TK N Telecommunication
Networks Group

Technical University Berlin

Telecommunication Networks Group

QoS-Conditionalized Binding Update:
Final Report on Prototypical
Implementation

A. Neumann, X. Fu

[neumann,fu]@ee.tu-berlin.de

Berlin, September 2002

TKN Technical Report TKN-02-017

TKN Technical Reports Series
Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

Future internetworks will include large numbers of portable devices moving among small,
wireless cells. Additionally, in order to support new real-time applications, the users demand
for seamless mobility and QoS provisioning.

One approach towards a more flexible, customizable and scalable mobility architecture
that also reduces signaling load and handover latency results from the introduction of micro
mobility. This is essentially achieved by moving the point of re-routing from a Corresponding
Node (CN) closer to the Mobile Node (MN).

By coupling the Quality of Service (QoS) signaling messages to the mobility management
messages, Quality of Service (QoS) requirements can be negotiated without incurring a sig-
nificant additional signaling latency. This approach is even more promising through adapting
to micro mobility.

This document describes the prototypical software environment QoCoo (QoS-Conditio-
nalized Handover) to provide QoS in micro mobility. QoCoo® extends the existing MIPv6
implementation for the Linux OS to provide functionalities for micro mobility based on the
basic mode of HMIPv6 (as specified in [25]), and QoS based on the QoS-Conditionalized
Binding Update (QCB) (as specified in [8]).

Open issues and possible solutions according to the current specifications have been identi-
fied. Finally, several test cases have been tested to demonstrate that the QoS-Conditionalized
Binding Update enables a MN with the capability to signal the MN’s QoS requirements to
the new path while performing a handover.

!Part of this work has been realized as a master thesis at TKN, TU-Berlin.

TU BERLIN

Contents

1 Introduction 3

1.1 Motivation e e e e e e 3

1.2 Contribution of this Work oo 0oL 4

1.3 Organization of this Document 4

2 Mobility and QoS 6

2.1 Mobility and QoS Aspects in IP Networks 6

2.1.1 Classification of Mobility 7

2.1.2 Classification of QoS 8

2.1.3 Interaction of Mobility and QoS Management 9

2.2 Leveraged Architectures 9

2.2.1 IPv6 Protocol 9

2.2.2 Mobility inIPv6 16

3 Description of QoCoo Scheme 22

3.1 Assumptions and Limitations of QoCoo 22

3.2 Overview of System Model and Entities 24

3.3 HMIPv6 — Informal Specification 24

3.4 HMIPv6 — Formal Description of Implementation Model 28

3.4.1 Mobile Node 29

3.4.2 Mobile Anchor Point (MAP) 29

3.4.3 Intermediate Routers. 32

3.5 QoS-Conditionalized Binding Update — Informal Specification 35
3.6 QoS-Conditionalized Binding Update — Formal Description of Implementation

Model e e e e e e e 39

3.6.1 Mobile Node e 40

3.6.2 MAP and Intermediate Router 40

3.7 Summary, Open Issues, and Possible Solutions 44

4 From Concept to Praxis 45

4.1 Selection of Environment oL oL 45

4.2 Linux Kernel Environment 45

42.1 TPv6 Module e 46

4.2.2 Netfilter Module 47

4.3 Mobile IP for Linux (MIPL) Environment 47

Copyright at Technical University TKN-02-017 Page 1

Berlin. All Rights reserved.

TU BERLIN

5 Implementation Design 49
5.1 Implementation Design of HMIPv6 Functionalities 49
5.1.1 Mobile Node e e 49

5.1.2 Mobile Anchor Point and Intermediate Router 54

5.2 Tmplementation Design of QoS-Conditionalized Binding Update Functionalities 56
5.2.1 MobileNode 56

5.2.2 Mobile Anchor Point and Intermediate Routers 58

6 Testing 60
6.1 Testbed e e e 60
6.2 Functionality Tests 64
6.2.1 HMIPv6 Test Cases o o v v i i e e e e e e e e e e e 64

6.2.2 QoS-Conditionalized Binding Update Test Cases 65

7 Conclusion 68
Bibliography 70

A Function and Data Structure Reference 71
A.1 HMIPv6 Related Functions and Data Structures 71

A.2 QoS-Conditionalized Binding Update Related Functions and Data Structures 73

B Installation Manual 82
C Acronyms 96
Copyright at Technical University TKN-02-017 Page 2

Berlin. All Rights reserved.

TU BERLIN

Chapter 1

Introduction

1.1 Motivation

The widespread popularity of mobile communication and Internet Protocol (IP)-based appli-
cations indicates an increasing demand for mobile access to the internet suitable for common
IP applications as well as QoS critical real-time applications.

Traditionally, the Internet employs Internet Protocol version 4 (IPv4) as the crucial pro-
tocol for packet delivery in fixed networks. In order to overcome the need for mobility support
in IP networks Mobile IP (MIP) was designed to provide transparent mobility to higher lay-
ers. However, due to the difficulty of introducing new protocol extensions to the existing
IPv4 infrastructure, MIP[19, 20] has never been deployed on a wide basis. The successor
of IPv4, the Internet Protocol version 6 (IPv6)[11], has been designed to solve many urgent
problems caused by new requirements to the meanwhile historical roots of IPv4. Moreover,
IPv6 aims to facilitate integration and deployment of later extensions.

One of these extensions is the Mobile IPv6 (MIPv6) protocol [15] which indeed makes
heavy use of the opportunities offered by the new version of IP. The MIPv6 protocol provides
the necessary extensions to enable IPv6 with true and transparent mobility support to the
application layer. However, with MIPv6 few efforts are undertaken to reduce the duration
for re-establishing of connectivity and optimize handover operations regarding latency and
signaling overhead.

One approach towards a more flexible, customizable and scalable mobility architecture
that also reduces signaling load and handover latency results from the introduction of micro
mobility. By way of this, mobility management, related to an MN’s handover within a
certain region, is hidden from the network part outside that region. The Hierarchical Mobile
IPv6 (HMIPv6) protocol [25] provides a solution for support of micro mobility in the MIPv6
protocol.

Regarding the support of QoS sensitive real-time applications, the possibility to maintain
an existing QoS assurance while moving between different Access Router (AR)s is required.
Since an QoS interruption due to QoS re-establishment on a new path can cause significant
service reduction to the application side, one important challenge for QoS provisioning in
mobile TP networks is to employ a mechanism, which keeps handover latency caused by QoS
management as small as possible. By coupling the QoS signaling messages to the micro-

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 3

TU BERLIN

mobility management messages, QoS requirements can be negotiated with the new data path
while performing a handover. This approach has the advantage, that besides the signaling
delay and overhead caused by micro-mobility management anyway, no significant additional
overhead and delay is introduced.

1.2 Contribution of this Work

In this work! a prototypical implementation with the name QoCoo (QoS-Conditionalized
Handover) to provide QoS in micro mobility has been developed.

QoCoo extends the existing MIPv6 implementation for Linux OS to provide functionalities
for support of micro mobility. This is based on the basic mode of HMIPv6 which is specified
in [25]. Regarding QoS support, QoCoo is based on the proposal of the QoS-Conditionalized
Binding Update, specified in [8].

To achieve this, the following intermediate steps have been conducted: The leveraged
architectures IPv6 and MIPv6 have been reviewed and their relevant procedures for this work
have been summarized. The underlying concepts by means of descriptional specifications in
the HMIPv6 and QoS-Conditionalized Binding Update proposal have been analyzed. Their
behavior has been re-examined in a more formal way to provide a basis for the implementation
design. Open issues and possible solutions according to the protocol’s specifications have been
identified and integrated in the implementation design. This implementation design has been
made with respect to the selected operating system and MIPv6 implementation environment.

The QoCoo implementation has been setup in a testbed, which serves as a basis for
emulating test cases and perform measurements. Various test scenarios have been successfully
performed with the objective to demonstrate the significant capabilities of the underlying
protocols.

1.3 Organization of this Document

The remainder of this thesis is organized as follows:

e In the first part of Chapter 2 general aspects of mobility and QoS in IP networks are
reviewed. In the second part, the leveraged architectures for the QoCoo protocol, the
IPv6 and MIPv6 protocols are summarized.

e A complete description of the QoS-Conditionalized Handover (QoCoo) scheme is given
in Chapter 3. Since QoCoo is based on the architectures of HMIPv6 and the QoS-
Conditionalized Binding Update, this includes an informal and a formal description for
each of the underlying protocols. At the end of the chapter open issues and possible
solutions according the specification of the QoS-Conditionalized Binding Update are
discussed.

e In Chapter 4 an overview of the selected implementation environment, the Linux OS,
is given and relevant features are explained.

!Part of this work has been realized as a master thesis at TKN, TU-Berlin.

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 4

TU BERLIN

e Chapter 5 provides the implementation design of the QoCoo scheme. It describes how
the concepts discussed in Chapter 3 have been applied to the surrounding implemen-
tation environment of Chapter 4. A detailed function and data structure reference is
given in the appendix of this document.

e A testbed has been setup in order to emulate some representative scenarios and demon-
strate the claimed capabilities of the underlying protocols. The testbed setup and a list
of emulated test cases are explained in Chapter 6

e Chapter 7 contains the conclusion of this work.
The following parts are contained in the appendix:

e Appendix A lists all the new and modified functions and data structures that have been
introduced to the existing implementation environment.

e An installation manual, describing the necessary steps how to use the QoCoo imple-
mentation in a testbed, is given in Appendix B.

e Appendix C contains the list of acronyms used in the work.

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 5

TU BERLIN

Chapter 2

Mobility and QoS

This chapter first reviews general aspects on mobility and QoS support. The focus here
lies on IP networks and in particular on the leveraged architectures of this thesis: the IPv6
and MIPv6 protocol. In the second part features of the new IPv6 and MIPv6 protocols are
summarized and related signaling procedures are explained.

2.1 Mobility and QoS Aspects in IP Networks

IP has traditionally been designed for fixed networks. Connected hosts were assumed to be
located always on the same link and reachable via their IP address. While a human is often
referred to by name and date of birth and its location by an affiliated address, the TP address
merges identification and location in one single key. This makes it impossible to distinguish
the different context of location and identification. With hosts that act only as clients, this
is usually no problem since they only have to obtain a new IP address after having moved
to a new location. For true mobile hosts there is a dilemma: when sessions are open, the IP
address must be constant to preserve session identifiers and to be addressable via one well
known IP address. On the other hand, to assure correct routing to the mobile host even when
it has moved from one subnetwork to another, the IP address must be changed to reflect the
new location.

Regarding the support of service guaranty, QoS support has been well investigated only
for fixed IP networks. From a QoS point of view, mobility introduces challenges of retaining a
once negotiated and established QoS level for the MN when it changes its point of attachment
to the network. Explicit QoS provisioning requires to reserve resources along the data path
in every node from the source towards the destination. In general, end hosts make resource
reservation in these nodes by way of signaling. The signaling procedure needs to initiate a
QoS request from the end host, install the reservations in network nodes and finally to give a
response whether the requested operation succeeds. Then, an end host can be informed about
whether its traffic can be QoS-guaranteed. The duration between an end host initiating its
QoS request and the arrival of the response is called signaling latency.

In a mobility scenario, this latency might be of less importance for initial connection to
a Corresponding Node (CN) since the QoS initiator can probably accept a few milliseconds
delay before the session is established. Therefore, a minimal service interruption for ongoing

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 6

TU BERLIN

connections caused by QoS and mobility re-registration for the new path during a Handover
(HO) is certainly desired.

While this also indicates some further challenges, the main problem remains is the re-
establishment of QoS on a dynamic path. The discussion of mobility, QoS, and the interaction
of both and related aspects is split into the Sections 2.1.1, 2.1.2 ,and 2.1.3. By classifying
the contrasting properties of different schemes, related pros and cons are identified.

2.1.1 Classification of Mobility
IP Mobility versus Support in Other Layers

If applications desire transparent mobility, this can potentially be provided anywhere
below the application layer. For IP networks, this might be the transport layer (e.g. Trans-
mission Control Protocol (TCP), User Datagram Protocol (UDP)), the network layer (IP
itself) or even lower layers.

If a layer lower than IP is expected to be responsible for mobility provisioning, it must
assure that the logical IP location of a host does not change. A first example would be an
IP connectivity over a GSM modem line. In that case, the mobility support is provided by
the GSM network, leading to rather high overhead and long delay. It also contradicts the
IP philosophy of packet switched networking if packets are routed over a circuit switched
channel which must be paid for even when no traffic occurs. A second example is the IP
connectivity via different Access Point (AP)s located in the same logical link. This case has
certainly its legitimation but is usually only suitable for local coverage. e.g. when providing
wireless access in one building. Since the IP layer is devoted for packet delivery anyway and
is also the lowest layer in the protocol stack before functionality is distributed to different
link layer properties it is widely regarded as a reasonable candidate for transparent mobility
support.

Nomadic versus True Mobility

The term “nomadic mobility” refers to the ancient habit of nomads who regularly moved
and left behind whatever they build just to rebuild everything from scratch wherever they
rest. Transferring this notion to network applications, it is of course always possible to
close all running sessions, change the location and access point, acquire a new IP address
and finally start a new session. This might somehow work out for applications like WWW
browsing where the communication relies on a variety of independent short sessions. However,
it blocks the possibility to be reachable via one well known IP and prevents the user from
retaining sessions like voice calls or File Transfer Protocol (FTP) downloads while moving.

True mobility overcomes this constraint by hiding all effects of mobility from the applica-
tion layer. In particular, it “prepends” a fixed network connection by ensuring transparent
reachability. A typical example for true mobility provisioning (in a context different to IP
networking) is the current GSM network. In this architecture the client is always reachable
via a static telephone number. Ideally, the client does not even recognize a handover while
performing a voice call. One desired consequence of utilizing an offered service in different
locations and while moving is the charged price. The MIPv6 protocol provides the necessary

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 7

TU BERLIN

extensions to enable IPv6 for true mobility support. However, with MIPv6 few efforts are
undertaken to reduce the duration for re-establishing of connectivity and optimize handover
operations. A micro-mobility solution is discussed in the next paragraph to partly resolve
this problem. The IPv6 and MIPv6 protocol will be discussed in Section 2.2.

Micro-Mobility versus Macro-Mobility

This aspect takes care of the network topological distance of a movement. Every move-
ment can be distinguished between a micro (local) and a macro (regional) movement. In
general, a micro movement considers a movement within the same region, typically covered
by one sub network, access network or administrative domain. The opposite, a macro move-
ment, identifies a movement to a new region.

In a typical micro-mobility management, a movement is transparent to the network part
beyond the visited region, and the need for related signaling is also limited to that region.
The common approach to hide local mobility to the outside world is to involve a dedicated
router in the visited region into the mobility management. Whenever an MN performs a
macro movement and enters a new region, it communicates only the location of the dedicated
router to the CNs. As long as the MN moves between different access routers but within
the same region, the dedicated router is responsible to deliver packets to the MN’s current
location. Hence, only the dedicated router must be updated with the MN’s current location.
Since in most cases movements are local [16], an architecture that is enabled for micro-
mobility can avoid a reasonable amount of mobility signaling to potentially far away CNs.
Additionally, handover latency can be reduced because micro mobility management involves
only the relatively close, dedicated router.

MIPv6 does not differentiate between micro and macro mobility. Thus, every movement
is treated as a macro movement. The HMIPv6 protocol proposes a solution for micro mobility
in MIPv6. Because HMIPvG6 is yet only a developing protocol and its implementation design
and implementation is part of this thesis, it will be described in the next chapter in Section
3.3.

2.1.2 Classification of QoS

The existing IETF QoS architectures for IP layer can be classified into two types according
to their fundamentals. The first type is known as Integrated Services (IntServ) and provides
together with Resource Reservation Protocol (RSVP) a solution for explicit reservations
end-to-end. The alternative is referred to as Differentiated Services (DiffServ) and offers
hop-by-hop differentiated treatment of packets.

The IntServ model [28, 2] aims to provide a kind of circuit-switched service in packet-
switched networks. To describe the attributes of the desired data flow and signal the specific
resource requirements along the data path, IntServ uses RSVP. Briefly summarized, the
IntServ/RSVP model provides unidirectional resource reservation on a per-flow basis. The
sender of a flow first sends a “PATH” message to the receiver, which is updated at every
router on the path. The receiver responds with a “RESV” message to indicate the required
resources at every hop for the forthcoming flow. Any hop along the end-to-end path may

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 8

TU BERLIN

deny the flow if resources are scarce. If the sender finally receives the “RESV” message, the
resources have been successfully reserved.

The idea of DiffServ [1] is to map multiple flows with similar a service level into a few
aggregate flows. Packets are classified as belonging to a specific aggregate flow by marking
them with a DiffServ Code Point (DSCP). The DSCP is a well known value which determines
the conditions to which a packet should be forwarded by the nodes inside the domain. In
this model, explicit signaling to reserve resources is not necessary. This architecture can
only differentiate in relative service levels. Theoretically, a minimum level of assurance for
service classes can only be guaranteed if every router inside the domain is overprovisioned
with resources so that an overload cannot happen.

In summary, compared with the IntServ model, differentiated service classes results in
a more scalable service but also in service behavior only guaranteed at a higher granularity
level. In addition to enhancing the level of guaranteed service through the differentiated
service model, the network provider may increase the overall resource provisioning towards
overprovisioning of resources. Both architectures have their advantages and disadvantages,
especially when considering the environment for their deployment. For example, in backbones
of commercial networks it might be much easier to guarantee a high probability of resource
overprovisioning rather than requiring explicit reservations and all related signaling and soft
states management. On the other hand, in wireless access networks bandwidth is always a
scarce resource. Temporary hot spots like rush hours additionally cause a high variance in
resource requirement and would make reliable overprovisioning even more expensive. As a
consequence, enabling an architecture to support signaling for both technologies would be
promising.

2.1.3 Interaction of Mobility and QoS Management

There are two schools of supporting QoS in mobile IP networks. One is to treat QoS mech-
anisms independently of mobility mechanisms, another is to couple QoS mechanisms with
mobility mechanisms. The latter approach has an advantage over the former since it tends
to cause a lower latency of re-establishment of QoS states but at the cost of higher proto-
col complexity. Since QoS resources in mobile networks, especially wireless access networks,
are very precious, the amount of signaling traffic in the network should be kept as small as
possible. If the utilization of QoS resources outweighs the additional complexity, imposed by
coupling with QoS management of a mobility protocol, the coupling approach would be more
desirable.

2.2 Leveraged Architectures

2.2.1 IPv6 Protocol

Internet Protocol version 6 (also referred to as IP Next Generation) was designed as the
successor to IPv4 [11]. This section briefly describes the important innovations of IPv6 over
IPv4. Because IPv6 is a wide and complex field, my focus lies on its features used in this
work and functionalities essential for understanding of the rest of this thesis.

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017 Page 9

TU BERLIN

The main need for a new version of IP arose with the increasing scarceness of address
space in IPv4. IPv6 increases the IP address size from 32 bits (in IPv4) to 128 bits to support
more levels of addressing hierarchy, a much larger number of addressable nodes, and simpler
auto-configuration of addresses. On the other hand, some IPv4 header fields have been
purged or made optional to reduce the common-case processing cost of packet handling and
to limit bandwidth cost of the IPv6 header. Issues regarding header format and addressing
capabilities are explained in Section 2.2.1.

Changes in the way IP header options are encoded allow for more efficient forwarding, less
stringent limits on the length of options, and greater flexibility for introducing new options
in the future. In fact, this property provides the fundamentals on which MIPv6, HMIPv6
and eventually the QoS-Conditionalized Binding Update rely. The improved support for
extensions and options is explained in Section 2.2.1.

Neighbor Discovery describes the process in IPv6 to discover nodes on the same link, de-
termine each others’ link-layer addresses, find routers and learn about further link properties.
Neighbor Discovery (ND) together with stateless address discovery provides a possibility to
auto-configure an interface that is switched on. This is explained in Section 2.2.1

Header and Addressing Capabilities

The IPv6 header [11] consists of two parts, the basic IPv6 header (as illustrated in Figure
2.1) and optional IPv6 extension headers, which will be examined in Section 2.2.1. The usage
of the fields conveyed by the IPv6 header is summarized in Table 2.1. It should be noted
that additional header fields besides the source and destination address in IPv6 were reduced
to only 6 scattered over 64 bytes compared to the IPv4 header, which carries 10 fields in 96
bytes. In particular, the Header Length (the length of the IPv6 header is fixed to 320 bytes),
the Identification, the D- and M- flags, the Fragment Offset and the Header Checksum field
from IPv4 header were dropped or made optional in IPv6 extension headers. Even though
the IPv6 addresses are four time longer than the IPv4 addresses, the header itself is only
twice the size.

Version | Traffic Class | Flow Label
Payload Length | Next Header | Hop Limit

— Source Address —

= Destination Address —

Figure 2.1: IPv6 header format

The format and semantics of IPv6 addresses are specified in [12]. There are three types
of IPv6 addresses. These are unicast, anycast, and multicast addresses. An IPv6 addresses

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 10

TU BERLIN

Name of Field

Meaning of Field

Version 4-bit Internet Protocol version number = 6.
Traffic Class 8-bit traffic class field.
Flow Label 20-bit flow label. Together with the source address a router can

identify whether a packet belongs to certain flow and requests for
special handling. This aspect of IPv6 is, at the time of writing,
still experimental and subject to change as the requirements for
flow support in the Internet become clearer.

Payload Length 16-bit unsigned integer payload length, in octets. Determines
the size of the rest of the packet following this IPv6 header
(note that any optional extension headers as described on 2.2.1
is considered part of the payload).

Next Header 8-bit selector. Identifies the type of header immediately follow-
ing the IPv6 header. The same values as in the corresponding
IPv4 Protocol field [22] plus some new values to identify specific
extension headers (see 2.2.1) are used here.

Hop Limit 8-bit unsigned integer. Decremented by 1 by each node that
forwards the packet. The packet is discarded if Hop Limit is
decremented to zero.

Source Address 128-bit address of the originator of the packet. (This is not
completely true for micro mobility but will be explained in the
corresponding Section 3.3

Destination Address | 128-bit address of the intended next recipient of the packet. (If a
routing header is used (see: 2.2.1) the destination address might
change several times on the way to the final destination)

Table 2.1: Meanings of IPv6 header field

identifies one interface (or several interfaces in case of multicast addresses). A single interface
may have several IPv6 addresses assigned to it. Unicast addresses (and their various sub-
forms described in the following) and multicast addresses can be distinguished by the leading
bits of the addresses. Anycast addresses are allocated out of the unicast address space and
can semantically not be distinguished from them.

