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Abstract—To fully utilize the in-band full-duplex (IBFD) com-
munication in practice, digital self-interference (SI) cancellation
is indispensable. In the literature, several methods have been pro-
posed to suppress the SI signal in digital domain, however, mostly
linear and non-linear SI techniques are studied separately. In
this work, we review existing digital SI cancellation methods and
present a low-complexity solution for both linear and non-linear
digital SI cancellation by exploiting frequency-domain processing
as well as a neural network-based approach. We developed an
orthogonal frequency division multiplexing (OFDM)-based IBFD
transceiver in GNU Radio and use it in combination with USRP
software-defined radios (SDRs) to experimentally demonstrate
the performance in an unified framework. Our results show that
the proposed SI cancellation is computationally 4 times more
efficient and achieves a similar SI cancellation performance as
the state of the art.

I. Introduction

The in-band full-duplex (IBFD) communication is the key
to doubling the spectral efficiency by re-using the available
spectrum; it is considered a potential candidate for future
sixth generation (6G) technology [1]. In fifth generation (5G)
technology, the advantage offered by the IBFD is not fully
utilized as the transceivers operate in frequency division du-
plex (FDD) or time division duplex (TDD) mode to avoid self-
interference (SI). The SI signal, i.e., the signal received due to
transceiver’s own transmission, is one of the main reasons that
makes the IBFD communication hard to achieve. In theory, SI
cancellation should be simple as the transceiver is aware of
the actual transmitted signal, however, in practice it is not
straightforward due to the non-linearities introduced by the
hardware components as well as the unknown channel between
the transmit and receive antennas [2], [3].

In practical systems, SI cancellation is performed by sup-
pressing the SI signal at different stages of the receive
chain, i.e., passive, analog, and digital cancellation. Passive
cancellation does not involve any adaptive tuning and is
accomplished by choosing the right antenna configuration
and structure, shielding, or isolation of transmit and receive
paths. Active analog cancellation is usually achieved by using
a tunable radio frequency (RF) circuit that transforms the
known transmitted signal into expected SI signal, which is
then subtracted from the actual received signal. Since it is
impossible in practice to construct a perfect SI signal due to
the involved hardware components, there is still a residual SI
signal that needs to be suppressed by using digital cancellation.

The residual SI signal is composed of two parts: linear and
non-linear. The linear part of the SI signal is directly related to
the transmit power. Hence, it is easier to suppress than the non-
linear SI signal which is caused by the power amplifier (PA),
digital-to-analog converter (DAC), and in-phase and quadra-
ture (IQ) imbalance of the transceiver. Comparatively, the
linear part is also the dominant one, however, the cancellation
of non-linear SI signal is still necessary especially when the
signal of interest (SoI) has a very low power. For example, in
the case of joint communication and sensing (JCAS) in 6G, the
SoI is not only several orders of magnitude weaker, but also
highly correlated with the SI signal making the non-linear SI
cancellation crucial [4]. For linear SI cancellation, the receiver
first estimates the channel between the transmit and receive
antennas of the transceiver by using the training data before
the DAC. Afterwards, this estimation is used to reconstruct a
SI signal copy, which is then subtracted from the received
signal [5]. For non-linear SI cancellation, the non-linearity
introduced by the hardware impairments is typically modelled
using polynomials [6], [7]. Recently, it has been shown that
these non-linear effects can also be modeled by using neural
network (NN)-based approaches [8].

In this work, we investigate state-of-the-art digital SI can-
cellation methods and present a low-complexity solution for
linear and non-linear digital SI cancellation by exploiting
frequency-domain processing as well as a NN-based model. To
demonstrate the performance of different digital SI cancella-
tion methods, we developed an orthogonal frequency division
multiplexing (OFDM)-based IBFD transceiver in GNU Radio
and use universal software radio peripheral (USRP)-based
software-defined radios (SDRs) for over-the-air experiments.
Our results show that the presented SI cancellation is compu-
tationally more efficient and achieves a similar performance
as the state of the art.

Our main contributions can be summarized as follows:

• We review existing SI cancellation methods and present a
computational efficient solution for both linear and non-
linear digital SI cancellation (Sections II and III).

