
Adaptation Algorithms
for HTTP-Based Video Streaming

vorgelegt von
Dipl.-Ing.

Konstantin Miller
geb. in Murmansk

von der Fakultät IV – Elektrotechnik und Informatik –
der Technischen Universität Berlin

zur Erlangung des akademischen Grades

Doktor der Ingenieurwissenschaften
– Dr.-Ing. –

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr.-Ing. Thomas Sikora
Gutachter: Prof. Dr.-Ing. Adam Wolisz
Gutachterin: Prof. Klara Nahrstedt, Ph.D.
Gutachter: Prof. Dr.-Ing. Carsten Griwodz
Gutachter: Assoc. Prof. Priv.-Doz. Dr. Christian Timmerer

Tag der wissenschaftlichen Aussprache: 16. November 2016

Berlin 2016

ii

Acknowledgments

This thesis would not have been possible without the help of many people. First of all, I
would like to thank my advisor Prof. Adam Wolisz for his encouragement and support.
Being a passionate researcher, he loves to get to the bottom of things, and has mastered
the art of asking the right questions. Being initially more inclined towards mathematics
and theory, I was guided by Prof. Wolisz into the spirit of engineering research, which
means to make mathematics relevant to engineering problems through a precise modeling
and a thorough validation of conclusions.

I want to thank Emanuele Quacchio for the internship opportunity at the Advanced
System Technology group at STMicroelectronics, Milano, Italy. This internship was
the start of my work on adaptive streaming technologies that finally has led to this
thesis. Further, I would like to thank Prof. Giuseppe Caire for being my host and
mentor during my internship at the University of Southern California, CA, USA. His
willingness to dive into mathematical problems, and his vast expertise in the area of
wireless communication, have made working with him a stimulating experience. I am
particularly grateful to Prof. Tobias Harks for his support and fruitful discussions.

I believe that without intensive discussions an efficient and creative intellectual work
is hardly possible. Thus, I would like to acknowledge all the interlocutors who have
inspired me, by explicitly using the pronoun ”we” instead of ”I” throughout the thesis.

Last but not least, I thank my family for their love, support and encouragement in
this challenging endeavor I took up. This thesis would not have been possible without
them.

iii

iv

Abstract

Ever since the invention of the cinematography, there has been a growing demand for
high-quality video content. Recently, the broad availability of high-speed wireless In-
ternet access, complemented by the pervasiveness of mobile, computationally powerful
devices with high-resolution screens, have made the video delivery over the open Internet
the technology of choice for both video on demand and live streaming services. Due to
the best-effort nature of the Internet, however, ensuring a high quality of experience is
challenging. A state-of-the-art approach to address this challenge is adaptive streaming,
designed to continuously adjust the characteristics of the streamed media to dynamically
varying network conditions, leading to a smoother viewing experience with less playback
interruptions and a more efficient utilization of the available network resources. Despite
the ongoing efforts, however, recent studies suggest that the challenge has not yet been
successfully resolved. One of the open issues is the design of efficient adaptation algo-
rithms, that are among the primary factors determining the overall performance of a
streaming service. In this thesis, I present several contributions to this area of research,
that are outlined in the following.

In order to cope with the wireless traffic increase expected over the next years, it will
be necessary to increase the density of the deployed wireless infrastructure. In my first
contribution, I focus on a simultaneous delivery of a large number of unicast video on
demand streams in a dense wireless network. I jointly consider the problem of wireless
transmission scheduling and video quality selection, and develop a distributed approach
based on control theory. The conducted performance evaluation shows that the presented
approach is able to serve an up to twice as large number of users completely without
interruptions, as compared to a baseline approach. Simultaneously, it allows to reduce
the number of quality transitions by up to 50%, without reducing the average video
quality. In addition, the unfairness among the individual streaming sessions is reduced
by up to a factor of 4.

Even though the majority of the video content being streamed over the Internet
is video on demand, the amount of live streaming is growing rapidly. In my second
contribution, I focus on a particularly challenging use case of low-delay live streaming. I
develop a novel adaptation algorithm that is leveraging throughput predictions to provide
a high quality of experience over wireless links, with a latency bound on the order of a
few seconds. It heuristically maximizes the average video quality at an operating point
defined by the live latency, amount of playback interruptions, and number of quality
transitions. A comparative evaluation reveals that at the individual operating points,

v

Abstract

the developed algorithm provides an average video quality which is by up to a factor of
3 higher than the quality achieved by the baseline approach. Furthermore, it is able to
reach a broader range of operating points, and can thus be more flexibly adapted to the
user profile and service provider requirements.

In my third contribution, I develop a universal adaptation algorithm for video on
demand, that can operate over a broad range of network conditions, and that has a flex-
ible configuration that can be adjusted to the particular service and user requirements.
It uses the playback buffer level information and the past throughput information to
meet its adaptation decisions. It does not rely on a cooperation with the network nor
on cross-layer information, and is therefore suitable for a standalone deployment in any
network environment, and on a broad range of platforms. Moreover, it minimizes the
start-up delay, which is particularly important for services, where users tend to fre-
quently start new video sessions. I evaluate the approach against a baseline and against
an omniscient client that computes optimal adaptation trajectories by solving a series of
optimization problems. The evaluation reveals that the proposed algorithm allows to ef-
ficiently avoid playback interruptions, provides a smooth viewing experience by avoiding
excessive video quality fluctuations, achieves a high level of network resource utilization,
and provides a fair resource allocation in a multi-user environment. In particular, in
the network environment used for the evaluation, the developed algorithm achieves an
average video bit rate which is by up to 35% higher than that of the baseline approach,
and within up to 85% of the optimum, with an up to an order of magnitude smaller total
duration of interruptions. It is worth mentioning that the omniscient client developed in
the course of this work can not only serve as a reliable benchmark for streaming clients
but also allows to evaluate the influence of various media and network properties on the
achievable streaming performance.