Unicast addresses identify a single interface and occupy the most of the so far assigned
address space. A packet send to an unicast address is delivered to the interface identified
by that address. These are further split into several forms, where the relevant ones for
this document are the provider-based unicast addresses, the site-local, and the link-local
addresses. The provider-based unicast addresses are used for global communication
and are similar in functionality to IPv4 addresses. Therefore, common routing in IPv6 is
almost identical to IPv4 routing under Classless Inter Domain Routing (CIDR). Link-local
addresses are designed to be used for addressing on a single link for purposes such as
auto-address configuration, neighbor discovery, or when no routers are present. This will be
discussed in more detail in Section 2.2.1. A packet carrying a link-local address as destination

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 11

TU BERLIN

or source address is not forwarded by routers.

Site-local addresses are addresses that have only local routability scope and are guar-
anteed to be unique only on the specific site without the need for a global prefix. A packet
carrying a site-local address as destination or source address is not forwarded by routers
outside the site.

Anycast addresses identify a set of interfaces while a packet sent to an anycast address
will be delivered only to the nearest one.

Multicast addresses identify a group of interfaces, such that a packet sent to a multicast
address is delivered to all of the interfaces in the group. Since there are no broadcast addresses
in IPv6, their functionality is superseded by multicast addresses. Therefore a node must join
several multicast groups in order to recognize the corresponding addresses as identifying itself.
For a host this is:

e The all-nodes multicast address

e The solicited-node multicast address for each of its assigned unicast and anycast ad-
dresses

A router is additionally required to recognize the following addresses as identifying itself:

e The subnet-router anycast address for the interface it is configured to act as a router
on.

e The all-routers multicast addresses

There are conventional notations for representing IPv6 addresses as text strings. The
preferred form is x:x:x:x:x:x:x:x where the 'x’s are the hexadecimal values of the eight 16-bit
pieces of the address. It is not necessary to write the leading zeros in an individual field, but
there must be at least one numeral in every field. Since many addresses contain long strings
of zero bits, a special syntax is available to compress the zeros and make writing easier.
The use of “:” indicates multiple groups of 16-bits of zeros. It can only appear once in an
address and because IPv6 addresses are always 128 bit long the use of “::” always expands
to one specific address. The text representation of IPv6 address prefixes is written in the
notation IPv6-address / prefix-length where the prefix-length is a decimal value specifying
how many of the leftmost contiguous bits of the address comprise the prefix. Table 2.2 gives
some examples for valid IPv6 addresses and address prefixes in long and compressed form.

‘ Long form ‘ Compressed form ‘ Purpose of the address ‘
3fe:b80:1111:0:0:0:0:0/64 3ffe:b80:1111::/64 | A unicast link prefix
3ffe:b80:1111:0:0:0:0:1234 /64 | 3ffe:b80:1111::/64 | A unicast address combined
with it’s 64-bit link prefix

FF01:0:0:0:0:0:0:101 FFO01::101 A multicast address
0:0:0:0:0:0:0:1 =1 The loopback address
0:0:0:0:0:0:0:0 : The unspecified address

Table 2.2: Examples for valid IPv6 addresses in long and compressed form

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 12

TU BERLIN

Support for Extensions and Options

IPv6 options are placed in separate extension headers that are located between the IPv6
header and the transport-layer header in a packet. Most extension headers are not exam-
ined by any router along the packet’s delivery path until arrival at its final destination.
This reduces processing requirement and improves router performance for packets containing
options. The basic outline of an extension header is depicted in Figure 2.2.

‘NektHea‘def‘|‘deEﬁ(tl‘_eH‘|“‘““““““

extension header specific data

Figure 2.2: Basic IPv6 extension header format

Every extension header is identified by the Next Header field of the preceding header and
its length (the fragmentation header is an exception) by the Hdr Ext Len field of its own
header.

Currently, the following extension headers are obligatory for IPv6:

e A Hop-by-Hop options header conveys special options, which require processing
by every passed router of the packet. If a Hop-by-Hop option header is present in a
packet it must always be the first header behind the IPv6 header. (Note: Only if the
next header field in the IPv6 header indicates that a Hop-by-Hop header is following, a
router which is not the destination of a packet is required to examine the next header.)

¢ A Routing header allows extended routing (similar to IPv4 loose source routing).
This is achieved by always storing the next (intermediate) destination as destination
address in the IPv6 header. Once a packet arrives at the (intermediate) destination
the router must check for a routing header. If one exists and more destinations to
visit are present in the routing header, the destination address in the IPv6 header is
modified to the next destination and the packet is forwarded accordingly. The extension
headers following the routing header are only examined if the current router is the final
destination of the packet.

e A Destination options header conveys special options that require processing only
at the destination of the packet. Depending on whether the destination header appears
before or behind the routing header, it is examined at every intermediate destination
or only at the final destination.

e A Fragment header is responsible for fragmentation and reassembly.

¢ An Authentication header ensures integrity and authentication (security) for the
packet.

e An Encapsulation header guarantees confidentiality (between source and destina-
tion) for the remainder of the packet.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 13

TU BERLIN

Nevertheless, also another IPv6 header may appear in the extension header order of an
IPv6 packet. This allows IP encapsulation or tunneling of packets. A node encountering an-
other inner IPv6 header while processing the outer IPv6 headers processes this and potential
further inner extension headers like an independent packet.

The encoding of one or several “opaque” options in either a Hop-by-Hop or Destination
option header requires further conventions. The format of these so called type-length-value
(TLV) encoded options is depicted in Figure 2.3.

Figure 2.3: type-length-value Tpye-length-value (TLV) encoded options format

The 8-bit Option Type identifies the type of the option where the three highest-order bits
specify the action that must be taken if the processing IPv6 node does not recognize the
Option Type and whether the Option Data might change on the way to the packet’s final
destination. The 8-bit Opt Data Len specifies the variable length of the Option Data field.

Functionality in the IP infrastructure is often distributed over different, potentially dis-
tant, entities. If the functionality is also controlled by external data, the involved entities
in general require the exchange of some data in order to cooperate with each other. The
exchange of such control data is also referred to as signaling. The concept of TLV-encoded
options provides a powerful and flexible basis for signaling in the IP infrastructure. By plac-
ing options in an adequate option header and position in the extension header order, options
can perfectly adapt to their functional purpose. Therefore, extension headers can be used to
actively control the processing of a certain packet. On the other hand, by simply piggyback-
ing signaling messages on packets which travel to the same destination anyway, overhead can
be reduced.

Neighbor Discovery and Address Auto Configuration

The Neighbor Discovery [18] and Auto Configuration [27] protocols are summarized in one
paragraph because they are strongly incorporated with each other. For example, the Address
Auto Configuration uses Neighbor Discovery mechanisms to verify the uniqueness of an as-
signed address. However, the basis protocol for ND and Address Auto-Configuration is the
ICMP version 6 (ICMPv6).

ICMPv6 is actually used by IPv6 nodes not only to report errors encountered while
packet processing, but also to perform other Internet-layer functions such as diagnostics and
signaling. ICMPv6 is an integral part of IPv6 and must be fully implemented by every IPv6
node. The error messages defined in ICMPv6 specification [6] are concerned with packet
delivery and parameter problems. The first group of problems address scenarios where the
destination of a packet is unreachable, the packet is too big to be forwarded further, or the
maximum hop limit of a packet has been reached. The second group handles problematic
fields in the IPv6 header or extension header. In all cases, an appropriate error report is
sent back to the source of the packet. By taking such error report into account the source
can correct its behavior. An ICMPv6 header is identified by the Next Header value of the

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 14

TU BERLIN

preceding header. However, since an ICMPv6 header does not have a Next Header field it is
always the last message in a packet.

The general message format is illustrated in Figure 2.4. The message type is indicated by
the Type field. Its value also determines the format of the remaining data. The Code field
depends on the message type. It is used to create an additional level of message granularity.
To detect data corruption in the ICMPv6 message and parts of the IPv6 header the checksum
field is used. The Message Body finally conveys the message specific informations.

T Typel | T] | | Cdde | | | T | T T | CHeckstm! | [T I |

Message Body

Figure 2.4: General ICMPv6 message format

The Neighbor Discovery (ND) protocol [18] defines mechanisms for interaction between
nodes attached to the same link. It corresponds to the IPv4 protocols Address Resolution
Protocol (ARP), Internet Control Message Protocol (ICMP) Router Discovery and ICMP
Redirect [7, 21]. In IPv6 these mechanisms are based on five new ICMPv6 message types,
which are discussed in the following. Routers use Router Advertisement (RtAdv) mes-
sages to advertise their presence together with various link and Internet parameters. This is
done either periodically or in response to a Router Solicitation (RtSol) message. The message
format is shown in Figure 2.5. The Type, Code and Checksum fields are part of the general
ICMPv6 header as described above. The remainder of the packet conveys the Rt Adv specific
data. The meaning of the fields is summarized in Table 2.3

T Trypel | T code T T T T T TCHecksum! T T T T
Cur Hop Limit M[O] Reserved Router Lifetime

Reachable Time

Retransmit Timer

[_i_ 1ORtigns; .|

Figure 2.5: Router Advertisement message format

When an interface becomes enabled, hosts may send out a RtSol message, which requests
routers to generate Router Advertisements immediately rather than at their next scheduled
time. Neighbor Solicitation (NbSol) messages are sent by a node to determine the
link-layer address of a neighbor or verify that a neighbor is still reachable via a cached link-
layer address. NbSol are also used for Duplicate Address Detection (DAD). The response
to a NbSol is a Neighbor Advertisement (NbAdv) message. It may also be sent out
unsolicited by a node to announce a link-layer address change. A Redirect message is used
by routers to inform a host of a better first hop for a destination.

Stateless address auto configuration [27] specifies the steps an host takes in acquiring
a IPv6 address on a specific link. The procedure starts by creating a link-local address for

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 15

TU BERLIN

‘ Name of Field ‘ Meaning of Field

Cur Hop Limit 8-bit unsigned integer, specifying the hop limit of the RA.

M and O Flags Must be set for Managed or other stateful address configuration,
which is out of scope of this work

Router Lifetime 16-nit unsigned integer indicating the lifetime of the RA in seconds.
Reachable Time | 32-bit unsigned integer. The time, in milliseconds, that a node
assumes a neighbor is reachable after having received a reachability
confirmation.

Retransmit Time | 32-bit unsigned integer. The time in milliseconds, between retrans-
mitted NS messages.

Options The RA message may contain additional options. For address auto
configuration the Prefix Information option is required in order to
specify the prefix that is on-link. New options may be specified later.
Indeed HMIPv6 introduces a new RA option for MAP discovery
which will be discussed in Section 3.3

Table 2.3: Meanings Router Advertisement fields

the network interface. This is done whenever a network interface becomes enabled on a new
link, by applying the IPv6 interface identifier [12] to the well known link-local prefix. The
IPv6 interface identifier can be derived from the IEEE EUI-64 [14] address or the IEEE 802
addresses [13]. Before link-local addresses are finally assigned to their respective network
interface, they must be tested for uniqueness. This is done with the DAD procedure as part
of the ND protocol explained later.

2.2.2 Mobility in IPv6

The IETF has been developing the MIPv6 protocol [15] for true mobility support in IPv6.
Its stage is (at time of writing) still work in progress but is already very close to standardiza-
tion. This section gives an overview of the protocol’s basic operations, the related signaling
messages and conceptual data structures.

A general system model is given in Figure 2.6. It shows typical subnetworks and access
networks interconnected through the Internet. A subnetwork consists of one ore several links
connected via a router, and one Edge Router (ER) for interconnection to the Internet. Each
Access Router (AR) represents a router enabled for router discovery and stateless address
auto-configuration as described in Section 2.2.1. The MN can move between its home link
and different foreign links by being attached to any of the depicted Access Router. A general
communication peer of the MN is represented as the Corresponding Node (CN). It may be
located anywhere in the Internet.

By utilizing the new features of IPv6 in MIPv6, most of the mobility problems discussed in
Section 2.1 are solved. The main issue of differentiating between identification and location of
a Mobile Node (MN) was overcome by splitting the IP address into Home Address (HoA) and
Care-of Address (CoA). Each Mobile Node (MN) is always identified by its HoA, regardless

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 16

TU BERLIN

link A (home link) |

Corresponding Node Access Router

Home Agent Edge Router

Mobile Node

Figure 2.6: General MIPv6 system model

of its current point of attachment to the Internet. If an MN is located away from home (e.g.,
connected to another link as identified by its home link), it is also associated with a CoA to
identify its currently visited location. Such a CoA can be acquired through ND and address
auto-configuration whenever an MN becomes attached to the link served by a new AR (see
Section 2.2.1) . Since an MN may have several valid CoAs, the one currently used for sending
packets is referred to as its primary CoA. The MIPv6 protocol enables nodes to cache the
binding of an MN’s HoA with the MN’s affiliated primary CoA. Any IPv6 packet addressed
to the MN’s HoA is then transparently routed to its CoA. To support this operation, MIPv6
defines one new entity, the Home Agent (HA), responsible for providing the link between
the MN and yet (into MN’s HoA — CoA relation) uninitiated CNs. It intercepts packets
on the MN’s home link destined for the MN and tunnels them to the MN’s primary CoA.
Additionally, several new requirements for MN and CN operations, four new IPv6 destination
options, and some extensions to the Neighbor Discovery protocol are introduced. Because
the scope of this thesis is limited to mobility, issues regarding authentication and security are
completely neglected here.

Conceptual Data Structures

The conceptual data structures defined by MIPv6 are the Binding Cache (BC) and the
Binding Update List (BUL). The Binding Cache (BC) is a list that is maintained by every
node for temporary bindings of other node’s HoA to their currently used CoA. A lifetime
value supplied with every entry indicates the remaining lifetime for this binding. When a

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge]‘7

TU BERLIN

node is sending a packet, it searches the BC list for the node’s destination address (HoA)
and if an entry for this destination exists the packet is routed via the corresponding CoA.
Every MN also maintains a BUL to record information about active CNs whose BC must be
updated before the lifetime of the particular binding expires.

Destination Options

The four new destination options added in MIPv6 are used for signaling mobility-management
relevant information to the HA and CNs. They are called Home Address Option (HAO),
Binding Update (BU), Binding Acknowledgement (BA) and Binding Request (BR). All of
them are encoded in the TLV format as described in Section 2.2.1. Additionally, various sub-
options exist for carrying optional information associated with a specific destination option
and can be found in [15].

A Home Address destination option is used in a packet sent by an MN to inform the
recipient of the packet of the MN’s HoA. For packets sent by an MN while away from home,
the MN uses its CoA as source address in the packet’s IPv6 header. By including a HAO
in the packet, the CN receiving the packet is able to substitute the MN’s HoA for this CoA
when processing the packet, thus making the use of CoA transparent to the CN. Since the
HAO is only relevant for the final destination of a packet it must be placed after the Routing
Header but before the Fragment Header if any of those headers exist.

A Binding Update (BU) destination option is used together with a HAO option by an MN
to notify a CN or the MN’s Home Agent of its current binding. Therefore, the BU always
refers to the CoA conveyed as source address in the IPv6 header and the HoA field in the
HAO option. Some flags in the BU indicate whether:

e the destination of a BU is requested to act as the MN’s HA,
e such requested HA should also perform DAD on behalf of the MN or
e a Binding Acknowledgement should be returned upon receipt of the BU.

A 32-bit lifetime field indicates the remaining lifetime of a BU before the binding must be
considered expired. A value of zero indicates that the corresponding binding cache entry
must be deleted immediately. An 8-bit sequence number field is used by the receiving node
to sequence BUs and by the sending MN to match a returned Binding Acknowledgement
with the corresponding BU.

A Binding Acknowledgement (BA) destination option is used to acknowledge receipt of a
BU if this was required by the BU. A 32-bit Lifetime field indicates the granted interval in
seconds for which the node will retain the binding in its binding cache. If the node sending
this BA is also serving as the MN’s HA, this value also indicates for how long this node will
continue this service. A second 32-bit Refresh field indicates the recommended interval in
seconds at which the MN should refresh the binding with a new BU. A BA is also used to
inform the sender of a BU about the reasons why a specific BU was rejected. Therefore, an 8-
bit Status field is included. Another 8-bit Sequence field is used to identify the corresponding
BU to which this BA was sent in return.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 18

TU BERLIN

Finally, a Binding Request (BR) destination option is used by a node to request an MN
to send or update its binding in the nodes binding cache. An MN should reply to a BR with
a BU and HAO destination option.

Basic Operations

The basic operations of MIPv6 will be described by a paradigm covering movement de-
tection, HA registration, triangle routing and route optimization. It presumes that all nodes
support MIPv6. A timeline for illustrating the message flow in the scenario is given in Figure
2.7.

MN AR c HA / (AR a) CN
A::1/64 C::/64 A::2/64 B::3/64
]
1 | IPICMPIRA[A:/64]]
2 ‘__\'F’M
O ——
—
|
% 1 IP[A::1,B::3],PL
MP[RA[C::/64] 4 ._’_[’J/
;_M—— G::
)M[A::lj,BU 8
6

Ack

lP[C::l,A::Z],RH[A::l],E
~— 9 |p[A:1,B:3],PL
11 |p[c::1A:2]IP[A:LB3LPL Q)_/L’J—/

lP|B::3,C::1|I—AO A::1],BU,PL 12
])

IP[C::1,B::3],RH[A::1],PL
//

C——————— -]

13 IP[B::3,C::1], HAO[A 1] PL

Figure 2.7: MIPv6 basic operation timeline

The depicted timeline conforms to the system model in Figure 2.6. The first line identifies
the involved nodes and their IPv6 address or Access Routers with the link prefix they are
serving for. Whenever a router is required to process a traversing packet for which it is not
the source or destination of the packet, this is indicated by an enlarged dot. Every circle
with an index indicates a specific event. The grey vertical arrows at the left side of the figure
indicate the lifetime of a specific Router Advertisement (RtAdv). The content of every new
message is roughly summarized by the text heading the corresponding message arrow.

The HoA of the MN can be formed by way of stateful or stateless address auto-configuration
but can also be mannually configured. As long as the MN receives RtAdvs (event 1) which

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 19

TU BERLIN

advertised prefix match the prefix of it own unicast address it can deduce to be still connected
to its home link. While the MN resides on its home link, the CNs use its regular HoA for
communication (event 2). For such ordinary packets a simple IPv6 header with destination
and source address as identifying the actual payload is sufficient.

When the MN undergoes a movement (event 3) it depends on the movement detection
capabilities to indicate this event to the IP layer. Otherwise (if movement detection only
relies on IP layer), the MN can not recognize the loss of connectivity to the old AR until
the lifetime of its last received RtAdv has expired. Packets destined for the MN HoA and
routed via the old AR a will consequently get lost (event 4) because the last hop — AR a —
has no possibility to forward them successfully. When the MN receives the next scheduled
RtAdv from the AR b (event 5) it acquires a new IPv6 address as CoA. This is accomplished
based on ND and address auto-configuration as described in Section 2.2.1. At this time it
depends on the movement detection and handover policy whether an MN starts immediately
with the handover operations or prefers to wait until the old default router finally becomes
invalid. In some scenarios, e.g., areas with overlapping coverage by ARs, the latter case
might be preferable, because the reception of a new RtAdv does not necessarily mean that
the connection to the old AR was lost. If so called “eager handover processing” is performed,
it might lead to unnecessarily frequent handover.

This scenario assumes “lazy handover processing”. No registration message is sent until
expiration of the old default router (event 6). Then, AR C is selected as the new default
router and the CoA, deduced from its RtAdv, becomes the MN’s primary CoA.

The next 3 events describe the procedures necessary for HA registration. In order to
retain connectivity, at least the HA must be initiated with the binding of the MN’s HoA to
the new primary CoA. Therefore, a Binding Update (BU) with the HA and BA flag is send to
the HA. Because the source address of the packet is now the MN’s CoA, also a HAO option
must be present in the packet to identify the MN’s HoA. The reception of the MN’s BU
(event 7) triggers the HA to modify its BC, intercept packets destined for the MN (routed
to the home link of the MN) and tunnel them to the MN’s CoA. To ensure this requirement
the HA performs proxy neighbor advertisement on behalf of the MN by advertising an ICMP
Redirect (RD) message to the nodes sharing the same link. By receiving the ICMP RD
message neighboring nodes recognize the link layer address change of the MN’s HoA to that
of the HA. Finally, the HA acknowledges the successful registration by replying to the MN
with a BA. Instead of sending the BA directly to the HoA of the MN, an Routing Header (RH)
is used to route it via the MN’s CoA first.

From now on, a packet sent to the MN’s well known HoA is intercepted by the HA of the
MN (event 8). The HA then tunnels the packet, by attaching an additional IP header before
the original IP header, to the MN’s registered CoA. When the MN receives the packet (event
9), it can deduce from the encapsulating second IP header from its HA that the CN does not
know about its current CoA. By either piggybacking a BU and HAO option to the next packet
or sending them in an individual packet to the CN, the MN can avoid triangular routing and
initialize route optimization. The CN now updates its BC and sends the following packets
(event 10) with a routing header directly to the MN’s CoA. No BA is required since the MN
can deduce from the use of a routing header instead of an encapsulating IP header (event
11) that the BU sent to CN was successfully registered. For further communication with the
CN only a HAO option is required to identify the source of a packet. A new BU to the HA

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 20

TU BERLIN

or CN is not necessary until the lifetime of the corresponding binding is about to expire.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 21

TU BERLIN

Chapter 3

Description of QoCoo
(QoS-Conditionalized Handover)
Scheme

This chapter describes the general architecture and system behavior of the QoS-Conditiona-
lized Handover (QoCoo) protocol. The goal of QoCoo is to provide a concept for efficient QoS
signaling during handoff in Mobile IPv6 (MIPv6). This is achieved by enabling MIPv6 for
micro-mobility support and allow a close interaction of micro-mobility and QoS management
as discussed in Section 2.1.