• We develop an OFDM-based IBFD transceiver in
GNU Radio and use it together with a SDR for over-the-
air experiments in a lab environment (Section IV).

• We analyze the performance of presented digital SI can-
cellation methods in an unified framework (Section V).



II. RelatedWork
In the IBFD systems, the SI signal can be up to 100 dB

stronger than the SoI, therefore, it is difficult to eliminate the
SI signal completely in a single stage, hence, SI cancellation
is performed at different stages in the transceiver [2]. The
most simplest of these is the passive cancellation that involves
procedures such as the optimal placement of the transmit
and receive antennas. Passive cancellation has the ability to
suppress a huge part of the SI signal, however, the suppres-
sion achieved depends upon several factors including carrier
frequency, bandwidth, antenna type and configuration [9].
Therefore, further suppression of the residual SI signal is
required in the next stages.

In the case of multiple-input-multiple-output (MIMO) com-
munication systems, beamforming can be exploited to have
nulls at the receiving side of the transceiver for minimizing the
SI [10]. This method is known as null-space projection (NSP)
in the literature. When beamforming is not possible such as
in the case of single-input-single-output (SISO) communica-
tion systems, active analog cancellation usually performed by
tunable RF circuit is more common, however, it comes with
an extra cost and higher complexity [11].

Finally, the residual SI signal that can be a few tens of dB
is suppressed by using digital cancellation methods [4]. In the
literature, the linear part of the digital SI signal is cancelled
by using least square (LS), least minimum mean square error
(LMMSE), or fast fourier transform (FFT) based methods. It is
a common practice to exploit these methods, and perform the
SI signal estimation and reconstruction in time domain [10],
[12], [13]. However, it has been shown that realizing the
digital SI cancellation in frequency domain offers improved
performance especially in harsh channel conditions [5].

The non-linear part of the digital SI signal is typically
cancelled by using the polynomial method [7], [14]. The
polynomial method provides a good approximation of the
non-linearity, however, the computational complexity is often
high and it increases further with the increase in the maxi-
mum considered non-linearity order. As an alternate solution,
recently neural networks are used to perform non-linear SI
cancellation [8]. Even though there is a rich literature on digital
SI cancellation, the linear and non-linear digital SI cancellation
methods are mostly studied separately. Therefore, in this work,
we investigate computational efficient implementation of both
linear and non-linear digital SI cancellation in an unified
framework. We analyze the performance in simulations and
with over-the-air measurements by using a SDR that is readily
available and is widely used in the academic community for
testing the performance of new signal processing algorithms
and wireless standards.

III. Digital Self-Interference Cancellation
Figure 1 shows an IBFD transceiver with different stages

of SI cancellation. Let us represent the digital baseband time-
domain signal before the DAC, mixer, and PA by x[n], where
n is the sample index. If s[n] is the SoI and w[n] is the additive
white gaussian noise (AWGN) with zero mean and variance
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Figure 1: An in-band full-duplex transceiver with different stages of self-
interference cancellation. Only relevant components are shown for clarity.

σ2, the digital baseband time-domain received signal after the
analog-to-digital converter (ADC) y[n] without considering the
non-linear hardware impairments is written as

y[n] =

L−1∑
l=0

h[l]x[n − l] + s[n] + w[n]. (1)

Here, h[l] denotes the channel impulse response (CIR) in-
cluding other memory effects with maximum length L and
l ∈ {0, 1, ..., L − 1}. We assume that this maximum length L is
equivalent to the cyclic prefix (CP) of an OFDM symbol and
there are N number of samples per OFDM symbol (which is
also same as FFT size K). For the sake of simplicity, we also
assume that there is no SoI s[n], hence, y[n] corresponds to the
SI signal. From practical point of view, there is no difference
as in presence of the SoI, the receiver will consider it as an
interference for the training samples.

The main goal in the receiver chain is to estimate the CIR
and reconstruct y[n] by using known x[n] so that the SI is
eliminated completely. This SI signal in the digital domain
is composed of two parts, linear denoted by ylin[n] and non-
linear ynl[n]. The linear part dominates the SI signal, however,
as mentioned earlier, to fully exploit the IBFD technology,
cancellation of non-linear part is also necessary.

