0.5)

Class 1/ Class 0
(predefined 0.666)

Class 2/ Class 0
(predefined 0.5)

Class 1/Class 0
(predefined 0.666)

Lin
k

util
izat
ion

Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max Min

60
%

0.60
47

0.60
58

0.5834 0.90
94

1.034 0.64
46

0.62
49

1.1022 0.407 0.83
7

1.7735 0.449

70
%

0.55
37

0.56
08

0.5521 0.73
86

0.7476 0.72
77

0.56
09

1.0633 0.286 0.74
4

1.3656 0.422

80
%

0.50
39

0.51
31

0.498 0.67
25

0.6818 0.67
09

0.51
57

1.2803 0.3261 0.68
98

1.679 0.4276

90
%

0.50
09

0.51 0.499 0.66
8

0.67 0.66
7

0.51
04

1.4082 0.3188 0.68 2.33 0.22

100
%

0.50
47

0.50
67

0.5043 0.66
7

0.669 0.66
6

0.50
08

1.4839 0.31 0.66
7

2.17 0.3689

Table 5 Performance of the RJPS algorithm

I will now investigate the jitter ratio between different classes where the total
traffic varies from moderate load to heavy load. In this simulation the jitter
differentiation parameters of classes 0, 1, 2 are respectively 1; 1,5; 2. The
predefined ratio between class 2 and 0 is 0.5, between class 1 and 0 is 0.667. The
results in Table 5 show the performance of jitter ratio in this context. It is
necessary to note that my scheduler deviates remarkably from the desired values
at moderate loads, while the proportional jitter differentiation can be maintained
more accurately in heavy load situations. For example, with load of 60%, the
average ratio of class 2/0 is 0.6249 (predefined 0.5), while with load of 100%, this
ratio is 0.5008. Figure 34 and Figure 35 plot the variation of jitter ratio with
variation of link utilization.

Figure 34 Long-term jitter ratio with variation of link utilization

0

0,2

0,4

0,6

0,8

1

60% 70% 80% 90% 100%

Link Utilization

Lo
ng

te
rm

jitt
er

ra
tio

Class 1/0
(predef 0.667)
Class 2/0
(predef 0.5)

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

111

My scheduler works stable when there are enough packets in the queue. With
light load, the packets should be scheduled immediately, the queuing delay stays
small, jitter stays small, too, and no jitter differentiation is probably needed. That
is why the proportional jitter model works well only under heavy load condition.

Figure 35 Short-term jitter ratio between different classes with variation of link
utilization

6.1.2.4 Behavior of RJPS with Variation of Window’s Size

Long-term jitter ratio Short-term jitter ratio
Class 2/ Class 0

(predefined
0.3334)

Class 1/ Class 0
(predefined 0.5)

Class 2/ Class 0
(predefined 0.3334)

Class 1/ Class 0
(predefined 0.5)

Wi
nd
ow
Siz
e Ave. Max Min Ave. Max Min Ave. Max Min Ave. Max Min

10
0

pac
ks

0.33
402

0.33
6

0.33
2

0.5007
5

0.50
1

0.4945 0.33
85

0.92 0.038 0.503 5.25 0.053

20
0

pac
ks

0.33
302

0.33
5

0.33
2

0.4987
3

0.49
9

0.496 0.32
46

0.6 0.058 0.491 0.86 0.14

30
0

pac
ks

0.33
289

0.33
4

0.33
2

0.5005
4

0.50
1

0.49 0.32
8

0.53 0.109 0.4935 0.79 0.23

Table 6 Performance of the RJPS algorithm

0

0,2

0,4

0,6

0,8

60% 70% 80% 90% 100%

Link Utilization

Sh
or

tte
rm

jitt
er

ra
tio

Class 1/0
(predef 0.667)
Class 2/0
(predef 0.5)

112

Figure 36 Long-term jitter ratio with variable window's size

I will now examine the performance of my scheduler when the window size
varies. In this simulation the jitter differentiation parameters of classes 0, 1, 2 are
respectively 1, 2, 3. The predefined ratio between class 2 and 0 is 0.333, between
class 1 and 0 is 0.5, and the size of packet is 160 bytes.

The choice of window size has an important effect on the stability of my
algorithm because it makes the average jitter vary)(* tji . It is straightforward to
see that the accuracy of my algorithm increases with the size of window size
chosen. But when the window size is high then the computation cost grows
rapidly, too. In the previous simulation I present the result of RJPS scheduler with
the window of 200 packets. In this section I have evaluated the behavior of RJPS
in the context of variable window size from 100 packets to 300 packets. The
performance is shown in the Table 6.

Figure 37 Short-term jitter ratio with variable windows size

0

0,1

0,2

0,3

0,4

0,5

0,6

100 packets 200 packets 300 packets
Window's size

Lo
ng

te
rm

jit
te

rra
tio

Class 1/0
(predef: 0.5)

Class 2/0
(predef 0.333)

0

0,1

0,2

0,3

0,4

0,5

0,6

100 packets 200 packets 300 packets
Window's size

Sh
or

tte
rm

jit
te

rr
at

io

Class 1/0
(predef 0.5)
Class 2/0
(predef 0.334)

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

113

As I can see, the result of long-term jitter ratio is similar but the maximum of
short time jitter ratio of class 1/class 0 when the window is 100 packets can
increase to 5.247. With a window size of 200 packets this maximum value is only
0.8565 and with a window size of 300 packets this value is 0.7840. My result
shows that performance of RJPS, especially short-term jitter ratio, increases with
the packet size while long-term jitter ratio is not influenced by this window size.
Figure 36 and Figure 37 plot the variation of long-term and short-term jitter ratio
between different classes.

6.2 Proportional Average Jitter Scheduling Algorithm
(PAJ)

6.2.1 Algorithm Description

A way to interpret the Proportional Jitter Differentiation model is that the
priority)(tpi of class i (defined as iii tjtp ∆=)()() must be equal in all classes,
i.e.

)()()()(tptjtjtp kkkiii =∆=∆= (6.4)

Similar to RJPS, this new scheduler aims to equalize the priority among all
classes. I refer to this algorithm as Proportional Average Jitter (PAJ) scheduling
algorithm.

Assume that there was at least one departure from class i before the time t, the
priority of class i at time t is

)(

)(
)(

1

ts

j

servedpacketsofNumber
servedpacketsallofjitter

tp
i

ts

k
k
i

ii

i

∑∑ ==∆
−−−

−−−−
= (6.5)

Where)(tsi is the number of packets served till time t of class i and k

ij is the
jitter of packet numbered k of class i.

Suppose that a packet has to be selected for transmission at time t. PAJ chooses
the backlogged class with the maximum priority at t:

)(maxarg ...1 tpk iNi== (6.6)

114

The selection of the maximum priority, requires at most N-1 comparisons with N
is the number of classes, which is a minor overhead for the small number of
classes I consider here. The main computation overhead of PAJ is a division, after
each packet departure.

The basic idea in PAJ is that if some packets are serviced from class j with the
maximum priority, the delays of these packets remain similar and hence its jitter

does not increase any more and thus the increase of ∑ =

)(

1

ts

k
k
i

i j due to these packets

are minimized. So serving some packets from class j tends to reduce the
difference from the priorities of the other classes. In the long run, if the scheduler
always minimizes the difference between the priorities in this manner, I expect
that the priorities are about the same.

The similarities of PAJ and RJPS are now obvious. In the same way that PAJ
chooses for service the class with the maximum priority, RJPS also chooses for
service the class with the maximum priority. PAJ attempts to minimize in this
manner the differences of the class priority. RJPS maintains priority of a moving
window and for all packets in the queue, thus making the forwarding behavior
more responsive to current queue conditions, but is more complicated than PAJ.
Here are the necessary operations for the implementation of PAJ in a router:

Receive (packet)
1 1)()(+← tsts ii
2. queue in corresponding jitter class;

Select_packet_to_transmit()
3)(maxarg ...1 tpk iNi==
4 transmit from jitter class k;
5 foreach jitter class i;
6 ∑ ∑

+

= =
←1)(

1

)(

1

ts

k

ts

k
k
i

k
i

i i jj

Figure 38 PAJ algorithm

6.2.2 Simulations

My simulation study shows that PAJ scheduler approximates the proportional
jitter differentiation model.

The simulation model is as follows. The topology used is shown in Figure 39. The
links are 6Mps with a latency of 10ms. There are a total of 2 classes 0 and 1. Flow

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

115

1 (from S1 to D1) and Flow 2 (from S2 to D2) belong to class 0, while Flow 3
(from S3 to D3) and Flow 4 (from S4 to D4) belong to class 1.
The objective of this simulation study is to evaluate the behavior of PAJ scheduler
in terms of long-term jitter ratio and short-term jitter ratio (this short-term jitter
ratio is calculated over a moving window of 200 packets)

S3

S 1

R1
PAJ

R1
PAJ

S4

Si Source of flow i

Di Receiver of flow i

FIFO
FIFO

S2

D1

D2

D3

D4

Figure 39 Network topology

6.2.2.1 Behavior of PAJ with Heavy Load

In this simulation, the jitter differentiation parameters of class 0 and 1 are
respectively 1 and 2. The predefined ratio between class 1 and class 0 is 0.5. The
link utilization between the PAJ router and FIFO router in this simulation is set to
100%. Flow 0 and 1 belong to Class 1. Flow 1 has the burst time of 40ms and idle
time of 10ms. For Flow 2 it is 50ms and 20ms respectively. Flow 3 and 4 belong
to Class 0. Flow 3 has bursttime of 60ms and idle time of 15ms. Flow 4 has 45ms
burst time and 20ms idle time. The total speed of class 0 and class 1 is 3.5 Mps.
The first experiment intended to test the performance of PAJ scheduler in terms of
long-term jitter ratio and short-term jitter ratio.

Average long-term jitter: Figure 40 shows that average long-term jitter ratio for
2 classes achieve the predefined ratio 0,5. This ratio is achieved after a time of
fluctuation of about 6s seconds.

116

Average short-term jitter: Figure 41 shows that the short-term jitter ratio
fluctuates strongly and can reach up to 3.5 and down to 0.17, although the
predefined ratio is only 0.5.