For micro-mobility support, QoCoo is based on the architecture of HMIPv6 [25]. In
HMIPv6, a new entity, the Mobile Anchor Point (MAP) is introduced that allows an MN to
send only one Binding Update (BU) to the MAP when changing its AR within one Access
Network (AN). For local movements, mobility is completely hidden to all nodes outside the
AN.

The approach of coupling the QoS messages directly with the mobility messages is based
on the QoS-Conditionalized Binding Update [9]. It is accomplished by wrapping the QoS
message as an IPv6 hop-by-hop option and piggybacking it with the BU and/or the BA for
signaling purposes along every new path when performing a handover. This concept enables
an MN to conditionalize a BU on the QoS requirements it expects from handover. The
coupling with mobility signaling limits the additional latency for QoS provisioning to a level
required for mobility management anyway'. Especially through adapting the QoS-Condi-
tionalized Binding Update to micro-mobility scenarios the handoff latency can be further
reduced.

3.1 Assumptions and Limitations of QoCoo

QoCoo is a prototypical implementation with the purpose to prove the general feasibility of
interaction between different technologies. In particular, QoCoo does not claim to provide
a full implementation of any of the addressed underlying architectures. It merely focuses

'Increased signaling latency only depends on additional processing in the affected router in order to check
for QoS requirements but not due to new packets or additional transmissions.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 22

TU BERLIN

on the functionality necessary for realizing the core idea of the scheme. A list of the es-
sential assumptions and thereby legitimate simplifications and limitations to the underlying
architectures is:

e Only essential basic mode functionalities supported from HMIPv6:
In HMIPv6, two different MAP modes are proposed, called “extended” and “basic”
mode. The extended mode can be used to support mobile networks and other features
with the disadvantage of introducing much more complexity. Since basic mode is suffi-
cient for QoS support based on the QoS-Conditionalized Binding Update only the latter
is supported.

e HA implementation used for provisioning of HMIPv6-MAP functionality:
According to the HMIPv6 specification, a MAP BU distinguishes from a HA BU only by
the M flag in the registration message. However, regarding the actual binding operations
of a MAP and a HA, the only difference in basic HMIPv6 mode is the context in which
it is used by the MN as described in detail in Section 3.3. For the offered service from
the MAP of HA point of view nothing is different. Therefore, an HA implementations
is employed in the MAPs and also a common HA BU is used by the MN for registration
with the MAP.

e No overlapping of MAP domains:

The HMIPv6 architecture utilizes a MAP to offer micro-mobility to the MN. HMIPv6
conceptually also allows one AR to be served by several MAPs. Hence, overlapping
of adjacent access networks can be achieved but may also introduce indeterministic
routes to a CN outside the AN, which must be strictly avoided for transparent QoS
provisioning. This aspect and a possible solutions is further discussed in Section 3.7.
Currently, QoCoo enables an MN to register only with one MAP at a time and assumes
a strict tree structure with the MAP, located in the Edge Router (ER), as the root and
the ARs as the leafs of the AN.

e QoS signaling supported only for micro-mobility:
The QoS-Conditionalized Binding Update conceptually allows QoS signaling end-to-
end which is necessary for initial QoS reservations and macro-mobility handover where
the whole path to a CN is affected. QoCoo focuses only on micro-mobility scenarios.
Therefore, QoS signaling is limited to the path within a visited AN up to the ER where
the old and the new path converge. In the remainder this is referred to as local QoS
signaling.

e Flow identification limited to flow label and RCoA: According to the specifica-
tion in [11] a flow is identified by its source address, destination address and flow label.
Because no end-to-end QoS signaling is supported in the QoCoo implementation, the
CN’s IPv6 address, as the MN’s upstream destination address, is always initiated with
zero. This indicates that any packet containing the specified flow label and MN’s RCoA
should be treated according the negotiated QoS guarantees for his flow.

¢ Reduced QoS parameter set:
Various QoS parameters are proposed in [4] to represent a certain QoS level, such

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 23

TU BERLIN

as jitter, delay, bandwidth, packet loss, etc. Without loss of generality, the QoCoo
implementation only takes one important QoS parameter into account: bandwidth.
Consequently, the QoS satisfaction is simply evaluated by the relationship among the
available bandwidth along the affected path and the desired or minimal acceptable
bandwidth requirements for the MN’s flow.

3.2 Overview of System Model and Entities

Figure 3.1 illustrates the general system model of QoCoo. It shows basically the same model
as illustrated in Figure 2.6 extended only with the necessary functionalities and entities to
support micro mobility and the local QoS-Conditionalized Binding Update . This includes
a MAP located in the ER of every AN, the extension of every node in the access networks
to be enabled for the QoS-Conditionalized Binding Update and the functionality required in
the MN to support micro mobility.

link A (home link) |

MAP% 2 / ER

—'inkF1l (AR*e) Network 2:
(AR*c) (AR*d) LE

[link D

link C

*%

Corresponding Node Access Router

Home Agent Edge Router
Mobile Node Mobile Anchor Poin

* : Enabled for QoS—Conditionalized BU
«+ . Enabled for Micro Mobility

Figure 3.1: General QoCoo system model

3.3 HMIPv6 — Informal Specification

HMIPv6 introduces one new entity, the MAP, which is responsible for assisting MNs while
moving between ARs below its radio and hide local mobility of the MN from outside the AN.
To accomplish this, an MN’s CoA is split into Regional CoA (RCoA) and Local CoA (LCoA).

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 24

TU BERLIN

The RCoA identifies the currently visited region? of an MN and the LCoA its exact location,
similar to the MN’s CoA in the MIPv6 architecture. Only the RCoA is communicated outside
the region to HA and CNs. The MAP essentially serves as a local HA for the MN. Its purpose
is to deliver packets, sent to the MN’s RCoA, to the MN’s current exact location as identified
by its LCoA. In order to notify the MN of the availability of a MAP, the Neighbor Discovery
protocol is extended for MAP Discovery. Whenever the MN moves to a new location inside
the region, it requests local mobility support from the MAP by registering with its regional
and local CoA.

In the following, the new signaling messages for MAP Discovery and MAP registration
are explained. Then, an example scenario describes MAP Discovery, regional, and local
registration procedures in detail.

The Sections 3.4.2 to 3.4.1 explicitly describe and specify the extensions required for
MAP, intermediate routers and the MN to support HMIPv6 on top of MIPv6.

New Signaling Messages for HMIPv6

HMIPv6 defines two new message options, one for Dynamic MAP Discovery and another
for registration with a MAP. For MAP Discover, a MAP Option (MAO) is conveyed as an
additional suboption in the RtAdv message. A MAP, which always serves also as a router,
uses the RtAdv messages to advertise its availability and additional parameters to neighboring
nodes. Routers that reside on the same link receive the MAP option and propagate them
with their own RtAdv down the AN towards the ARs and attached MNs. The format of a
MAP option is illustrated in Figure 3.2. The meanings of the fields and assignments specific
for the QoCoo implementation are given in Table 3.1.

Type | Length [Dist [pref [R{M][I|T[P]V[Res
Valid Lifetime

Global IP Address for MAP

Figure 3.2: MAP option format

For registration with the MAP while moving within its covered domain, a BU message
with a HAO, as discussed in Section 2.2.2, is used. To distinguish the MAP BU from the
HA BU, one of the original reserved flags is reassigned as the M flag to indicate a MAP
registration. The only thing that makes the service from a MAP different from that of an
HA is the context in which it is used by the MN. When sending a BU to the MAP, the MN
stores its RCoA as the HoA in the HAQ and the LCoA as source address in the IPv6 header?.
The MAP interprets the content of the address fields in the same way as a HA does. Packets,

%in this model a region is equivalent to an AN.
3It should be noted that the case of a MAP registration is the only exception to the general requirement
of always using the RCoA as source address for outgoing packets.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 25

TU BERLIN

Name of Field

Meaning of Field ‘

Type

8-bit unsigned integer to identify the MAP option. In the specification
of HMIPv6 is is referred as TBA. In the QoCoo implementation it is set
to a yet unused arbitrary value of ND_OPT_MAP_INFORMATION
= 22.

Length

8-bit unsigned integer defining the length of the option in units of 8
octets and is set to 3.

Dist

A 4-bit unsigned integer indicating the distance or number of hops
between receiver and originating MAP of the option. This value is
mainly relevant for overlapping MAP domains, where a MN might
select a particular MAP based on its distance. The evaluation of this
value is not supported by QoCoo.

Pref

4-bit unsigned integer representing the preference of a MAP. A value
of 15 means the lowest preference of a MAP. This value can be used
to indicate an overloaded MAP or path. Default value is 3.

R flag

Indicates basic mode and that MN’s RCoA must be formed based on
64 bit prefix of Global Address field. Since QoCoo only supports basic
mode it is set to 1.

M flag

Indicates extended mode, set to 0.

I flag

When set indicates that the MN may use its RCoA as source address
for outgoing packets. In order to keep flow identification transparent
for local movement, the MN even must do so. Therefore set to 1.

T flag

Reserved feature for extended mode, set to 0.

P flag

Indicates that the MN must use its RCoA as source address for out-
going packets as discussed above. Set to 1.

V flag

When set indicates that reverse tunneling of outbound tunneling, to
the MAP, is allowed, which is not supported and therefore set to 0.

Valid Lifetime

This value indicates the validity of the MAP’s address and conse-
quently the time for which an RCoA, based on this address prefix, is
valid.

Global Address

One of the MAP’s global addresses to be used by the MN for regis-
tration. The higher ordered 64 bit of the address provide the prefix
for construction of the MN’s RCoA

Table 3.1: Meanings of MAP option fields

Copyright at Technical University TKN-02-017 Pa,ge 26

Berlin. All Rights reserved.

TU BERLIN

destined for the address as indicated by the HAO field, are intercepted and tunneled to the
CoA represented by the source address field of the IPv6 header.

HMIPv6 Signaling Paradigm

Figure 3.3 illustrates the procedure of MAP discovery and MAP-, HA- and CN- registra-
tion for a macro movement and micro movement. The timeline corresponds to the system
model in Figure 3.1. The relevant events are marked with an index which is used for refer-
ence in the following. The syntax and tokens used to describe the behavior and content of
a message are the same as in Figure 2.7. To simplify, some interim procedures like DAD or
link layer address change are neglected in this example.

M AR ¢ AR d MAP 1 HA N
A::1/64 C::c/64 D:.d/64 F1::F1/64 A::2/64 B::3/64
ol IP lCMP[RA[Fl::Fl/64,MAO[F1;:F1/64]]2)
’] 1
MP[RA[C::c/64,
3 Mo o eal
| Mioﬂ:kl},au 4
5 IP[C::1,FL:Fl], HI[F1::1],.BA] D
————— AR ey 6) IP[B::3,F1::1],
4 A -:1],BA %M
|PIC::1,F1:F1LIP[RL:1,A:2) RH[A 1],B4 q gg&-&f\m ’
:.F1],|P[F1::1,B::3],R:l[A::l],PL ; lP[Fl:1,B::3],RH[A::1],PLE .
S A
10
|P,lCMP[RA[D::d/64,
MAO[F1::F1]]]
—IFLIFLD: 1] HADIF1:1].8U
[F1::1],BA |
14 1P[F1:1,B::3] RH[A:1L.PL)
|P[D::1,FL::F1],IP[FY 1,3 RHIA L] Pl ——————— \a
o1, i o hites
—
« \1%%
I —

Figure 3.3: Timeline: HMIPv6 signaling

The first 3 events are part of the MAP discovery process. It overlaps with the actual
MAP registration procedure covered by event 3 to 5. Every ER which is also serving as a
MAP advertises its availability by attaching a MAP option to its RtAdv messages (event 1).
This RtAdv is received by all other nodes sharing link F1, in particular AR ¢ and d (event
2). Each of them now maintains a record of the MAP option for further propagation. The
lifetime of the received MAP option is indicated by the vertical arrows on the right side of
the AR.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 27

TU BERLIN

The reception of the RtAdv message (event 3) triggers the MN to initiate the ND process.
In particular establish a new CoA and select AR c as its default router. The supplied MAP
option additional indicates the availability of a MAP, willing to assist the MN for micro-
mobility. By combining the 64-bit MAP address prefix with its own 64-bit interface identifier,
the MN first constructs a tentative RCoA. To verify the RCoA and request for the offered
service, a BU message is sent to the MAP. The MAP then checks for uniqueness of the
requested RCoA, arranges the necessary entry in its Binding Cache (BC) and acknowledges
the successful operation with a BA to the MN (event 4).

The following 3 events illustrate the additional mobility signaling that is only necessary
for a macro movement. The now verified RCoA (event 5) is signaled to the HA and CN*
with an appropriate BU message, revealing only the new RCoA as the MN’s current primary
CoA. The corresponding BA from the HA (event 6) is consequently replied to the MN’s
RCoA on link F1. There it is intercepted by the MAP (event 7) and tunneled to the MN’s
LCoA. Common packets sent by the CN (event 8) undergo the same treatment. Because
the re-routing via the MAP (event 9) is the desired effect for micro-mobility provisioning
in HMIPv6, route optimization is only performed to avoid triangle routing via the HA but
suppressed for the MAP. Event 10 simply indicates the regularly requirement for a MAP to
refresh its availability by re-initiating the MAP discovery process.

The gain for a local movement is illustrated by the next two events. In event 11, the MN
receives the RtAdv from AR d informing it with the availability of a new default router but
covered by the old MAP. When the lifetime of the old AR finally expires (event 12), it must
only update the binding entry in the MAP with the new LCoA acquired via AR d. For HA
and CN the RCoA has not changed. Further packets by the CN (event 13) are still routed
to the MN’s HoA via its RCoA, where they are intercepted (event 14) and tunneled to the
new LCoA.

3.4 HMIPv6 — Formal Description of Implementation Model

Approaching a concrete implementation design, this section represents a more formal de-
scription of the required functionality and expected behavior of the HMIPv6 part of QoCoo.
Actually, the implementation modeling went in parallel with the elaboration of the selected
implementation environment. This was necessary to get a feeling for what is feasible at all
and adapt my implementation model to the concept and potential entries of the surround-
ing implementation. For a straightforward development from concept to praxis, the formal
description of the implementation model is discussed before the selection and elaboration of
the implementation environment (Chapter 4).

The description of the implementation model is done by means of Specification and De-
scription Language (SDL) inspired notation. Such pseudo-SDL slang simply offers a suitable
method to transform the underlying informal specifications towards a model that is reason-
able as a basis for an implementation design. I believe that violations of a formally correct
description in SDL are justifiable since the purpose of this model is to provide an intermediate
step between the conceptual specification and the final implementation design. The aim is

4This scenario assumes that the CN is already maintained in the Binding Update List (BUL) of the MN
and route optimization is initiated immediately.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 28

TU BERLIN

not to prove the correctness of the underlying protocols.
In the following sections the distinct entities and their behavior regarding the support of
the HMIPv6 protocol is described.

3.4.1 Mobile Node

The most new requirements are necessary for the MN and are identified here. The new
behavior of a MIPv6 MN to be enabled for HMIPv6 is illustrated in Figure 3.4 a-c. To save
space and provide a better overview of the described behavior certain conditions and actions
are specified in individual tables and are only referenced in the Figures 3.4 a-c. The conditions
for determining the required actions according to the current context are given in Table 3.3.
Table 3.2 lists related registration messages and the carried IPv6 addresses that must be
present in the IPv6 source field and Home Address Option (HAQO). The corresponding line of
the table and the message’s destination is indicated by the name of the message. The related
column is given by the argument of message name.

Table 3.4 provides an additional context summary of every leaf branch that leads to a
specific action.

BU-DST HOME mode (H) | ANCHORED mode (A) MIP mode (M)
SRC HAO SRC HAO SRC HAO

BUxMAP x!MAP!LCoA x!MAP!RCoA

BU_HA HoA HoA x!MAP!RCoA HoA CoA HoA

BU_CN HoA HoA x!MAP!RCoA HoA CoA HoA

BUpMAP || pRCoA pRCoA | pRCoA pRCoA pRCoA pRCoA

Table 3.2: Composition of MN registration messages for Figure 3.4.

3.4.2 Mobile Anchor Point (MAP)

This section explicitly describes the operations required from a MAP. It is divided into MAP
discovery and the binding operation.

MAP Discovery

A router serving as MAP is responsible for initiating the MAP discovery process. There-
fore, the MAP must be configurable to advertise its own MAP options and propagate MAP op-
tions from potential, topological higherM APs along with router advertisements downstream
the AN to the MN. For MAP discovery, every interface must be configurable for the following
properties:

e To receive or propagate MAP options received from other interfaces. To avoid loops
only one should be the case.

e Whether or not its own MAP options shall be attached to an already received MAP
options.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 29

TU BERLIN

data: data of incoming message,

x: value to identify specific AR,

car: value to identify current AR,
cmap: value to identify current MAP,

MESSAGES:

RA(data): IPv6 RtAdv
MAP-BA(data): Binding Ack. from MAP

* MAP-NBA(data): Negative BA from MAP
MDS: Data Structure to maintain AR and MAP related information, MAO(data): MAP Option
TIM: timer used to periodically force a connectivity check,
MAP-BU-tim: timer to indicate loss of a send MAP BU
RA(data) MAP-BU- MAP- MAP- TIM
timeout(data) ACK(data) NACK(data)
update MDS with data restart TIM

assign x to identify the "best"
of the known ARs in MDS

ARV
yes
no
HL
yes
ARV & 'HL & IMAP
oM+ no ARV & HL & MAP & ICM
yes
ARV & 'HL & MAP & ICM & IMC
no
ICR ———————
yes
Context: H Context: MH Context: AH
—_ CAR =X, CAR =X,
CMAP := NULL CMAP := NULL
BU_HA(H), BU_HA(H), Context: R Context: A Context: L2
HOME BU_CN(H) BU_CN(H), CAR := X, - CAR := X,
BUpMAP(H) CMAP:=x!MAP CMAP:=x!MAP
HOME HOME BUXMAP(A) ANCHORED ANCHORED
ANCHORED

Figure 3.4: Pseudo-SDL description of extensions required for HMIPv6 support in the MN
(1/3)

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 30

TU BERLIN

ARV & HL & IMAP ARV & HL & IMAP

ARV & HL & MAP & !ICM

ARV & HL & MAP & ICM & 'MC

no no
ICR _— o
yes yes
Context: r2 Context: R2 Context: rl Context: R1
CMAP:=xIMAP CMAP:=xIMAP start) start)
MAP-BU-tim MAP-BU-tim
Context: 11 Context: L1 BU_HA(A), BU_HA(A), BUXMAP(A) BUXMAP(A)
start start BU_CN(A), BU_CN(A), MIP
MAP-BU-tim MAP-BU-tim BUPMAP(A) BUPMAP(A)
BUXMAP(A) BUXMAP(A
® ® (ANCHORE@ 6NCHORE9 < - > < - >
ANCHORED ANCHORED

Figure 3.5: Continued pseudo-SDL description of extensions required for HMIPv6 support in
the MN 2/3)

ARV & HL & IMAP

no
ICM*
yes
no no
ICR
yes yes
Context: M Context: MM Context: am Context: AM
-— CAR :=x CAR =X, CAR =X,
CMAP := NULL CMAP := NULL
BU_HA(M) BU_HA(M), BU_HA(M),
MIP BU_CN(M) BU_CN(M), BU_CN(M),
- BUpPMAP(M) BUpPMAP(M)

T) (e) (e

Figure 3.6: Continued pseudo-SDL description of extensions required for HMIPv6 support in
the MN (3/3)

Copyright at Technical University

Berlin. All Rights reserved. TKN-02-017

Page 31

TU BERLIN

‘ Abbreviation of condition ‘ Description of condition ‘
ARV (AR valid) AR X is valid as indicated by its lifetime.
HL (Home link) AR X is located in home link as indicated by the adver-
tised prefix.
MAPV (MAP valid) AR X is covered by a valid MAP as indicated by the
advertised MAP option and lifetime.
ICM (Is current MAP) The advertised MAP option of AR X belongs to the cur-

rent MAP (CMAP). This is indicated by the conveyed
MAP address in the MAP option.

ICM* (Not ANCHORED) | The state of the MN is not ANCHORED (not using a
Mobile Anchor Point, not in HMIPv6 mode). It is in
HOME or MIP mode.

MC (MAP confirmed) A recently send BU to the MAP has already been con-
firmed by a corresponding BA.
ICR (Is current router) AR X is identical to the current default router.

Table 3.3: Meaning of abbreviations for the conditions in Figure 3.4 regarding the selected
AR X.

e If own MAP options are configured to be advertised, the parameters carried by the
MAP option as described in the previous section.

Figure 3.7 describes the behavior for MAP discovery on process level.
MAP Binding Operations

Because the main difference between a MAP and an HA is only the context in which
it is used by the MN, an HA existing implementation can be used. One advantage of this
approach is, that no new functionality for the binding operations is required.

3.4.3 Intermediate Routers

Intermediate routers only have to receive and propagate MAP options in router advertise-
ments. They perform essentially the same behavior for MAP discovery as the MAP itself,
except that they don’t emit their own MAP options. They only propagate received MAP
options with router advertisements.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 32

TU BERLIN

‘ Abbrev. ‘ Description of Context

H MN has not moved and is still in HOME environment.

MH MN has moved from MIP environment to HOME environment.

AH MN has moved from ANCHORED environment to HOME environment.

R MN is in ANCHORED environment and has not moved but MAP binding life-
time is about to expire and requires to be refreshed.

A MN has not moved and is still in ANCHORED environment.

L2 MN has undergone a local movement in ANCHORED environment and the new
LCoA registration with the MAP has already been confirmed.

11 MN is in ANCHORED environment and has not moved but MAP binding is
currently not confirmed or has expired (Note: MAP registration must have
expired without being refreshed in time.)

L1 MN has undergone local movement in ANCHORED environment.

r2 MN has not moved but the availability of a new MAP has been advertised by
the current AR, resulting in an new ANCHORED environment for the MN.
A registration with that MAP has already been confirmed by a BA. (Note:
Advertised MAP option must have changed with this AR.)

R2 MN has undergone a regional movement to a new ANCHORED environment.
LCoA registration with the MAP has already been confirmed by a BA.

rl MN has not moved but the availability of a new MAP has been advertised by the
current AR, resulting in an ANCHORED environment for the MN. However,
the MN keeps assuming the previous environment until registration with the
MAP is confirmed. (Note: Advertised MAP option must have changed with
this AR.)