A. Linear Self-Interference Cancellation

For linear SI cancellation, here we focus only on least
square estimation and reconstruction in time domain or in
frequency domain, as they are comparatively simple to realize
and outperform other known techniques.

1) Time-Domain Linear Cancellation (TDLC): In matrix
and vector notation, the time-domain convolution operation
can be equivalently replaced by a matrix multiplication, hence,
vector y representing the received signal samples in absence
of the SoI can be re-written from (1) as

y = Xh + w. (2)

Here, X is a Toeplitz matrix of a Circulant kind and of order
N × L corresponding to the total number of training samples
per OFDM symbol and the maximum length of CIR that
can be estimated, respectively. Whereas, h denotes a vector
representing the CIR and vector w corresponds to the noise
added to each transmitted signal sample. The estimated CIR ĥ
is then computed by using the LS time-domain estimation as

ĥ = X†y. (3)



Here, X† denotes the Moore-Penrose (pseudo) inverse of the
matrix X. To reconstruct the received symbol, the estimated
CIR ĥ is convolved with the known transmitted symbol.
This constructed symbol is then subtracted from the received
symbol to finally realize the linear SI cancellation.

2) Frequency-Domain Linear Cancellation (FDLC): For
the frequency-domain estimation and reconstruction, the re-
ceived signal first undergoes the FFT operation. The received
signal Y[k] at kth subcarrier where k ∈ {0, 1, ...,K−1} after the
FFT operation is written as

Y[k] = X[k]H[k] + W[k]. (4)

Here, X[k], H[k], and W[k] represent the known transmitted
signal, channel response, and additive noise all at the kth

subcarrier, respectively. The estimated channel response Ĥ[k]
at kth subcarrier is then obtained by using the LS frequency
domain based estimation as

Ĥ[k] =
Y[k]
X[k]

, (5)

or equivalently
Ĥ = diag(X)−1Y. (6)

Here, Ĥ and Y are vectors representing the channel estimates
and the transmitted signal over all subcarriers, respectively.
Moreover, diag(X)−1 denotes an inverse of a square matrix
with known transmissions at each subcarrier of a symbol in
the diagonal. The product of the obtained channel estimate
and the known transmitted signal is then used to obtain the
reconstructed signal at each subcarrier. Finally, inverse fast
fourier transform (IFFT) is performed on the reconstructed
signal to transform it into time domain for realizing the linear
SI cancellation.

B. Non-Linear Self-Interference Cancellation

Considering the reconstructed signal using linear SI tech-
niques ŷlin[n] is ideal, the residual received signal now consists
of only non-linear part as

ynl[n] ≈ y[n] − ŷlin[n]. (7)

This non-linearity is mainly introduced by the transmitter IQ
imbalance and is further enhanced by the PA especially when
the transmitter and receiver chains use the same local oscillator
as is the case of IBFD. In the literature, the non-linearity
is modeled by using a polynomial method. The polynomial
method and non-linear SI cancellation by using a neural
network are discussed in the next sub-sections.

1) Polynomial Non-Linear Cancellation (PNLC): Without
the SoI s[n] and considering w[n] as negligible, (1) with
introduced non-linear behaviour can be re-written as [7], [8]

y[n] =

A∑
a=1

a odd

a∑
b=0

L−1∑
l=0

ha,b[l]x[n − l]bx∗[n − l]a−b. (8)

Here, x∗[.] refers to the complex conjugate of the transmitted
signal samples, parameter ha,b[l] includes the joint effect of
CIR, IQ imbalance parameters, and PA non-linearity of order
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Figure 2: A feed-forward neural network for the estimation of non-linear self-
interference signal.

a ∈ {1, 3, ..., A}, whereas the memory length of PA is included
in the maximum considered length L. The even values of a
are not considered as they are usually filtered out by the band-
pass filters of the transceiver. It can be noted that considering
a = 1, b = 1, (8) will be equivalent to (1). To eliminate the
non-linear SI signal, the idea is to estimate all coefficients
ha,b[l] by using a LS method similar to as described for the
linear SI cancellation and reconstruct ynl[n] for subtraction.
The computational complexity of this method increases with
the increase in the non-linearity order.