Average delay: Clients can only be satisfied if they receive both better jitter and
better delay. Hence, it is very important to examine the behavior of PAJ in term of
delay because if my algorithm works well for proportional jitter, but a class with
higher weight would receive higher delay, it is difficult to conclude that the class
with higher weight is better than the class with lower weight. In this simulation, I
evaluate average long-term delay for each class, too. Figure 42 shows that delay.

Figure 40 Long term jitter ratio of the PAJ scheduler

Figure 41 Short-term jitter ratio of the PAJ scheduler

0

0,2

0,4

0,6

0,8

1

1,2

0,0
4

5,5
8

11
,1

16
,7

22
,2

27
,8

33
,3

38
,9

44
,4

49
,9

55
,5 61 66
,6

72
,1

77
,7

83
,2

88
,8

94
,3

99
,8

Time (s)

Lo
ng

ter
mj

itte
rra

tio

Class 1/0
(predef 0.5)

0

0,5

1

1,5

2

2,5

3

3,5

4

0,0
4

5,5
8

11
,1

16
,7

22
,2

27
,8

33
,3

38
,9

44
,4

49
,9

55
,5 61 66
,6

72
,1

77
,7

83
,2

88
,8

94
,3

99
,8

Time (s)

Sh
or

tte
rm

jit
ter

ra
tio

Class 1/0
(predef 0.5)

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

117

Figure 42 Average delay

6.2.2.2 Behavior of PAJ Scheduler under Different Load Distribution

The second experiment aimed to investigate the long-term jitter ratio and short-
term jitter ratio between these two classes under different load distributions.
Similar to the first experiment with the same topology, this scenario is set with the
predefined jitter ratio 0.5. Flow 1 and 2 belong to Class 1. Flow 1 has the burst
time of 100ms and idle time of 30ms and Flow 2 it is 90ms and 40ms
respectively. Flow 3 and 4 belong to Class 0. Flow 3 has burst time of 60ms and
idle time of 35ms and Flow 4 has 75ms burst time and 30ms idle time. There are
8 simulations in this scenario, in which the load pattern between two classes
varied from symmetric to asymmetric distributions. Figure 43 denotes the load
distribution of these two classes in percentage.

Results derived from these experiments showed that in most cases, the
performance of long-term jitter ratio of PAJ stays nearly constant. As we see in
the graph, when the load distribution between classes 0 and 1 is very asymmetric
(10%-90% or 90%-10%), the PAJ produces a long-term jitter ratio of 0.6753 and
0,4172, while the predefined ratio is 0.5. In addition, the maximum and minimum
long-term jitter ratio is very different from the average and predefined ratio, too.
In the other cases, when the load distribution between classes is symmetric (50%-
50%), the long-term jitter ratio reaches a very good accuracy.

The short-term jitter ratio produced by PAJ fluctuates much more than long-term
jitter ratio. As shown in the following graphs, the maximum of short-term jitter

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

0

6,0
4

12
,1

18
,1

24
,2

30
,2

36
,2

42
,3

48
,3

54
,4

60
,4

66
,4

72
,5

78
,5

84
,6

90
,6

96
,6

Time (s)

Av
era

ge
 D

ela
y (

s)

Class 0
Class 1

118

ratio can reach the value of 87, while the predefined ratio is only 0.5 when the
load distribution between two classes is 80%-20%. The average short-term jitter
ratios in these 8 cases are around the predefined ratio 0.47318, 0,48823, 0,4648,
0,6231, 1.0127, 0.9786, 1.17786, 2.24526, 2.6751 respectively. That means the
quality of short-term jitter ratio depends strongly on the load distribution between
classes.

Figure 43 Different load distribution between classes

0

0,2

0,4

0,6

0,8

1

1,2

10-90% 20-80% 30-70% 40-60% 50-50% 60-40% 70-30% 80-20% 90-10%

Load Distribution between class 0 and 1

Lo
ng

te
rm

jit
te

rr
at

io
 (p

re
de

f 0
.5

)

Min

Ave

Max

0
10
20
30
40
50
60
70
80
90

100

10-90% 20-80% 30-70% 40-60% 50-50% 60-40% 70-30% 80-20% 90-10%

Load Distribution between class 0 and 1

S
h

o
rt

te
rm

jit
te

rr
at

io
 (p

re
d

ef
 0

.5
)

Min

Ave

Max

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

119

6.2.2.3 Behavior of PAJ Scheduler under Different Traffic Conditions

In this section, I investigate the performance of the long-term jitter ratio and
short-term jitter ratio of PAJ scheduler under different conditions, as the traffic
profiles varies .The scenario is similar to the network topology shown in Figure
42, but the traffic profiles are listed in the Table 7. As shown in this table, the
long-term jitter ratios stay stable, but the short-term jitter ratio varies, too.

TRAFFIC PROFILES Flow, on-time, off-time, rate
Case 1 Flow 1: 40ms, 10ms, 1.5 Mbps Flow 2: 50ms, 20ms, 2 Mbps

Flow 3: 60ms, 15ms, 1.5 Mbps Flow 4: 45ms, 20ms, 2 Mbps
Case 2 Flow 1: 100ms, 30ms, 2.5 Mbps Flow 2: 90ms, 40ms, 2.5

Mbps
Flow 3: 60ms, 35ms, 2.5 Mbps Flow 4: 75ms, 30ms, 2.5

Mbps
Case 3 Flow 1: 45ms, 15ms, 1.5 Mbps Flow 2: 50ms, 20ms, 2 Mbps

Flow 3: 70ms, 15ms, 1.5 Mbps Flow 4: 45ms, 15ms, 2 Mbps
Case 4 Flow 1: 90ms, 25ms, 2.5 Mbps Flow 2: 90ms, 20ms, 2.5

Mbps
Flow 3: 70ms, 40ms, 2.5 Mbps Flow 4: 75ms, 25ms, 2.5

Mbps
Case 5 Flow 1: 70ms, 20ms, 2 Mbps Flow 2: 50ms, 10ms, 3 Mbps

Flow 3: 60ms, 15ms, 0.5 Mbps Flow 4: 80ms, 20ms, 1 Mbps
Case 6 Flow 1: 50ms, 10ms, 2 Mbps Flow 2: 40ms, 20ms, 2 Mbps

Flow 3: 30ms, 5ms, 1 Mbps Flow 4: 60ms, 10ms, 1Mbps

Table 7 Different traffic profiles

For long-term jitter ratio, as depicted in Figure 44, my PAJ reaches a very good
quality because this ratio is approximately 0.5, which is predefined ratio, too. But
the short-term jitter ratio is very unstable. In these 6 cases, the average short-term
jitter ratio is 0.5165, 0.5369, 0.5037, 1.3695, 0.5524, 0.5912 respectively and the
maximum value of this ratio can reach particularly to 24.01. The smallest
minimum value in these 6 cases is 0.01255 (case 4)

120

Figure 44 Different traffic profiles

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Lo
ng

te
rm

jit
te

rr
at

io
 (p

re
de

f 0
.5

)

Min

Ave

Max

0

5

10

15

20

25

30

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Sh
or

tte
rm

jit
te

rr
at

io
 (p

re
de

f 0
.5

) Min

Ave

Max

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

121

6.3 Adaptive Differentiation Parameter

6.3.1 Algorithm Description

Generally, the goal of Proportional Differentiation Jitter Model is producing
constant and accurate jitter ratios:

i

j

j

i

ttj
ttj

∆
∆

=
+
+

),(
),(

τ
τ

 or)()(tptp ji = (5.1)

Until now, there are some approaches for the Proportional Differentiation Jitter
Model: RJPS and PAJ. These scheduling algorithms use Jitter Differentiation
Parameters as the fixed parameters and try to control the estimated normalized
jitter so that jitter ratios between different class remain constant.

Contrary to RJPS and PAJ, I can use Jitter Differentiation Parameters as variable
parameters in order to receive constant jitter ratios. This parameters can vary with
the traffic load so that the constant jitter ratio is achieved under bursty traffic
context. This idea leads me to create other proportional jitter scheduling algorithm
that use Adaptive Jitter Differentiation Parameters for reaching the proportional
jitter condition under different load conditions.

Assume that packet k from queue i leaves the system at time t, the normalized
average jitter of all classes and the normalized average jitter of class i are
calculated as follows. I normalize jitter k

ij of packet k of class i with Jitter
Differentiation Parameter i∆ , and then I calculate the average value of
normalized jitters over all jitter classes. Let the normalized average jitter of class
i be)(tj iclassofnormalized

i
−−− , the normalized average jitter of all classes be

)(tj classesallofnormalized −−− , A(x(t)) be the average function of variable x at time t, I
have:

)()(k
ii

classesallofnormalized jAtj ∆=−−− (6.7)

)()(k
i

iclassofnormalized
i jAtj =−−− (6.8)

In this section, I present a new variant for my previous algorithms, which attempts
to keep the average short-term and long-term jitter of each class as close to

122

classesallofnormalizedj −−− as possible, that is classesallofnormalizediclassofnormalized
ii jj −−−−−− →∆ .

The adaptive jitter differentiation parameter)(tadaptive
i∆ is defined as below:

2

))((
))((

))((
))((

)(
)(

)(

ik
ii

k
i

ik
ii

k
ii

iclassesallofnormalized

iclassofnormalized
iiadaptive

i

tjA
tjA

tjA
tjA

tj
tj

t

∆
∆

=

∆
∆

∆
=∆

∆
=∆ −−−

−−−

 (6.9)

In this section I use)(tadaptive

i∆ (Adaptive Jitter Differentiation Parameters-AJDP)
instead of i∆ (Jitter Differentiation Parameters-JDP).

The deployment of the AJDPs)(tadaptive

i∆ instead of JDPs is a mechanism to
provide consistent proportional jitter between different classes, independent of
varied load patterns. I verify it in next section.

It is noted that different average function A(.) can be used. In my approach I use
the simple average value from the previous algorithm of RJPS and PAJ.

∑ =

−

−

∆

∆
=∆ N

l l
termlong

l

i
termlong

iadaptive
i

tj
Ntjt

1

2

)(
**)(

)((6.10)

Another possibility could be the use of exponential averaging. This algorithm is
based on the exponential averaging technique proposed by Jacobson and Karels
for estimating TCP round trip times.