R1 MN has undergone a regional movement to a new ANCHORED environment.
The MN keeps assuming the previous environment until registration with the
MAP is confirmed.

M MN has not moved and is still in MIP environment.

MM MN has moved from MIP to MIP environment.

am MN has not moved but the recently availability of a MAP is no more advertised
via the AR, resulting from an ANCHORED to a MIP environment. (Note:
Advertisement of MAP option has ceased with this AR.)

AM MN has moved from MIP to ANCHORED environment.

Table 3.4: Meaning of abbreviations in Figure 3.4 for current context of the MN regarding
the selected AR X.

0

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 33

TU BERLIN

data: data of incoming message, MESSAGES:

ici: .|nterface contr_ol |nforrr_1§1t|pn delivered with incoming message RA(data): IPV6 RtAdv

ifnr: value to specify specific interface of node MAO(data): MAP Option

IFC: data structure to maintain configured interface parameters, '

MOL: MAP-option-list: data structure to maintain MAP options
received from other MAPs,

tim(ifnr): timer

IDLE Start tim(ifnr) for

every RA enabled interface
according to its configured

‘ advetrtisement interval

reception of in IFC.
RA(data)
IDLE
RA-data .
contains reception of IDLE
no MAO(data RS(data,ici)
‘ reception of
IEC allows ifnr=icitifnr tim(ifnr)

to receive
MAO via

no

Assemble RA + MAO(s)
based on IFC and MOL.
Recalculate MAOs
lifetime and dist

fields.

MAO

from R) ()
yes . estart timer(ifnr
tself
tse according to IFC
update MOL send RA(data) on
with MAO-data interface: ifnr

IDLE IDLE

Figure 3.7: Pseudo-SDL description of extensions required for MAP discovery in MAP and
IR

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 34

TU BERLIN

3.5 QoS-Conditionalized Binding Update — Informal Specifi-
cation

In this scheme an IPv6 QoS hop-by-hop option (see Section 2.2.1), to represent the MN’s
QoS requests, is piggybacked on the message containing the BU to the MAP. This message
is called BU4+QoS message. Each node concerned with QoS management between the MN
and the MAP conceptually passes the QoS request to internal QoS mechanisms in order to
check for resource availability. If desired resources are available, they are reserved and the
message will be forwarded along its route. Further, the QoS message allows the distinction
into desired and minimum acceptable QoS requirements of the MN to the new data path. If
an IR decides that the MN’s desired QoS request can not be guaranteed but a level covering
the specified acceptable amount, the QoS option is updated respectively. If not even the
acceptable QoS request can be guaranteed, no reservations are made and the QoS option is
modified to indicate this fact to the other involved nodes on the path and to the MN.

Upon reception of the BU4QoS message, finally the MAP checks on the requested resource
availability. In case of success the binding status of the MN is updated and the MAP responds
with a positive BA4+QoS message, representing the actual amount of reserved resources.
Otherwise, no binding update is performed and a negative BA+QoS message is returned to
the MN. While the BA+QoS message travels back to the MN intermediate routers check
whether higher nodes have decreased the desired QoS level or even rejected the MN’s QoS
request completely. Then also the amount of previously reserved resources is corrected. When
the MN receives the BA+QoS message it can determine whether the MAP registration was
a success and how much resources have been reserved.

By way of this scheme, QoS (re-)establishment for micro movements is managed locally
and transparently to the CNs. In case of a macro movement QoS re-establishment might be
managed with MIPv6 and [5], however, this is not supported by the QoCoo implementation.
Only if all routers along the new path find that sufficient resources are available a handoff is
performed. In this sense, the handoff process to a new AR is conditional on the availability
of QoS resources and the scheme can take advantage of HMIPv6. If there are multiple AR
to choose from another one can be tried in succession. Alternatively, the MN may decide
to reduce the minimum acceptable QoS level of its QoS request to the path and send a new
BU+QoS message via the selected AR to the MAP.

New Signaling Messages for QoS-Conditionalized Binding Update

The specification of the QoS option used in the QoS-Conditionalized Binding Update [9]
is essentially taken from a proposal by H. Chaskar and R. Koodli called “Framework for
QoS Support in Mobile IPv6” [5]. In the QoCoo implementation some reorganizations were
made to the compositions of a QoS option. Figure 3.8 illustrates the differences between the
proposal in [9] and the composition used in QoCoo.

The reasons for the modifications are explained in the following text. The QoS options is
wrapped as a TLV encoded option in an IPv6 hop-by-hop extension header where one QoS
option may contain one or several QoS objects. Each QoS object is capable of holding QoS
descriptions and packet-classification parameters (flow identifications) for one specific data

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 35

TU BERLIN

Composition of QoS option according to Composition of QoS option in
proposal in QoS—-Conditionalized BU: QoCoo implementation:
IPv6 hop-by-hop option header IPv6 hop—by—-hop option header
QoS option QoS option
QoS object flow classification parameters
lifetime
QoS requirements for flow flow label
source (RCoA)
destination (CN address)
y » identification (HoA)
ath (AR address
packet/flow classification d path ()
parameters
QoS object
QoS requirements for flow
SE=lohiget bandwidth
(more QoS objects for this flow) QoS object

(more QoS objects for this flow)

(more QoS options for different flows)

Figure 3.8: Composition of QoS options in QoS-Conditionalized Binding Update and QoCoo

flow of the MN. According to the definition for the use of flow labels to label sequences of
packets [11], it is not allowed to use the same flow label value for up and downstream packets
between two communicating nodes. The QoCoo implementation does not conform to this
rule, but since the IPv6 specification [11] also states, that the use of the flow label field is still
experimental and subject to change, I believe this violation to be reasonable. On the other
hand, specifying the QoS requirements for the up and downstream part of a flow separately
is still possible by using one QoS option for each direction.

The D- and A-flag introduced in [9] indicate which of the possible four combinations for
a flow (a — upstream and acceptable, b — downstream and acceptable, ¢ — upstream and
desired, d — downstream and desired) is contained in the QoS option. Thereby the QoS
objects which are present in one QoS option can only describe QoS requirements for flows
that belong to one single CN or one group of CNs. Whether several QoS options may exist
within one hop-by-hop extension header to express QoS requirements for flows to different
(groups of) CNs is not stated explicitly in [9]. However, the “values of packet classification
parameters” field, carrying the necessary information to let routers identify packets that need
special handling, is present in every QoS object. This is even the case when the QoS objects
belong to the same flow and only express the difference for its acceptable and its desired
QoS requirements. Another potential problem with the proposed QoS object composition in

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 36

TU BERLIN

[5, 9] is its resulting length. The maximum option data length of a TLV encoded option is
limited by the 8-bit option length field (see Section 2.2.1) that can represent the option data
length only up to 255 octets (bytes). If the “Values of Packet Classification Parameters” field
contains two (16-byte) IPv6 address, a (4-byte) lifetime value, and a (3-byte) flow label the
total size of one QoS object would result in 66 bytes length and limits the amount of QoS
objects to only three per option.

Therefore, the multiple times of presence for the same packet classification parameters
result in unnecessary overhead, especially when one or several (16 byte long) IPv6 addresses
are included to identify the source and/or destination of a flow. To overcome this weakness,
the packet classification parameters are moved to the QoS option header, providing flow
identification parameters for all QoS objects in this option. More QoS options may follow
the first option in the hop-by-hop extension header if QoS reservations for different flows are
desired.

Figure 3.9 illustrates the detailed format of the QoS option used in the QoCoo implemen-
tation. Table 3.5 describes the parameters carried in the “packet classification parameters”
field and other fields of the QoCoo-QoS option.

| Option Type | Opt Data Len
F|DJA] Reserved | Flow Label
Lifetime
. 1 MN L
Qo8 option { address]
T CN address .
t 1
| MN-HoA C
L]
L 1
QoS objects [AR address i
—i|> Object Type Object Length (desired) Bandwidth
.* Object Type Object Length (acceptable) Bandwidth

Figure 3.9: QoCoo-QoS option format

QoS-Conditionalized Binding Update Signaling Paradigm

The example shown in Figure 3.10 illustrates the procedure of a QoS-conditionalized
handover within a micro movement.

For the beginning of the timeline it is assumed that the MN performs a QoS sensitive
communication with the CN B::3 (see Figure 3.1) . QoS related resources have already been
reserved in all involved routers on the data path between MN and CN, particularly in AR c,
the MAP, and further nodes between the visited AN and the CN. In event 1 the MN receives
the first RA from AR d which is covered by the same MAP as the currently-in-use AR c.
When the lifetime of the last received RA from AR c exceeds (event 2), a BU+QoS message
is sent via AR d to MAP 1. In this example, the QoS option (QO) requests all routers
on the new data path in the AN to reserve 10 Kb/s bandwidth for upstream traffic and 10
Kb/s bandwidth for downstream traffic to the CN B::3. However, if the requested 10 Kb/s

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 37

TU BERLIN

Name of field

Meaning of field

Option Type

Identifies the hop-by-hop option type. The highest three bits must be
001 to state that a processing IPv6 node, which does not know the
option type must skip over this option and continues processing the
packet header and that the option data may change on en-route. The
lower five bits are set to 11001

Opt Data Len

Length of the option data field in octets. Length of this option is: 80.

F flag

If set to 1 indicates that desired QoS (up to the current passed node)
can be met.

D flag

If set indicates that “both upstream and downstream QoS requirements
are specified separately, otherwise QoS specifications express require-
ments for up and downstream. (In this example not set.)

A flag

If set indicates that “both desired QoS and acceptable QoS are speci-
fied”, otherwise only desired is specified. (In this example set to 1.)

Flow Label

24-bit value to identify packets that must be treated according the
expressed QoS requirements.

Lifetime

Indicates the lifetime for which QoS reservations for this flow are valid.
If needed for a longer period, the reservation must be refreshed by
a new QoS message before the lifetime elapses, if requirement ends
prematurely a QoS message for this flow with the F bit set must be
send.

MN address

Indicates the upstream source of the flow. This value could theoret-
ically be inferred from the HAO of the MAP BU that also holds the
MN’s RCoA. However, by this way the possibility is given to send QoS
options independent of a MAP BU. This might be beneficial when a
MN wants to increase or decrease its QoS requirements for an already
established flow. Also, since the HAQO is an destination option it is
normally not supposed to be processed by an intermediate router.

CN address

Indicates the downstream source of the flow.

MN HoA

Represents an global unique identification of the MN. This is actually
only relevant for charging.

AR address

Indicates the used path of the MN to the MAP. This becomes important
when the MAP is requested to release reserved resources on behalf
of the MN when the MN looses connectivity to the AR of the path.
Otherwise reserved resources could only timeout and would lead to
“expensive” unused reservations whenever a MN moves.

Object Type

Identifies the QoS object type that specifies the QoS requirements.
This one only specifies the amount of bandwidth. If multiple objects of
this type exist, each of them express the different requirements for up-
and/or down-stream combined with desired or acceptable bandwidth.

Object Length

Length of this object in octets. (Set to 4 in this example)

Bandwidth

16 bit unsigned integer indicating the maximum bandwidth require-
ments for this flow in kilobit/second (Kb/s).

Table 3.5: Meaning of QoCoo QoS option fields

Copyright at Technical University

Berlin. All Rights reserved.

TKN-02-017 Page 38

TU BERLIN

MN AR c AR d MAP 1
A::1/64 C::c/6d D::d/64 F1::F1/64

|P.ICMP[RA[D::d/64,
MAO[F1::F1]]] .

O—"""]

1

IP[.Fl::Fl,D::l],QO[FDA:OOl,
F1:: l,B::3,A::1,D::D,DBW:10, iy Fl’D::lLQO[FDA:OOl’

(PABW:SIHAOFLy By 5| FLiLBI3AL1D:D DB,
i T oruey 4
d P[D::1,F1::F1].QO[FDA:00L, IP[C::c F1::F1] QO[FDA:101,

| .
F1::1,8::3,A::1,D::D,DBW:6, F1::1,B::3,A11,Ciic,DBW:O,

ABW:5],BA ABW:0]

Figure 3.10: Timeline: QoS signaling

could not be guaranteed by any of the affected routers, the MN would also accept a smaller
bandwidth as long as a minimum of 5 Kb/s can be guaranteed.

When the BU4QoS message passes AR d (event 3), the router checks its available re-
sources. The check results in only 8 Kb/s instead of the desired amount of 10. Because the
amount of available bandwidth even though fits into the acceptable requirement of the MN,
the QO is modified accordingly and 8 Kb/s of bandwidth are reserved for the MN’s flow.
Then the packet is forwarded towards its destination the MAP. In this example the MAP
reduces the desired bandwidth of the MN’s QO another time since it can only guarantee
the amount of 6 Kb/s, which is still within the MN’s acceptable range (event 4). The MAP
updates the MN’s binding status, reserves the accepted amount of bandwidth, and replies to
the MN with the corresponding BA+QoS message to acknowledge the partly success of the
operation. Additionally, a hop-by-hop-QoS message, with the F bit set, is sent to AR ¢ to
trigger the release of reserved resources on the previously used data path of the MN.

When the QoS option, now piggybacked by a BA, passes the AR d a second time (event
5), it checks the option’s F flag and compares the contained DBW value with the amount of
previously reserved resources for this flow. In this example, 2 Kb/s of the reserved bandwidth
is released and the message is forwarded to the MN’s LCoA. By receiving the BA+QoS
message, the MN can recognize whether the requested reservation was a success (F flag = 0)
and if yes, how much of the desired QoS could be satisfied by the new path.

3.6 QoS-Conditionalized Binding Update — Formal Descrip-
tion of Implementation Model

This section provides a more formal description of the behavior for the nodes involved in the
QoS-Conditionalized Binding Update procedure. The description is conducted in the same

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 39

TU BERLIN

way as for HMIPv6 requirements in Section 3.4. An SDL inspired notation is used with
the aim to provide an intermediate step between the informal specification of the underlying
protocol and the implementation design. In the following sections the distinct entities and
their behavior regarding the QoS-Conditionalized Binding Update is described.

3.6.1 Mobile Node

This section describes the behavior required from a HMIPv6-enabled MN to support the
QoS-Conditionalized Binding Update. The MN is responsible to initiate the reservation and
release of resources on the current data path. Aslong as no handover occurs, related messages
are sent directly from the MN. However, if the MN loses connectivity to its current AR, there
is no possibility for the MN to directly release resources on the old data path. Then the MN
instructs the MAP, located at the other end of the previous data path, to release unused
resources on its behalf. Essentially two variants of such desired, but indirectly triggered,
resource de-registrations via the MAP exist. How the messages sent by the MN for resource
de- and re-registration are interpreted by the MAP is described in Section 3.6.2.

e In case of a local handover QoS reservations must be released on the data path below
the MAP and reserved on the new path. Therefore a MN simply sends an appropriate
BU+QoS message, requesting the reservation of resources on the new path, to the MAP.

e In case of a regional handover the MN must send a binding release message (BU with
lifetime = 0, A-flag = 0, and HoA (RCoA) = IPv6-header source address (LCoA)) to
the previous MAP.

If none of these variants fit, eg when the MN incurs a total loss of connectivity, installed
resources on the data path are reserved until their lifetime elapses.

A description of the extensions required for a MN to perform this behavior is given in
Figure 3.11. To illustrate the modifications regarding the description for a HMIPv6-enabled
MN (Figure 3.4), the extensions for support of the QoS-Conditionalized Binding Update are
represented in grey color. An arrow indexed with a star indicates that no further extensions
to Figure 3.4 are necessary for this branch.

3.6.2 MAP and Intermediate Router

This section describes the behavior for entities serving as MAP or IR to support a MN’s QoS-
Conditionalized Binding Update. Both entities are required to install, maintain, and release
resources as requested by a traversing QoS-hop-by-hop option from a MN. A description of
the new operations required from an IR to perform this behavior is given in Figure 3.12.

The MAP is additionally responsible to initiate the release of resources on a MN’s previous
data path. Therefore the MN instructs the MAP, located at the other end of the previous
data path, to release unused resources on its behalf. Essentially three variants of resource
de-registrations exist for a MAP. Which of the following three cases fits can be deduced from
the content of the received BU(4+QoS) message.

e In case of a local handover QoS reservations must be released on the data path below
the MAP. Reservations in the MAP must be updated for the new path.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 40

TU BERLIN

*
RA(data) MAP-BU- MAP- MAP- TIM
timeout(data) ACK(data) NACK(data) QoSopt(data) ™\
N
N
update MDS, RDS, IDS with data restart TIM, if MN’s QoS requirements in IDS have changed, then update RDS

assign x to identify the "best"
of the known ARs in MDS
(Consider also RDS and IDS)

QoS™ no

<requirements >—=

~~.exist

data: data of incoming message,

x: value to identify specific AR,

car: value to identify current AR,

cmap: value to identify current MAP,

RDS: Data Structure to maintain reserved resources per flow,

MDS: Data Structure to maintain AR and MAP related information,

MDS: Data Structure to maintain AR and MAP related information,
extended with RDS per AR to maintain reserved resources

TIM: periodically triggers connectivity and IDS check,

MAP-BU-tim: timer to indicate loss of a send MAP BU

IDS: Interface Data Structure to access RDS from user-space,

MESSAGES:

MAP-BA(data):

RA(data): IPv6 RtAdv

Binding Ack. from MAP

MAP-NBA(data): Negative BA from MAP
MAO(data): MAP Option
QoSopt(data): QoSopt from MAP

no
yes
no no
yes

Context: rl Context: R1

start start

MAP-BU-tim MAP-BU-tim
Context: R Context: 11 Context: L1 Assemble Assemble
CAR :=x, start start QoSopt(data) QoSopt(data)
CMAP:=x!IMAP MAP-BU-tim MAP-BU-tim according RDS according RDS
Assemble Assemble Assemble BUXMAP(A) + BUXMAP(A) +
QoSopt(data) QoSopt(data) QoSopt(data) QoSopt(data) QoSopt(data)
according RDS according RDS according RDS
BUXMAP(A) + BUXMAP(A) + BUXMAP(A) +
QoSopt(data) QoSopt(data) QoSopt(data) - -
ANCHORED ANCHORED ANCHORED

Figure 3.11: Pseudo-SDL description of extensions required to enable a MN for the QoS-
Conditionalized handover

Copyright at Technical University

Berlin. All Rights reserved. TKN-02-017

Page 41

TU BERLIN

e In case of a regional handover the previous MAP only receives a binding release message
(BU with lifetime = 0, A-flag = 0, and HoA = IP-header source address) form the MN.
This message must trigger the MAP to initiate the release of reserved resources on the
whole data path including the MAP.

e In case of binding release because of insufficient resources, the MAP must reply to the
MN with a negative BA+QoS message. All previously reserved resources for the MN
must be released.

If none of these variants fit, eg when the MN incurs a total loss of connectivity, installed
resources in the MAP and IRs are reserved until their lifetime expires.

A description of the new operation required from a MAP to perform this behavior is given
in Figure 3.13.

data: data of incoming message,

x: currenly processed QoS object,

IDS: Interface Data Structure to access RDS from user—space,

RDS: Data Structure to maintain reserved resources per flow,

‘ MDS: Data Structure to maintain AR and MAP related information,

rec: record in RDS to maintain specific flow reservations,

avbw: available bandwidth in node,

obj: Qos object of a QoS option,

QoSopt(Qdata) flow: request identification parameters like flow-val., RCoA, HoA,...
‘ It: lifetime, dbw: desired bandwidth,

abw: acceptable bandwidth, rbw: reserved bandwidth,
for all QoS objects in Qdata successively b
continue at a with x := Qdatal!obj,
if finished continue at b
‘a
purge RDS from recs with exceeded lifetime modify x according accepted bandwidth in rec

x!flow
existin
RDS

no
forward packet

alloc and initialize new entry in RDS to
rec := RDS!(x!flow) represent x!flow, rec := RDS!(x!flow) *

update rec with x,
(rec!rbw, avbw) := f(x!dbw, x!abw, x!rbw, avbw) MESSAGES:
‘ QoSopt(Qdata): IPv6 QoS hop-by-hop option

update IDS according RDS

Figure 3.12: Pseudo-SDL description of extensions required to enable an IR for the QoS-
Conditionalized handover

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 42

TU BERLIN

MESSAGES:

IP(IPdata): IPv6 header

QoS(Qdata): IPv6 QoS hop-by—-hop option
HAO(Hdata): IPv6 Home Address dest. option
BU(BUdata): IPv6 Binding Update dest. option
BA(BAdata): IPv6 Binding Ack. dest. option

IP(IPdata) + QoS(Qdata) +
HAO(Hdata) +
BU(BUdata)

for all QoS objects in data successively

data: data of incoming message,

x: currenly processed QoS object,

IDS: Interface Data Structure to access RDS from user-space,
RDS: Data Structure to maintain reserved resources per flow,
MDS: Data Structure to maintain AR and MAP related information,
rec: record in RDS to maintain specific flow reservations,

avbw: available bandwidth in node,

obj: Qos object of a QoS option,

flow: request identification parameters like flow-val., RCoA, HoA,...
ARaddr, It: lifetime, dbw: desired bandwidth,

abw: acceptable bandwidth, rbw: reserved bandwidth,

HoA, LCoA, RCoA, F:F-flag, A:Ack-flag

continue at a with x := Qdata!obj,
if finished continue at b

‘ a

purge RDS from recs with exceeded lifetime

x!flow
existin
RDS

no

RCoA:=Hdata!HoA, LCoA:=IPdata!srcaddr

BUdatallt

>=0

rec := RDS!(x!flow)

alloc and initialize new entry in RDS to
represent x!flow, rec := RDS!(x!flow)

update BC (add) update BC (del)

XIARaddr==~_N0
ec!ARaddr—
yes

(local handover occured,
release reserved resources on old path)
Assemble new QoS(Qdata) with Qdata:=rec

Qdatal!dbw:=Qdata!abw:=Qdata!lt:=0, Qdata!F:=1

BUdata!A BUdatalA

send
QoS(Qdata)
to rec!ARaddr

update rec with x
(rec!rbw, avbw) := f(x!dbw, x!abw, x!rbw, avbw)

update IDS according RDS

Assemble new QoS(Qdata)
(Qdata:=rec) and BA(BAdata)

QoS(Qdata) +
BA(BAdata)
to LCoA

(deregistration because of insufficient recources)
Assemble new QoS(Qdata) with Qdata:=rec, Qdata!dbw:=0,
Qdatalabw:=Qdata!lt:=0, Qdata!F:=1 and BA(BAdata) with
BAdata!lt:=0, BAdata!status:=INSUFFICIENT_RESOURCES;

(deregistration because of regional movement,
release reserved resources on old path)
Assemble new QoS(Qdata) with Qdata:=rec,
Qdataldbw:=Qdata!abw:=Qdata!lt:=0, Qdata!F:=1

QoS(Qdata) +
BA(BAdata)
to LCoA

Figure 3.13: Pseudo-SDL description of extensions required to enable a MAP for the QoS-

Conditionalized handover

(- \

send
QoS(Qdata)
to rec!ARaddr

Copyright at Technical University
Berlin. All Rights reserved.