Last but not least, based on my experience with implementing streaming client pro-
totypes and simulation models, I develop a streaming client architecture that is modular,
extendible, and platform-independent, and efficiently supports distributed operation of
the individual functional blocks.

vi

Zusammenfassung

Seit der Erfindung der Kinematographie steigt der Bedarf, hochwertige Videoinhalte je-
derzeit und überall abrufen zu können, stetig an. Die allgegenwärtige Verfügbarkeit von
drahtlosem Hochgeschwindigkeitszugang zum Internet, ergänzt durch die Verbreitung
von mobilen internetfähigen Endgeräten mit hoher Rechenkraft und hochauflösenden
Bildschirmen, machte das Internet zur Technologie der Wahl sowohl für Video-on-De-
mand- als auch für Livestreaming-Dienste. Allerdings macht die minimalistische Dienst-
gütezusicherung im Internet das Erreichen einer hohen Erlebnisqualität zu einer Her-
ausforderung. Ein dem Stand der Technik entsprechender Ansatz ist adaptives Stream-
ing, das die technischen Charakteristiken der übertragenen Inhalte kontinuierlich an die
Netzwerkdynamik anpasst und damit für ein gleichmäßigeres Betrachtungserlebnis mit
weniger Wiedergabeunterbrechungen und einer effizienteren Netzwerkauslastung sorgt.
Allerdings belegen Studien, dass diese Herausforderung, trotz der anhaltenden Anstren-
gungen, noch nicht erfolgreich bewältigt ist. Eins der ungelösten Probleme ist der Ent-
wurf von performanten Adaptationsalgorithmen – einem der wichtigsten bestimmenden
Faktoren, der die Gesamtqualität eines Streamingdienstes beeinflusst. In der vorliegen-
den Dissertation stelle ich mehrere Beiträge zu diesem Forschungsfeld vor, die ich im
Folgenden umreiße.

Um den in den kommenden Jahren erwarteten Anstieg des drahtlosen Datenverkehrs
zu bewältigen, muss die vorhandene Funknetzeinfrastruktur verdichtet werden. In mei-
nem ersten Beitrag befasse ich mich mit der gleichzeitigen Übertragung einer großen
Zahl von Video-on-Demand-Strömen in einem dichten Drahtlosnetzwerk. Ich betrachte
gemeinsam die beiden Probleme der Übertragungssteuerung im Funknetz und der Vi-
deoqualitätsadaptation und entwickele einen verteilten auf Kontrolltheorie basierenden
Ansatz. Die durchgeführte Leistungsbewertung zeigt, dass der vorgestellte Ansatz im
Vergleich zum verwendeten Basisverfahren eine bis zu zweimal so große Nutzermenge
ohne Wiedergabeunterbrechungen bedienen kann. Gleichzeitig erlaubt er, die Anzahl
der Qualitätsübergänge um bis zu 50% zu reduzieren, ohne die durchschnittliche Vi-
deoqualität zu beeinträchtigen. Außerdem wird die Unfairness zwischen den einzelnen
Videoströmen um bis zu viermal reduziert.

Obwohl Video-on-Demand den Großteil der über das Internet übertragenen Videoin-
halte ausmacht, steigt der Anteil der Liveinhalte rapide. In meinem zweiten Beitrag
widme ich mich dem besonders anspruchsvollen Fall des Livestreamings mit niedriger
Verzögerung. Der entwickelte neuartige Adaptationsalgorithmus setzt Durchsatzvorher-
sagen ein, um selbst über Drahtlosverbindungen eine hohe Erlebnisqualität mit auf

vii

Zusammenfassung

wenige Sekunden beschränkter Latenz zu erreichen. Der Algorithmus maximiert heuris-
tisch die durchschnittliche Videoqualität am Arbeitspunkt, der durch die Latenz, Dauer
der Wiedergabeunterbrechungen und Anzahl der Qualitätsübergänge definiert ist. Eine
vergleichende Leistungsbewertung zeigt, dass der entwickelte Algorithmus in den einzel-
nen Arbeitspunkten eine bis zu dreimal höhere durchschnittliche Qualität als der Ba-
sisansatz erreichen kann. Außerdem ist er in der Lage, eine breitere Spanne von Ar-
beitspunkten anzusteuern und kann daher flexibler an den Nutzerprofil und an die An-
forderungen des Dienstanbieters angepasst werden.

In meinem dritten Beitrag entwickle ich einen universellen Adaptationsalgorithmus
für Video-on-Demand, der in einem breiten Spektrum von Netzwerkumgebungen ein-
setzbar ist und flexibel an die speziellen Anforderungen einzelner Dienste und Nutzer
angepasst werden kann. Der entwickelte Ansatz verwendet für seine Entscheidungen
den Abspielbuffer-Füllstand sowie den gemessenen Durchsatz. Er ist weder auf eine
Kooperation mit dem Netzwerk noch auf Informationen aus unteren Protokollschichten
angewiesen und daher für den Einsatz in beliebigen Netzwerkumgebungen und auf einer
Vielzahl von Plattformen geeignet. Darüber hinaus minimiert er die Startverzögerung,
was insbesondere für Dienste, bei denen die Nutzer zum häufigen Starten neuer Vi-
deoströme tendieren, wichtig ist. Ich evaluiere den Ansatz im Vergleich zu einem Ba-
sisansatz und einem allwissenden Clienten, der durch das Lösen einer Reihe von Optimie-
rungsproblemen optimale Adaptationstrajektorien berechnet. Die Leistungsbewertung
zeigt, dass der entwickelte Algorithmus effizient Wiedergabeunterbrechungen vermei-
det, eine gleichmäßige Betrachtungsqualität durch das Vermeiden übermäßiger Qua-
litätsschwankungen erzielt, eine hohe Netzwerkauslastung erreicht und eine faire Re-
sourcenverteilung in Mehrnutzerumgebungen herstellt. Der entwickelte Algorithmus er-
reicht in den getesteten Netzwerkumgebungen eine um bis zu 35% höhere durchschnit-
tliche Medienbitrate als der Basisansatz bzw. bis zu 85% des Optimums, mit einer um
bis zu einer Größenordnung kleineren Gesamtdauer der Wiedergabeunterbrechungen.
Es ist erwähnenswert, dass der im Rahmen dieser Arbeit entwickelte allwissende Client
nicht nur einen zuverlässigen Bewertungsmaßstab darstellt, sondern es auch erlaubt,
den Einfluss verschiedener Medien- und Netzwerkcharakteristiken auf die erreichbare
Streamingleistung zu untersuchen.