From these AJDPs, I create two new algorithms, Adaptive-RJPS and Adaptive-
PAJ. These two new algorithms are based on RJPS and PAJ, but make use of
AJDPs instead of JDPs.

In the following figures (Figure 45 and 46), the operations of Adaptive-RJPS and
Adaptive-PAJ are described.

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

123

 Receive (packet)
1 1+← ii qq ;
2 queue in corresponding jitter class;
 Select_packet_to_transmit()
3))()((maxarg)}({maxarg min ttjtpk adaptive

iiiii ∆==
4 transmit from jitter class k;
5 1)()(−← tqtq ii ;
6 1)()(+← tsts ii ;
7 foreach jitter class i;
8)()()()(11** k

i
k

i
k
i

k
iii tTtTtjtj −−−+← ++ ;

9)()()(11minmin k
i

k
i

k
iii ttTStjtj −−+← ++ ;

10
∑ =

−

−

∆

∆
=∆ N

l l
termlong

l

i
termlong

iadaptive
i

tj
Ntjt

1

2

)(
**)(

)(;

Figure 45 Adaptive-RJPS algorithm

 Receive (packet)
1 1+← ii PP ;
2. queue in corresponding jitter class;

Select_packet_to_transmit()
3)(maxarg ...1 tpk iNi== ;
4 transmit from jitter class k;
5 foreach jitter class i;
6 ∑ ∑

+

= =
←1)(

1

)(

1

ts

k

ts

k
k
i

k
i

i i jj ;

7
∑ =

−

−

∆

∆
=∆ N

l l
termlong

l

i
termlong

iadaptive
i

tj
Ntjt

1

2

)(
**)(

)(;

Figure 46 Adaptive-PAJ algorithm

124

6.3.2 Simulations

Figure 47 Network topology

I evaluate the performance of my adaptive algorithms and compare it with the
previous original mechanisms. There are total of 2 classes 0 and 1. Flow 1 (from
S1 to D1) and Flow 2 (from S2 to D2) belong to class 0, while Flow 3 (from S3 to
D3) and Flow 4 (from S4 to D4) belong to class1 (see Figure 47).

Figure 48 compares the performances of RJPS and Adaptive RJPS in the same
context. The predefined long-term jitter ratio is 0.2. The traffic of type on-off is
quite bursty. Flow 1 has a rate of 0.5 Mbps, on time is 30ms and off time 100ms.
Flow 2 has a rate of 0.5 Mbs, on time is 65ms and off time 100ms. Flow 3 has a
rate of 6 Mbps, on time is 45ms and off time is 90ms. Flow 4 has a rate of 6
Mbps, on time of 35ms and off time 80ms. As we see in the results, the long-term
jitter ratio of Adaptive RJPS achieves better quality than the RJPS algorithm.

S3

S1

Adaptive
-RJPS or

RJPS

Adaptive
-RJPS or

RJPS

S4

Si Source of flow i

Di Receiver of flow i

FIFO
FIFO

S2

D1

D2

D3

D4

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

125

Figure 48 Performance comparison of Adaptive RJPS and RJPS algorithm.

The following experiments intend to test and compare the long-term jitter ratio of
Adaptive-RJPS and RJPS under different context. The traffic pattern is described
in the following table (Table 8):

Traffic
Profile

Flow, on-time, off-time, rate

Case 1 Flow 1: 40ms, 150ms, 0.5 Mbps; Flow 2: 35ms, 110ms, 0.5 Mbps
Flow 3: 25ms, 150ms, 6 Mbps; Flow 4: 17ms, 100ms, 6 Mbps

Case 2 Flow 1: 30ms, 100ms, 0.5 Mbps; Flow 2: 65ms, 100ms, 0.5 Mbps
Flow 3: 45ms, 90ms, 6 Mbps; Flow 4: 35ms, 80ms, 2.5 Mbps

Case 3 Flow 1: 30ms, 170ms, 0.5 Mbps; Flow 2: 25ms, 150ms, 0.5 Mbps
Flow 3: 38ms, 130ms, 6 Mbps; Flow 4: 27ms, 105ms, 6 Mbps

Case 4 Flow 1: 20ms, 200ms, 0.5 Mbps; Flow 2: 29ms, 169ms, 0.5 Mbps
Flow 3: 33ms, 145ms, 6 Mbps; Flow 4: 47ms, 156ms, 6 Mbps

Table 8 Traffic profiles

As we see in Figure 49, the Adaptive-RJPS algorithm produces better
performance than the RJPS algorithm, when the traffic is very bursty. The

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35
0

0,
57

1,
14

1,
71

2,
28

2,
85

3,
42

3,
99

4,
56

5,
13 5,
7

6,
27

6,
84

7,
41

7,
98

8,
55

9,
12

9,
69

Time (s)

Lo
ng

te
rm

jit
te

rra
tio

 (p
re

de
f 0

.2
)

RJPS
Adaptive-RJPS

126

Figure 49 Performance comparison between RJPS and Adaptive-RJPS

predefined long-term jitter ratio is 0.2, and the Adaptive-RJPS always performs a
better long-term jitter ratio than RJPS. It means that using Adaptive Jitter
Differentiation Parameters increases the quality of the original algorithm RJPS.

Now I investigate the result of long-term jitter ratio when the packet size changes
quickly. The traffic profile is showed in the following table (Table 9). At the
beginning I set the packet size 160bytes, and this size is changed as indicated in
the table. The predefined jitter ratio is 0.5 and the traffic is set to be consistent for
verifying only the influence of packet size on the behaviors of my algorithms.
Figure 50 points the performance of long-term jitter ratio along the time. Results
from this experiment showed that in most cases, the performance of Adaptive-
RJPS is better than the RJPS algorithm.

TRAFFIC PROFILE

Flow, on-time, off-time, rate. The change of packet size at time

Case 1 Flow 1: 200ms, 5ms, 3 Mbps. 10s 1024bytes; 30s 512bytes; 50s
256bytes.

Flow 2: 150ms, 10ms, 3 Mbps. 35s 512bytes; 50s 216 bytes; 60s
1024bytes; 80s 96 bytes.

Flow 3: 180ms, 5ms, 6 Mbps. 20s 128 bytes; 35s: 96bytes; 50s
512 bytes; 69s 1024 bytes; 85s 2045 bytes.

Flow 4: 170ms, 10ms, 6 Mbps. 20s: 96 bytes; 40s 256bytes; 55s
1024 bytes; 75s 2056 bytes.

Table 9 Traffic profile

0

0,1

0,2

0,3

0,4

1 2 3 4

Case

Lo
ng

 T
er

m
 Ji

tte
r R

at
io

 (p
re

de
fin

ed

0.2
)

Adaptiv-RJPS

RJPS

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

127

Figure 50 Performance comparison between RJPS and Adaptive RJPS

Similarly, I examine now the performance of Adaptive-PAJ and PAJ algorithm. I
use the same network topology as in Figure 47, which contains only two classes.
The two first flows belong to class 0, the others belong to class 1. The predefined
jitter ratio is defined as 0.5. The traffic profile is chosen to be not very consistent,
and is described in the following table.

TRAFFIC PROFILES

Flow, on-time, off-time, rate

Case 1 Flow 1: 80ms, 100ms, 0.75 Mbps. Flow 2: 60ms, 100ms,
0.75 Mbps. Flow 3: 40ms, 70ms, 4 Mbps. Flow 4: 35ms,

65ms, 4 Mbps.
Case 2 Flow 1: 80ms, 60ms, 1 Mbps. Flow 2: 60ms, 50ms, 1 Mbps.

Flow 3: 50ms, 50ms, 3 Mbps. Flow 4: 45ms, 45ms, 3 Mbps.

Table 10 Traffic profile

In Figure 51 I see the variation of long-term jitter ratio of these two algorithms
along the time when the traffic profile is indicated as in Case 1. This result points
out that the use of Adaptive Jitter Differentiation Parameters improves the quality
of jitter ratio, especially when the traffic is very bursty.

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

10

11
,6

13
,2

14
,9

16
,5

18
,1

19
,7

21
,3 23

24
,6

26
,2

27
,8

29
,4

31
,1

32
,7

34
,3

35
,9

37
,5

39
,2

Time (s)

Lo
ng

ter
m

jit
ter

ra
tio

 (p
re

de
f 0

.5)

RJPS
Adaptive-RJPS

128

When the traffic pattern changes from Case 1 to Case 2, I receive the same result
(Figure 52). The meaning of this figure states that in this case the PAJ algorithm
receives worse quality than the other.

Figure 51 Performance comparison between Adaptive- PAJ and PAJ

Figure 52 Performance comparison between Adaptive-PAJ and PAJ

In conclusion, the use of AJDPs in RJPS and PAJ helps to improve the
performance of jitter ratio, specially when the traffic is bursty, but it makes the
new schemes (Adaptive-RJPS and Adaptive-PAJ) also more complicated than its

0

0,2

0,4

0,6

0,8

1

50 60 70 80 90 100

Time (s)

Lo
ng

 T
er

m
 J

itt
er

 R
at

io

(p
re

de
fin

ed
 0

.5
)

PAJ

Adaptive-PAJ

0,4

0,45

0,5

0,55

0,6

49,995 59,995 69,995 79,995 89,995 99,995

Time (s)

Lo
ng

ter
mj

itte
rra

tio
 (p

red
ef

0.5
)

PAJ
Adaptive-PAJ

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

129

original variants. The implementation costs of these two new algorithms therefore
become higher.

6.4 Performance Evaluation of PJDM and PDDM models

This section will present results on performance evaluation and comparison of
PJDM model using my new scheduler algorithms with the PDDM model using
WTP. The network topologies and performance criteria used in my simulations
are described previously. The content of this section is based on my work
published in [Ngo1, Ngo5].

6.4.1 Comparison between Proportional Delay and Proportional
Jitter Network

The Proportional Delay Differentiated Services Model PDDM is complex because
it is necessary to have proportional-delay scheduling schemes at every router of
the network. And even though I have such complicated scheduling algorithm at
every router in a PDDM model, each packet is transmitted to the sender through
various ways where the number of hops differs from each other. Hence, at the
receiver, the sum of packet delay in one class does not stay proportional to the
sum of packet delay of other classes any more. It leads me to conclusion that I
will not receive proportional delay in a PDDM model except for the case that all
packets of one class belong to the same route, so that the number of hops remains
unchanged. In addition, when the transmission delay becomes larger compared to
the queuing delay in a network, the sum of delay of one class in a PDDM model
will not remain proportional any more to each other.