TKN-02-017

Page 43

TU BERLIN

3.7 Summary, Open Issues, and Possible Solutions

In this Chapter the underlying concepts by means of informal specifications of the HMIPv6
and QoS-Conditionalized Binding Update proposal have been analyzed and significant proce-
dures for this work have been summarized. Thereby, the following shortcomings for support
of the QoS-Conditionalized Binding Update have been identified and discussed with a possible
solution.

e In an access network, enabled for the QoS-Conditionalized Binding Update, the use of
the RCoA as source address should be forced by the MAP by setting the P-Flag in the
MAP Option (MAO) used for MAP discovery. This is necessary if a MN performs a
local movement but the the MN’s flow identification values (eg its source address) must
be transparent for nodes outside the visited region.

e The reorganization of a QoS option was reasonable in order to allow a less overhead
driven signaling of QoS parameters to the network.

e Significant information for efficient maintenance of QoS reservations have been iden-
tified. A new “flow classification parameters” field has been proposed to signal these
informations to the involved nodes on the path.

e In particular the requirement to release stale reservations on a old data path of the
MN has been neglected in the QoS-Conditionalized Binding Update specification. A
solution has been developed how this operation can be superseded by the MAP of that
data path.

The resulting behavior of the distinct entities has been re-examined in a more formal way to
provide a basis for an implementation design.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 44

TU BERLIN

Chapter 4

From Concept to Praxis

4.1 Selection of Environment

In order to implement the necessary functionalities for the QoS-Conditionalized Binding Up-
date in a HMIPv6 environment, an existing Operating System (OS) environment needed to
be found first. The Microsoft Research (MSR) , Linux-2.4, and FreeBSD-3.4 OS have been
identified for further evaluation. All of these OSs provided an IPv6 and MIPv6 implemen-
tation, where the FreeBSD-3.4 OS even offered an HMIPv6 implementation. Therefore, the
obvious candidate would have been the only available HMIPv6 implementation from INRIA,
based on the FreeBSD 3.4 OS.

To backup this prematurely decision, a testbed based on the INRIA HMIPv6 implemen-
tation has been setup. After intensive preoccupation with the INRIA implementation, this
option was finally dropped due to its unstable code, an outdated version of the underlying
HMIPv6 proposal and OS, and because no longer maintenance support was provided, neither
for the OS itself nor for the HMIPv6 implementation.

Finally, the decision was to take the Mobile IP for Linux (MIPL) [10] implementation
from Helsinki University of Technology (HUT) and it’s Telecommunication and Multimedia
Lab. The following pros could be assigned to this decision. The Unix like Linux OS, a
free and well documented OS proved to be an excellent option for development of prototype
network functionalities in various cases. A reasonable amount of experience with the Linux OS
already exist and was assumed to facilitate the development process. Together with the MIPL
implementation an open, very stable, and well maintained IPv6 and MIPv6 implementation
is available. A very responsive MIPL developer and user mailing list indicated the wide usage,
acceptance and opportunity for discussion of potential future problems.

At last, a new MIPL-based testbed has been setup to gather experience with the im-
plementation and its configuration. The MIPL source code has been explored and possible
hooks for the necessary extensions have been identified.

4.2 Linux Kernel Environment

In the following selected features of the Linux OS will be summarized and their significance
according the QoCoo implementation will be stated.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 45

TU BERLIN

Kernel Modules

The Linux kernel has the possibility to separate part of its functionality in modules that can
be loaded when needed and unloaded when becoming obsolete. This provides the running
operating system with the capability to potentially offer a lot of functionality and at the
same time keep the amount of code and processes currently running in kernel space relative
small. Another advantage of loadable kernel modules emerge when developing new kernel
functionality. By way of that, the possibility is given to load, test, unload, and modify some
kind of prototype implementation in kernel space even multiple times without the constraint
to recompile the complete kernel or reboot the whole system. Once the module is loaded into
the kernel also other kernel functionality can be accessed.

Regarding the QoCoo implementation all the new kernel functionality required is either
provided as an individual kernel module or applied as an extension to an already existing
one. But also many of the features available for the Linux system that are used in the QoCoo
implementation are provided as kernel modules.

Proc-Filesystem

The proc-filesystem is a special filesystem, which only exist in the memory of the Linux
system. The kernel and kernel modules can use this filesystem as an interface to the userspace.
The kernel module can create a special directory tree and files in the filesystem, which can
be read with normal user tools like cat. The other way around, it is possible to write a file
to the proc-filesystem in order to pass parameters to the kernel.

In the QoCoo implementation, the proc-filesystem is used to define requested resources
for an MN’s flow and provide feedback (about whether the operation succeeded) to the user
space. In the intermediate routers and the MAP it is used to access available resource
information.

4.2.1 IPv6 Module

The IPv6 kernel module provides all the functionality necessary for processing of an IPv6
packets between the network device and the final application in user space. This includes the
basic routing, ND, ICMPv6, and extension header processing as well as functionality related
to the transport layer protocols: UDP and TCP. To allow the dynamic control to the various
IPv6 protocol parameters several new entries are made to the proc-filesystem. Thereby, for
example auto configuration or forwarding via specific interfaces can be enabled or disabled.
In order to provide limited access to the use of destination headers from user space via RAW
sockets, the “Advanced Sockets API” as suggested by [26] is at least partly supported. If IPv6
packets and extensions headers have to be sent from kernel space, an IPv6 RAW socket can
be allocated and passed with the appropriate prepared data structures (to hold the extension
header data) to the ip6_build xmit() function. Then the ip6_build xmit() function performs
the assembling of the packet and ensures further processing.

In the MIPv6 and QoCoo implementation, functionality such as the ip6_build xmit()
function is utilized for generation and sending of signaling messages.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 46

TU BERLIN

4.2.2 Netfilter Module

Netfilter [24] is a module for packet mangling, outside the normal Berkeley socket interface.
It introduces a series of hooks at five well-defined points while a packet traverses across the
IPv4 and/or IPv6 protocols stack of an IP node. Whenever a packet being processed is
passed along any of these hooks, it is handled to the netfilter module. The position of the
IPv6 related hooks and their names are illustrated in Figure 4.1.

transport-layer

IPv6 Stack

NF_IP6_LOCAL_IN [NF_IP6_LOCAL_OUT |
NF_IP6_PRE_ROUTING |-»- NF_IP6_FORWARD --—| NF_IP6_POST_ROUTING

link-layer

Figure 4.1: Position of netfilter hooks in IPv6 stack

Every incoming IPv6 packet which is delivered from the link-layer to the IPv6 layer first
encounters the NF_IP6_ PRE_ROUTING hook. Then it enters the first routing part of the
IPv6 stack, which decides whether the packet is destined for another node, or a local process.
If it is destined for the node itself, it is hooked by NF_IP6 LOCAL_IN before being passed
to the next higher layer processing. Otherwise, if it is destined to another node instead, the
netfilter module is called again via the NF_ IP6_FORWARD hook. The packet then passes a
final hook, the NF_TP6_POST_ROUTING hook, before being passed to the link layer again.
The NF_IP6_LOCAL_OUT hook is called for packets that are created locally before being
processed by the routing part of the IPv6 stack. Other kernel modules can register to access
to any of the defined hooks and are thereby provided with the possibility to modify or even
drop such intercepted packets.

The traditional purpose of the netfilter was to provide a framework for firewalling. With
the further developing it proved to be a very flexible basis for various network control functions
such as traffic scheduling, network address translation (NAT) or to enforce other advanced
packet treatment. In the QoCoo implementation, the netfilter module is utilized to access
the QoS hop-by-hop option of traversing packet.

4.3 Mobile IP for Linux (MIPL) Environment

The previous sections of this chapter summarized the reasons for using MIPL and Linux as
the basis for the QoCoo implementation and provided an overview of the underlying Linux
operating system In continuation this section gives a brief introduction to the selected MIPv6
implementation environment and how it is embedded in the IPv6 stack of the Linux operating
system.

Because a close interaction between IPv6 stack and MIPv6 stack is believed to be manda-
tory, the MIPL developers decided to implement all related MIPv6 functionality in kernel

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 47

TU BERLIN

Linux Kernel (IPv6 protocol)

calls from IPv6 code

’ mipglue (forwards call) ‘

’ Netfilter (forwards packets)

calls to other kernel functions

gll

= (]

= = A‘-‘:
@ S8 %s
3 &= O o8
2 v ST
© T a o
= o= Ca
c ac
=]

— Y Y

Mobile IPv6 Implementation (kernel module)

Figure 4.2: MIPL general architecture

space [17]. Otherwise splitting the code into user and kernel level would require new inter-
faces and lead to extra complexity and overhead. The system is provided as a single kernel
module, which can be dynamically inserted and removed from the kernel. The module pro-
vides functionality for HA, CN and MN. Whether a node running the MIPL system is serving
as HA, CN or MN is defined via module load parameter. To allow dynamic (un)loading of
the module into the kernel, stubs for MIPL callable functions were introduced into the IPv6
code. This is provided through the mipglue module. If during the processing of a MIPv6
destination option the IPv6 stack passes a stub, it checks whether the MIPL module is loaded
and if yes the MIPL related function is called. The advantage of this approach is that the
module can be unloaded, modified and reloaded into the kernel of a running system. Figure
4.2 gives a rough overview of the MIPL general architecture.

Several hooks were patched to the IPv6 stack allowing the mipglue module to forward
certain calls from IPv6 code to the MIPv6 code. The other way around, once the module
is loaded into the kernel, other functionality from the kernel code (in particular the IPv6
code) can be called directly. This avoids the need for re-implementing functionality in the
MIPL module which actually already exist in the IPv6 module. Additionally, for interception
and manipulation of certain packets the netfilter module is used. For example when the HA
intercepts packets destined for the MN and when the MN modifies its IPv6 source address to
its current CoA. The extensions made to the MIPL module are described in detail in Section
5.1 for support of HMIPv6 and Section 5.2 for the QoS-Conditionalized Binding Update.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 48

TU BERLIN

Chapter 5

Implementation Design

This chapter describes how the concepts discussed in Chapter 3 were applied to the surround-
ing implementation environment in Chapter 4. In particular, the Linux operating system and
related features, the MIPL version 0.9 MIPv6 implementation, and the router advertisement
daemon (radvd) is either applied or extended. Where the gap between abstraction levels in
the previous section and the final description on implementation level is still considerable,
another intermediate overview will be provided for a better understanding. In conformance
with the previous section, the HMIPv6 and the QoS-Conditionalized Binding Update part
are discussed independently.

5.1 Implementation Design of HMIPv6 Functionalities

The implementation design of HMIPv6 requires extensions to the MN, the MAP and the
intermediate routers.

5.1.1 Mobile Node

All required features for an MN to support HMIPv6 are extended into the MIPL code. The
following text provides a detailed description to support the behavior outlined in Section 3.4.

Overview of Data Structures

The MIPL implementation manages the known ARs in a list where it records AR-specific
information like the AR address, its lifetime and the assigned CoA. In order to maintain the
available MAPs and related information, the MN data structure must be extended. Figure
5.1 gives an overview of the data structure related to movement detection. The extensions
made for HMIPv6 are highlighted.

The pointer curr_router identifies the AR serving currently as default router. Another
pointer next_router is temporarily assigned while performing a handoff. A list of MAPs is
added, to hold MAP-relevant information such as its RCoA and lifetime. In addition, the
AR structure is extended with several new fields, particularly an LCoA field, a context field
and a pointer to a potentially affiliated MAP available via this AR. The “context field” is
introduced to simplify the evaluation of the available ARs in order to select the best-suited
default AR among all known ARs. It is explained in more detail later in this section.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 49

TU BERLIN

List of Access Routers List of MAPs Current MAP
Next MAP e e =
(for HMIPV6 s
handover head_ar head _map ;
only) . 4
| tent_router AR3 MAP 2 curr_map
ADDR RCOA
CoA lifetime
| next_router o next
. — lifetime
-7 CONTEXT
Next router MAP / MAP 1
(for handover LCoA RCOA
only) next | lifetime
i next
| curr_router AR2
Current ADDR
access router CoA
lifetime
CONTEXT
MAP
LCoA
next | | Existing MIPv6 |
AR1
| Extended for HMIPv6 |

Figure 5.1: Overview of MN data structure for mobility environment

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 50

TU BERLIN

Two new pointers are introduced to reflect the current relation of the MN to the available
MAPs. The pointer tent_router is only temporarily assigned while performing a handover in
HMIPv6 mode. While emitting the necessary MAP registration message, it points via the AR
selected for MAP registration to the next MAP. The identified router of the pointer remains
tentative until registration with the MAP of this AR is acknowledged. After acknowledgement
by the next MAP, the pointer curr_map is reassigned to identify the new, currently in use,
MAP.

Overview of Handover Processing

Handover processing of the MN involves a series of procedures. The focus of the design lies
in the strict isolation for handling incoming events, updating the data structure, making a
decision and finally executing the decision. Figure 5.2 illustrates the function call sequence
related to MN event handling.

ra rev _ptr() [ack_rcvd()]) [bu_timeout()] (router : state()]

Event
=== handlers

| -Updates MN
data structure

existing in MIPv6

 EE——
DR

modified for HMIPv6

Function calls . < if handover >
modified for HMIPv6

Selects next access
set next_router router based on
available informationt

Executes
handover

Figure 5.2: Overview of MN event handling

The function router_event() is called if any of the following events occurs:
e a RtAdv handled by the function ra_rcv_ptr().

e a positive or negative BA in response to a BU which is handled by the function
ack_rcvd().

¢ a timeout indicating the loss of a previously sent BU handled by the function bu_timeout().

e a periodic timer calling the function router_state() in order to check the current AR
and MAP binding for expired lifetime.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 51

TU BERLIN

After that, if new information is available, router_update() is called to store them in the
MN data structure. The function router_propose() is responsible for making a “just-at-the-
moment valid” judgment based on the currently available information and a certain policy.
The method and rules used to enforce this policy is explained in the next paragraph. If the
judgment results in selecting a new AR as default router, a handover is performed. This
is indicated by the pointer next_router that is assigned to identify the next router in the
AR list. Eventually change_router() is called to execute the relevant registration procedures
according to the latest judgment.

The method used in router_propose() to select “the best” next router and to identify the
next steps to be executed is illustrated in Figure 5.3.

Context-field

parse head_AR and set "Context-field":

is valid

well behaved

home link
has MAP-Optiony
. 4":::: MAP specific
is current MAP "I properties
| MAP confirmed “|
— is current Router
1 1 [| Context-field
is new feature
Context-field in HMIPV6

implementation

return router with largest value of "Context—field"

Figure 5.3: MN policy method

This is achieved by using the “context field” that has been introduced in Figure 5.1.
The function parses the complete AR list and sets for every AR specific property bits in its
context field. Each property bit reflects a certain property of the AR. The identified properties
partly consist of the conditions used in Figure 3.4 and described in Table 3.3 to determine
the registration actions of a MN regarding a specific AR. A property-bit to reflect the recent
behavior of an AR has been added. Where the overall and quite complex connection state of
the MN is represented through a number of pointers, address and lifetime fields, the context
field summarizes the “just-in-the-moment valid” context in only one field for every single AR.

Additionally, these flags are arranged in an order (depending on the policy) such that the
router with the largest value in the context field is regarded as the currently most promising
router. The reasons for the selected policy in this implementation is given in the following,
ordered from the highest towards the lowest assumed priority:

e The most important property of an AR is the fact whether it is valid or not (depending
on its lifetime and timestamp of the last received RtAdv).

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 52

TU BERLIN

e Also important is the fact whether any problems occurred recently with that AR or
its related data path in the AN. If several MAP registrations sent via this AR are not
acknowledged before the MAP-BU-tim timer indicates the unsuccessful registration,
the population of this bit is denied. Other doubts regarding the path may be coupled
to this property-bit later. An affiliated timestamp and default lifetime assures that the
judgement of an once as “not well behaved” convicted AR can elapse.

e If the evaluated AR is located in the home link the third highest priority is assigned.
By accepting this AR as the MN’s default router, all kind of mobility management
becomes unnecessary at all.

e When the MN has lost connectivity to the home link but is within the coverage of one
or several foreign AR, MIPv6 or HMIPv6 mobility mechanisms are used. In this case
an AR which also advertises the availability of a MAP and thereby offering support for
micro-mobility is preferred.

e Even more desirable for an HMIPv6 handover is the capability for a local movement.
This is possible if the AR advertises the availability of the same MAP, with which the
MN is currently registered.

e Once a MAP registration via a certain path is already acknowledged, another tiny
benefit is given with the corresponding AR since the MN does not need to send a new
registration message.

e Finally, to avoid superfluous handover, the current router is preferred as long as another
available AR can not come up with any additional benefits.

In rare cases, if the evaluation of several routers result in the same context-field value, then
ties are broken in preference of earlier added routers. This method provides a good means
for the evaluation of the known AR and simplifies the identification of necessary registration
operations to be executed. Moreover, this selection method allows to easily apply different
movement policies. This can be achieved by changing the order in which properties are
reflected in the context field.

Finally, the identified registration operations are executed through the change_router()
function which disseminates functionality into further procedures. Figure 5.4 gives an overview
to the change_router() related functions.

The procedure consists of two phases. The first is concerned with the tentative MAP
registration, while the second is responsible for completion of default router establishment
and possible HA/CN registrations. According to the context field of next_router, essentially
three options exits for the first phase of registration. If the next_router points to the same
router as current_router, processing is only continued if a MAP binding needs to be refreshed
because the lifetime of the binding is about to expire. Then, if the context field indicates
the availability of a valid MAP via the next router, the pointer tent_router is assigned the
next_router value and the function update_map() is called to coordinate sending of the MAP
BU. It should be noted that according to the current router nothing has changed yet. The
router selected for MAP registration is yet only tentative. Thus, a routing header must be

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 53

TU BERLIN

— [according to context of 'next_router’]

. return
'(Dor;]all; ?nl' Registers with
HMIPV6) set tent_router the new MAP
return
Phase 2: —— setcurr_map _Updates
_____------=""""""] routing table
— | add_routes() -

Deletes old

— | del_routes() - 7 routes
— | set curr_router -~ _|_Sets new AR

(default router)

— (handre_prefx0] -
ST TT----—_______| Registers with

return " HA and CNs

Figure 5.4: MN handover execution

used before the HAO and BU destination option to assure that the packet does not travel
via the default router towards the MAP. Eventually, the function returns.

If the context field indicates that the registration with the MAP has already been con-
firmed, the third option of phase 1 is given. Then, the pointer curr_map is assigned to
indicate the currently in use new MAP and processing continues with phase two. In case of
a movement in MIPv6 mode phase 1 is omitted and processing continues directly in phase
2. It is concerned with the actual movement. This requires to add the new default router
to the routing table (function add_routes()) and purge it from entries related to the old AR
(function del_routes()). The pointer curr_router is reassigned to indicate the currently in use
AR and eventually the function handle_prefix() is called to coordinate the sending of BUs
to HA and CNs. However, registration with the latter is only performed in MIPv6 mode or
if the MN has undergone a macro movement in HMIPv6 mode. To send and keep track of
current bindings, existing functionality was used and required only minor modifications. For
example, the function get_coa() is used to access the current CoA. It is modified to always
provide the correct CoA for HA and CN. This would be the CoA (LCoA) in MIPv6 mode
and the RCoA in HMIPv6 mode.

Description of Extended Modules, Functions and Data Structures

The MIPL system consists of a bunch of modules (.c and .h files) in order to group function-
ality. Modules, which have been extended are summarized in Table 5.1.

5.1.2 Mobile Anchor Point and Intermediate Router

An HA implementation can be used for an MAP but requires extensions for MAP discovery.
Since MAP discovery is an extension to the Neighbor Discovery protocol and in particular

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 54

TU BERLIN

Module name

Description

mipglue.c

Handles integration between [Pv6 module and MIPL module.

Nothing has changed here. The only new suboption that needed to be
processed is the MAP Option (MAO) piggybacked by a RtAdv message.
This option can accessed when parsing the contained suboptions of a
received ICMPv6-RtAdv message.

mipv6.c/.h

Main source file for MIPv6 module. Handles shared resource alloca-
tion and some general purpose functions. Also contains the structure
definitions for the various extension headers.

This module has been extended with data structures for new HMIPv6
related suboptions. General purpose functions have been modified when
necessary to consider HMIPv6 related processing.

mdetect.c/.h

Encapsulates the used movement detection algorithm.

New data structures are introduced for maintenance of known AR and
MAPs. The processing of movement detection has been reorganized to
support micro mobility in a HMIPv6 environment.

mn.c/.h Contains Mobile Node (MN) specific functions for managing registration
procedures with HA.
Has been extended with functions execute registration and de-
registration operations of a MN with a MAP.

router.c Helper functions for mdetect.

Various new helper functions according to the requirement of a HMIPv6
aware MN have been introduced and stored here. Existing ones have
been adapted to the new functional requirements.

sendopts.c/.h

Handles outgoing options management.

Extended for management of HMIPv6 related outgoing options such as
the BU to the MAP, the use of a routing header with tentative regis-
trations, and the start and handling of timers to indicate the loss of a
previously sent registration message.

Table 5.1: MIPL modules extended for HMIPv6

Copyright at Technical University TKN-02-017 Pa,ge 55

Berlin. All Rights reserved.

TU BERLIN

to the part responsible for router discovery, extensions to the code providing this service
is sufficient. In the Linux operating system, sending RtAdvs is performed by the router
advertisement daemon (radvd) [23]. This is a program running in userspace of a Linux
IPv6 router and can be configured to initiate router discovery via its interfaces. The MAP
discovery service includes advertising of a MAP’s own MAP option as well as the receiving
and propagation of options from other MAPs. Therefore, the described functionality in this
section fits also for intermediate routers by assuring the propagation of received MAP options.
The desired behavior of such entity eventually depends only on the configuration.