Schließlich habe ich, basierend auf den beim Implementieren von Streamingclient-
Prototypen und -Simulationsmodellen gesammelten Erfahrungen, eine Streamingclient-
Architektur entwickelt, die modular, erweiterbar und plattformunabhängig ist und einen
verteilten Betrieb der einzelnen Funktionsblöcke ermöglicht.

viii

Contents

Acknowledgments iii

Abstract v

Zusammenfassung vii

Table of Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

2 Background 9

2.1 Internet-Based Video Streaming . 9

2.1.1 A Historical Overview . 9

2.1.2 The Streaming Landscape . 13

2.1.3 The Choice of the Transport Protocol 15

2.1.4 Adaptive Streaming . 17

2.2 Quality of Experience . 21

2.2.1 QoE Influence Factors . 22

2.2.2 QoE Evaluation Methodology . 23

2.2.3 QoE for HTTP-Based Adaptive Streaming 25

2.3 Small Cell Wireless Networks . 27

3 Related Work 29

3.1 Video on Demand . 29

3.2 Low-Delay Live Streaming . 32

3.3 Prediction-Based Adaptation . 33

3.4 Cross-Layer Approaches . 34

3.5 Optimal Adaptation . 35

3.6 TCP Throughput Prediction . 35

4 Notation 37

ix

Contents

5 Joint Transmission Scheduling and Quality Selection in Dense Wireless
Networks 41

5.1 Introduction . 41

5.2 System Model and Notation . 42

5.2.1 Streaming Model . 43

5.2.2 Distributed Cross-Layer Design . 43

5.2.3 Wireless Network Model . 44

5.3 Interaction with Transport Protocols . 46

5.4 JINGER — Joint Scheduling and Quality Selection Scheme 47

5.4.1 General Idea . 47

5.4.2 Integral Windup . 50

5.4.3 Sampled Distributed System . 53

5.4.4 Quality Selection . 53

5.4.5 Transmission Scheduling . 55

5.5 Evaluation . 57

5.5.1 Performance Metrics . 57

5.5.2 Evaluation Setting . 58

5.5.3 Experimental Design . 61

5.5.4 Evaluation Results . 62

6 Prediction-Based Low-Delay Live Streaming 69

6.1 Introduction . 70

6.2 System Model and Notation . 71

6.3 LOLYPOP — Adaptation Algorithm for Low-Delay Live Streaming . . . 73

6.3.1 Algorithm Description . 73

6.3.2 Tuning into the Stream . 74

6.4 TCP Throughput Traces . 75

6.5 Short-Term TCP Throughput Prediction 77

6.5.1 Methodology . 77

6.5.2 Prediction Methods . 78

6.5.3 Evaluation of the Prediction Accuracy 80

6.5.4 Estimating the Relative Prediction Error 82

6.5.5 Estimating the Download Success Probabilities 84

6.6 Evaluation . 85

6.6.1 Evaluation Setting . 85

6.6.2 Evaluation Results . 87

7 Adaptation Algorithm for Video on Demand 93

7.1 Introduction . 93

7.2 Design Goals . 94

7.3 TOBASCO — Adaptation Algorithm for Video on Demand 95

7.3.1 General Idea . 95

7.3.2 Algorithm Description . 96

7.3.3 Adaptation Phase . 97

7.3.4 Fast Start Phase . 100

x

Contents

7.4 Evaluation . 101
7.4.1 Evaluation Using an Emulated Wireless Cell 101
7.4.2 Evaluation Using Real-World Measurements 106

8 Optimal Adaptation by an Omniscient Client 113
8.1 Introduction . 113
8.2 Optimization Objectives . 114
8.3 Computation of Optimal Adaptation Trajectories 114
8.4 Influence of the Number of Representations 117

9 Universal Streaming Client Architecture 119
9.1 Introduction . 119
9.2 Architecture . 120
9.3 State Machine for a Live Streaming Client 122
9.4 State Machine for a Video on Demand Streaming Client 123

10 Conclusions and Future Work 127

Appendix A Acronyms 129

Appendix B Publications 135

References 139

xi

xii

List of Figures

1.1 Heterogeneity of device platforms and network technologies 2

4.1 Illustration of the basic time-related notation 38

5.1 Small cell network model . 44

5.2 Connectivity statistics for the evaluation environment 60

5.3 Example client behavior . 63

5.4 Stability analysis . 65

5.5 Rebuffering analysis . 66

5.6 Prebuffering analysis . 67

5.7 Mean quality, quality transitions, unfairness 68

6.1 Illustration of the time-related notation for low-delay live streaming . . . 72

6.2 Example throughput trace . 76

6.3 Statistics of the traces used for the evaluation 77

6.4 Throughput prediction error quantiles . 81

6.5 Prediction accuracy of Simple Moving Average 82

6.6 Temporal correlation of underestimations and overestimations 83

6.7 Fitting distributions for the relative prediction errors 84

6.8 Σ/Ω as functions of Σ∗/Ω∗ . 86

6.9 Reached operation points . 87

6.10 Average video quality as function of skipped segments 88

6.11 Average video quality as function of quality transitions 89

6.12 Example runs . 90

7.1 Evaluation setup . 102

7.2 Mean media bit rate variation across segments 103

7.3 Single client performance . 105

7.4 Performance of two clients sharing a wireless link 106

7.5 Fairness among two clients sharing a wireless link 107

7.6 Single client, unrestricted throughput . 108

7.7 Single client, persistent throughput changes 109

7.8 Single client, periodic throughput fluctuations 110

7.9 Single client, shared indoor WiFi . 110

xiii

List of Figures

7.10 Concurrent clients, restricted throughput 111
7.11 Concurrent clients, shared indoor WiFi . 111

8.1 Influence of the number of representations and the start-up delay 118

9.1 Functional blocks of the proposed streaming client architecture. 121
9.2 State diagram for the live streaming client 123
9.3 State diagram for the video on demand streaming client 125

xiv

List of Tables

2.1 Video delivery evolution . 12
2.2 Streaming landscape . 14

4.1 Basic notation . 40

5.1 Notation extensions for JINGER . 47

6.1 Notation extensions for LOLYPOP . 73

7.1 Notation extensions for TOBASCO . 97

8.1 Notation extensions for the omniscient client 115

9.1 States of a live streaming client . 122
9.2 Events of a live streaming client . 123
9.3 States of a video on demand streaming client 124
9.4 Events of a video on demand streaming client 124

xv

xvi

CHAPTER1
Introduction

Humans have always been predominantly visual creatures. ”Bread and circuses”, that’s
how a Roman satirical poet ironically described the main cares of the Roman populace
2000 years ago. Not much has changed since that time. In fact, since the beginning of the
20st century, when cinematography made it possible to detach the visual observation of
an event from its actual happening, technological progress has gone a long way to enable
people to consume video content at any time and any place, selecting from a sheer
unlimited supply.

After the cinematography, in the middle of the 20st century, television achieved a
further step by bringing the content directly to people’s homes. In addition, it enabled
live transmission, that is, watching an event as it happens. At that time, however,
the supply consisted exclusively of a fixed, prescheduled menu of content distributed
through a handful of over-the-air broadcast television stations, soon followed by cable
and satellite distribution companies. Users’ choices were therefore limited to switching
to another station.

The next step took place in the late seventies, when Videocassette Recorders (VCR’s)
became affordable for the home use, and videocassette capacity reached several hours.
For the first time, consumers obtained the possibility to time-shift video programming,
untethering it from the schedules determined by the broadcasters. In addition, VCR’s
broadened the amount of the available content by enabling consumption of movies
through the sale or rental of prerecorded tapes. Following the demand, cable compa-
nies also began offering Video on Demand (VoD) services that enabled viewers to watch
broadcast or cable network programming or movies on demand for a limited time.