2) Neural Network Non-Linear Cancellation (NNLC):
Instead of computing the coefficients, the idea with neural
networks is to reconstruct the residual non-linear part in the
received signal ynl[n] directly from the transmitted signal
samples x[n]. Figure 2 shows a feed-forward neural network
with three layers, i.e., input, hidden, and output. The input
layer has 2L nodes corresponding to the real (denoted by <)
and imaginary (denoted by =) parts of x[n] as separate entries
along with its L − 1 delayed versions that are related to the
current ynl[n]. The hidden layer has Nh nodes, whereas the
output layer has two nodes for real and imaginary parts of
ynl[n]. In general, the output of the nodes in a layer denoted
by vector I is obtained by applying the activation function f (.)
on the weighted sum of the output of nodes from the previous
layer WI0 and the nodes bias as

I = f (WI0 + bias). (9)

Here, size of both vectors I and bias is equivalent to the
total number of nodes in the current layer, size of vector I0 is
equivalent to the total number of nodes in the previous layer,
and W is a matrix of order equivalent to number of nodes
in current layer by number of nodes in the previous layer.
It is important to highlight that here we consider only one
hidden layer, however, one can choose any number of hidden
layers and nodes with an expense of increased computational
complexity. The output of a node in any hidden layer will
depend upon the output of the nodes in the previous layer
similar to as described by (9). Nevertheless, regardless of the
neural network structure, the main goal is to use N number
of training samples and minimize the mean squared error
(MSE) between the expected output ynl[n] and the actual



output ŷnl[n] as

MS E =
1
N

N−1∑
n=0

(<{ynl[n]} − <{ŷnl[n]})2

+
1
N

N−1∑
n=0

(={ynl[n]} − ={ŷnl[n]})2. (10)

To minimize the MSE, the neural network exploits back-
propagation and converges towards the optimum values for
W and bias. Once the neural network is trained, it is then
able to predict ŷnl[n] for any new input.

It is interesting to note that using a neural network for
the non-linear digital SI cancellation does not follow the
conventional approach of estimating and reconstructing the
signal separately, hence, reducing the overall computational
complexity. Moreover, it is also worth mentioning that here
we exploit the neural network only for the non-linear digital
SI cancellation. Using neural networks is not beneficial for the
linear part as simple LS methods discussed in the previous sub-
sections already provide the least complexity. Furthermore,
for simplicity, the neural network used here exploits only the
time-domain signal for non-linear digital SI cancellation and
utilizing the frequency-domain signal is left for a future work.

C. Computational Complexity

To compare the computational complexity of the presented
SI cancellation methods, we focus on the required real-valued
multiplications and real-valued additions. We assume that one
complex multiplication requires four real multiplications and
two real additions, whereas one complex addition requires two
real additions. It is important to highlight that in this work we
do not consider Gauss algorithm that focuses on reducing the
number of real multiplications required to perform a complex
multiplication as it will not affect the relative performance.

1) Linear Self-Interference Cancellation: Each considered
linear SI cancellation method has two main processing parts,
i.e., channel estimation and signal reconstruction using that
estimation. For TDLC estimation, the computations required
per symbol are calculated from (3). Since the matrix obtained
for the transmitted training samples is computed in advance,
the main computations depend upon the number of samples
per symbol and the CIR length. For reconstruction, we rely
upon circular convolution based algorithm that utilizes FFT
and IFFT to optimize the overall complexity [5]. We exploit
Radix-2 processing for the N-point FFT and the IFFT opera-
tion which requires (N/2)log2N complex multiplications and
Nlog2N complex additions. Contrary, for the FDLC estima-
tion, first a single FFT operation is required before computing
per subcarrier estimate. Next, IFFT operation is realized to
convert the signal into time domain after frequency-domain
equalization. The computational complexity of the presented
digital SI cancellation methods is summarized in Table I. For
TDLC and FDLC, the first term shows the computational
complexity for the estimation part, whereas the second term
is related to the reconstruction.

TABLE I: Computational Complexity for Self-Interference Cancellation.