Caused by the need of implementing a complicated proportional-delay scheduling
algorithm at all the routers of the network, the PDDM model is not as flexible at
high-speed network as the PJDM model.

Finally, although the PDDM model is more complex than the PJDM model, at the
receiver the end-to-end delay produced by PJDM model is better than delay
produced by PDDM model under some cases.

130

 Proportional Delay DiffServ
Model

Proportional Jitter DiffServ
Model

Complexity Need to have complex scheduling
algorithms at all the routers

Properties

Providing proportional delay
between different classes locally

Providing proportional jitter
between different classes

locally
Scalability

When the transmission delay are

dominated and packets have
different routes, difficult to
achieve proportional delay
between different classes

Efficiency for high
speed network

Appropriate at high-speed network Very appropriate for
high-speed network

Quality of Service

Provide poor end-to-end delay Provide better end-to-end delay in
some cases

Table 11 Comparison between the PDDM and the PJDM model

6.4.2 Simulations

6.4.2.1 Jitter Ratio Evaluation through Multi-hop Networks based on
PJDM model

As noted above, the jitter ratio produced by schedulers RJPS, PAJ, Adaptive-
RJPS and Adaptive-PAJ remain stable under different context when the network
contains only one hop. In this section, I present the result of long-term jitter ratio
at different routers via a larger topology. This topology is shown in Figure 53.

My network is enlarged and RJPS is used in three routers: R17, R18, R19 while
the others are FIFO only. There are six more flows. The two first flows belong to
class 0, the next flows belong to class 2 and the two last flows belong to class 1.
The weight of classes 0, 1 and 2 are respectively 1; 1,5; 2. The predefined jitter
ratio between class 2 and class 0 is 0,5, while the predefined jitter ratio between
class 1 and 0 is 0,667. All the links are 6 Mbps with a latency of 10ms, but I am
only interested in the jitter differentiation in the routers R17, R18, R19. The
packets have a size of 160 bytes, and window size is 200. The total link utilization
is 99%.

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

131

Figure 53 Network topology

Figure 54 and Figure 55 show that my scheduler achieves approximately the long-
term jitter differentiation ratio via different routers.

Figure 54 Long-term jitter ratio between class 2 and 0, large topology
(predefined: 0.5)

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7

5
10

,7
16

,4 22
27

,7
33

,4
39

,1
44

,8
50

,4
56

,1
61

,8
67

,5
73

,2
78

,8
84

,5
90

,2
95

,9

Time (s)

Lo
ng

te
rm

jit
te

rr
at

io

(p
re

de
f 0

.5
)

Router 17
Router 18
Router 19

S1

S3

S2

S5

S4

R1

R2

R5

R4

R3 R17
RJPS

R17
RJPS R18

RJPS

R18
RJPS R19

RJPS

R19
RJPS

R10

R9

R8

R7

R6

D5

D4

D3

D2

D1

R13R12R11

R16R15R14

S11S10S9

S8S7S6

Si Source of flow i

Di Receiver of flow i

FIFO

132

Figure 55 Long-term jitter ratio between class 1 and 0, large topology
(predefined: 0.667)

As shown in these two figures, the long-term jitter ratios achieve their predefined
value: 0.5 and 0.667.

6.4.2.2 Comparison of PDDM and PJDM when Scheduling is
implemented at Every Router (type 1).

In this simulation, I compare the performance of PDDM and PJDM model in case
when scheduling is implemented at every router (type 1). PDDM uses WTP as
scheduling algorithm, while PJDM uses RJPS. The topologies are illustrated in
the following figure:

WTP WTP WTP

RJPS RJPS RJPS

Figure 56 Network Topology, type 1

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

5,
01

11
,2

17
,4

23
,6

29
,8 36

42
,2

48
,3

54
,5

60
,7

66
,9

73
,1

79
,3

85
,5

91
,7

97
,9

TIme (s)

Lo
ng

 te
rm

 ji
tte

r r
at

io
(p

re
de

f 0
.6

67
)

Router 17
Router 18
Router 19

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

133

Figure 57 Network topologies

The topology used is shown in Figure 57. The links are 6 Mps with a latency of
10ms. There is a total of 3 classes 0, 1, 2. Flow 1 (S1- D1), 2 (S2- D2), 6 (S6-D1)
and 9 (S9- D1) belong to class 1, while flow 3 (S3- D3) , 4 (S4- D4), 7 (S7- D2)
and 10 (S10- D2) belong to class 2 and flow 5 (S5- D5), 8 (S8- D3) and 11 (S11-
D3) belongs to class 0. The weights of class 0, 1, 2 are 1, 1.5 and 2 respectively.

Figure 58 shows the network delay of class 0. This network delay is produced
after three routers R17, R18 and R19 at the topology above. The result shows that
network that contains only RJPS produces smaller network delay than network
that contains WTP. But as we can see, RJPS fluctuates much more than WTP,
which is a very stable mechanism.

The normalized end-to-end delay of this topology (Figure 59) shows that network
that contains my algorithm RJPS produces smaller normalized end-to-end delay,
that means better end-to-end quality of service. In my simulation I use a window
of size from 3000 packets for updating the network delay of Concord algorithm
and this window is calculated once pro 200 packets for saving the cost of
computation. The predefine loss rate is chosen 10%.

S1

S3

S2

S5

S4

R1

R2

R5

R4

R3 R17
R17

R18
R18

R19
R19

R10

R9

R8

R7

R6

D5

D4

D3

D2

D1

R13R12R11

R16R15R14

S11S10S9

S8S7S6

Si Source of flow i

Di Receiver of flow i

FIFO

134

Figure 58 Network delay of class 0

Figure 59 Normalized end-to-end delay of two topologies

0
1
2
3
4
5
6
7
8
9

10

0

8,
79

17
,6

26
,4

35
,2 44

52
,7

61
,5

70
,3

79
,1

87
,9

96
,7

10
5

11
4

Time (s)

N
et

w
or

k
D

el
ay

 (s
)

Class 0
(WTP+WTP+WTP)

Class 0
(RJPS+RJPS+RJPS)

0

0,5

1

1,5

2

2,5

3

3,5

0

5,
64

11
,3

16
,9

22
,6

28
,2

33
,8

39
,5

45
,1

50
,8

56
,4 62

67
,7

73
,3 79

84
,6

90
,2

95
,9

Time (s)

No
rm

ali
ze

d
En

dt
oE

nd
 D

ela
y

WTP+WTP+WTP

RJPS+RJPS+RJPS

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

135

6.4.2.3 Comparison of PDDM and PJDM when Scheduling is
implemented at Every Router (type 1) or only at Egress
Router (type 2).

C0

C 0

R1 R2 R3

C0

C1C1

C0

Ci Source of class i Ci Receiver of class i

FIFO

C1

C0

C1

C1

Figure 60 Network topology

I simulated a network of 3 routers. The algorithm PAJ, RJPS, Adaptive-RJPS,
Adaptive-PAJ and WTP are implemented at different positions of this network,
core or egress, according to the network topologies in Figure 61.

WTP
WTP

WTP
WTP WTP

WTP

Network Topology 1

FIFO
FIFO

FIFO
FIFO WTP

WTP

Network Topology 2

RJPS
RJPS

RJPS
RJPS RJPS

RJPS

Network Topology 3

136

FIFO
FIFO

FIFO
FIFO RJPS

RJPS

Network Topology 4

PAJ
PAJ

PAJ
PAJ PAJ

PAJ

Network Topology 5

FIFO
FIFO

FIFO
FIFO PAJ

PAJ

Network Topology 6

Adaptive
-RJPS

Adaptive
-RJPS Adaptive-

RJPS

Adaptive-
RJPS Adaptive-

RJPS

Adaptive-
RJPS

Network Topology 7

FIFO
FIFO

FIFO
FIFO Adaptiv

e-RJPS

Adaptiv
e-RJPS

Network Topology 8

Adaptive-
PAJ

Adaptive-
PAJ Adaptive-

PAJ

Adaptive-
PAJ Adaptive-

PAJ

Adaptive-
PAJ

Network Topology 9

FIFO
FIFO

FIFO
FIFO Adaptive-

PAJ

Adaptive-
PAJ

Network Topology 10

Figure 61 Network topology

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

137

TRAFIC PROFILES

Flow, on-time, off-time, rate

At R1 Flow 1: 80ms, 5ms, 2 Mbps Flow 2: 70ms, 5ms, 2 Mbps
Flow 3: 70ms, 5ms, 2 Mbps Flow 4: 60ms, 5ms, 2 Mbps

At R2 Flow 1: 80ms, 5ms, 6 Mbps
Flow 2: 200ms, 5ms, 6 Mbps

At R3 Flow 1: 200ms, 5ms, 6 Mbps
Flow 2: 200ms, 5ms, 6 Mbps

Table 12 Traffic profiles

The simulation scenario is described as follows. The rate of the links from R1 to
R2 and from R2 to R3 is 6 Mpbs, 3 Mpbs and 1.5 Mpbs, respectively. There are a
total of 2 classes: Class 0 and 1 with the weight of 1.0 and 3.0. At the R1 there are
4 flows, at the R2 and R3 there are only 2 flows. I run and collect my simulations
in 100 seconds. The traffic profiles are described in the Table 12.

Figure 62 Normalized end-to-end delay

0

1

2

3

4

5

6

7

8

19,995 29,995 39,995 49,995 59,995 69,995 79,995 89,995 99,995

Time (s)

N
o

rm
a

li
z
e

d
 E

n
d

 t
o

 E
n

d
 D

e
la

y
 (

s
)

A-RJPS+A-RJPS+A-RJPS FIFO+FIFO+A-RJPS A-PAJ+A-PAJ+A-PAJ
FIFO+FIFO+A-PAJ WTP+WTP+WTP FIFO+FIFO+WTP
RJPS+RJPS+RJPS FIFO+FIFO+RJPS PAJ+PAJ+PAJ
FIFO+FIFO+PAJ

138

The size of the moving window used at the playout buffer is 3000 packets, and
the loss ratio is set to 15%. The normalized end-to-end delay is shown in Figure
62.