And then the Internet has arrived.

The ubiquitous availability of broadband Internet access, complemented by the ad-
vances in media compression technologies and miniaturization, as well as the increasing

1

Chapter 1. Introduction

Figure 1.1: Consumers are engaging with digital media across an increasing number of
platforms and network technologies.

processing power of electronic devices, produced a new mindset: watch what I want,
when I want, and where I want. A multitude of devices provide access to a vast sea of
video content at any time and location: smartphones, tablets, PC’s, game consoles, and,
of course, Hybrid TV sets – the next generation of the TV’s that have been connected to
the Internet and are now offering a multitude of interactive applications (see Figure 1.1
for an illustration). Wearable devices such as ”smart watches” and ”smart glasses” are
rapidly gaining popularity, and will take the digital media landscape further to a whole
new level. All these devices empower the user to watch their favorite content on the best
screen available at a particular moment, and not at the behest of the content provider.
Moreover, people are increasingly using multiple types of devices to access the content,
often simultaneously. Thus, in 2013 for the first time multi-platform users became the
majority of the U.S. audience [41].

In addition to TV-like services, applications such as surveillance, telepresence, Virtual
Reality (VR), or tele-immersion are leveraging the Internet as the communication plat-
form to an ever increasing extent [218]. All in all, according to the forecasts, video traffic
will be 79% of all consumer Internet traffic in 2018, up from 66% in 2013 [37]. Notably,
this trend is being accompanied by a shift towards the usage of wireless and mobile
networks. In 2013, wired devices still accounted for the majority of Internet traffic at
56%. The status quo, however, is rapidly changing. Traffic from wireless and mobile
devices will exceed traffic from wired devices by 2018, accounting for 61% of the total
Internet traffic.

The Internet, however, was not designed to stream video. First of all, traditionally,
a broadcaster exclusively used a communication channel, such as a radio frequency,
to broadcast to everyone within reach. Digital Video Broadcasting (DVB) networks
(terrestrial, cable, or satellite) can be named as an example. In contrast, with Internet-
based streaming or, as it is often called, Over-the-Top (OTT) streaming a separate,

2

unicast, data stream is transmitted to every single receiver, which is much less efficient,
and the medium is shared among many users.

Moreover, the Internet is a so-called best-effort network that does not provide any
Quality of Service (QoS) guarantees. It is thus a very challenging medium for multimedia
distribution since, prior to starting the streaming session, it is not known which network
conditions one can expect.

Thus, supporting such an enormous amount of video traffic with an appropriate
Quality of Experience (QoE), which is a concept introduced with the goal to evaluate
human perception of multimedia content in an objective manner [90], places a huge
burden on state-of-the-art communication networks technology, and requires novel so-
lutions in the areas of content distribution [121], wireless and mobile networking, and
video streaming.

One example is the enormous heterogeneity of the network throughput. On the one
side, there still exist locations with Internet access speeds of tens of kilobits per second,
e.g., in rural areas, on highways, in trains, or in the underground, especially under
unfavorable link conditions that can arise, e.g., due to mobility. On the other side there
are Digital Subscriber Line (DSL), cable, or Ethernet access links that can provide tens
or hundreds of megabits per second. This heterogeneity makes it impossible to transmit
the same media to each user. Once encoded into a certain media representation, a piece
of video content poses certain requirements on the network path used for its transmission.
A mismatch between these requirements and the network properties can lead to a severe
degradation of the QoE. One typical consequence are playback interruptions that arise
when a piece of content is not received in time for its playback due to a low network
throughput. Another one is a long initial delay, during which the streaming client pre-
buffers enough data to sustain sudden throughput drops and link outages.

As a consequence, we lately have been observing a period of high interest in adap-
tive streaming technologies that are able to continuously adjust the characteristics of
the streamed media to dynamically varying network conditions, leading to a smoother
viewing experience with less playback interruptions and a more efficient utilization of
the available network resources. In particular one technology has become the de facto
standard for Internet streaming: HTTP-Based Adaptive Streaming (HAS) [183].

HAS has several advantages, as compared to the traditional OTT streaming tech-
nologies such as the Real-Time Transport Protocol (RTP)/Real-Time Control Proto-
col (RTCP)/Real-Time Streaming Protocol (RTSP) suit. HAS uses Hypertext Transfer
Protocol (HTTP), which was developed in the early days of the World Wide Web as
the main application layer protocol used by a client device to fetch web pages from a
server [15, 79]. By using HTTP, and thus standard web servers, HAS forgoes the ne-
cessity to maintain specialized video servers and pay for their licenses, thus reducing
the operating costs. Using HTTP, HAS is leveraging an ubiquitous and highly opti-
mized delivery infrastructure, originally created for the web traffic, which includes, e.g.,
Content Delivery Networks (CDNs), caches, and proxies. In addition, HTTP is typically
allowed to traverse middleboxes, such as Network Address Translation (NAT) devices
and firewalls. HAS has good scalability properties due to the stateless nature of HTTP,
and the client-based control logic. The reliable transmission, provided by the underly-
ing Transmission Control Protocol (TCP), enables usage of efficient video compression

3

Chapter 1. Introduction

technologies that are particularly sensitive to packet losses. The usage of HTTP/TCP
also simplifies service and application development due to the TCP’s built-in features,
such as congestion and flow control, that otherwise would have to be implemented by
the application itself. Last but not least, one of the enablers of the success of HAS was
the open standard MPEG-DASH (Dynamic Adaptive Streaming over HTTP) [50, 180].

Among the core factors determining the performance of an adaptive streaming client
is its adaptation logic, which continuously adjusts the media representation of the
streamed video content to the dynamically varying network conditions. It typically
pursues several partially conflicting goals, frequently including: providing the best pos-
sible QoE or the one satisfying the active Service-Level Agreements (SLA’s), minimizing
costs, maximizing fairness, satisfying latency constraints (in the case of live streaming),
along with others.

The design of adaptation mechanisms is extremely challenging due to the often com-
plex stochastic dynamics of the network conditions. Especially on wireless links, users
are exposed to interference, cross-traffic, and fading effects, leading to continuously fluc-
tuating QoS characteristics. These effects become even more severe when the users are
mobile. The tight latency requirements in the case of low-delay live streaming make the
task even harder.

To further complicate matters, expressing QoE in a way that facilitates objective
measurements is itself an open research question. It must take into account human
perception and cognitive processing – phenomena influenced by hard to measure factors.
The number of factors influencing QoE is immense, and many of them have a high level
of subjectivity that results in extremely complex modeling [162, 217].