Real Multiplications Real Additions

TDLC (4NL)+ (4NL)+
(6Nlog2N − 17N + 36) (9Nlog2N − 7N + 12)

FDLC (2Klog2K − 7K + 12)+ (3Klog2K − 3K + 4)+
(2Klog2K − 3K + 12) (3Klog2K − K + 4)

PNLC L(A + 1)(A + 3) L(A + 1)(A + 3)
NNLC (2L + 2)Nh (2L + 3)Nh

TDLC FDLC PNLC NNLC
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Figure 3: Arithmetic operations required for self-interference cancellation.

2) Non-Linear Self-Interference Cancellation: For the non-
linear SI cancellation using PNLC and NNLC, it is important
to carefully select the polynomial order, i.e., the non-linearity
order A, and the number of hidden layers and nodes as
they directly contribute towards the overall computational
complexity. To have a fair comparison, we select them in a way
so that both methods provide a similar performance. We realize
PNLC by using a polynomial order of 7. The computations
required for the polynomial basis functions are not considered
as the processing required is comparatively negligible [8].
Moreover, we also ignore the channel estimation complexity
for the PNLC which is similar to as described for the linear SI
cancellation and if considered will further increase the required
processing. In the case of NNLC, we exploit a neural network
that has three layers, i.e., input, hidden, and output each having
32, 17, and 2 nodes, respectively. We assume that the used
activation function, i.e., ReLU, has a similar complexity as a
single real-valued addition, hence, the overall computational
complexity can be obtained together from (9). Moreover, we
ignore the processing required for the training of the neural
network as it is usually done only once in the calibration
phase. The computational complexity required per sample for
the aforementioned non-linear digital SI cancellation methods
is also summarized in Table I. Whereas, the exact number
of real additions and real multiplications required per symbol
with N = K = 64 and L = 16 for linear SI cancellation, and per
sample with A = 7 and Nh = 17 for non-linear SI cancellation
are depicted in Figure 3. It can be noted that the FDLC
is around four times less computational complex than the
TDLC, whereas NNLC involves two times less computational
complexity than the PNLC.

IV. Implementation Details

To demonstrate the performance of IBFD digital cancel-
lation, we have developed an OFDM-based transceiver in
GNU Radio. GNU Radio is an Open Source SDR platform
that offers signal processing modules implemented in software



Figure 4: Experimental setup showing USRP device and aluminium foil
between its transmit and receive antenna for passive SI suppression.

(using Python/C++) in form of blocks connected together to
realize their real-time operation on a host PC. For assessing the
performance in simulations, GNU Radio offers channel model
blocks that allow to configure noise power, multipath, etc.
Whereas, for over-the-air testing, the PC can be connected to
an USRP device which performs DAC/ADC and frequency up-
conversion/downconversion before transmitting/receiving the
signal via antennas.

A. OFDM Generation and Transmission

The communication is frame based where OFDM frame
structure follows the IEEE 802.11a/g standard similar to as
described in [15], [16]. The training symbols are modulated
with binary phase shift-keying (BPSK), whereas the data
symbols are quadrature phase shift-keying (QPSK) modulated.
Each OFDM symbol is composed of 48 data subcarriers and 4
pilots, and has a signal bandwidth of 16.6 MHz. The subcarrier
spacing is 312.5 kHz and a time-domain OFDM symbol is
obtained by applying the IFFT operation followed by the
addition of 16 samples CP resulting in a symbol duration of
4 µs including CP. The final signal is then passed through
a wireless channel block in simulations or transmitted in
2.4 GHz band by using the transmit antenna of the N210
USRP device for over-the-air testing. The experimental setup
including the used USRP device with aluminium foil between
the transmit and receive antenna is shown in Figure 4. The
experiments are performed in a controlled lab environment
providing nearly static CIR throughout the experiments. More-
over, the aluminium foil is used for passive SI suppression
and to bring the received signal power in the dynamic range
of USRP ADC as we do not utilize any active analog SI
cancellation. Along with propagation loss, our system achieves
a passive suppression of more than 50 dB.

