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Abstract This work investigates the use of reconfigurable devices as computing
platform for self-organizing embedded systems. Those usually consist
of a set of distributed, autonomous nodes interacting with each other
in order to solve a given problem. Several aspects of hardware-software
co-design as well as partial reconfiguration are presented in order to
enforce adaptivity of a node. One targeted application field for this kind
of system are sensor networks in which reconfigurable devices, in this
case FPGAs, can be used as computation nodes to provide services that
require more computation power. To manage the available hardware
resources as a whole we suggest a market-economy-like system of supply
and demand. Requests, built up out of several tasks, can be posed to
the collective.

The goal is to gain a system able to perform simple tasks as well as
very complex computations, while keeping the overall energy consump-
tion low. This will be achieved by deploying highly specialized hardware
accelerators and a reasonable resource management. First results show
the viability of the methods in the distributed management of available
resources.
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Introduction

The ongoing progress in chip technology provides us with steadily in-
creasing computation power whereas the accompanying miniaturization
shrinks the device sizes to unprecedented measures. Meanwhile elec-
tronic circuits are produced at rock-bottom prices. This trend has been
around for so long that some are sure to have found a law in it. The new
thing is that small, efficient, yet fairly powerful devices, are built that are
able to communicate. This puts developers in the position of creating
large and complex systems of interacting nodes that are small, powerfull
and energy efficient. With the computation power arises the ability of
deploying highlevel-algorithms to implement some kind of intelligence
into the networked units. This can be used to realize mechanisms of
labor division and collective cooperation. Clearly this approach works
if every specialized node behaves as specified by the designer at compile
time. However, the system has no way to react to deviations due to
failure-prone devices or changing operational and environemental condi-
tions.

In order to enforce flexibility in such systems and allow single nodes to
adapt their behavior to disturbances, we use reconfigurable units, in this
case FPGAs. Those devices pose a decent trade off between computa-
tion power, energy consumption and flexibility. They can be configured
and reconfigured to provide hardware acceleration for highly specialized
services. Furthermore, they can be partially reconfigured while keep-
ing the rest of the system working. Some are even capable of initiating
their reconfiguration themselves keeping the part of their logical circuits
that hosts the local operating system up and running while only a small
partition that hosts specialized accelerators is being reconfigured. De-
spite those advantages a powerful and flexible management of available
resources is required in order to optimize parameters like the overall
power consumption in the system or a reasonable distribution of work
among the nodes. In this work we present our developed approach for
tackling this problem. A framework is built up that enables nodes to
(re)distribute tasks in a marketplace-like manner that we called LMGS

- Local Marketplaces, Global Symbiosis - which delivers the basis tech-
nology to elevate implementations of collective task completion to a new
level. Here a node that recognizes the need for a certain task to be done
formulates it as a query to itself and its neighbors. Every node that offers
the execution of a task replies to a query with its cost for fulfilling the
job. The inquirer is now able to choose whether it is more appropriate
to maybe reconfigure and do the task by itself or to delegate.
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An application field for this novel approach of a community of self-
configuring nodes are sensor networks. Nowadays they are a prime ex-
ample for a set of connected nodes that are bound to several restrictions:
nodes are only powerful to a certain extend, energy is limited since sim-
ple sensors are battery driven and communication is costly. Still the
data volumes to be processed in those networks are escalating not only
when thinking of optical surveillance with recognition of biometrical fea-
tures. We will show how to enhance the capabilities of such a network
by deploying self-reconfigurable nodes as participants.

Next we point out some of the work that yields the foundation for our
concept (part 1). Following we will go into the technological basis we’ve
constructed in order to allow self-reconfigurable nodes (2), explain the
ideas behind LMGS (3) and demonstrate how these two essentials can
be combined to drive powerful sensor networks (4). Finally we summa-
rize this article (5).

1. Related Work

On the hardware side we want to concentrate on the application field
of sensor networks. Here a variety of solutions has been constructed
like the Mica2Dot Mote [6]. They particularly cause a low power con-
sumption but in our case these systems are too weak concerning com-
putation power. Their clock rate is as low as 10MHz compared to the
racy Virtex-4 FPGAs that run at up to 500 MHz. Also their processors
cannot be deployed as flexible as reconfigurable hardware since they are
static and hard wired. Here FPGAs represent a much better compromise
for our needs.