Recent studies suggest that the challenges arising when delivering high-quality video
content over the Internet has not yet been successfully addressed. In 2013, around 26.9%
of streaming sessions on the Internet experienced playback interruption due to rebuffer-
ing, 43.3% were impacted by low resolution, and 4.8% failed to start altogether [43].

Consequently, in my work I have focused on the problem of developing efficient
adaptation techniques for several application domains. In particular, I have considered
the following three deployment scenarios:

• supporting a large number of parallel VoD unicast streaming sessions in dense
wireless networks by performing joint transmission scheduling and video quality
adaptation, in a decentralized way,

• low-delay live streaming in wireless networks, and

• VoD streaming targeting a broad spectrum of network environments.

In addition, I have developed a scheme based on solving a series of optimization
problem that computes optimal adaptation trajectories for VoD from the perspective of
an omniscient client which has the full knowledge of the future throughput.

Moreover, the iterative implementation of the developed adaptation approaches and
their integration into streaming clients and network simulators has led to the design of
a universal streaming client architecture that is modular and flexible, and thus can be
used both for live streaming and VoD, is able to accommodate cross-layer and context
information, and can be implemented in a platform-independent way.

4

Finally, I would like to mention two aspects that are not in the scope of the present
work: multi-view streaming and interactive streaming. On the one hand, the presented
approaches are agnostic of the media format. Consequently, they can be used to deliver
2D, 3D, 360◦, or VR content. In fact, the algorithm TOBASCO which is presented
in Chapter 7 has been used in an MPEG-DASH-based 3D streaming prototype jointly
developed by STMicroelectronics and Fraunhofer HHI in 2011. On the other hand, how-
ever, transmitting multi-view content such as 360◦or VR as if it were single-view content
is inefficient due to the lack of spatial differentiation. While the spatial relationship de-
scriptors in the MPEG-DASH standard allow for optimization by splitting the content
in tiles and only transmitting subsets of tiles that are in the current view of the user,
this is not considered in the present work. Also, interactive streaming, such as video
conferencing or tele-immersion, is out of scope, since HTTP-based client-driven mecha-
nisms are not designed to provide a low enough delay of 100 ms and less, as required by
such services.

In the following, I outline the contributions in more details.

Joint Transmission Scheduling and Video Quality Selection in Dense
Wireless Networks

It is well understood that the current trend of cellular technology (e.g., Long-Term
Evolution (LTE) [174]) cannot cope with the traffic increase caused by the multitude of
new video services, unless the density of the deployed wireless infrastructure is increased
correspondingly. One solution candidate are very dense small cell networks (multiple
nested tiers of smaller and smaller cells, possibly operating at higher and higher carrier
frequencies) [26]. If supplied with sufficient storage capacity, they can also help reducing
the load on the backhaul (i.e., the part of the network connecting the access network to
the Internet), which have recently become a bottleneck in wireless networks [63].

Consequently, in my first contribution I have focused on the highly timely problem
of efficiently supporting a large number of parallel unicast video streaming sessions in
a dense wireless network. To achieve the best possible performance, the problems of
wireless transmission scheduling and video quality selection are considered jointly – which
is known to lead to the best performance, but which is also known to be challenging due
to the distributed nature of the problem, as well as the different time scales of the
individual subproblems.

The innovation of the proposed scheme, called JINGER (Joint Scheduling and Qual-
ity Selection in Dense Wireless Networks), is the usage of a control-theoretic framework
which leverages Proportional-Integral-Derivative (PID) controller theory. The strength
of the PID controllers lies in their analytical tractability, complemented by the ability
to stabilize a dynamic system in the presence of model uncertainties (that is, the sys-
tem parameters are not completely known and might be time-varying) and disturbances
(unknown, potentially random, inputs to the system).

In the studied case, a PID controller is used to stabilize users’ playback buffers around
certain target values, in the presence of dynamically changing network conditions due
to users arrival and departures, mobility and fading effects. I show how the usage of an
anti-windup technique and heuristic strategies leads to a decentralized enforcement of

5

Chapter 1. Introduction

the desired overall control behaviour. In the developed scheme the wireless transmission
scheduling is performed by a centralized network controller, while the video quality is
selected by each client individually and asynchronously (on its own time scale) – leading
however jointly to a stabilization of the playback buffer level dynamics, and heuristically
maximizing the quality of experience.

The approach has been extensively evaluated by simulations in different deployment
scenarios, such as long-term users with low user churn, short-term users with high user
churn, and a mix of short-term and long-term users. It has been compared to a baseline
approach, with respect to all the important factors influencing the quality of experience,
such as rebuffering, average video distortion, and the number of quality level transitions.
The baseline approach represents currently deployed systems, where the transmission
scheduling is unaware of the application’s requirements, and each streaming client is
individually trying to optimize its own video quality. I have observed that JINGER
consistentlly and significantly outperforms the baseline scheme. It has been shown to
serve an up to twice as large number of users completely without rebuffering, which is the
most important factor defining the performance. Simultaneously, my approach allows
to reduce the number of quality transitions by up to 50%, without reducing the average
video distortion. In addition – as a side effect, the unfairness among the individual
streaming sessions is reduced by up to a factor of 4.

The approach is directly implementable. The client-side mechanisms use only locally
available information and the mechanisms at the network controller require a minimum
of communication that can be piggy-backed with the video segment requests. Candidate
platforms include both cellular and Wireless Local Area Network (WLAN) technologies,
or a combination of both, that allow multiple simultaneous Access Point (AP) associa-
tions, combined with a centralized network controller performing the coordination, and
extended by the capability to simultaneously receive multiple downstream transmissions.
The study thus paves the way for the development of highly scalable video streaming
solutions that are able to deliver a large number of concurrent high bit rate video streams
to wirelessly connected users.

Prediction-Based Low-Delay Live Streaming

Although currently the majority of the video content streamed over the Internet is VoD,
the amount of live streaming is growing rapidly [187]. While current live streaming
services can exhibit a latency of several tens of seconds, low-delay streaming refers to
live streaming with a particularly low upper bound on the latency: a few seconds or
less. Such a requirement is desirable for use cases such as the transmissions of sports
events. Moreover, a low latency is absolutely necessary in the case of video conferencing
and online gaming, where active participants have latency requirements on the order
of hundreds of milliseconds [92], while permanently or temporarily passive participants
may be served with a delay of a few seconds.

HAS, however, has been primarily developed to replace the progressive download
of VoD content and therefore its application to low-delay streaming has received little
attention in the research community. In many studies, typical buffer sizes used for the
design and evaluation of HAS-based clients are on the order of tens of seconds. The

6

capability of the HAS approach to efficiently stream low-delay content, especially in
wireless networks, is still an open question.