B. Receiver Processing

The SI signal is received on the receiver side after the
wireless channel block in simulations or via receive antenna
of the USRP device. In the latter case, the received signal
is first downconverted to baseband. The transmitted digital
baseband time-domain signal is used as a reference to detect
the beginning of each frame start at the receiver.

For TDLC, the estimation is performed directly on the time
domain received signal, whereas for FDLC, 64-point FFT
is applied before estimating and reconstructing the signal in
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Figure 5: Linear self-interference cancellation over an AWGN channel.
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Figure 6: Linear self-interference cancellation over frequency-selective fading.

frequency domain followed up by the IFFT processing. Next,
non-linear cancellation is observed. For the implementation
of PNLC and NNLC, we consider the polynomial order and
the number of hidden layers and nodes same as described in
the previous section. Moreover, for the training of the neural
network, we divide the whole data into two parts, i.e., 90 %
for training and 10 % for testing with a mini-batch size of
32 and a learning rate of 0.004. Finally, ReLU is used as an
activation function for the hidden layer and a linear activation
function for the output layer.

V. Results and Discussion

To have a baseline SI cancellation performance, first we
compare the TDLC and FDLC in simulations without intro-
ducing any non-linear effect. The resultant linear cancellation
over different received signal-to-noise ratio (SNR) values in
presence of an AWGN channel is shown in Figure 5. It
can be observed that the SI cancellation is linear over the
considered SNR range, hence, validating the implementation.
Moreover, it can be noted that the linear cancellation in TDLC
performs around 1.5 dB better than the FDLC in the case
of AWGN channel. However, when we consider frequency-
selective fading, the performance of TDLC starts degrading
especially for the higher SNR values, whereas performance of
FDLC remains linear as shown in Figure 6. This is because of
the fact that the channel estimate per subcarrier is still accurate
in the case of frequency-selective fading. Hence, it can be
concluded that even though FDLC performs marginally worse
than the TDLC, the FDLC is superior to TDLC in the complex
scenarios. Furthermore, the FDLC achieves this performance
comparatively with a much lower computational complexity.

Next, we perform over-the-air experiments with an USRP
N210 device, hence, non-linearity is introduced by its hard-
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interference cancellation.

ware impairments. To perform the measurements in a con-
trolled lab environment, we use the setup shown in Figure 4.
Since we cannot easily measure the absolute transmit power,
thus we focus on the relative increase. Figure 7 shows the
performance with different linear and non-linear SI cancella-
tion methods. It can be noted that the relative performance of
TDLC and FDLC is similar to what is observed in simulations
for the AWGN channel. For high SNR values, the trend is
not completely linear due to the non-linearity introduced by
the hardware impairments. Moreover, the relative improvement
with non-linear SI cancellation is more than 1 dB and is same
for both PNLC and NNLC regardless of whether TDLC or
FDLC was used for linear SI cancellation. Hence, it is clear
that using a neural network does not degrade the performance
and at the same time keeps the computational complexity low.
It is important to mention that the non-linearity introduced by
the USRP for the considered SNR range seems only marginal,
however, it is good enough to compare the relative perfor-
mance as the focus here is not on the absolute improvement.

Finally, we plot the power spectral density (PSD) before
and after SI cancellation for a single SNR measurement in
Figure 8. For the sake of clarity, we do not plot PNLC and
NNLC separately because both achieve a similar performance
as also noted in the previous figure, therefore, represent them
by a non-linear cancellation (NLC). The SI signal in the
figure is the power received at the receiving side of the
transceiver after the propagation loss and considered passive
cancellation. Moreover, the average noise floor is represented
by a horizontal dashed line. It can be seen that our system is
able to achieve an overall digital SI cancellation of more than
20 dB with the considered hardware setup.

VI. Conclusion
In this work, we focused on investigating the low-

complexity solution for both linear and non-linear digital SI
cancellation. To analyze the performance, we developed an
OFDM based IBFD transceiver in an SDR platform. Our re-
sults reveal that using frequency domain processing for linear
SI cancellation together with a neural network based model
for non-linear SI cancellation reduce the overall computational
complexity up to 4 times. This improvement is observed with
only a marginal degradation in the overall performance.
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