For the QoCoo implementation the source code of the radvd version 0.7 has been extended
for MAP discovery as described in Section 3.4.2. The source files from radvd that needed
modifications are given with a brief description in Table 5.2.

After initializing and reading the configuration file, the radvd eventually enters two loops
for every configured interface. One is responsible for advertising multicast RtAdvs at the
configured advertisement rate. The other one waits for incoming RtAdv or RtSol messages
and replies with the corresponding RtAdv in case of RtSol. A detailed reference of the
extended data structures and functions is given the Appendix A.1.

5.2 Implementation Design of QoS-Conditionalized Binding
Update Functionalities

In order to integrate functionality for support of the QoS-Conditionalized Binding Update
in the QoCoo-HMIPv6 implementation, further extensions are required for the MN, the
MAP, and the IRs of an AN. Common for all entities is the requirement to process received
QoS-hop-by-hop options. This is accomplished by introducing a new netfilter module called
gos-monitor which is responsible for intercepting of traversing QoS options and managing of
further processing. The further processing then depends on whether the node is an MN, an IR
or a MAP. It is performed according to the description given in Section 3.6. The necessary
extensions were applies to the HMIPv6-extended-MIPL implementation . Table 5.3 gives
an overview of the modules introduced or extended for support of the QoS-Conditionalized
Binding Update. A detailed reference of the extended data structures and functions is given
in the Appendix A.2.

5.2.1 Mobile Node

For the MN, every initiated QoS request relies on a specific data path in the visited AN.
In the QoCoo implementation a path is represented by its leaf node the corresponding AR.
Therefore, the maintenance of requested and successfully reserved resources is coupled with
the data structure maintaining the known AR information. The MN’s AR data structure
(introduced in Section 5.1.1 and Figure 5.1) has been extended respectively (See MDS and
RDS in Figure 3.11).

Additionally, the MN’s proc-file system has been extended to dynamically pass flow and
resource-request parameters from user-space (introduced as IDS in Figure 3.11) to the related
functionalities in the processing kernel module.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 56

TU BERLIN

Module name ‘ Description

gram.y Grammar description for configuration file in form of a LARL(1) context-
free grammar. It serves as an input files for bison, a tool to generate c
program to parse that grammar.

The grammar has been extended for syntax to configure interfaces for
MAP discovery. For the syntax see also QoCoo manual.

scanner.l Describes lexical patterns of grammar. It serves as an input file for flex, a
tool for generating “scanners”: programs which recognize lexical patterns
in text. Together with bison the generated .c files provide the functionality
to process the configuration file of radvd and store the information in data
structures accessible while running radvd.

The scanner.] file has been extended with the rules and expression neces-
sary for configuration of MAP discovery.

interface.c Contains functions to initialize the default RA values for every configured
interface and check values assigned by the configuration file.
Is extended with functions for MAP advertisement defaults.

process.c Contains functions for processing of received RAs and RSs.

Has been extended with the capability to understand and process MAP
options in received RAs and update the MAP list with new MAP infor-
mation.

radvd.c Main source file for radvd. Essentially reads in parameters and configu-
ration file, opens ICMPv6 socket and enters loop. Holds root pointer to
interface data structure.

The only modification to this file was to extend functions calls with new
parameters and add a root pointer for data structure to maintain received
MAP options.

radvd.h Contains structure definitions for interface configuration.

Is extended with structure definitions to maintain the own configured and
received MAP information. Also holds structure definition for MAP option
header, some macros definitions and constants.

send.c Contains function to assemble and send RAs on an interface based on the
given interface configuration.

Has been extended to attach MAP option to sending RA

timer.c Contains timer and alarm handler. A function for returning the absolute
system time was added.

Table 5.2: Radvd modules, extended for MAP discovery

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 57

TU BERLIN

5.2.2 Mobile Anchor Point and Intermediate Routers

A new data structure (RDS in Figure 3.13 and 3.12 is also introduced for nodes employed
as MAP or IR to maintain the reserved resources of a MN. This data structure consists of a
list, which is identified by the pointer head_resr. Each list element holds flow identification
parameters, the affiliated QoS requirements and the lifetime status as deduced from corre-
sponding QoS objects. To allow access to the router’s total available and reserved bandwidth
and provide information about the currently maintained QoS flows the proc-file system has
been extended with new entries (IDS in Figure 3.13 and 3.12).

For IRs the processing of received QoS-hop-by-hop options mainly consists of checking
available resources, manage required QoS reservations, and maybe modify the traversing
QoS option. All necessary processing management is controlled by the qos-monitor daemon.
However, several helper functions from other IPv6 related modules are called if required.

For a MAP the initial processing of a received QoS-hop-by-hop option is identical to that
of an IR. Regarding the actual registration the main difference is that the MAP, instead
of forwarding a maybe modified QoS option, has to reply this option to the MN, coupled
to the corresponding BA. Therefore the existing functions for managing the MAP’s binding
operations have been modified. Whenever the MAP is processing a BU and modifying its
BC, it consults its Resource Data Structure (RDS) for entries that are related to this binding.
If this is the case, two new options exist. If the BU has been received with an attached QoS
option and indicates a MAP registration, a QoS option is also attached to corresponding BA.
If the BU actually indicates a Binding release or no QoS option is attached, a de-registration
due to a regional handover is assumed. Then the sending of a QoS de-registration message
to the MN’s old AR is initiated to release resources on its previous path.

Another issue is the de-registration of reserved resources on the MN’s previous path. In
case of a local handover, the MAP receives a new BU+QoS message. By comparing the
content of the new QoS objects with the maintained information for that flow, the qos-
monitor module in the MAP deduces the MN’s movement to a new AR and initiates the
sending a QoS-release message towards the old AR.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 58

TU BERLIN

‘ Module name ‘ Description ‘

qos-monitor.c | Contains functions for initializing of QoS-hop-by-hop daemon which is
responsible to monitor traversing QoS options. According to the node’s
purpose the qos-monitor daemon is running on (MAP, IR or MN) it
manages the core processing of received QoS options and required reser-
vations. For processing several helper functions are called from other
IPv6 related modules.

mipv6.h Extended with new data structure declarations for QoS signaling and
maintaining requested resource reservations in the IRs.

mipv6.c Extended with pointer and variables to maintain requested resources in
the IRs.

mdetect.h Extended with new data structure declarations for coupling the main-
tenance of QoS requests with the maintenance of known ARs in the
MN.

mdetect.c Movement-even-handling functions have been extended with capability
to consider desired, acceptable and finally successfully reserved QoS re-
quirements

router.c Provided with new helper functions for mdetect.c

procrcv.c Modified with hooks in the MAP function sequence to consider QoS
related operations when processing an received BU+QoS message.

sendopts.c Extended with Functions for managing sending and coupling of QoS-
hop-by-hop options with BU destination options. Additionally several
helper functions for maintaining reserved resources and flow parameters
are stored in this file.

dstopts.c Extended with functions to assemble QoS-hop-by-hop extension headers.

Table 5.3: Modules, extended for QoS support
Bertin. “All Rights reserved. TKN-02-017 Page 59

TU BERLIN

Chapter 6

Testing

This chapter discusses the process of testing the new functionalities provided through the
QoCoo implementation. Section 6.1 describes the testbed that has been setup as a basis for
emulating test cases and perform measurements. The emulated scenarios are summarized in
Section 6.2.1 and 6.2.2.

6.1 Testbed

A Testbed has been setup from the beginning of implementing and was gradually adapted to
new emulation requirements. This way, the testbed has been developed from a rather simple
one for MIPv6 functionality test to a much more complex version capable of emulating micro-
and macro-mobility movements as well as QoS-conditionalized handover.

The aim of the testbed is to provide a network environment for emulation of certain
scenarios. On one hand, the network environment is required to behave similar to significant
properties of the real world; on the other hand, insignificant and indeterministic behavior
should be avoided. Especially it is very important and desirable to eliminate indeterministic
behavior in order to allow the reproduction of once performed observations. The following
network properties were identified as significant for testing of QoCoo functionality and are
integrated in the testbed.

e The testbed must include a HA, CN, and a MN.
e To emulate a macro movement at least two ANs covered by a MAP should be available.

e Each AN must contain one or several ARs to allow the MN to access the foreign link.
To emulate a micro movement at least one of the ANs should advertise the availability
of several links.

e To trigger the movement of the MN, it must be possible to enable and disable the
connection of the MN to any of the available ARs and its advertised links.

e The transmission of a message always causes a certain delay until it is received by its
destination node. This transmission delay in real wide area networks (WANs) as well
as in real access networks (ANs) is typically much longer that in a testbed, built up in

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 60

TU BERLIN

a single room. To emulate the effects of the QoCoo scheme that can be expected from
its deployment in a real WAN/AN environment, some transmission delay (for packets
traversing the system model’s WAN part and AN part) must be enforced artificially.

HA / BR / ARh

WAN:
WAN delay
MAPa / ER MAPb / ER
AN a;: AN b:
AN delay AN delay

[

Figure 6.1: System model: v6 view on system model

In Figure 6.1 a simplified testbed setup from a IPv6 point of view is illustrated. It
conforms mostly to the system model given in Figure 3.1. The relevant IPv6 address of the
different entities are given in the dark grey boxes. For the HA, ARal, ARa2, and ARDb this is
the address which is advertised by their RtAdvs. MN and CN are depicted with their HoA.
The address depicted next to the MAPs is the address which is carried by means of MAP
discovery to the MNs. An artificial WAN-delay is enforced for all IPv6 packets traveling
between a MAP and the HA or CN. Another artificial transmission delay is introduced in
the two AN of the model and is referred in the following text as the AN-delay. This affects
all packets traveling between any AR and the responsible MAP of each AN. Since no IPv6
enabled WAN emulator, capable to enforce some controllable delay to traversing packets,
could be found the Nist Net Delay tool [3] for IPv4 was used. To accomplish the delay of
IPv6 packets, they are routed through an IPv4 tunnel via an additional PC serving as [Pv4-
WAN- and AN-emulator.

A detailed description of the testbed setup is given in Figure 6.2. The Figure shows
6 physical Linux PCs where some of these machines virtually serve for multiple purposes.
These machines are named as HA, MAP, CN/WAN, ARa, ARb, and MN. The smaller,
black-bordered boxes represent network interfaces, where those attached from the outside
represent real physical interfaces and those in the inside virtual, tunnel or dummy interfaces.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 6]‘

TU BERLIN

ethl mac:..BF6F

eth0 mac:..94E9 1

eth0 mac:..F186

Va4 X.X.2.7

Sit2 v6-in-v4

va: -

v4: .7

ethl mac:..8264

va: -

link h

eth2 mac:..75C1

v4: = 1

- link a1

'\

'\

link a2

'\

]

eth0 mac:..EEEC

1
1
1
I vd: X.X.0.1/24 v4: global addr./24
1 | sitl v6-in—-v4
. v6: global addr/128 |
. V4 -
1
' V6: HA: 1 (BRNARN)
1
: v4: .1
1
1 it2 v6-in-v4 . .
| T physical link b
14: —
1 — - IPv4 route
1 eth2 mac:.. .
X Vo XXX Ll6a | IPv6—in—IPv4 tunnel
] VA4: X.X.1.1/24 /
1
1
l |
1 eth0 mac:..30D9 eth0 mac:..9559
e]
1
. v4: X.X.1.4 v4: X.X.1.3
| sit2 v6-in-v4
dummyo0 virtual

' e xoxxz2uaa v -
1 va: -
1
! V6 Xx:X2233:4 |
1 va4: - .
! va4: .4 v4: WAN (/AN-del). ..3
1
1 sit3 v6-in-v4 sit4 v6-in-v4
I (Ve xxX2211:4 |
| v4: - v4: -
1 ethl mac:..9CEC . . ethl mac:..C139
. o= physical link f
. V4 X.X.2.4 Vv4: X.X.2.3

—
, |
1
1
1
1
1 v4: X.X.2.8
I | Sit2 v6-in-v4
1
1 I
1
1
1
1 B
X Vv4: .8
1
1 ethl mac:..4BFC
1 1

4 — H

1 _ ! link b1

e

MANAGEABLE HUB

eth0 mac:..9575

v4: X.X.0.9

vd: .9

Figure 6.2: Concrete testbed setup

Copyright at Technical University

Berlin. All Rights reserved.

TKN-02-017

Page 62

TU BERLIN

All interfaces are illustrated with an abbreviation for its type. If the interface is IPv6-
enabled, its most relevant IPv6 address is depicted in the dark grey box. If the interface is
IPv4-enabled, its IPv4 address is given in the light grey box.

All computers are Intel Pentium IT machines with a CPU speed between 300 and 500
MHz. All Network Interface Card (NIC)s are 100BaseT 3Com cards. Because link b and f
employ only a 10Mbps Hub, the bandwidth of these links is reduced to 10 Mbps.

The WAN-delay is enforced to all IPv4 packets, which are send or received from interface
eth2 of the HA or ethQ of the MAP and which are routed via interface ethO of the machine
WAN. ;From IPv6 point of view, the tunnel route provided by the sit2 interfaces on the HA
and MAP is the only possible packet exchange route between HA and CN on one side and
the MAP on the other side of the modeled wide area network. In this setup the HA also
serves as ER for the CN which is physically located in the same machine as WAN and AN
emulator. However, since only the CN’s interface ethQ is IPv6 enabled and the HA is the its
only known IPv6 default router, all IPv6 packets leaving the CN are routed via the HA. The
IPv6 layer of the CN does not know about the IPv6-in-IPv4 tunneled packets.

The machine MAP serves as MAP with two different address spaces and tunnel interfaces
virtually like two MAPs for AN a and b. Therefore the QoCoo-modified radvd is configured
to advertise the availability of MAP (1) with the RCoA-address space X:X:X:2233::/64 via
interface sit3 and the availability of MAP (2) with the RCoA address space X:X:X:2244::/64
for AN b via interface sit4.

The AN-delay between the MAP and the AR a and b is achieved in the same way as the
WAN-delay described above. None of the physical interfaces connected to link f is enabled
for IPv6. For AN a, all packets traveling between the ARa and the MAP are IPv6-in-IPv4
tunneled and routed via the interface ethl of machine WAN. The machine WAN then delays
the packets for a certain amount of time (AR-delay). Finally the ARa serves as AR for its
two interfaces ethl and eth2.

The connection of the MN to the access links of HA, AR a, or AR b is controlled via
an Small Network Management Protocol (SNMP) manageable Hub. All ports of the HUB
can be disabled and enabled through certain SNMP commands. When, for example, an
overlapping movement from AR a ethl to AR a eth2 is desired the corresponding ports are
turned on and off respectively. In that follows the MN’s link-connection state will be given
as a vector where the terms h, al, a2, and bl stand for the home, ARal, ARa2 and ARbl
link. These terms are followed by a “:0/1” indicating whether the connection to this link is
disabled or enabled by the controlling Hub. One disadvantage of the manageable Hub used in
this testbed is the indeterministic duration (between 2 and 6 seconds) it takes from sending
the SNMP command until the desired action is finally executed by the Hub.

An alternative approach to emulate movements is provided by the Netfilter module. The
basic idea is to let the MN physically always be connected to all potential AR interfaces, but
drop packets from certain interfaces based on their Medium Access Control (MAC) address.
If the packets are dropped before they are further processed by the QoCoo part of the IPv6
layer, the MN has no means to deduce the connection to this particular link of the AR. By
way of this, tools utilized for performance evaluation can immediately trigger a handoff and
have the possibility to consider for example the time when a handoff was executed with a
much better accuracy. Also it becomes possible to increase the maximal HO rate from only
one HO in 6 seconds (possible with the SNMP manageable Hub) to more than one HO per

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 63

TU BERLIN

second.

Simple connectivity test between the MN and the HA or CN were performed with the
diagnostic tool ping6. For evaluation of application packet loss a simple tool was developed
for sending and receiving udp messages between MN and CN. The transmitted messages and
their content were monitored via selected interfaces with the tool tcpdump. If monitoring of
certain processing parameters of a node was desired this was achieved by inserting appropriate
debug messages in the kernel code. The amount of debug message provisioning could be
accessed via an entry in the proc-file system, ranging form an error level where only serious
problems are reported to an informal level where all interesting function calls and variables
are logged.

6.2 Functionality Tests

This section discusses several representative scenarios which were emulated in the testbed in
order to show the desired functionality of the QoCoo scheme. It should be noted, that the
scope of the selected cases covers by no means all possible cases that might happen within this
scheme. It should not be regarded as any prove for the correctness of neither the underlying
protocols nor its implementation.

6.2.1 HMIPv6 Test Cases

Regarding HMIPv6 support in the QoCoo implementation the following test cases were per-
formed and proved to work in the described environment.

Regional handover form home link to foreign AN
Scenario Description: MN has connection to the home link (Manageable Hub Config-
uration (MHC): h:1, al:0, a2:0, b1:0). At time t1 link al is enabled, at time t2 link a is
disabled.
Observation: After time t1, the MN receives a RtAdv from the new AR al. When,
after time t2, the lifetime of the last received RtAdv of the HA has expired, a BU is sent
via AR al the the MAP a. As soon as the MAP BA is received by the MN, the new AR
al is selected as default router and a BU is sent to the MN’s HA.
Conclusion: Works

Local handover
Scenario Description: MN maintains connectivity to HA and CN via ARal (MHC:
h:0, al:1, a2:0, b1:0). At time t1 link a2 and bl is enabled, at time t2 link al is disabled.
Observation: After time t1, the MN receives RtAdv from new AR a2 and bl. When
the lifetime of the last received RtAdv from AR al has expired a BU is sent to the MAP.
The MN’s binding status in the MAP is updated and a BA is returned to the MN. In
the following, packets destined to the CN use the AR a2 as default router but contain the
same RCoA as source address used before the handover.
‘ continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 64

TU BERLIN

‘ continued from previous page
Conclusion: Works

Regional handover from AN a to AN b
Scenario Description: MN maintains connectivity to HA and CN via ARa2 (MHC:
h:0, al:0, a2:1, bl:1). At time t1 link a2 is disabled.
Observation: After time t1, when the lifetime of AR a2 has expired, a BU is sent to
the MAP b. When the corresponding BA is received by the MN another BU containing
the MN’s new RCoA is sent to the HA and CN. Additionally a BU is sent to the old MAP
a to release the old registration.
Conclusion: Works

Regional handover from foreign AN b to home link
Scenario Description: MN maintains connectivity to HA and CN via ARbl (MHC:
h:0, al:0, a2:0, bl:1). At time t1 link h is enabled.
Observation: When the MN (after time t1) received a valid RtAdv from its HA, a BU
is sent to the HA, CN, and MAP b for deregistration. In the following no more mobility
management is involved for communication between CN and MN.
Conclusion: Works

Failed MAP registration
Scenario Description: MN is connected via AR al (MHC: h:0, al:1, a2:0 b1:0) and re-
ceives RtAdv+MAQO messages form AR al. At time t1 the MAP binding service performed
at MAP a is disabled but advertisement of MAOs is still performed.
Observation: When (after time t1) the refresh timer of the MAP’s Binding Cache (BC)
entry in the MN has expired, a BU is send to the MAP a. After four unacknowledged
registration tries the MN switched back to MIPv6 mode and sent a BU containing the
MN’s HoA and CoA (LCoA) to the HA and CN. After 20 seconds the registration with
the MAP a was retried.
Conclusion: Works

Loss of MAP availability
Scenario Description: MN is connected via AR al (MHC: h:0, al:1, a2:0 bl1:0) and
receives RtAdv+MAOQO messages form AR al. From time t1 on, no more MAOQ is advertised
with the RtAdv emitted by AR al.
Observation: With the reception of the first RtAdv from AR al not containing a MAQ,
the MN switched back to MIPv6 mode and sent a BU containing the MN’s HoA and CoA
(LCoA) to the HA and CN.
Conclusion: Works

6.2.2 QoS-Conditionalized Binding Update Test Cases

This section summarizes several representative test cases regarding the QoS-Conditionalized
Binding Update support in the QoCoo implementation. In the QoCoo implementation, this
affects only the registration messages exchanged with the MAP of the visited AN. Therefore

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 65

TU BERLIN

only the MN’s data path in the visited AN network up to the MAP is considered for QoS
signaling. In the following description the abbreviation avbw stands for available bandwidth
in the data path of an AN. Dbw and abw, respectively, stand for the MN’s desired and
acceptable bandwidth requirements to the path and rbw for the currently reserved bandwidth
on the path according to the feedback provided through the BA+QoS message from the MAP.

QoS request via current path (avbw >= dbw >= abw)
Scenario Description: MN uses AR al as default router (MHC: h:0, al:1, a2:1, bl:1).
The avbw in MAP and AR al is 10Kb, rbw = dbw = abw = 0Kb. At time t1 the dbw is
set to 5Kb.
Observation: When the dbw is changed a BU+QoS message is sent towards the MAP.
Required reservations for the MN’s specified flow are installed in AR al and MAP a. A
BA+QoS message is returned to the MN. The MN’s rbw proc-file entry confirms that 5Kb
have been successfully reserved.
Conclusion: Works

QoS request via current path (dbw >= avbw >= abw)
Scenario Description: MN uses AR al as default router (MHC: h:0, al:1, a2:1, bl:1).
The avbw in AR al is 10Kb and in the MAP 8Kb, rbw = dbw = abw = 0Kb. At time t1
the dbw is increased to 15Kb.
Observation: When the MN’s dbw is changed a BU+QoS message is sent towards the
MAP. While processing of the QoS option in AR a 10Kb of the AR’s available bandwidth is
reserved for the MN, the dbw value of the message is reduced to 10 Kb and the message is
forwarded towards the MAP. At the MAP all 8Kb of the avbw is reserved for the MN. The
returned BA+QoS message’s dbw value is set to 8Kb. When the QoS option is processed
at the AR a two of the previously reserved Kb for the MN are released and the message
is forwarded to the MN. The MN’s rbw proc-file entry confirms that 8Kb of the desired
15Kb have been successfully reserved.
Conclusion: Works

Local HO with QoS request via new path (avbw >= dbw >= abw)
Scenario Description: MN uses AR al as default router (MHC: h:0, al:1, a2:1, bl:1).
The avbw in MAP and AR al and AR a2 is 10Kb, rbw = dbw = abw = 5Kb. At time t1
the link al is disabled.