Consequently, in my second contribution, I have demonstrated that efficient HAS-
based low-delay live streaming is possible by leveraging short-term TCP throughput
predictions over multiple time scales, from 1 to 10 seconds, along with estimations of
the relative prediction error distribution. I have designed a novel prediction-based al-
gorithm called LOLYPOP (Low-Latency Prediction-Based Adaptation) that supports
QoE-based adaptation with a transport latency on the order of a few seconds.

The approach introduced in LOLYPOP jointly considers four QoE components: the
live latency, the number of playback interruptions, the number of quality transitions,
and the average video quality. Its goal is to maximize the average video quality as a
function of the operating point defined by the other three components. The operating
point is controlled by three input parameters: the target live latency, an upper bound on
the number of quality transitions, and a parameter controlling the number of playback
interruptions. Thus, LOLYPOP provides configurable QoE that can be adjusted to the
nature of the video, the user context and preferences, or the service provider’s business
model.

At the core of LOLYPOP is an estimation of download success probabilities for the
individual segments. To obtain these estimations, LOLYPOP leverages predictions of
throughput distributions, computed from a time series prediction and an error estima-
tion. I have evaluated several time series prediction methods using TCP throughput
traces collected in IEEE 802.11 WLANs, including public hotspots (indoor and out-
door), campus hotspots, and access points in residential environments. I have observed,
somewhat surprisingly, that taking the average over the previous T seconds as a predic-
tion for the next T seconds provides the best prediction accuracy among the considered
methods for all considered time scales. That is, taking into account the trend does not
help to reduce the prediction error.

I have implemented a prototype of the algorithm and have evaluated it against FES-
TIVE [98], a well-known adaptation algorithm from the literature. I have limited the
transport latency to 3 seconds, while still using a segment duration of 2 seconds. I have
observed that LOLYPOP is able to reach a broad range of operating points and thus can
be flexibly adapted to the user profile or service provider requirements. Furthermore, I
have observed that at the individual operating points, LOLYPOP provides an average
video quality which is by up to a factor of 3 higher than the quality achieved by the
baseline approach.

VoD Adaptation Algorithm

My third contribution is an adaptation algorithm called TOBASCO (Threshold-Based
Adaptation Scheme for on-Demand Streaming), that is designed for buffer sizes typical
for VoD, but may also be used for live streaming with moderate latency requirements.
The proposed scheme uses both the buffer level information and past throughput infor-
mation to meet its adaptation decisions. It has a flexible configuration and thus can be
deployed in various network environments and with different user profiles. It can, e.g.,
be configured to provide a consistent video quality with a low amount of quality tran-

7

Chapter 1. Introduction

sitions, or it can allow for a higher number of quality transitions in order to maximize
the video quality.

TOBASCO has been implemented as a plugin for the open source multimedia player
VLC, and evaluated in an emulated WLAN against a commercial HAS implementa-
tion by Microsoft, as well as against optimal adaptation trajectories computed using
the full knowledge about future throughput dynamics. The evaluation has shown that
TOBASCO allows to efficiently avoid playback interruptions, provides a smooth view-
ing experience by avoiding excessive video quality fluctuations, achieves a high level
of network resource utilization, and provides a fair resource allocation in a multi-user
environment. Moreover, it minimizes start-up delays, which is particularly important
for services, where users tend to frequently start new video sessions. In particular, in
the network environment used for the evaluation, the developed algorithm achieves an
average video bit rate which is by up to 35% higher than that of the baseline approach,
and within up to 85% of the optimum, with an up to an order of magnitude smaller
rebuffering duration.

Omniscient VoD Streaming Client

One open issue regarding the performance evaluation of adaptation algorithms is the
lack of widely accepted benchmarks. To tackle this issue, I have developed an approach
to computing optimal adaptation trajectories, given the complete information on the
throughput process (that is, the amount of data that can be downloaded until time t,
for each t). Furthermore, this approach can be used for studying the impact of media
characteristics, such as the number of representations, and network properties, such as
different throughput dynamics, on the optimal streaming performance.

Streaming Client Architecture

Last but not least, based on my experience with implementing streaming client proto-
types and simulation models, I have developed a streaming client architecture that is
modular, extendible, and platform-independent, and that supports distributed operation
of the individual streaming components. The developed architecture facilitates the in-
tegration of various adaptation approaches, both for live streaming and VoD, including
algorithms that leverage cross-layer or context information, and including distributed
implementations of the adaptation logic.

8

CHAPTER2
Background

In this chapter, we provide the necessary background information on the technologies
used in the present thesis. We start with an overview of the broad area of Internet-based
multimedia streaming in Section 2.1, including a detailed description of the operating
principles of HTTP-Based Adaptive Streaming (HAS). In Section 2.2, we introduce
the notion of the Quality of Experience (QoE) and describe the inherent challenges
in objectifying and quantifying this concept, in particular for HAS. We provide an
overview over small cell wireless networks, that are targeted by our cross-layer approach,
in Section 2.3. We conclude this chapter with Chapter 4 that introduces the notation.

2.1 Internet-Based Video Streaming

In this section, we first highlight some of the major cornerstones in the historical devel-
opment of Internet-based streaming, or, as it is frequently called, Over-the-Top (OTT)
streaming. We proceed with a characterization of the streaming landscape by catego-
rizing existing approaches based on a few core features. We then go into details on
the important aspect of the choice of the transport protocol. Finally, we describe the
technology of adaptive streaming, focusing mainly on HAS, which is the target of this
thesis.

2.1.1 A Historical Overview

As early as in the 1970s, researchers started to study approaches to transmit multimedia
content over packet-switched networks [61, 195]. At that time, the focus was on the voice
traffic, since neither the network equipment nor the user terminals had the capacity and
computational power to transmit and render video content.

9

Chapter 2. Background

In the beginning of the 1990s, multimedia technologies started to establish themselves
on the desktop Personal Computers (PC’s). Audio and video clips could be digitized,
encoded, and stored as files, and then decompressed and rendered on the screen. The
first natural extension to this process, enabled by the advance of the Internet, was to
download a video file from a server to the local machine where it could then be played
back. This, however, had the drawback that a user had to wait until the complete file
was downloaded, which could take a long time. In addition, she or he had to store
the video file on the local machine, which could be a problem due to a limited storage
capacity. These drawbacks created the need for streamed media that could be watched
while still being downloaded has emerged. Ideally, it should also offer the interactive
functionality of a Videocassette Recorder (VCR) such as fast forward, rewind, pausing
and indexed jumps [47]. An overview of the early trials of Video on Demand (VoD)
services over packet-switched networks is presented in [39].