As a limitlessly flexible management system for resources we use Linux
as operating system for the nodes. We built our own kernel and dis-
tribution on the basis of the PowerPC port of the Linux kernel and
MontaVista Linux.The partial reconfiguration is described in the main
features in the Xilinx documents [9, 11].The marketplaces idea took ad-
vantage of previous work like auction methods presented by Gerkey et.
al [1], but we wanted to keep the algorithm much more simple to be able
to deploy it on weak nodes with less computation power as well. The
Open Agent Architecture [2] might be a viable approach for a very stable
network without too much fluctuation and a central server that is very
unlikely to stop working. We think the application field is much wider
if we don’t constrain our system to using only one specialized node. We
moreover favor decentralized management and easy replacement of fail-
ing units. The aim is a system small enough to run on the weakest units
but also extremely expandable to allow sophisticated decision making
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when executed on powerful nodes. To estimate the energy consump-
tion of transporting a certain amount of data over a connection energy
aware routing protocols will be useful [4, 5]. The energy demand when
operating a hardware module can be determined with [3, 8].

2. Basic Technology Available

The essential resources that must be available on each node in a dis-
tributed cooperative system are a minimal local computation power, a
resource management, the ability to communicate and a system to dis-
tribute or gather jobs in the network. The own computation power
allows nodes to locally solve tasks or to run more or less simple pro-
grams to decide whether jobs should be solved remotely. To be aware
of the own capabilities and to easily deploy them there’s necessity for
a resource management that is flexible and generally applicable to run
on most nodes in the network. From rudimentally equipped to all-in-
one high-potential units. Communication allows cooperation to happen
in order to spread parts of a bigger assignment that possibly cannot
be solved by only one node to several others. Finally our framework
LMGS provides a simple way to exploit the available resources, locally
and remote, the most efficient way and to distribute large tasks among
the contributors. It therefore realizes a variant of self-organization.

2.1 Computation Power in FPGAs

To develop and test our concepts we use a Virtex-

FPGA

CPU

ICAP

Figure 1. FPGA
with ICAP-module

II Pro FPGA by Xilinx sitting on the XUP devel-
opment board as well as the Xilinx ML403 board
equipped with a Virtex-4 FX12 FPGA [10]. The
FGPAs provide one resp. two embedded PowerPC
hard-core RISC processors that are contained in
the chip fabric. Besides the configurable logic cells,
that allow custom hardware accelerators, the Virtex-
II Pro and Virtex-4 both supply a certain amount
of basic, hard-wired circuits (primitives) to extend
the device’s speed and effectiveness. These are e.g.
multipliers, block RAM and especially a module named ICAP: Internal
Configuration Access Port. As depicted in figure 1 this module is the key
ability for a node to change its own reconfigurable logic. Additionally
Xilinx FPGAs since the Virtex-II series are capable of partial reconfig-
uration. That means that single hardware modules can be exchanged
while vital parts of the cell like the memory controller or the network
interface controller keep on operating uninterruptedly.
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2.2 Local Resource Management

In order to cope with the increasing complexity that arises when man-
aging a very large number of individual nodes we deploy a general pur-
pose operating system. Linux serves our needs in several ways. It en-
capsulates the difficulties with accessing hardware and thus facilitates
resource deployment through its abstract driver interfaces. For example
the ICAP is incorporating into the Linux system with John Williams’
device driver [7]. Especially the fully developed networking abilities are
a convenient way to realize communication. The innumerable quantity
of applications for any kind of need and furthermore adaption and de-
velopment of software in high-level programming languages pose a big
plus. The use of a standard Linux kernel and applications also speeds
up development for another reason: the large community that exists and
the vast database of solutions to standard problems.

2.3 Communication

As mentioned above our implementation enables standardized com-
munication facilities. They provide us with a TCP/IP-stack to start
with. Of course a certain application field might afford adapting the
communication: A network that consists of battery driven nodes is more
likely to yield better results when utilizing an energy aware routing pro-
tocol. The development boards we use provide RJ45- respectively USB-
jacks, so besides the already implemented ethernet connection wireless
LAN, bluetooth or ZigBee are feasible. For now remote nodes can be
accessed and controlled via telnet. Datacan be transferred via HTTP
with wget.