Observation: When the lifetime of the last received RtAdv from AR al has expired a
BU+QoS message is sent via AR a2 to the MAP. The desired resources are reserved on
the new path, a positive BA4+QoS message is returned to the MN. The MN’s rbw proc-file
entry confirms that 5Kb have been successfully reserved.

Conclusion: Works

Regional HO due to unsatisfied QoS requirements in current AN
Scenario Description: MN uses AR al as default router (MHC: h:0, al:1, a2:1, b1:1).
The reserved bandwidth for the MN in AR al and the MAP is 5Kb, the avbw in the MAP
is 10Kb, in AR al and a2 it is 5 Kb, and in AR bl it is 10Kb. The MN’s rbw = dbw =
abw is also 5Kb. At time t1 the MN’s dbw and abw is increased to 15Kb.

‘ continues on next page ‘

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 66

TU BERLIN

‘ continued from previous page ‘
Observation: After the dbw and abw of the MN have been increased a BU+QoS
message is sent to the MAP via AR al. AR al set the F flag of the QoS option, released
all previously reserved resources of the MN, and forwarded the message towards the MAP.
The MAP then returned a negative BA+QoS message to the MN. In a second try, the MN
sent a BU+QoS message via AR a2 to the MAP which is also negatively acknowledged,
no QoS reservations were installed. The third BU4+QoS message is send via AR bl and
is positively acknowledged by the MAP. The desired bandwidth has been reserved on the
path via AR bl up to the MAP. When the MN has received the BA4+QoS message a BU
is sent to HA and CN.

Conclusion: Works

QoS request via current path (abw >= avbw)
Scenario Description: MN uses AR al as default router (MHC: h:0, al:1, a2:0, b1:0).
The avbw in AR al and the MAP is 5Kb, rbw = dbw = abw = 0Kb. At time t1 dbw and
abw is increased to 15Kb.
Observation: BU+QoS message is sent towards the MAP and negatively returned to
the MN. No resources are reserved. The MN switches to MIPv6 mode. A BU is sent to
HA and CN.
Conclusion: Works

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 67

TU BERLIN

Chapter 7

Conclusion

In this work, a prototypical implementation and experimental testbed setup of a QoS-enabled
mobility concept based on HMIPv6 [25] and the QoS-Conditionalized Binding Update [9] has
been accomplished. To achieve this, the following intermediate steps have been conducted.
The leveraged architectures such as IPv6 and MIPv6 have been reviewed and relevant pro-
cedures for this work have been summarized.

The underlying concepts — descriptional specifications of HMIPv6 and QoS-Conditio-
nalized Binding Update — have been analyzed. Their behavior has been re-examined in a
more formal way to provide a basis for the implementation design. Open issues and possible
solutions according to the protocols’ specifications have been identified. In particular, the
composition of a QoS option and the possibilities to release reserved resources on a old data
path required additional investigation.

The implementation design has been adapted to the selected operating system and ex-
isting MIPv6 implementation environment. Thereby, it was discovered that especially the
proper management of movement detection, selection of a suitable new default router, and
the execution of related registration operations proved to be a difficult task.

Based on the implementation design, a prototype implementation called QoCoo has been
realized to provide support for HMIPv6 and the QoS-Conditionalized Binding Update . Qo-
Coo has been setup in an experimental testbed. Various representative scenarios have been
successfully tested, with the objective to demonstrate the key capabilities of the underlying
protocols.

Finally, it can be concluded that the QoCoo implementation presented here provides a
flexible, extensible and easy-to-configure prototype for evaluating the HMIPv6 and the QoS-
Conditionalized Binding Update protocol.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 68

TU BERLIN

Bibliography

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for
Differentiated Services, RFC 2475. Technical report, Network Working Group, 1998.
[2] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture:
an Overview, RFC 1633. Technical report, Network Working Group, 1994.
[3] Mark Carson. Application and Protocol Testing through Network Emulation, September
1997.
[4] H. Chaskar and R. Koodli. QoS Support in Mobile IP version 6. 5 Wayside Road
Burlington, MA 01803, USA.
[6] H. Chaskar and R. Koodli. A Framework for QoS Support in Mobile IPv6. Internet
Draft, work in progress, draft-chaskar-mobileip-qos-01.txt, March 2001.
[6] A. Conta and S. Deering. ICMP fot the Internet Protocol Version 6 (IPv6), RFC 2463.
Technical report, Network Working Group, 1998.
[7] S. Deering. ICMP Router Discovery Messages, RFC 1256. Technical report, Network
Working Group, 1991.
[8] A. Festag, X. Fu, H. Karl, G. Schaefer, C. Fan, C. Kappler, and M. Schramm. QoS-
Conditionalized Binding Update in Mobile IPv6. Internet-Draft, work in progress, 2002.
[9] X. Fu, H.Karl, A.Festag, G.Schaefer, C.Fan, C.Kappler, and M.Schramm. QoS-
Conditionalized Binding Update in Mobile IPv6. draft-tkn-nsis-qosbinding-mipv6-00.txt,
January 2002.
[10] GO/Core project at HUT Telecommunication and Multimedia Lab. Mobile IP for Linux
(MIPL) mipv6-0.9-v2.4.7. http://www.mipl.mediapoli.com/.
[11] R. Hinden and S. Deering. Internet Protocol, Version 6 (IPv6), RFC 2460. Technical
report, Network Working Group, 1998.
[12] R. Hinden and S. Deering. IP Version 6 Addressing Architecture, RFC 2373. Technical
report, Network Working Group, 1998.
[13] IEEE. IEEE 802. Technical report, IEEE.
Bertin. “All Rights reserved. TKN-02-017 Page 69

TU BERLIN

[14] IEEE. Guidelines for 64-bit Global Identifier (EUI-64) Registration Authority. Technical
report, IEEE, 1997.

[15] D. Johnson and C. Perkins. Mobility Support in IPv6. Internet-Draft, work in progress,
July 2001.

[16] G. Kirby. Locating the User. In Communication International, 1995.

[17] Sami Kivisaari. MIPL Technical Specification Tik-76.115. HUT Multimedia Lab., mar
2000.

[18] T. Narten, E.Nordmark, and W.Simpson. Neighbor Discovery in IP version 6 (IPv6),
RFC 2461. Technical report, Network Working Group, 1998.

[19] C. Perkins. IP Mobility Support, RFC 2002. Technical report, Network Working Group,
1996.

[20] C. Perkins. IP Mobility Support for IPv4, RFC 3220. Technical report, Network Working
Group, 2002.

[21] J. Postel. Internet Control Message Protocol, RFC 792. Technical report, Network
Working Group, 1981.

[22] J. Reynolds and J. Postel. ASSIGNED NUMBERS, RFC 1700. Technical report, Net-
work Working Group, 1994.

[23] Pedro Roque and Lars Fenneberg. RADVD — Router Advertisement Daemon, November
2001. http://v6web.litech.org/radvd//.

[24] Rusty Russell. Linux netfilter Hacking HOWTO, 2001.

[25] H. Soliman, C. Castelluccia, K. El-Malki, and L. Bellier. Hierarchical MIPv6 mobility
management (HMIPv6). Internet-Draft, work in progress, July 2001.

[26] W. Stevens and M. Thomas. Advanced Sockets API for IPv6, RFC 2292. Technical
report, Network Working Group, 1998.

[27] S. Thomson and T. Narten. IPv6 Stateless Address Autoconfiguration, RFC 2462.
Technical report, Network Working Group, 1998.

[28] J. Wroclawski. The Use of RSVP with IETF Integrated Services, RFC 2210. Technical
report, Network Working Group, 1997.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 70

TU BERLIN

Appendix A

Function and Data Structure
Reference

A.1 HMIPv6 Related Functions and Data Structures

Functions and Data Structures in RAdvD Code (MAP and IR Related)
radvd

Type (declaration): (extended)
struct Interface

Description:
Data structure to contain configured parameters for router discovery on specific interface.
Extended to hold also parameters for configuration of MAP discovery for this interface.

Type (declaration): (new)
struct MapAddr

Description:
Data structure to contain parameters for configuration of MAP discovery.

Type (declaration): (new)
struct nd_opt_map_info

Description:
Structure to exactly conform to the defined alignment of a MAP option as specified in

[25].

Type (declaration): (new)
struct other_map

Description:
List element of other_map_list to keep records of MAP options received from other MAPs.

continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 7]‘

TU BERLIN

continued from previous page

Type (definition): (extended)
struct Interface * IfaceList

Description:

Root pointer to first element of interface list. This is where all configured parameters
for router discovery on the particular interfaces are maintained. Is extended to maintain
also parameters for its own MAP discovery if this is configured. See also radvd.h: struct
Interface.

Type (definition): (new)
struct other_map * other_map_list

Description:

Root pointer to first element of received MAP option list. This list maintains one entry
for every available MAP as learned via received MAP options. It does not maintain the
own MAP parameters. See also radvd.h: struct other_map.

process

Function: (modified)
void process(int sock, struct Interface *ifacel, unsigned char *msg, int len,
struct sockaddr_in6 *addr, struct in6_pktinfo *pkt_info, int hoplimit, struct other_map
**other_map_LP)

Description:

Function to process incoming ICMPv6-RS or ICMPv6-RA messages. Performs some pre-
liminary checks on message and finally calls process_rs or process_ra respectively for further
processing.

Function: (modified)
static void process_rs(int sock, struct Interface *iface, struct sockaddr_in6 *addr, struct
other_map **other_map_LP)

Description:

Function for final processing of incoming ICMPv6-RS. Checks whether to respond to
multicast or to unicast source address of RS. Eventually calls send_ra for advertizing
requested RA on the given interface and to the selected address.

Function: (extended)
static void process_ra(struct Interface *iface, unsigned char *msg, int len, struct sock-
addr_in6 *addr, struct other_map **other_map_LP)

continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 72

TU BERLIN

continued from previous page

Description:

Function for final processing of incoming ICMPv6-RA. Explicitely checks the link param-
eters of received RA with own configured parameters for link. Extended with capability to
recognize MAP options in RA and update or refresh other_map_list with new information.

send

Function: (extended)
void send_ra(int sock, struct Interface *iface, struct in6_addr *dest, struct other_map
**other_map_LP)

Description:

Assmebles and sends RA based on given arguments and via socket sock. The common RA
part is assembled by use of iface and dest parameters. MAP optios are only assembled
and send if MapOptProp value of interface is thru. The own MAP options are generated
based on the MapAddrList of the interface. Received MAP options are assembled based
on the other_map _list. Its new lifetime is scheduled via the difference of passed time since
RA was received (now - timestamp in other_map_list element) and lifetime field of received
RA.

timer

Function: (new)
unsigned long jiftime(void)

Description:

Function to obtain system time. Returns system time in seconds. This is used to time
stamp received MAP options in order to schedule the new lifetime when later propagating
it.

interface

Function: (new)
void map_init_defaults(struct MapAddr *map)

Description:

Function to set default values (as given in radvd.h: MapAddr) in the MapAddr structure
pointed to by map.

A.2 QoS-Conditionalized Binding Update Related Functions
and Data Structures

qos-monitor

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 73

TU BERLIN

Function: (new)
static void h_purge_update_show_fl1 (void)
Description:

Function that is periodically called to purge the resource data structure from exceeded or
invalid entries. When finished the function returns the RDS’s first valid entry.

Function: (new)
tatic int qoutfn (struct sk_buff *skb, struct nf_info *info, void *data)
Description:

Queue processing function, called (after preprocessing), by the netfilter module. This
function performs further processing of QoS option depending on wheter the node it is
running on is a HA, MAP or the MN. In case of a MAP or IR the resource data structure is
updated according to the MN’s desired and acceptable QoS bandwidth requirements and
the currently available bandwidth in this node. In case of a local handover stale resources
on the old data path of the MN below this MAP are released by initiating the sending
of a negative QoS-message to the MN’s previous AR. If the node is a MN the its RDS
is updated by calling h_router_event(). The function always returns the verdict accept to
the netfilter module indicatiing to proceed processing with the packet.

Function: (new)
static unsigned int qos_hook (unsigned int hook, struct sk_buff **pskb, const struct
net_device *indev, const struct net_device *outdev, int (*okfn) (struct sk_buff *))
Description:

This is the registered preprocessing function with netfilter. It checks whether the inter-
cepter packet contains a QoS-hop-by-hop option and if yes returns a NF_QUEUE verdict
indicating that further processing of the packet is required.

Function: (new)
static int __init init (void)

Description:

Initializing function for qos-monitor module. This function register the prepro-
cessing function qos_hook() and queue processing function qoutfn() with the hook
NF_IP6_PRE_ROUTING. Additionally it initializes the timer queue for periodically purg-
ing stale entries in the RDS and the available bandwidth DS.

Function: (new)

continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 74

TU BERLIN

continued from previous page

static void __exit fini (void)

Description:

Function for unregisterinf of qos-monitor module. This function unregistersters the pre-
processing function qos_hook() and queue processing function qoutfn() with the hook
NF_IP6_ PRE_ ROUTING. Additionally it destroys the timer queue for periodically purg-
ing stale entries in the RDS and frees he available bandwidth DS.

mipv6

Type (declaration): (new)
struct res_record

Description:
Record of the resource data structure to maintain reserved resources.

Type (declaration): (new)
struct h_qos_bw_object

Description:
Bandwidth option to indicate the QoS requirements of a flow.

Type (declaration): (new)
struct hmipv6_hopopt_qosrq

Description:
This structure wraps a QoS object, which is carried in a IPv6-hop-by-hop option to signal
the MN’s bandwidth requirements to the data path up to the MAP.

Type (definition): (new)
struct res_record * head_resr

Description:
Root pointer of the resource data structure.

mdetect

Type (declaration): (new)
struct bu_reply

Description:

Data structure to handle the received reply message to a previously send BU(+QoS)
message. The reply could represent a positive or negative BA containing or not containing
a QoS option or timeout indicating the loss of a message.

Type (declaration): (new)
struct qos_flow

continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 75

TU BERLIN

continued from previous page

Description:

Entry contained in every known AR record of the MN to maintain reserved resources on
the path indicated by that AR. This data structure represents the resource data structure
(RDS) of the MN.

Type (declaration): (extended)
struct router

Description:

Element of the AR data structure used in the MN to maintain known AR and informa-
tion related to the data path represented by that AR. The data structure is extended to
maintain also the reserved resources on the path up to the MAP.

Function: (new)
int h_router_event (struct router *nrt, struct bu_reply *reply, int *is_map)
Description:

This functin handles the events significant for the context or a known AR, this is the
reception of a RtAdv, BA, QoS option, timout function that indicates the loss of a BU,
and a timer function, which periodically triggers the check of expired lifetimes or refresh
times of existing registrations. If new information is available by the handled event the
AR data structure is updated. Additionally the function h_router_propose() is called to
identifiy the best of the available AR and judge whether a handover to the identified AR
is reasonable.

router

Function: (new)
struct qos_flow * h_find_qos_flow (unsigned long resr_fl, struct in6_addr *cn_addr,
struct qos_flow *head_qos_flow)

Description:

Function to find entry in the MN’s RDS according to given flow label and CN address. If
entry exists pointer to RDS entry is returned, otherwise NULL.

Function: (new)
void h_update_mn flx rb (struct qos_flow *tmp_qos_flow)

Description:

Function to update the MN’s IDS with the given QoS flow parameters.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 76

TU BERLIN

Function: (new)
int h_router_update_reply (struct bureply *reply, int *is_map, struct router
*curr_router, struct anchor *curr_map)

Description:

Function to update the MN’s AR and MAP data structure with new information given by
a specific event. If the event was the reception of a QoS reply message, the MN’s MDS,
IDS, and RDS is updated.

procrcv

Function: (extended)
static void mipv6_bu_delete (struct in6_addr *saddr, struct in6_addr *daddr, struct
in6_addr *haddr, struct in6_addr *coa, int ack, int home, int router, int plength, __ul6
sequence, __u32 lifetime)

Description:

Function to delete an entry in the BC of a node. Has been extended to consider the
processing of QoS reservations when deleing an entry in the BC of the MAP. If a de-
registration occured due to a regional movement of the MN, resources on the old data
path are released by initiating the sending of a negative QoS message to the MN’s old AR.

Function: (extended)
int mipv6_handle bindupdate (struct sk_buff *skb, int optoff)

Description:

Function to handle a received BU of a MN. The function has been extended to consider
potenitally existing entries in the MAP’s RDS for that binding. If that is the case and
the MN’s QoS request has been assured, the sending of a positive BA+QoS option is
prepared otherwise the sending of a negative BA+QoS option to the MN is prepared and
the binding entry is deleted.

sendopts

Function: (new)
int h_send_thrq_packet (struct in6_addr *map, struct in6_addr *r_coa, struct in6_addr
*1_coa, struct in6_addr *im_ar, __u32 pfl1 fl, __u32 pfll_lifet, _ul6 pfll_dbw, __ul6 pfll_abw,
struct in6_addr *pfll_homeaddr, struct in6_addr *pfll rcoa, struct in6_addr *pfll_cn)
Description:

Function used by MN to manage composition and sending of a packet containing a QoS-
hop-by-hop option header and/or a routing header to assure that the packet travels a
spcified data path which does not contain the MN’s default router. Such a packet is sent
to be combined with a BU to the MAP when perfoming a handover in HMIPv6 mode. A
QoS option is only appended if related arguments of this function calls are valid.
continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 77

TU BERLIN

continued from previous page

Function: (new)
int h_send_rsrp_packet (struct in6_addr *map_addr, struct in6_addr *mn_lcoa, struct
res_record *first_resr)

Description:

Function used by a MAP to attach a QoS option to a BA to the MN.

Function: (new)
struct res_record * h_get_next_resr_rcoa (struct in6_addr *search_rcoa, struct in6_addr
*search_ar_addr, struct res_record *last_resr)

Description:

Function to return a pointer to the next entry after a given entry in the node’s RDS that
fits the given arguments for the flows RCoA and AR addr.

Function: (extended)
int mipv6_send_ack option (struct in6_addr *saddr, struct in6_addr *daddr,
long maxdelay, __u8 status, _ul6 sequence, _u32 lifetime, __u32 refresh, struct
mipv6_subopt_info *sinfo, struct in6_addr *hoaddr)

Description:

Function to manage sending of a BA to the MN. The function is extended with the
capability to attach a QoS option to the BA depending on the MN’s QoS requirements
that could be assured by a MAP.

Function: (new)
int h_send_upd_option_map_phl (struct in6_addr *saddr, struct in6_addr *1_coa,
struct in6_addr *daddr, struct in6_addr *im_ar, long maxdelay, _u32 initdelay, __u32
maxackdelay, __u8 exp, __u8 flags, __u8 plength, __u32 lifetime, struct mipv6_subopt_info
*sinfo, _u32 pfllfl, _u32 pfll lifet, _ul6 pfll_.dbw, __ul6 pfll_abw, struct in6_addr
*pfll_homeaddr, struct in6_addr *pfll_rcoa, struct in6_addr *pfll_cn)

Description:

Function manages sending of a BU to a MAP. Alos starts timer to indicate the potential
loss of that BU and makes an entry in the MN’s BUL.

Function: (new)
void h_update_resr_flow (struct hmipv6_hopopt_qosrq *qosrq.p, struct res_record
*tmp_resr)

continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 78

TU BERLIN

continued from previous page

Description:

Function to update a given entry in the MAP’s or IR’s RDS according to QoS request of
a MN.

Function: (new)
void h_show_fl1_resr (struct res_record *tmp_resr)

Description:

Function to update the MAP’s or IR’s IDS with current content of a given RDS entry.

Function: (new)
void h_apply_qos_req (struct res_record *tmp_resr)

Description:

Function to judge on a given RDS entry representing a MN’s QoS request, if and how
much of the requested bandwith for that flow can be assured. Eventually updates the
MAP’s or IR’s RDS and available bandwidth data structure according to the currently
reserved bandwidth for that flow.

Function: (new)
void h_mangle qos_opt (struct hmipv6_hopopt_qosrq *qosrq.p, struct res_record
*tmp_resr)

Description:

Function used by the IRs to modify a traversing QoS option if the desired resources
indicated in the QoS option can not be fully satisfied.

Function: (new)
int h_validate_address (struct sk_buff *skb, struct in6_addr *addr)

Description:

Function used by a MAP to validate the contained destination address of a received
BU+QoS message.

Function: (new)
struct hmipv6_hopopt_qosrq * h_parse_qos (struct sk_buff *skb)

Description:

Function to check whether a given IPv6 message contains a valid QoS option.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa’ge 79

TU BERLIN

Function: (new)
struct resrecord * h_get_resr_flow (struct in6_addr *search_r_coa, struct in6_addr
*search_cn_addr, struct in6_addr *search_ar_addr, unsigned long search_fl)

Description:

Function used by MAP’s and IR’s to find a specific entry in the node’s RDS according to
the given RCoA, CN addr, AR addr and flow label. If the AR address is NULL this value
is not considered for the finding process.

Function: (new)
truct res_record * h_purge_resr_list (void)

Description:

Function used by MAP’s and IR’s to purge stale entries in their RDS.

Function: (new)
struct res_record * h_free_resr_list (void)

Description:
Function used to destroy all entries of a node’s RDS when the qos-module is unloaded.

Function: (new)
struct res_record * h_new_resr_flow (struct in6_addr *search_ho_adddr, struct in6_addr
*search_r_coa, struct in6_addr *search_cn_addr, struct in6_addr *search_ar_addr, unsigned
long search fl)

Description:

Function to allocate a new entry in the RDS for maintenance of a new QoS request.

Function: (new)
int h_check_resr_rcoa (struct in6_addr *search rcoa, struct in6_addr *search_ar_addr
)
Description:

Function to chech whether a valid entry in the RDS for a given RCoA exist.

dstopts

Function: (extended)
static __inline__ int mipv6_calculate_option_pad (__u8 type, int offset)

Description:

continues on next page

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa’ge 80

TU BERLIN

continued from previous page

Returns how many bytes of padding must be appended before (sub)option (alignment
requirements can be found from the mobile-IPv6 draft, sect5). This function has been
extended for calculation of a QoS option.