Consequently, in the 1990s and early 2000s a lot of effort was concentrated on the
development of streaming solutions operating on top of the standard Internet proto-
col stack [216, 233]. One of them was the successful Real-Time Transport Proto-
col (RTP)/Real-Time Control Protocol (RTCP)/Real-Time Streaming Protocol (RTSP)
suite [172, 173]. It provides the means to establish and control the streaming session,
and to monitor the Quality of Service (QoS) in order to enable the application to react
to delay variations (jitter) and packet reordering/losses.

Even though RTP was designed to be independent from the underlying protocols, it
is typically used on top of the User Datagram Protocol (UDP) [158] (but see also [115]).
UDP is a transport protocol that provides means to send data with a minimum of pro-
tocol mechanisms. It is transaction-oriented, that is, there is no overhead for connection
establishment and teardown. It does not provide mechanisms to ensure reliability, that
is, the delivery is not guaranteed. Moreover, it does not provide any mechanisms to
avoid or react to network congestion. All such mechanisms, if required, have to be
implemented by the higher protocol layers (see also Section 2.1.3 for details).

At about the same time, there were many efforts to revisit the original Internet
communication pattern of unicast, that is one-to-one, data flows. With unicast, the same
content is independently simultaneously streamed to many users, which is inefficient since
a separate copy of the data is sent to each destination. IP multicast [46] was proposed
as a solution that provides multipoint delivery directly at the network layer of the Open
Systems Interconnection (OSI) model [233].

In its basic form, IP multicast delivers the same video stream to each user of a
multicast group. This causes problems in the case of heterogeneous network conditions
of the individual users that may, e.g., experience very different throughput. Approaches
such as Receiver-Driven Layered Multicast (RLM) [140] were proposed to overcome this
issue by creating multiple multicast groups for the same content, each group streaming
a specific representation of the content (for example, encoded at a specific media bit
rate). By tentatively joining and leaving groups, the client was supposed to find the
right representation.

Unfortunately, despite the intensive research and large-scale pilot projects [53], and
despite the fact that IP multicast implementations have been available in many end
devices and routers, it has never been widely deployed on the Internet. The reasons

10

2.1. Internet-Based Video Streaming

include architectural shortcomings, security and economic concerns [48], but also the
challenges related to performing application-layer adaptation in a multicast stream [123].

Another approach to overcome the inefficiency of parallel unicasts was Application
Layer Multicast (ALM) or Peer-to-Peer (P2P) streaming [8, 34, 44, 83, 137, 153, 178,
225, 227]. With P2P streaming, only a subset of the users obtain the data directly from
the server(s). Those who have received certain fragments of the video content, pass them
on to other users, resulting in one or multiple distribution trees or a distribution mesh,
where most of the data exchange takes place directly between the end users, no longer
involving the original source(s).

In addition, especially in mesh-based P2P networks, a technique called network cod-
ing can facilitate the exchange of content fragments. Using network coding, or a variant
called random linear network coding [73], packets from a certain time window can be
jointly encoded in such a way that allows a peer to reconstruct the original packets from
any fixed-sized set of encoded packets mitigating the ”rarest piece” problem [209].

The fact that the resulting overlay topology is typically created without taking into
account the underlying physical network topology reduces the efficiency of the P2P
communication paradigm. Still, the service provider is relieved from the burden to serve
thousands or millions of parallel unicast streaming sessions, and the total upload capacity
increases with the number of users participating in the overlay, making the system highly
scalable.

Several P2P streaming systems have had a tremendous success in certain regional
markets, e.g., PPLive1 [207] and PPStream2. A recently established service called Bit-
Torrent Live3, which is based on an enhancement of the very popular P2P file sharing
protocol BitTorrent [40], has still to establish itself and accumulate a critical mass of
available content.

Unfortunately, the decentralized nature of P2P file sharing had enabled copyright
infringement on a massive scale, and thus has severely discreded the P2P technology for
many years to follow. The issue of lawfully streaming copyright-protected content via
P2P networks has never been solved to the extent satisfying influential content owners.
Another drawback of the technology is that P2P clients may generate a high amount of
upstream traffic serving the downloaded content to other peers, and thus they may be
restricted or even blocked by the network operators.

In the last years, the technological trend for OTT video delivery has taken a different
direction. Namely, Hypertext Transfer Protocol (HTTP) has established itself as a
de facto standard in this domain. HTTP was developed in the early days of the World
Wide Web as the main application layer protocol used by a web client to fetch web
pages from a server [15, 59, 79]. By using HTTP, streaming clients are leveraging
the ubiquitous and highly optimized HTTP delivery infrastructure, including Content
Delivery Networks (CDNs), caches, proxies, etc. The services providers benefit from
lower operational costs due to the lack of necessity to maintain specialized video servers
and pay for their licenses. HTTP is typically allowed to traverse middleboxes, such
as Network Address Translation (NAT) devices and firewalls. Finally, HAS has good

1http://www.pplive.com
2http://www.ppstream.com
3http://www.bittorrent.com

11

http://www.pplive.com
http://www.ppstream.com
http://www.bittorrent.com

Chapter 2. Background

Delivery
technology

Properties

Cinematography
”Offline” delivery to selected locations; playback using ex-
pensive equipment

Classical
broadcasting

Terrestrial/cable/satellite television; delivery via dedicated
infrastructure; playback mostly using dedicated hardware

Videocassette,
DVD, Blu-ray

”Offline” delivery; playback using dedicated hardware

File download,
then playback

Delivery over the Internet (using File Transfer Protocol or
Hypertext Transfer Protocol); playback using standard com-
puting equipment

Internet Protocol
multicast

Delivery over the Internet, or over dedicated Internet Proto-
col Television networks; playback using dedicated hardware
(receivers, Set-Top Boxes), or standard computing equip-
ment

Peer-to-Peer
streaming

Delivery over the Internet (using dedicated application layer
protocols such as SplitStream, or BitTorrent [137]); playback
using standard computing equipment

Over-the-Top
unicast streaming

Delivery over the Internet (typically using RTP/UDP or
HTTP/TCP), typically enhanced by Content Delivery Net-
works; playback using standard computing equipment

Table 2.1: Video delivery evolution

scalability properties due to the stateless nature of HTTP, and since the control logic
resides at the client. It is also worth noting that HTTP uses Transmission Control
Protocol (TCP), which is a reliable transport protocol. It thus enables usage of efficient
video compression technologies that are particularly sensitive to packet losses.

In fact, the idea of using HTTP for streaming is not new. Even some of the early
streaming applications, such as VivoActive 1.0, were using HTTP to keep the design
simple [42]. However, it was not until recently that HTTP-based streaming has reached
a broad deployment. Partially, because the commercial success of Internet-based video
streaming itself was not possible before the high-speed network infrastructure, including
broadband wireless and mobile networks, has become ubiquitous. Another key enabler
was the broad availability of hybrid TV’s that are connected to the Internet, and of
mobile devices with large high-resolution screens and enough computational power to
stream high-quality video. Finally, the open standards MPEG-DASH (Moving Picture
Expert Group Dynamic Adaptive Streaming over HTTP) [50, 180, 183] and Hypertext
Markup Language (HTML) 5 have enabled the interoperability required for a wide sup-

12

2.1. Internet-Based Video Streaming

port across hardware and software manufacturers, service and content providers.