It is necessary to say that in order to compare the normalized end-to-end delay of
two networks, I say that the network that produces small but fluctuating delay is
better than the network that has stable but high delay. This observation is based
on the following reason. For the interactive application, the variation of delay
over long-term scale (seconds, in my simulations) do not have bad impact on the
quality of service. In contrast to the long-term scale, the variation of delay over
short-term scale will degrade the quality of service of these interactive
applications considerably. Fortunately, the variation over short-term scale
produced by networks are removed by the Concord algorithm used at receiver
end.

From the above case, we can see that the topology that provides the best
performance is the case with only Adaptive-PAJ in its routers. The normalized
end-to-end delay produced by this case is small and very stable, while the
performance produced by FIFO+FIFO+Adaptive-PAJ is also stable but much
higher. Compared to other topologies, the network that implements only
Adaptive-PAJ has the best performance.

Unlike the stable case of Adaptive-PAJ, the second case is the networks that use
Adaptive-RJPS algorithm. As shown in the previous figure, the normalized end-
to-end delay produced by the only Adaptive-RJPS case is better than
FIFO+FIFO+Adaptive-RJPS but worse than the only Adaptive-PAJ case, and
fluctuate also very quickly.

The PAJ+PAJ+PAJ case has a very unstable performance, and it is still worse
than the only Adaptive-PAJ case. The yellow curve that is the normalized end-to-
end delay produced by FIFO+FIFO+PAJ topology is high, and oscillates quickly.
As you see in the figure, the yellow curve is some times higher than all the rest
curves.

Now, I examine the peformance of the network that has RJPS algorithm in its
routers. The FIFO+FIFO+RJPS has an approximate performance as the
FIFO+FIFO+Adaptive-PAJ. The only RJPS case produces higher quality than the
only Adaptive-RJPS case but it is more stable.

Finally, the performance of the only WTP and the FIFO+FIFO+WTP cases are
both very high but stable. I can say that these topolgies are worse than all the
other cases.

I conclude the following:

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

139

For the PJDM model:

• FIFO+FIFO+RJPS topology produces high and stable normalized end-to-
end delay. Compared to the previous configuration, RJPS+RJPS+RJPS
topology improves the normalized end-to-end delay, but this delay
fluctuates strongly than the others.

• FIFO+FIFO+PAJ and PAJ+PAJ+PAJ topologies create smaller (in some

times) but unbalanced normalized end-to-end delay.

• The best case is Adaptive-PAJ+Adaptive-PAJ+Adaptive-PAJ topology,
whose delay and jitter are smallest. The case of FIFO+FIFO+Adaptive-
PAJ produces considerable jitter, and its normalized end-to-end delay
remains high. I can say that the use of Adaptive-PAJ improves the quality
of PJDM that uses PAJ in its network.

• Adaptive-RJPS+Adaptive-RJPS+Adaptive-RJPS and

FIFO+FIFO+Adaptive-RJPS minimize the normalized end-to-end delay.
However, their jitters still stay considerable. That means compared to
RJPS, the use of Adaptive-RJPS in PJDM model decreases the normalized
end-to-end delay, but also make this normalized end-to-end delay
fluctuate strongly

For the PDDM model:

• With network topologies of the PDDM model (FIFO+FIFO+WTP and
WTP+WTP+WTP) delay is stable, but considerable compared to other
topologies of the PJDM model.

In [Ngo2] the quality of network topologies based of type 1 and 2 using WTP.
RJPS and PAJ as scheduling algorithm are evaluated. The performance of these
networks is shown in Figure 63. The loss rate used by Concord is 15%.

140

Figure 63 Normalized end-to-end delay

From the figure 63, I have the following markings: The topology PAJ+PAJ+PAJ
has the smallest performance compared to all other cases, but this normalized
end-to-end delay fluctuate strongly, while the FIFO+FIFO+PAJ network
produces higher and also unstable performance. Compared to PAJ case, the only
RJPS case has higher normalized end-to-end delay, but does not oscilliate so
quickly as the only PAJ cases. Compared to all previous cases, the topology
FIFO+FIFO+RJPS has the worst but very stable performance. Finally, the
WTP+WTP+WTP and FIFO+FIFO+WTP cases generate the same quality as the
FIFO+FIFO+RJPS case. All these conclusions are based on my assumption that is
already noted above: small delay with high long-term jitter is better than high but
stable delay.

The simulative results from my simulations show that network topologies of
PJDM model can produce smaller normalized end-to-end delay in some case, but
this delay fluctuates strongly. The network topologies based on the PDDM model
produce stable normalized end-to-end delay, but considerable compared to the
network topologies based on PJDM model. This observation leads me to an

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0
7,

82
15

,7
23

,5
31

,3
39

,1 47
54

,8
62

,6
70

,4
78

,3
86

,1
93

,9
Time (s)

No
rm

al
iz

ed
 e

nd
-to

-e
nd

 d
el

ay

WTP+WTP+WTP FIFO+FIFO+WTP
RJPS+RJPS+RJPS FIFO+FIFO+RJPS
PAJ+PAJ+PAJ FIFO+FIFO+PAJ

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

141

interesting idea in order to benefit these two advantages of PDDM and PJDM
models: use network topologies of the PDDM model, but implement scheduling
algorithms of PJDM model at the egress router. Other possibility is using network
topologies based on PJDM model, but implementing scheduling of PDDM at
egress router. The following section will evaluate the performance of these
topologies.

6.4.2.4 Mixture of PJDM and PDDM Models

In this simulation, I create the network topologies, which use both of scheduling
of PJDM and PDDM models. The RJPS algorithm is chosen for PJDM model,
and WTP is chosen for the PDDM model. In the following figure we find the
network topologies that use RJPS and WTP at different position (at egress router,
at ingress router and at every router):

RJPS RJPS RJPS

WTP WTP WTP

WTP WTP RJPS

FIFO FIFO RJPS

FIFO FIFO WTP

RJPS RJPS WTP

Figure 64 Mixture of PDDM and PJDM models

142

The topology in simulation is in the following:

C0

C 0

R1
R1

R2
R2

R3
R3

C0

C1C1

C0

Si Source of class i Ci Receiver of class i

FIFO
FIFO

C1

C0

C1

C1

Figure 65 Network topology

The simulation model is as follows. The links are 6 Mbps, 3 Mbps, 1.5 and 0.75
Mbps. The Concord algorithm is used at the receivers. It is necessary to note that I
should maintain a window of packets in order to calculate the PDD function. In
my simulations, I use PDD taken over a moving packet window of size 3000
packets for Concord algorithm. The two classes 0 and 1 have weights of 1 and 3.

Figure 66 shows the variation of the normalized delay P(s) of these network
topologies while the predefined loss rate at the receiver is 5%.

From this graph, I have the following conclusions:

• The RJPS+RJPS+RJPS, which uses RJPS at all the routers, produces the
smallest normalized end-to-end delay, and that means the best
performance.

• The last topology RJPS+RJPS+WTP, which contains WTP at the egress

router and others are RJPS, generates worse quality than
RJPS+RJPS+RJPS, WTP+WTP+RJPS and FIFO+FIFO+RJPS, but better
quality than WTP+WTP+WTP and FIFO+FIFO+WTP.

• The quality of WTP+WTP+RJPS and FIFO+FIFO+RJPS stays between

the quality of RJPS+RJPS+WTP and RJPS+RJPS+RJPS.

• The two other network topologies, WTP+WTP+WTP and
FIFO+FIFO+WTP, which use all WTP at all its routers or only at egress
router, receive the biggest normalized end-to-end delay. I could say

CHAPTER 6 –NEW SCHEDULING ALGORITHMS AND PERFORMANCE

EVALUATION OF PJDM AND PDDM MODELS

143

WTP+WTP+WTP and FIFO+FIFO+WTP generate the worst performance
in this case.

Figure 66 Normalized end-to-end delay

It is very interesting to note that although FIFO+FIFO+RJPS requires only RJPS
at its egress router, it could generate better quality in this case than
WTP+WTP+WTP, which implements WTP at all its routers. This property allows
me to say that implement RJPS at the egress router in a DiffServ network
improves the performance of this network while reducing the implementation cost
extremely in some cases.

The result in the Table 13 is the average normalized end-to-end delay with
different loss rate probabilities from 5% to 15%. Figure 67 plots the quality of
these network topologies and puts it in order of the decreasing quality. Results
from this figure show that the performance of networks based on PJDM model
and based on both PDDM and PJDM increases with the loss rate at the receiver.

It is easy to see that in this case the quality of the networks, which contain RJPS
at its routers increases when the loss rate increases, and compared to others
topologies, which use WTP at its routers, it achieves higher performance. This

3,72

3,74

3,76

3,78

3,8

3,82

3,84

3,86
49

51
,8

54
,5

57
,3 60

62
,8

65
,5

68
,3 71

73
,8

76
,5

79
,3 82

84
,7

87
,5

90
,2 93

95
,7

98
,5

Time (s)

N
or

m
al

iz
ed

 E
nd

to
En

d
D

el
ay

 (s
)

WTP+WTP+WTP FIFO+FIFO+WTP

RJPS+RJPS+RJPS FIFO+FIFO+RJPS

WTP+WTP+RJPS RJPS+RJPS+WTP

144

result leads me to a conclusion that in certain cases, the network which uses only
RJPS at its egress router receives better performance quality than the network,
which uses WTP at all of its routers. On the other hand, the implementation of
RJPS at the egress router of networks improves the quality of the network while
reducing the cost of implementation extremely.

RJPS+RJPS+RJPS

WTP+WTP+RJPS

FIFO+FIFO+RJPS

RJPS+RJPS+WTP

WTP+WTP+WTP

FIFO+FIFO+WTP

Loss
5%

3,793339778

3,812344756 3,807713956 3,819351 3,835465444 3,8363002

Loss
10%

3,376311822 3,3807564 3,597968467 3,642769022 3,733399022 3,828120133

Loss
15%

2,897365289 2,927831911 2,943926222 3,306512533 3,382277956 3,8363002

Table 13 Comparison of normalized end-to-end delay

Figure 67 Performance comparison between different network topologies

As shown in Figure 66, normalized end-to-end delay produced by the network
topologies based on both of PDDM and PJDM (WTP+WTP+RJPS and
RJPS+RJPS+WTP) is better but fluctuate more strongly than the network based
on PDDM (WTP+WTP+WTP). Compared to the topology based on PJDM
(RJPS+RJPS+RJPS), this normalized end-to-end delay is higher but its jitter is
improved.