2.4 Adaptive Processing

Using partially reconfigurable hardware devices we are in the posi-
tion to equip our nodes with a virtually adaptive behavior. To keep
development easy at the beginning our nodes provide only one region of
fixed size that can be reconfigured separately from the rest of the sys-
tem as shown in figure 3 on page 12. With this, we are able to realize a
hardware-software co-design for optimized performance. Tasks that can
efficiently be computed in hardware may be executed in a specialized
hardware module. Other services that are not available as a hardware
module or are more efficiently solved in software are then worked off
on the local CPU. We use the ICAP to allow the CPU to reconfigure
the node itself to utilize free reconfigurable space or to displace unused
hardware accelerators to save unnecessary electrical circuits and thus en-
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ergy. The individual situational behavior of a node is determined by the
controlling application which decides whether to replace a local hard-
ware accelerator or to employ a neighboring node according to a set of
parameters stored locally in simple files.

An example of such a parameter is the willingness of a node to re-
configure the local hardware to serve a remote nodes’s request. Gen-
erally these parameters will be stored as relative quantities to system
wide base values to keep them comparable. The parameter files can be
written (adapted) to a changed environment, either by the control appli-
cation itself or by another node. Since we are using a full Linux system
it is also possible to impose access control to prevent crucial data to be
undeliberately or maliciously altered.

2.5 Self-Organization

The nodes, that are now able to change their own behavior to a cer-
tain extend, need to organize themselves in some way. We therefore
developed a simple concept to deploy our new features: LMGS - Local

Marketplaces, Global Symbiosis. The work is distributed according to
principles of supply and demand within the network. As we touched on
previously the controlling and resource management is left to the CPU
with the Linux operating system and applications running on top of it.
The real work to do in the network will also be done in software and,
where possible, in specialized hardware. We present LMGS in more
detail in the next section.

3. Concept of LMGS

The simple idea is that every node does exactly what it deems to be
the best according to its stored parameters. The minimal software to
actively ’take part in the game’ consists of two elements. A customer

which issues requests to the network to have a certain job done and
a purveyor that answers requests for jobs with the costs it charged
if it would be commissioned. The effort a node makes to create the
answer can vary widely. According to its computation power, knowledge
and storage capacity this can reach from a simple return of standard
values to a complex measuring where the load, the utilization of the
node’s components or the probability for the effectiveness of anticipated
reconfiguration might be taken into account. In sensor networks for
example communication is the most expensive action so a distribution of
work should be chosen that minimizes overall traffic, maybe by executing
a lot of tasks locally through reconfiguring the node.
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3.1 Requests

Requests issued by the customer component of a node consist of a
tuple as follows:

Request = {Source, Target, Requester, Data Volume, Task, Max Hops}

Where Source contains the data source for the task, Target the data
sink and Requester the device which posted the inquiry. Data Volume

holds the quantum of data to be processed with Task. Max Hops speci-
fies the maximum number of times a request may be relayed by a node’s
neighbors.

Source, Target and Requester may be partly or completly identical.
Given they are not, we included mechanisms to distribute jobs within a
channel between data source and target. The values can be one-to-one
identifiers of nodes or might as well contain wildcards to address groups
of nodes so that, for example, modifications that have to be applied to
a set of devices can be launched by a single command.

The Data Volume will be taken into account when an offer is gener-
ated for the request. It usually influences the decision whether it is more
appropriate to solve a task in software or in hardware and if the data
may be processed remotely or if the communication costs for that would
be too high.

In order to be able to specify a Task or a whole group of tasks, we sug-
gest an hierarchical nomenclature which comprises every single service
that can be rendered in the network under one root node.

As Task in the request structure is not limited to one atomic job
it may be a list of tasks. These lists may contain jobs that are to be
processed sequentially or in parallel reaching from a single data-source to
a single target, to complex data flows with multiple sources and targets.

Finally the restriction to Max Hops ensures that inquiries are not
simply flooded through the net but stay local working off jobs at a kind
of in situ marketplace when sensible. This of course only if the local
neighbors provide appropriate solutions to tasks at a reasonable price.
The composition of this ’price’ will be presented in section 3.2. The idea
behind that is obvious: since we are able to reconfigure nodes to serve
virtually any need, even small localized groups are highly adaptable and
will be able to cope with most challenges with optimal efficiency. Thus
data will in general be kept in a spatially narrow cloud and communica-
tion is minimized. Later in this section and in part 3.2 we will explain
how this is accordable with the claim of super-regional cooperation.