Function: (new)
struct ipv6_opt_-hdr * h_generate_qos_hop_header (_u32 pfll.fl, __u32 pfll.lifet,
__ul6 pfll_dbw, __ul6 pfll_abw, struct in6_addr *pfll_homeaddr,)

Description:

Function to assemble an IPv6 QoS-hop-by-hop option based on the given parameters.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa’ge 8]‘

TU BERLIN

Appendix B

Installation Manual

This chapter contains installation instructions for the experimental QoCoo implementation
Version 0.2

This software is provided without any explicit or implicit warranties or guarantees of any
functionality. USE AT YOUR OWN RISK!

The installation procedure is described in sequence of the following steps:

e Hardware and Network Topology Setup
e Nodes OS Configuration

e MIPL MIPv6 Setup

¢ QoCoo-HMIPv6 Setup

¢ QoCoo-QoS-Conditionalized Binding Update Setup

Hardware and Network Topology Setup

The setup given in Figure B.1 can be regarded as a “classic” experimental network topol-
ogy. It is capable to simulate all relevant scenarios such as local and regional handover, QoS
or not QoS-conditionalized depending on resource availability in the visited AN.

The implementation has been successfully tested in several setups. However, for beginning
it is strictly recommended to conform to the given example setup and node configuration. A
much more advanced example setup is given in Section 6.1 and Figure 6.2 of this Work.

Note: Multiprocessor machines probably do not work.

Setup recommendation:

All machines are 1386 Pentium IT 300MHz. The machines network cards are 3Com
100BaseT Network Interface Card (NIC)s. A manageable HUB is used for emulating the
movement between the links 0, 6, 7 and 8. Links 1 and 4 are connected each with a simple
10M HUB. The terms i0 and il refer to interface 0 (eth0) and interface 1 (ethl).

Node OS Configuration:

Redhat 7.2 is used as Linux distribution on all machines. The sources provided with this
package only match Linux kernel version 2.4.7. MIPL package mipv6-0.9-v2.4.7 and router
advertisement daemon radvd-0.7.1.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 82

TU BERLIN

link O
i0
HA CN
i1 i0
link 1
i0 i0
MAP_A MAP_B
il il
link 4 link 5
i0 i0 i0
AR_AL| |AR_A2 AR_B1
il il il
link O link 6 link 7 link 8

| Manageable HUB |

i0
MN

Figure B.1: Example network topology setup

MIPv6 Setup

Before coming to the HMIPv6 setup, the MIPv6 setup should work fine. A detailed
documentation how to do that is provided with the MIPL and radvd package. Assuming the
recommended setup:

e At least HA, CN and MN should be MIPv6 enabled (NO IPSec, NO DHAAD) and
configured for their purpose. Some example configuration files are given in the Tables
B, B (for the HA) and B (for the MN).

e HA, AR_A1, AR_A2 and AR_-B1 must have the radvd installed from source. Config-
ure each radvd to advertise the router’s availability on the link connected with the
manageable HUB. An example configuration file for HA is located in Table B

e MAP_A and MAP_B until now simply act as routers between link 1 and links 4 and 5.
e When testing the MIPv6 setup, the MN should properly handover between home link
0 and foreign links 6, 7 and 8.
QoCoo-HMIPv6 Setup:
MN Configuration:

e Copy all files from mobile_ip6_qocoo-0.2/ to the mobile IP6 source directory of the MN
(in general /usr/src/linux/net/ipv6/mobile_ip6/).

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 83

TU BERLIN

e Recompile and restart the mobile_ip6 module. (In general simply type as root:

— cd /usr/src/linux
— make modules
— make modules_install

/etc/init.d/mobile-ip6 restart

should work)

e Since MAP discovery is not enabled yet, regarding the behavior of the MN, yet nothing
should have changed to the MIPL implementation (except for a different movement
detection and handover processing).

MAP Configuration:

e Configure a virtual link (dummy0 interface) on each MAP (The virtual links are indi-
cated in Figure B.1 by (2) and (3)). AN example configuration file is given in Table B.
The new dummy0 interface becomes enabled by typing: /etc/init.d/network restart .

e Enable both MAPs as MIPv6 HAs, just like the HA in MIPv6 setup, but serving for
their virtual link. Example configuration files for MAP_A are given in Table B and B

MAP Discovery Configuration:

In order to perform MAP discovery, MAP options must be attached to the RtAdvs emitted
by the MAP. Intermediate routers (e.g. AR) in an access network between MAP and access
link must be capable of receiving and propagating the received MAP options with their
own RtAdvs. The RtAdv daemon has been modified to be capable of emitting its own
MAP options and receiving and propagating other MAP’s MAP options on certain links.
The configuration language of radvd-0.7.1 was extended to control this behavior. The new
interface specific options are listed in Table B. The syntax is the same as the original radvd
options syntax described by “man radvd”. Examples, how to use the new configuration
options, are given in Table B (for MAP) and B (for IR).

To enable the two access networks of the example setup in Figure B.1 for HMIPv6 (enable
MAPs and MAP discovery) the following configurations steps are required:

e Install original radvd-0-7-1 from source also on MAP_A and MAP_B.

e Copy all files in radvd-0.7.1_hmipv6-0.2/ to the radvd-0.7.1 source directory of MAP_A,
MAP_B, AR_A1, AR_A2, AR B1.

e Go to each modified radvd source directory (at MAPs and ARs) and rerun:

— ./configure # only necessary if not already run before
(alternative: “./configure —prefix=/usr/ —sysconfdir=/etc/
—mandir=/usr/share/man/ —with-pidfile=/var/run/radvd/radvd.pid”)
— make

— whereis radvd # This should tell you where radvd used to be.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 84

TU BERLIN

— cp ./radvd /usr/sbin/radvd # Copy it where 'whereis’ told you.

e Configure /etc/radvd.conf in MAP_A and MAP_B for emission of MAP discovery op-
tions. An example configuration file for MAP_A is given in Table B.

e Configure /etc/radvd.confin AR_A1 AR_A2 AR Bl for propagation of MAP discovery
options. An example configuration file for AR_A is given in Table B.

¢ (Re)start radvd as background process by typing: “/etc/init.d/radvd restart”
or directly from shell in the radvd directory by typing: “./radvd -C /etc/radvd.conf
-d4 -m stderr”. In order to make the MAP options perceptible for the AR before they
are advertised by the MAPs, the last step should be performed at the ARs first.

Finally, when starting the router advertisement daemon on a MAP, the MAP options
should be propagated down the access network to the access links. An HMIPv6 enabled MN
currently visiting that access link should learn about the availability of the MAP and register
with the MAP. Once the binding update (BU) to the MAP is acknowledged, BUs are sent to
HA and CN.

QoCo00-QoS-Conditionalized Binding Update Setup:

To enable the AN of a testbed for the QoS-Conditionalized Binding Update all involved
nodes in the AN must run the qos-monitor deamon located in mobile_ip6_qocoo-0.2/daemon/.

The QoS-Conditionalized Binding Update involved nodes of Figure B.1 would be MAP_A,
AR_A1, and AR_A2 in AN A, MAP_B and AR_B1 in AN B, and the MN.

MAP (MAP_A and MAP_B) Configuration:

e Copy all files and subdirectories from mobile_ip6_qocoo-0.2/ to the mobile IP6 source
directory of the MAP (in general /usr/src/linux/net/ipv6/mobile_ip6/).

e Recompile and restart the mobile_ip6 module. (In general simply type as root:

— cd /usr/src/linux
— make modules
— make modules_install

/etc/init.d/mobile-ip6 restart

should work)

¢ Compile and load the QoS-monitor module. Note that the mobile_ip6 module must be
started (loaded as indicated by the command: “Ismod”) before the qos-monitor module.
In general simply type as root:
— ¢d /usr/src/linux/net/ipv6 /mobile_ip6/daemon/
— make
— insmod qos-monitor.o # This loads the qos-monitor module.
— lsmod # Check that module is loaded.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 85

TU BERLIN

When unloading modules, the qos-monitor module must always be unloaded before the
mobile_ip6 module therefore type:

— rmmod qos-monitor
before stopping (unloading) the mobile_ip6 module:
— /etc/init.d/mobile_ip6 stop

No new configuration scripts are required. The possibilities to access available and monitor
reserved resources is described in the following.

To specify a routers (MAP, IR, AR) theoretically available resources and monitor currently
reserved resources of a MN, a number of new entries have been made to router’s proc-file-
system. These entries can be read by the cat command (eg ”cat

/proc/sys/net/ipv6 /mobility /debuglevel”) and modified with the echo command (eg echo
2 > /proc/sys/net/ipv6 /mobility /debuglevel). Once the QoCoo-modified mobile_ip6 and gos-
monitor module is loaded into the kernel of the node, the following new files can be used for
QoS maintenance:

e /proc/sys/net/ipv6/mobility /ir_av_bw
This entry contains the currently available bandwidth that is controlled by this node.
When a MN successfully reserves bandwidth for a flow, this value is reduced respectively.
When a reservation is explicitly released or a reservation’s lifetime exceeds it is increased
to its former value. Its default value is 10.

e /proc/sys/net/ipv6/mobility /ir_res_bw
This value contains the currently reserved bandwidth that is controlled by this node.
It actually represents the node’s total bandwidth - its currently available bandwidth.

The currently reserved resources for a flow as well as certain flow identification parameters
can be monitored with the following entries. Note: With this QoCoo version, only the first
valid flow of the nodes resource data structure can be accessed from user-space.

e /proc/sys/net/ipv6/mobility /ir_fl1_fl
This entry indicates the flow label of the flow fil.

e /proc/sys/net/ipv6/mobility /ir fl1_1t
This entry indicates the remaining lifetime of the flow 1.

e /proc/sys/net/ipv6/mobility /ir fll_dbw
This entry indicates the desired bandwidth requirements of the MN as they are nego-
tiated with other QoS entities on the path, up to this node.

e /proc/sys/net/ipv6/mobility/ir_fll_abw
This entry indicates the minimum acceptable bandwidth requirements of the MN that
it‘s affiliated BU is conditionalized on.

e /proc/sys/net/ipv6/mobility /ir_fll_rbw
This entry indicates the node’s currently reserved bandwidth for flow fl1.

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 86

TU BERLIN

IR / AR (AR_A1, AR_A2 and AR_B1) Configuration:

To enabled an IR/AR for QoS-Conditionalized Binding Update (besides the MAP discov-
ery configuration requirements for IRs/ARs given in the Paragraph: QoCoo-HMIPv6 Setup)
the node must run the QoCoo modified mobile_ip6 and gqos-monitor modules:

e Configure the nodes like a MIPL CN. Read the MIPL INSTALL for related procedures.
An example configuration file is given in Table B.

e Copy all files from mobile_ip6_qocoo-0.2/ to the mobile_IP6 source directory of the
IR/AR (in general /usr/src/linux/net/ipv6/mobileip6/).

e Recompile and restart the mobile_ip6 module. (In general simply type as root:

— cd /usr/src/linux

— make modules

— make modules_install

— /etc/init.d/mobile-ip6 restart

should work)

e Compile and load the QoS-monitor module (this step is identical to the above for
MAP (MAP_A and MAP_B) Configuration). Note that the mobile_ip6 module must be
started (loaded as indicated by the command: “Ismod”) before the qos-monitor module.
In general simply type as root:

— cd /usr/src/linux/net/ipv6/mobile_ip6 /daemon/
— make

— insmod qos-monitor.o # This loads the qos-monitor module.
Ismod # Check that module is loaded.

The possibilities Access to the available and reserved resources parameters is possible via
the proc-file-system as described above for MAP (MAP_A and MAP_B) configuration
in this text.

MN Configuration:

e Compile and load the QoS-monitor module (this step is identical to the above for MAP
or IA/AR Configuration). In general simply type as root:
— cd /usr/src/linux/net/ipv6/mobile_ip6 /daemon/
— make
— insmod gos-monitor.o # This loads the qos-monitor module.
— Ismod # Check that module is loaded.

To specify the MN’s resource requirements and monitor the successful reserved resources
on the currently used data path, the following new entries in the MN’s proc-file-system can
be used:

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 87

TU BERLIN

e /proc/sys/net/ipv6/mobility /mn_fl1_fl
A MN’s QoS request must be specified for specific flow value. This entry can be used to
specify the flow value, used as the flow label of the MN’s fl1-QoS object. The remaining
QoS requirement parameters of that flow are not valid until the mn_fl1_fl entry contains
a positive integer value. Only one flow (fl1) per MN is allowed.

e /proc/sys/net/ipv6/mobility /mn_fl1_lt
Indicates the remaining lifetime in seconds of the previous successfully performed reser-
vation of low fl1.

e /proc/sys/net/ipv6/mobility /mn_fl1_dbw
Can be used to specify the desired bandwidth for flow fl1.

e /proc/sys/net/ipv6/mobility /mn_fll_abw
Can be used to specify the acceptable bandwidth for flow fll. This value should be
smaller or equal to the desired bandwidth, otherwise the mn _fl1_dbw value is increased
respectively.

e /proc/sys/net/ipv6/mobility /mn_fll_rbw
Can be read to monitor the currently reserved bandwidth of flow 1.

QoS signalling should work whenever the MN is visiting a foreign QoS-Conditionalized
Binding Update - and HMIPv6-enabled AN. For comfortable monitoring of all QoS and
binding parameters the mn_info_loop tool can be used with the MN and the map_info_loop
tool with the MAPs, IRs, and ARs.

Good Luck!!!

If there are any questions feel free to contact neumann@ft.ee.tu-berlin.de

HH#HH
Example:

Allow all nodes with 3ffe:2620:6:1234:: prefix to register except
nodes 3ffe:2620:6:1234:abcd::.

#

DENY 3ffe:2620:6:1234:abcd:: /80

ALLOW 3ffe:e:e:0::/64

Table B.1: Example configuration file for HA:/etc/mipv6_acl.conf

FUNCTIONALITY=ha
DEBUGLEVEL=1
TUNNEL_SITELOCAL=yes
MOBILENODEFILE=/etc/mipv6_acl.conf

Table B.2: Example configuration file for HA:/etc/sysconfig/network-mip6.conf

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 88

TU BERLIN

FUNCTIONALITY=mn

DEBUGLEVEL=2
TUNNEL_SITELOCAL=yes
HOMEADDRESS=3ffe:e:e:0::9/64
HOMEAGENT=3ffe:e:e:0::1/64
RTR_SOLICITATION_INTERVAL=1
RTR_-SOLICITATION_MAX_SENDTIME=5

Table B.3: Example configuration file for MN:/etc/sysconfig/network-mip6.conf

interface ethQ

{
AdvSendAdvert on;

MinRtrAdvInterval 1;
MaxRtrAdvInterval 1.5;

AdvHomeAgentFlag off;
AdvIntervalOpt on;

prefix 3ffe:e:e:0::1/64

{
AdvOnLink on;

AdvAutonomous on;
AdvRouterAddr on;

};
h

Table B.4: Example configuration file for HA:/etc/radvd.conf

DEVICE=dummy0
BOOTPROTO=static
BROADCAST=192.168.233.255
IPADDR=192.168.233.4
NETMASK=255.255.255.0
NETWORK=192.168.233.0
ONBOOT=yes

IPVGINIT="yes”
IPV6ADDR="3ffe:e:e:2::4/64”

Table B.5: Example configuration file for MAP: /etc/sysconfig/network-scripts/ifcfg-dummy0

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 89

TU BERLIN

| ALLOW 3ffe:e:e:2::/64

Table B.6: Example configuration file for MAP:/etc/mipv6_acl.conf

FUNCTIONALITY=ha
DEBUGLEVEL=2
TUNNEL_SITELOCAL=yes
MOBILENODEFILE=/etc/mipv6_acl.conf

Table B.7: Example configuration file for MAP:/etc/sysconfig/network-mip6.conf

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa’ge 90

TU BERLIN

APPENDIX to INTERFACE SPECIFIC OPTIONS:

MapOptRecv on — off

This defines whether MAP options advertised by other router on the link connected
to this interface should be ignored or received and considered for further propagation.
Note: To receive MAP options on a certain interface, the interface must be config-
ured for sending router advertisements. However, they can be sent with a very low
rate.

MapOptProp on — off
This defines whether MAP options, received on this or other interfaces or defined
for emission on this interface by mapaddr, should be propagated.
mapaddr address {
list of mapaddr specific options

5
This defines the MAP option emitted via this interface. The address should be the
global address of the virtual dummy0 interface the MAP is serving for. ALL possible
mapaddr specific options are described below. Each option must be terminated by
a semicolon.

MAPADDR SPECIFIC OPTIONS:

MapOptAdv on — off
This defines whether this specific MAP options should be advertised.

MapOptPref integer
This is the value advertised in the preference field of the MAP option. Its must be
between 0 and 15.

MapOptLifetime seconds

This defines the lifetime of this MAP option. It is reduced by further intermediate
routers that buffer and re-propagate this MAP option until the lifetime is exceeded.
Eventually, it limits the lifetime of the BU sent to the MAP.

Table B.8: New radvd options for configuration of MAP option advertisement and propaga-
tion (1/2)

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 91

TU BERLIN

The following options should be left untouched because currently only basic mode
and the use of RCoA as source address is allowed. For further details for the flags
see the draft.

MapOptFlagR on — off
A flag indicating basic mode. (Default on)

MapOptFlagM on — off
A flag indicating extended mode. (Default off)

MapOptFlagl on — off
A flag indicating maybe use of RCoA as SRC. (Default on)

MapOptFlagT on — off
A flag indicating topological incorrect addr. (Default off)

MapOptFlagP on — off
A flag indicating must use of RCoA as SRC. (Default on)

MapOptFlagV on — off
A flag indicating reverse tunneling. (Default off)

Table B.9: New radvd options for configuration of MAP option advertisement and propaga-
tion (2/2)

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 92

TU BERLIN

interface ethl

{
AdvSendAdvert on;

MinRtrAdvInterval 20;
MaxRtrAdvInterval 30;

AdvHomeAgentFlag off;
AdvIntervalOpt on;

MapOptRecv off;
MapOptProp on;

prefix 3ffe:e:e:4::4/64
{
AdvOnLink on;
AdvPreferredLifetime 200;
AdvValidLifetime 300;
AdvAutonomous on;
AdvRouterAddr on;

h

mapaddr 3ffe:e:e:2::4
{
MapOptAdv on;
MapOptPref 5;
MapOptLifetime 500;

h
h

Table B.10: Example configuration file for MAP: /etc/radvd.conf

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 93

TU BERLIN

interface eth0

{

AdvSendAdvert on;
MinRtrAdvInterval 400;
MaxRtrAdvInterval 600;
AdvDefaultLifetime 600;

AdvHomeAgentFlag off;
AdvIntervalOpt on;

MapOptRecv on;

prefix 3ffe:e:e:4::7/128
{
AdvOnLink on;

AdvValidLifetime 300;
AdvAutonomous on;

AdvRouterAddr on;
AdvIntervalOpt on;

h
h

interface ethl

{

AdvSendAdvert on;
MinRtrAdvInterval 1;
MaxRtrAdvInterval 1.5;

AdvHomeAgentFlag off;
AdvIntervalOpt on;

MapOptRecv off;
MapOptProp on;

prefix 3ffe:e:e:6::7/64
{
AdvOnLink on;
AdvPreferredLifetime 2;
AdvValidLifetime 2;
AdvAutonomous on;
AdvRouterAddr on;

h
h

Table B.11: Example configuration file for AR:/etc/radvd.conf

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa‘ge 94

TU BERLIN

FUNCTIONALITY=cn
DEBUGLEVEL=2
TUNNEL_SITELOCAL=yes

Table B.12: Example configuration file for AR:/etc/sysconfig/network-mip6.conf

Copyright at Technical University nox
Berlin. All Rights reserved. TKN-02-017 Pa’ge 95

TU BERLIN

Appendix C

Acronyms

2G Second Generation

3G Third Generation

AN Access Network

AP Access Point

APIT Application Program Interface
AR Access Router

ARP Address Resolution Protocol
BA Binding Acknowledgement

BC Binding Cache

BdR Border Router

BR Binding Request

BU Binding Update

BUL Binding Update List

CIDR Classless Inter Domain Routing
CN Corresponding Node

CoA Care-of Address

DAD Duplicate Address Detection
DHCP Dynamic Host Configuration Protocol
DiffServ Differentiated Services

DLL Data Link Layer

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017

Page 96

TU BERLIN

DoS Denial of Service

DSCP DiffServ Code Point

ER Edge Router

FTP File Transfer Protocol

GSM Global System for Mobile Communication
HA Home Agent

HAO Home Address Option
HMIPv6 Hierarchical Mobile IPv6
HO Handover

HoA Home Address

ICI Interface Control Information
ICMP Internet Control Message Protocol
ICMPv6 ICMP version 6

ID identification

IDU Interface Data Unit

IETF Internet Engineering Task Force
IntServ Integrated Services

IP Internet Protocol

IPng IP Next Generation

IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6

IR Intermediate Router

LAN Local Area Network

LCoA Local CoA

MAC Medium Access Control

MAP Mobile Anchor Point

MAO Mobile Anchor Point (MAP) Option

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017

Page 97

TU BERLIN

MHC Manageable Hub Configuration
MIP Mobile TP

MIPL Mobile IP for Linux

MIPv6 Mobile IPv6

MN Mobile Node

NbAdv Neighbor Advertisement

ND Neighbor Discovery

NbSol Neighbor Solicitation

NIC Network Interface Card

OS Operating System

PDU Protocol Data Unit

QoS Quality of Service

QoCoo QoS-Conditionalized Handover
QCB QoS-Conditionalized Binding Update
RA Router Advertisement

radvd router advertisement daemon
RCoA Regional CoA

RD Redirect

rfc request for comment

RH Routing Header

RS Router Solicitation

RtAdv Router Advertisement

RtSol Router Solicitation

RSVP Resource Reservation Protocol
RTT round trip time

SAP Service Access Point

SDL Specification and Description Language

Copyright at Technical University _09-
Berlin. All Rights reserved. TKN-02-017

Page 98

TU BERLIN

SNMP Small Network Management Protocol

SP Service Primitive

TBA To Be Added

TCP Transmission Control Protocol
TLV type-length-value

UDP User Datagram Protocol

VoIP Voice over IP

WAN Wide Area Network

WLAN Wireless Local Area Network

Copyright at Technical University
Berlin. All Rights reserved.

TKN-02-017

Page 99