That means by mixing PDDM and PJDM, the end-to-end quality is improved.

0

0,5

1

1,5

2

2,5

3

3,5

4

RJ P S+RJ P S+RJ P S WTP +WTP +RJ P S FIFO+FIFO+RJ P S RJ P S+RJ P S+WTP WTP +WTP +WTP FIFO+FIFO+WTP

N
o

rm
al

iz
ed

 E
n

d
to

E
n

d
 D

el
ay

 (
s)

Loss 5%

Loss 10%

Loss 15%

CHAPTER 7-SUMMARY AND EXTENSION

145

Chapter 7 Summary

In this chapter I give some conclusions on my works and outlines further possible
research on the direction.

7.1 Summary

The objective of this thesis is to develop a service-differentiation architecture for
the Internet that can improve the end-to-end quality of service as well as easy to
deploy and to manage.

Because of non-scalability and complexity issues of the IntServ architecture I
have chosen to follow the framework of DiffServ. In addition the absolute
differentiation architecture such as Virtual Leased Line or Assured service is not
taken into my consideration due to its requirement of admission control and inter-
domain resource reservations or careful provisioning.

The architecture that best met my requirements for scalability and simplicity best
is the relative proportional differentiation model. Quality of service is dependent
on delay, bandwidth or/and loss. Furthermore the model of proportional-delay
differentiation PDDM and proportional loss differentiation already exist. This is
one of different reasons that lead me to design a new architecture – PJDM, which
does not result in proportional delay or loss rate but proportional jitter between
classes. Since PJDM controls proportional jitter in the network, it 1) does not
require to have scheduling mechanism at every router as PDDM and 2) it can
cooperate well with the playout buffer delay adjustment algorithm implemented at
the receiver for providing better end-to-end quality of service than PDDM. In
other words, PJDM can reduce the implementation cost extremely while
providing better end-to-end quality of service than PDDM

In order to provide proportional jitter in PJDM networks, it is necessary to
develop different scheduling algorithms that produce proportional jitter between
classes. In my thesis four packet schedulers are developed: RJPS, PAJ, Adaptive-
RJPS and Adaptive-PAJ. All these four schedulers can be implemented in high-
speed networks. Via simulation, I demonstrate that the algorithm RJPS and PAJ
can produce accurate proportional jitter ratio under different contexts, as variable
link utilization, variable window size, variable packet size. The PAJ algorithm is
shown to be simpler and hence easier to deploy than RJPS algorithm especially at
high-speed networks. However, these two schemes have a disadvantage: their
quality depends on link utilization and traffic profile. For example these schemes

146

can only perform a good long-term and short-term jitter ratio when the link
utilization is more than 80% and the traffic is not bursty. In order to improve the
quality of RJPS and PAJ under bursty traffic and small link utilization, Adaptive-
RJPS and Adaptive-PAJ have been developed. Results via simulation demonstrate
that these adaptive mechanisms improve the quality of jitter ratio, especially
under bursty traffic condition.

The performance of PJDM model and PDDM model is examined in this thesis via
simulation. My simulative results show that the networks based on PJDM model
is simpler and can achieve better end-to-end quality of service than networks
based on PDDM model. In some cases, a PJDM network that uses only RJPS at
its egress router can produce smaller normalized end-to-end delay than a PDDM
network that uses WTP at every router. Compared to PJDM using RJPS, the use
of PAJ in PJDM decreases the normalized end-to-end delay but also increases its
jitter considerably. In addition, the use of Adaptive-RJPS (or Adaptive-PAJ)
increases the performance of PJDM model compared to the use of RJPS (or PAJ).

The models PJDM and PDDM have their own disadvantages and advantages:
PDDM produces high and stable normalized end-to-end delay while PJDM
produces low but fluctuating normalized end-to-end delay. I then establish a
combination of PDDM and PJDM models in order to overcome their
disadvantages. Results from my simulation show that the normalized end-to-end
delay of new network topologies based on both PDDM and PJDM is smaller than
the delay produced by PDDM and fluctuates less than the delay produced by
PJDM.

Finally, the loss rate at the Concord playout buffer can influence the performance
of networks based on PJDM and on both PJDM and PDDM: when the loss rate
increases, their performance is also increased.

7.2 Suggestion for Future Work

Throughout the thesis I pointed out specific issues that deserve further research.
Here I give some suggestion for future work:

• A valuable simulative study would be carried out larger topologies of
more than 3 nodes with different loss rates at receiver end and different
traffic profiles. Can my topologies based on PJDM model achieve better
performance than the other topologies, which are based on PDDM model
in such conditions?

• More experimental study would be carried out to combine the networks

(based on the PJDM model) with some wireless access networks. It would

CHAPTER 7-SUMMARY AND EXTENSION

147

be an interesting direction since jitter produced in wireless domain is
considerable so that through my new mechanisms, the gain in terms of
end-to-end delay would not be small.

148

Bibliography

[Alv93] Alvarez-Cuevas, F., Bertran, M., Oller, F., Selga, J., “Voice
Synchronization in Packet Switching Networks,” IEEE Network
Magazine, 7(5), pp. 20-25, Sept. 1993.

[Bak96] F. Baker, R. Guerin, and D. Kandlur, “Specification of Committed
Rate Quality of Service,” draft-ietf-intserv-commit-rate-svc-00.txt,
Jun. 1996.

[Bald00] M. Baldi and Y. Ofek, “End-to-End Delay Analysis of
Videoconferencing over Packet Switched Networks,” IEEE/ACM
Trans, Net., vol. 8, no.4, Aug. 2000.

[Ban96] A. Banerjea, D. Ferrari, B. A. Mah, M. Moran, D. C. Verma, and
H. Zhang, “The Telnet Real-Time Protocol Suite: Design,
Implementation, and Experiences,” IEEE/ACM Transactions on
Networking, vol. 4, no. 1, pp. 1-10, February 1996.

[Beg99] A. Begel, S. McCanne and S. L. Graham, “BPF+: Expoiting

Global Data-flow Optimization in a Generalized Packet Filter
Architecture,” In Proceedings of ACM SIGCOMM, Sept. 1999.

[Bha99] N. Bhatti and R. Friedrich, “Web Server Support for Tiered

Services,” IEEE Network, pp. 64-71. Sept. 1999.

[Bier96] E. Biersack, W. Geyer, and C. Bernhardt, “Intra and Interstream

Synchronization for Stored Multimedia Streams,” ICMCS,
Hiroshima, Japan, June 1996.

[Bol99] G. Bolch, S. Greiner, H. Meer, and K. S. Trivedi. QueuingNetwork

and Markov Chains. John Wiley and Sons, 1999.

[Bol93] Bolot, J., “End-to-end Packet Delay and Loss Behavior in the

Internet”, In Proceeding of ACM SIGCOMM’93, pp.289-298, San
Francisco, CA, Sept. 1993.

[Bod01] Ulf Bodin, Andreas Jonsson and Olov Schelen, “On Creating

Proportional Loss-rate Differentiation: Predictability and
Performance,” In Proceeding of IWQoS’2001, Karlsruhe,
Germany, June 6-8, 2001.

BIBLIOGRAPHY

149

[Bou99] J. L. Boudec, M. Hamdi, L. Blazevic and P. Thiran, “Asymetric
best- effort Service for Packet Networks,” In Proceeding Global
Internet Symposium, December 1999.

[Brad94] R. Braden, D. Clark, and S. Shenker, “Intergrated Services in the

Internet Architecture: an Overview,” July 1994. RFC 1633.

[Brad97] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin,

”Resource ReSerVation Protocol (RSVP) – Version 1, Functional
Specification,” September 1997. RFC 2205.

[Carl97] G. Carle and E. W. Biersack, “Survey of Error Recovery

Techniques for IP-Based Audio-Visual Multicast Applications,”
IEEE Net., Vol. 11, no. 6, Nov. 1997, pp. 24-36.

[Card02] Cardoso, K. V., Rezende, J. F., and Fonseca, N. L. S. “On the

Effectiveness of Push-out Mechanisms for the Discard of TCP
Packets,”, International Conference on Communications 2002,
New York City, NY, USA, April 2002.

[Chao92] H. Chao and N. Uzun,”A VLSI Sequencer Chip for ATM traffic

shaper and queue manager,” IEEE Journal of Solid State Circuits,
vol. 27, no. 11, pp. 1634-1643, November 1992.

[Charn00] A. Charny and J. L. Boudec, “Delay Bounds in a Network with

Aggregate Scheduling,” In Proceeding QOFIS, October 2000.

[Chua00] J. Chuang, “Distributed Network Storage Servcie with Quality-of-

Service Guarantees,” J. Net. Comp. App., 2000.

[Chua99] S. T. Chuang, A. Goel, N. McKeown, and B. Prabhakar,

”Matching Output Queuingwith a Combined Input Output Queued
Switch,” In Proceeding of INFOCOM’99, pp. 1169-1178, New
York, CA, March 1999.

[Clark88] D. Clark, “The Design Philosophy of the DARPA Internet

Protocols,” In Proceedings of ACM SIGCOMM’88, pp. 106-114,
Stanford, CA, August 1988.

[Clark98] D. D. Clark and W. Fang, “Explicit Allocation of Best-effort

Packet Delivery Service,” IEEE/ACM Transactions on
Networking, vol. 6, pp. 362-373, Aug. 1998.

150

[Clay99] M. Claypool and J. Tanner, “The Effects of Jitter on the Perceptual
Quality of Video,” ACM Multimedia’ 99, Orlando, FL, 1999.

[Cruz1] R. L. Cruz, “A Calculus for Network Delay, Part I: Network

Elements in Isolation,” IEEE Transactions on Information Theory,
vol. 37, no. 1, pp. 114-131, January 1991.

[Cruz2] R. L. Cruz, “A Calculus for Network Delay: Part II: Network

Analysis,” IEEE Transactions on Information Theory, vol. 37, no.
1, pp. 132-141, January 1991.