To publish and find services to fill in a valid request basicly three
mechanisms can be deployed. First one central directory server knows
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which node offers which services and has to be prompted for every job
to work off. If it fails the whole network is paralyzed. New services have
to be entered, causing additional traffic. Second, searches for certain
services are flooded through the whole network. This is very flexible,
but rather inefficient.

In this work, we developed a third approach, a hybrid solution between
the two previously mentioned ones. Here data is flooded only within the
closest neighborhood. Only if the answers from them are unsufficient,
say because none of the next nodes wants to execute the requested task,
the job is advertised again, this time with a higher number of maximum
relays. Additionally nodes keep a more or less extensive list of other,
remote hosts, that satisfy a certain request. In this manner not only
local offers will be taken into account but also more distant ones which
possibly better suit the current situation. The maintenance of this list
is closely related to the structure of offers replied to a request which will
be covered in section 3.2.

Generally, requests will be posed to the direct neighbors and to the
issuer itself. A neighbor that finds the Max Hops greater than one re-
duces that counter and sends the request to all it’s neighbors. Especially
the answer from the node itself is interesting in this regard: with the
possibility to reconfigure, scenarios can be managed where communica-
tion cost is very high and nodes have to cut back on transporting lots of
data through the net.

3.2 Offers

The response to a concrete query contains two elements: the cost-
vector that the replying node is estimating for supplying the service and
the local list of known providers that are also capable of satisfying this
particular request: Offer = {CostVector, List of known providers}

Costs mean figures given as multipliers of a base cost. For example
the transmission of one byte of data over a wireless bluetooth connection
will be a lot more expensive than over a wired ethernet link.

We identified three dimensions of costly actions: time consuming, en-
ergy consuming and space consuming. Thus a node’s purveyor calculates
the cost vector for a task A according to

CA =
(

ZK EK PK

)T
· W

where ZK denotes the cost for the local effort concerning time, EK for
energy and PK or required space. W contains the willingness of the
node to spend part of the specific resource to locally execute task A as
a diagonal matrix. A battery driven node might for example want to
lower its willingness to accept very energy consuming jobs as it runs low
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on battery power. The final cost-vector CA is passed to the issuer as
part of the offer.

The list of additional service providers is being built up through log-
ging of messages indicating the commission of a node for a particular
task or through deliberate writing. On the one hand devices that relay
an acceptation message (basicly a request with a specially formulated
task) to a node store the target node and task together with an expira-
tion time. On the other hand nodes can advertise their capabilities by
giving out a request to every other participant of the net to amend its
local list of providers. If it intends to stay in the community for a longer
period the expiration time may be set accordingly, attracting all sorts
of requesters, locally and remote.

3.3 Negotiation Example

The flow of a negotiation bases on sending requests, retrieving re-
sponses, determining the most appropriate solution and commissioning
a perveyor (figure 2). When evaluating the replies, the contained lists
of alternative, maybe remote, providers may be taken into account and
selected ones may be prompted for a bid. This enables the system to
incorporate both: decentral, distributed computing as well as central
services like the storage of gathered and processed data.

A A A

Figure 2. LMGS: issue a request (left picture), retrieve answers (middle) and
commission job (right)

When enough answers came back in or after an amount of time the
customer determines the optimal partner to commission. The weighted
cost including communication is therefore calculated according to

A : CCA = ~CA · ~GA =
∑

i CAi
· GAi

Manipulating the components of GA allows the node to emphasize a
rather fast, energy-efficient or space preserving execution of a task. De-
pending on the computation-power and -willingness the node might ac-
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cept the earliest offer or may run a multi-goal optimization on the plenty
of data retrieved to find the best trade off.

4. Adaption to Sensor Networks

Sensor networks used to consist out of many very small sensor nodes
to collect data and at least one data sink that gathers all the information
and offers an interface to other nets. In scenarios with more complex
data aggregations beacons are introduced which provide more compu-
tation power, collect data and transmit preprocessed information to the
destination.

Our targeted application is a sensor network that is able to track an
object optically over a large area where several cameras have to cooper-
ate to keep the target within sight. A sensor node is now equipped with
a video camera and has a certain computation power to extract features
of object recognition from the taken pictures. Information about what
the cameras detect will be send to the user’s terminal. For this we built
up a sample application for the XUP development board that captures
the video signal from a camera, digitizes it and applies a filter to the
stream to provide it for further processing. To start with we have im-
plemented a mean-value filter to suppress noise and a set of sobel filters
for edge detection in x- and y-direction.

The whole task is solved in hardware on the FPGA with the filter
being partially reconfigurable at runtime. Figure 3 on page 12 shows
the schematic (left hand side) and the physical layout (right) of our
sample system. There the small boxed area is reconfigurable, whereas
the bigger region encloses fixed logic like the ethernet controller or the
SD-RAM controller. Both are connected via fixed interfaces, so called
BusMacros. The lighter lines on the right picture are wire connections
between logic blocks.

We evolved our designs to be partially reconfigurable using Xilinx’s
Early Access Partial Reconfiguration design flow [9] and made use of
tools like PlanAhead, FPGA Editor and EDK [10].

Surely much of the video processing might be solved in hard core
graphic processing units as well. Sure the programming of these is easier
and more standardized than partial reconfigurable module implementa-
tion for FPGAs but flexibility and energy efficiency are the unbeatable
advantages of our approach. FPGA nodes not only support hardware
acceleration for graphic processing but also for virtually any task that
is realizable in hardware. Hardware modules can be implemented using
a high-level hardware description language like VHDL and thus are rel-
atively easy to develop. Additionally, unused hard core units still waste
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space and cause stray current whereas unused FPGA modules can be
physically disconnected from the current-carrying system, replaced by an
other needed component or erased completely. This reduces the overall
power consumption for a complete system with certain abilities that are
on the one hand constructed out of many specialized hard core hardware
components, on the other hand using one extremely flexible FPGA.

Using Linux several power saving modes like suspend to memory or to
disk are feasible. This helps reducing the power consumption of the CPU
when it’s processing capabilities are not demanded. The node can even
be set to sleep mode with only few circuits one to listen to a wake-up
message.

LMGS is designed to be deployable on devices from both ends of the
spectrum: very powerful or small, energy preserving nodes. In a sensor
network the minimal equipment with customer and purveyor can even
be further tapered: a sensor node generally doesn’t have to issue requests
thus running a purveyor module on it is enough to be able to obtain
its measurements. The node simply answers to corresponding requests
and will only be charged with a minimal amount of computations.

Since our system is flexible and expandable the loss of camera or
computation nodes (beacons) can be compensated to a certain degree in
terms of surveilled area as well as computation power for picture analysis.
This is achieved by distributing the work the failing node contributed to
other units. The data needed to configure a possibly missing hardware
module into a neighboring node can be obtained from a central storage
or, better when thinking of reliability, from a node that still has it in
his cache. Using such a cache for hardware module definition files also
serves another need: data that is used more often can be retrieved from
a lot of nodes maybe even one in the vicinity of the own location thus
the time to get and deploy such a module may be reduced.

Also new camera nodes or beacons can be added as the task of the
network and therefore the demand for computation power changes.

5. Conclusion

This excerpt of our work presents our approach on how to deploy (par-
tially) reconfigurable hardware in a network of semi-intelligent nodes to
optimize overall resource demand and increase stability. Less resource
usage because we keep tasks local were appropriate and spare expen-
sive communication and more stability because services that have been
offered by nodes that just dropped out will be distributed among the
neighboring nodes. They will be prompted to reconfigure themselves
and are then able to compensate the failing node as a community. We
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Figure 3. Layout of our sample system: the small emphasized area is reconfigurable.

created a working sample system for the Xilinx Virtex-II Pro XUP de-
velopment board that allows us to initiate partial self-reconfiguration,
send and receive files, controll distant nodes, being controlled remotely
and to deploy standard applications. The local resource management is
assigned to a Linux operating system, thus governed in software. Also
high-level applications like load balancing of the computations and the
network congestion or determining the node which suits the needs of
our task the best are designed in software. The real work to do in the
network, besides the administrative clutter, can now be accomplished
using a hardware-software co-design. The filtering of a video stream or
the detection of keywords in an audio file can now be split up in parallel
and sequential parts and we can have the parallelizable parts run in one
or more hardware modules. Still some tasks will be done in software but
the increase in performance is significant.
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