[Dem90] A. Demers, S. Keshav, and S. Shenker, “Analysis and Simulation

of a Fair Queuing Algorithm,” In Journal of Internetworking
Research and Experience, pages 3-26, October 1990. (Also in
Proceedings of ACM SIGCOMM’89, pages 3-12).

[Dov1] C. Dovrolis and P. Ramanathan, “A Case for Relative

Differentiated Services and the Proportional Differentiation
Model,” IEEE Network, October 1999.

[Dov2] C. Dovrolis and P.Ramanathan, “Proportional Differentiated

Services, Part II: Loss Rate Differentiation and Packet Dropping,”
In Proceedings of the 2000 International Workshop on Quality of
Service (IWQoS), Pittsburgh PA, June 2000.

[Dov3] C. Dovrolis, D. Stiliadis and P. Ramanathan, “Proportional

Differentiated Services: Delay Differentiation and Packet
Scheduling,” In Proceedings of the 1999 ACM SIGCOMMM,
Cambridge, MA, Sept. 1999.

[Dov4] C. Dovrolis and P. Ramanathan, “RAFT: Resource Aggregation

for Fault Tolerance in Intergrated Services Packet Networks,”
ACM Computer Communication Review (CCR), April 1998.

[Edel99] R. Edell and P. Varaiya, “Providing Internet Access. What we

learn from INDEX,” IEEE Network, pp. 18-25, Sept. 1999.

[Enw95] A. Enwalid, D. Heyman, T. V. Lakshman, D. Mitra, and A. Weiss,

“undamental Bounds and Approximations for ATM Multiplexers
with Applications to Video Teleconferencing,” IEEE Journal on
Selected Areas in Communications, vol. 13, no. 6, pp. 1004-1016,
August 1995.

BIBLIOGRAPHY

151

[Ferr00] T. Ferrari and P. F. Chimento, “A Measurement-based Analysis of
Expedited Forwarding PHB Mechanisms,” In Proceedings
International Workshop on QoS (IWQoS), June 2000.

[Ferg98] P. Ferguson and G. Huston, “Quality of Service: Delivering QoS

on the Internet and in Corporate Networks,” John Wiley and Sons,
January 1998.

[Sally1] S. Floyd and V. Jacobson, “Link-sharing and Resource

Management Models for Packet Networks,” IEEE/ACM
Transaction on Networking, vol. 3, pp. 365-386, August 1993.

[Sally2] S. Floyd and V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,” IEEE/ACM Transactions on Networking,
vol. 1, pp. 397-413, Aug. 1993.

[Fran93] D. Frankowski and J. Riedl, “Hiding Jitter in an Audio Stream,”

Tech. Rep. TR-93-50, Univ. of MN Dept. Comp. Sci., 1993.

[Gar99] S. –H. Gary Chan and F. A. Tobagi, “Caching Schemes for

Distributed Video Services,” In Proceeding IEEE ICC, Vancouver,
Canada, June 1999.

[Gey96] W. Geyer, C. Bernhardt, and E. Biersack, “A Synchronization

Scheme for Stored Multimedia Streams,” Lect. Notes Comp. Sci.,
vol. 1045, 1996.

[Gop98] R. Gopalakrishnan and G. M. Parulkar, “Efficient User-space

Protocol Implementations with QoS Guarantees using Real-time
Upcalls,” IEEE Transactions on Networking, vol. 6, no. 4, pp. 374-
388, August 1998.

[Guer97] R. Guerin, S. Kamat, and H. Herzog, “QoS Path Management with

RSVP,” March 1997. Internet Draft: draft-qos-path-mgmt-rsvp-
00.txt.

[Guer00] R. Guerin and V. Pla, “Aggregation and Conformance in

Differentiated Services Networks: A Case Study,” In Proceeding
ITC Specialist Seminar on IP traffic Modeling, Measurement, and
Management, September 2000.

[Gup99] Pankaj Gupta and Nick McKeown,”Packet Classification on

Multiple Fields,” In Proceedings of ACM SIGCOMM’99, pp. 147-
160, Cambridge, MA, September 1999.

152

[Hart00] F. Hartanto and L. Tionardi, “Effects of Interaction between Error
Control and Media Synchronization of Application-level
Performances,” In Proceeding of IEEE GLOBECOM, 2000, pp.
298-303.

[Jac99] V. Jacobson, K. Nichols and K. Poduri, “An Expedited Forwarding

PHB,” June 1999. RFC 2598.

[Jam97] S. Jamin, P. B. Danzig, S. J. Shenker, and L. Zhang, “A

Measurement-based Admission Control Algorithm for Intergrated
Services Packet Networks,” IEEE/ACM Transactions on
Networking, vol. 5, no. 1, pp. 56-70, February 1997.

[Kali94] S. Kalidindi and M. J. Zekauskas, “Surveyor: an Infrastructure for

Internet Performance Measurements,” In Proceeding of INET, San.
Jose, CA, June 1999.

[Kang01] J. Kangasharju et al., “Distributed layered encoded Video through

Caches,” In Proceeding of IEEE INFOCOM, Anchorage, AL,
Apr. 2001.

[Kesh98] S. Keshav and R. Sharma, “Issues and Trends in router Design,”

IEEE Communications Magazine, pp. 144-151, May 1998.

[Klein76] L. Kleinrock. QueuingSystems: Vol 2. Wiley-interscience, 1976.

[Kron91] H. Kroner, G. Hebuterne, P. Boyer, and A. Gravey, “Priority

Management in ATM switching Nodes,” IEEE Journal on Selected
Areas in Communications, vol. 9, pp. 418-427, Apr. 1991.

[Kum98] V. Kumar, T. V. Lakshman, and D. Stiliadis, ”Beyond best-effort:

Router Architectures for the differentiated Services of tomorrow’s
Internet,” IEEE Communications Magazine, pp. 152-164, May
1998.

[Lak98] T. V. Lakshman and D. Stiliadis, “High Speed policy-based Packet

Forwarding using Efficient Multi-dimensional Range Matching,”
In Proceeding of ACM SIGCOMM’98, pp. 203-214, Vancouver,
Canada, September 1998.

[Laout1] N. Laoutaris and I. Stavrakakis, “Adaptive Playout Strategies for

Packet Video Receivers with finite buffer Capacity,” In
Proceeding of IEEE ICC, Helsinki, Finland, June 2001.

BIBLIOGRAPHY

153

[Laout2] N. Laoutaris and I. Stavrakakis, “An analytical Design of optimal
Playout Schedulers for Packet Video Receivers,” Comp. Commun.
J., Special Issue on the Quality of Future Internet Services; an
earlier version was presented at 2nd Int’l. Wksp. Quality Future
Internet Services, Coimbra, Portugal, 2001.

[Leung00] M.K. H. Leung, J.C.S. Lui and D. K. Y. Yau, “Characterization

and Performance Evaluation for Proportional Delay Differentiated
Services,” In Proceeding of 8th International Conference on
Network Protocols ICNP2000, Osaka, Japan, Nobember 2000.

[Lieb01] J. Liebeherr and N. Christin, “JoBS: Joint Buffer Management and

Scheduling for Differentiated Services,” In Proceeding of
IEEE/IFIP Ninth International Workshopon Quality of Service
(IWQoS 2001), June 2001.

[Lin91] A.-M. Lin and J. A. Silvester, “Priority Queuingstrategies and

Buffer Allocation Protocols for Traffic Control at an ATM
intergrated broadband Switching System,” IEEE Journal on
Selected Areas in Communications, vol. 9, pp. 1524-1536, Dec.
1991.

[Liu99] H. Liu and M. El Zarki, “Delay and Synchronization Control

Middleware to support real-time Multimedia Services over
Wireless PCS Networks,” IEEE JSAC, vol. 17, no. 9, Sept. 1999,
pp. 1660-71.

[Liu97] H. Liu et al., “Error Control Schemes for Networks : an

Overview,” Mobile Nets. and Apps., vol. 2, no. 2, Oct. 1997, pp.
167-82.

[Liu96] C. Liu et al., “Multipoint Multimedia Telecoference System with

Adaptive Synchronization,” IEEE JSAC, vol. 14, no. 7, Sept. 1996.

[Mank97] A. Mankin, F. Baker, B. Braden, S. Bradner, M. O’Dell, A.

Romanow, A. Weinrib, and L. Zhang, “RSVP Version 1:
Applicability Statement, some Guidelines on Deployment,” IETF
RFC 2208, September 1997

[May99] M. May, J. C. Bolot, C. Diot and A. Jean-Marie, “Simple

Performance Models of Differentiated Services Schemes for the
Internet,” In Proceeding of IEEE INFOCOM, March 1999.

154

[Mc00] McCreary, S. Claffy, ‘’Trends in wide area IP traffic patterns – A
view from ames Internet Exchange‘’, In the ITC Specialist
Seminar.

[Mills91] D. L. Mills, “Internet Time Synchronization: the Network Time

Protocol,” IEEE Trans. Commun., vol. 39, no. 10, Oct. 1991, pp.
1482-93.

[Mont83] W. Montgomery, “Techniques for Packet Voice Synchrnoization”,

IEEE Journal on Slected Areas In Communications, 6(1), pp.
1022-1028, December 1983.

[Moon98] S. Moon, J. Kurose and D. Towsley, “Packet Audio Playout Delay

Adjustment: Performance Bounds and Algorithms,” Multimedia
Systems, Vol. 6, pp. 17-28, January 1998.

[Nayl82] W. E. Naylor and L. Kleinrock, “Stream Traffic Communication in

packet switched Networks: Destination Buffering Constraints,”
IEEE Trans. Commun., vol. COM-30, no. 12, Dec. 1982, pp. 2527-
34.

[Nett79] A. Netterman, I. Adiri, “A Dynamic Priority Queue with General

Concave Priority Functions,” Operation Research, 28(6), pp. 1088-
1100, 1979.

[Ngo1] T. Ngo-Quynh, A. Wolisz, K. Rebensburg, “Adaptive Jitter

Differentiation Parameters for Proportional Jitter Scheduling in
Differentiated Services Networks,” Accepted Paper in the 4th
IEEE Conference on Mobile and Wireless Communications
Networks MWCN 2002, Stockholm, Sweden.

[Ngo2] T. Ngo-Quynh, H. Karl, A. Wolisz, K. Rebensburg, “New

Scheduling Algorithm for Providing Proportional Jitter in
Differentiated Services Network,” In Proceeding of IST Mobile &
Wireless Telecommunications Summit 2002, 16-19 June 2002
Thessaloniki – Greece.

[Ngo3] T. Ngo-Quynh, H. Karl, A. Wolisz, K. Rebensburg, “Relative Jitter

Packet Scheduling for Differentiated Services,” In Proceeding of
9th IFIP Working Conference on Performance Modeling and
Evaluation of ATM&IP Networks IFIP ATM&IP 2001, Budapest
Hungary, Juny, 2001.

BIBLIOGRAPHY

155

[Ngo4] T. Ngo-Quynh, H. Karl, A. Wolisz, K. Rebensburg, “The Influence
of Proportional Jitter and Delay on End-to-End Delay in
Differentiated Services Network,” In Proceeding of IEEE
International Symposium on Network Computing and Application
NCA’01, Cambridge, MA, USA. Februar 2002.

[Ngo5] T. Ngo-Quynh, H. Karl, A. Wolisz, K. Rebensburg, “Using only

Proportional Jitter Scheduling at the boundary of a Differentiated
Services Network: simple and efficient,” In Proceeding of 2nd
European Conference on Universal Multiservice Networks
ECUMN’02, April 8-10, 2002,Colmar, France.

[Nguy01] H. T. Nguyen and Helmut Rzehak, “An Adaptive Bandwidth

Scheduling for Throughput and Delay Differentiation,” In
Proceeding of ICN’01, July 11-13, 2001, Colmar, France.

[Nich98] K. Nichols, S. Blake, F. Baker and D. L. Black, “Definition of the

Differentiated Services Field (DS Field) in the Ipv4 and Ipv6
Header,” December 1998. IETF RFC 2474.

[NS2] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns/

[Odl99] A. M. Odlyzko, “Paris Metro Pricing: The Minimalist

Differentiated Services Solution,” In Proceedings IEEE/IFIP
International Workshop on Quality of Service, June 1999.

[Orion00] Orion Hodson, Colin Perkins and Vicky Hardman, ‘’Skew
detection and compensation for Internet audio applications,’’ In
Proceedings of the IEEE International Conference on Multimedia
and Expo, July 2000, New York.

[Par93] A. K. Parekh, Robert G. Gallager, “A Generalized Processor
Sharing Approach to Flow Control in Intergrated Services
Networks: The single node case,” IEEE/ACM Transactions on
Networking, vol 1, no 3(1993).

[Patr94] C. Patridge, Gigabit Networking, Addison-Wesley, 1994.

[Paxs97] V. Paxson, “End-to-End Internet Packet Dynamics,” SIGCOMM

Symp. Commun. Architectures and Protocols, Cannes, France,
Sept. 1997.

[Paxs96] V. Paxson, “End-to-End Routing Behavior in the Internet,” In

Proceedings SIGCOMM Symposium, pp. 25-38, August 1996.

156

[Perk98] C. Perkins, O. Hodson, and V. Hardman, “A Survey of Packet

Loss Recovery Techniques for Streaming Audio,” IEEE Net, vol.
12, no. 5, Sept. 1998, pp. 40-48.

[Raj99] R. Rajan, D. Verma, S. Kamat, E. Felstaine, and S. Herzog, “A

Policy Framework for Intergrated and Differentiated Services in
the Internet,” IEEE Network, pp. 36-41, September 1999.

[Ram94] R. Ramjee, J. Kurose, D. Towsley, and H. Schulzrinne, “Adaptive

Playout Mechanisms for Packetized Audio Applicationis in wide-
area Networks,” In Proceedings of IEEE INFOCOM, Toronto,
Canada, pp. 680-686, June 1994.

[Robert] L. G. Roberts. Internet growth trends. http://www.ziplink.net/

[Rocc01] M. Roccetti et al., “Design and Experimental Evaluation of an

AdaptivePplayout Delay Control Mechanism for Packetized Audio
for Use over the Internet,” Multi. Tools Apps., vol. 14, no. 1, May
2001.

[Ros00] J. Rosenberg, L. Qiu, and H. Schulzrinne, “Integrating Packet FEC

into Adaptive Voice Playout Buffer Algorithms on the Internet,” In
Proceeding IEEE INFOCOM, Tel Aviv, Israel, Mar. 2000

[Roth95] K. Rothermel and T. Helbig, “An Adaptive Stream

Synchronization Protocol,” In Proceeding of NOSSDAV, Durham,
NH, Apr. 1995, Lect. Notes Comp. Sci., pp. 189-202.

[Sahu00] S. Sahu. P. Nain, D. Towsley, C. Diot and V. Firoiu, “On

Achievable Service Differentiation with Token Bucket Marking
for TCP,” In Proceedings of ACM SIGMETRICS, June 2000.

[Sahu99] J. S. Sahu, D. Towsley, “A Quantitative Study of Differentiated

Services for the Internet,” In Proceedings Global Internet
Symposium, December 1999.

[San93] H. Santoso et al., ‘’Preserving Temporal Signature: a Way to

Convey Time Constrained Flows,’’ In Proceeding of IEEE
GLOBECOM, Houston, TX, Nov. 1993.

[Shenk12] S. Shenker, C. Patridge and R. Guerin, “Specification of

Guaranteed Quality of Service,” September 1997. Internet RFC
2212.

BIBLIOGRAPHY

157

[Shenk15] S. Shenker and J. Wroclawski, “General Characterization

Parameters for Intergrated Services Network Elements,”
September 1997. RFC 2215.

[Shree95] M. Shreedhar and G. Varghese, “Efficient Fair Queuing using

Deficit Round Robin,” In Proceeding ACM SIGCOMM, pp. 231-
242, 1995.

[Shiv95] N. Shivakumar, C. J. Sreeman, B. Narendran and P. Agrawal, “The

Concord Algorithm for Synchronization of Networked Multimedia
Streams,” International Conference on Multimedia Computing and
Systems, 1995.

[Srin99] V. Srinivasan, S. Suri, and G. Varghese, “Packet Classification

using Tulpe Space Search,” In Proceedings of ACM
SIGCOMM’99, pp. 135-146, Cambridge, MA, September 1999.

[Step99] D. C. Stephens, J. C. R. Bennett, and H. Zhang, “Implementing

Scheduling Algorithms in high-speed Network,” IEEE Journal on
Selected Areas of Communications, September 1999

[Stil98] D. Stiliadis and A. Varma, “Latency Rate Servers: A General

Model for Analysis of Traffic Scheduling Algorithms,” IEEE/ACM
Transactions on Networking, vol. 6, no. 5, pp. 611-625, October
1998.

[Stoika1] I. Stoika, S. Shenker, and H. Zhang, “Core-stateless Fair Queuing:

Achieving Approximately Fair Bandwidth Allocations in high
speed Networks,” In Proceedings ACM SIGCOMM, September
1998.

[Stoika2] I. Stoika and H. Zhang, “Exact Emulation of an Output Queuing

switch by a Combined Input Output Queuing Switch,” In
Proceeding of IWQoS’98, pages 218-224, Napa, CA, 1998.

[Stoika3] I. Stoika and H. Zhang, “LIRA: An Approach for Service

Differentiation in the Internet,” In Proceedings NOSSDAV, 1998.

[Stoika4] I. Stoika and H. Zhang, “Providing Guaranteed Services without

per flow Management,” In Proceedings of ACM SIGCOMM,
September 1999.

158

[Ston95] D. L. Stone and K. Jeffay, “An empirical Study of a Jitter
Management Scheme for Video Teleconferencing,” Multi, Sys.,
vol. 2, no. 2, 1995.

[Suter98] B. Suter, T. Lakshman, D. Stiliadis, and A. Choudhury, “Design

Considerations for supporting TCP with per-flow Queuing, “ In
Proceedings IEEE INFOCOM 1998.

[Teit99] B. Teitelbaum, S. Hares, L. Dunn, R. Neilson, V. Narayan, and F.
Reichmeyer, “Internet2Qbone: Building a Testbed for
Differentiated Services, “ IEEE Network, pp. 8-16, September
1999.

[Terz99] A. Terzis, L. Wang, J. Ogawa, and L. Zhang, “A Two-Tier

Resource Management Model for the Internet,” In Proceedings
Global Internet Symposium, December 1999.

[Wang98] Z. Wang. A Case for Providing Fair Sharing. In International

Workshop on QoS. May 1998.

[Wang01] B. Wang, S. Sen, M. Adler, and D. Towsley, “Proxy-based-

Distribution of Streaming Video over Unicast/multicast
Connections,” Tech. Rep. UMASS TR-2001-05, Univ. MA,
Amherrst, 2001.

[Whit97] P. P. White, “RSVP and Intergrated Services in the Internet: a

Tutorial”. IEEE Communications Magazine, Pages 100-106, May
1997.

[Wrocl11] J. Wroclawski, “Specification of the Controlled-load Network

Element Service,” September 1997. RFC 2211.

[Wrocl10] J. Wroclawski, “The Use of RSVP with IETF Intergrated

Services,” September 1997. RFC 2210.

[Yau97] D. K. Y. Yau and S. S. Lam, “Adaptive Rate Controlled

Scheduling for Multimedia Applications,” IEEE/ACM
Transactions on Networking, vol. 5, no. 4, pp. 475-488, August
1997.

[Yeom00] I. Yeom and Y. N. Reddy, “Modeling TCP Behavior in a

Differentiated Services Network,” Technical Report, Texas A&M
University, February 2000.

BIBLIOGRAPHY

159

[Yua96] M. C. Yuang et al., “Dynamic Video Playout Smothing Method for
Multimedia Applications,” In Proceeding IEEE ICC, Dallas, TX,
June 1996, p. 544.

[Yua97] M. C. Yuang, P. L. Tien, and S. T. Liang, “Intelligent Video

Smoother for Multimedia Communications,” IEEE JSAC, vol. 15,
no. 2, Feb. 1997, pp. 136-46.

[Zhang1] H. Zhang, “Service Disciplines for Intergrated Services Packet-

switching Networks,” PhD thesis, University of California at
Berkeley, Computer Science Division, November 1993. Technical
Report UCB/CSD-94-788.

[Zhang2] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala,

“RSVP: a new Resource Reservation Protocol,” IEEE Network, pp.
8-18, September 1993.