Initially, the dominant type of HTTP-based streaming was the so-called progressive
download. The client simply started the playback of a video file while the file was still
being downloaded via a single HTTP request. This required certain support from the
deployed video format, since all the information needed for decoding a video frame had
to be stored within the file either before that frame or very shortly after. More recent
approaches split the file into segments of a few seconds duration that are subsequently
downloaded by the client [99]. Coupled with the possibility to provide each segment
in different representations, this allows the client to adjust the stream to the network
conditions. In addition, segmenting the video file has facilitated caching and ad insertion.
We will introduce this technology in more details in Section 2.1.4.

An overview of the outlined evolution of video delivery technologies is presented in
Table 2.1.

2.1.2 The Streaming Landscape

The diversity of approaches to OTT video delivery is enormous (see, e.g., [13, 14, 125]
for an overview). In Table 2.2, we categorize them along five attributes: delay require-
ments, control location, distribution method, transport protocol, and adaptivity. In the
following, we briefly describe each of the attributes and the typical values they can take.

Latency

One fundamental characteristic of a video streaming approach is the latency it is designed
for. W.r.t. the latency, we distinguish between interactive streaming, live streaming,
low-delay live streaming, and VoD. Examples for interactive streaming include video
conferencing and telepresence. Examples for live streaming include transmissions of
sports events or live transmission of video games4. An essential property of interactive
and live services is that the content is being streamed while the event being recorded is
taking place. Consequently, the delay of the transmitted sequence influences the value
the sequence has for the receiver. In contrast, with VoD, the content is prerecorded and
stored at the server, and thus, VoD streaming does not have any latency requirements.
(It still has requirements on the start-up delay, though, especially in cases, when the
user tends to watch short videos or frequently switch between channels.)

The latency of interactive services should not exceed 100 ms [88, 92]. The latency of
OTT live streaming services can reach tens of seconds. Even though live services often
benefit from a low latency, achieving it is challenging and may lead to a reduction in
video quality. For some live services, however, the latency requirements are tighter. A
live stream of a surveillance camera should have a smaller latency in order to enable
shorter reaction times. Another example is passive participation in a conference or a
lecture. While the (typically few) active participants have the latency requirements of
interactive streaming, it is more efficient for the service provider to serve the passive
participants with larger delays, potentially deploying a different streaming technology
with a better scalability. However, since a passive participant may become active (e.g.,

4http://www.twitch.tv

13

http://www.twitch.tv

Chapter 2. Background

Delay requirements
Interactive (up to 100 ms), low-delay (100 ms to 10 s),
live (1 s to 30 s), VoD (not applicable)

Control location Sender-driven, receiver-driven, network-driven, hybrid

Distribution method Broadcast, multicast, P2P, unicast, hybrid

Transport protocol UDP, RTP/UDP, TCP

Adaptivity Adaptive, non-adaptive

Viewpoint Single-view, multi-view

Table 2.2: Streaming landscape; note that control location refers to the control of the
data flow not to session control in general.

by asking a question), his delay must be small enough to avoid a significant ”time
jump” when switching to the interactive mode. We call live streaming services with
latency requirements ranging from hundreds of milliseconds to few seconds low-delay
live streaming.

Control location

Another important attribute of a streaming solution is the location of the application-
layer flow control. Traditionally, this functionality has been implemented at the server
side. This, however, may lead to scalability issues, since the server has to keep state
for each flow, and implement various mechanisms that control the streaming process.
Moreover, information about the QoS of the network path has to be accumulated by the
client and fed back to the server, creating additional delays in the control loop. Conse-
quently, many of the current non-interactive streaming services that are deployed on a
large scale are client-driven. There are ongoing efforts to create frameworks for hybrid
– network-assisted or server-assisted client-driven – streaming services that can further
optimize the network resource allocation, and thus improve efficiency and fairness. One
example is the recent extension to the MPEG-DASH standard called Server and Net-
work Assisted DASH (SAND). An example for a network-driven delivery method is a
transcoding-based approach, where the quality of the stream is adapted based on each
client’s network path conditions at the CDN or proxy nodes [189].

Distribution method

We have already mentioned the inefficiency of simultaneously unicasting identical con-
tent to multiple receivers, and some of the alternative distribution methods developed
to overcome this drawback, such as IP multicast and P2P streaming. In addition, some
of the ongoing efforts are focusing on enabling IP-based broadcast over cellular (e.g.,
evolved Multimedia Broadcast Multicast Service (eMBMS)) or satellite links, or to com-
bine broadcast and unicast distribution, for example by broadcasting the base layer of a

14

2.1. Internet-Based Video Streaming

scalable video to all participants, and by unicasting enhancement layers to those clients
who have a fast enough Internet connection, and a high-resolution screen.

Transport protocol

The choice of the transport protocol for OTT streaming was historically decided in favor
of UDP, which provides a minimum of overhead and thus fits the needs of many real-time
applications. However, later on TCP became the protocol of choice. In the dedicated
Section 2.1.3, we describe the impact of the transport protocol choice in more details.

Adaptivity

An important property of a streaming technology is its capability to perform dynamic
adaptation of the transmitted media format to the changing network conditions, de-
vice capabilities, or user context. If a streaming approach is non-adaptive, the network
connectivity and the end devices of all users receiving the stream must satisfy the re-
quirements of the media format used for the transmission. Thus, either the least common
denominator is used, negatively impacting the ”premium” users, or some of the users
will not be able to receive an appropriate QoE, or even fail to start the streaming ses-
sion. We will discuss adaptive streaming, which constitutes the focus of this thesis, in
Section 2.1.4.

Viewpoint

Traditionally, the consumption of video content has been limited to a single perspective
of a scene, corresponding to a location and angle of the camera, which was determined
during the content production phase. Meanwhile, the advances in imaging and com-
puting technology are bringing multi-view video to the mainstream, allowing the user
to dynamically select the perspective she or he wants to see [192]. Combined with 3D
video and the ability to control the perspective by head movements, multi-view systems
are offering an immersive Virtual Reality (VR) experience that can greatly enhance the
QoE in various application domains, including entertainment, videoconferencing [218],
medicine (remote surgery), education, etc. In principle, multi-view video can be trans-
mitted using the technologies designed for single-view video. However, this is inefficient
due to the involved transmission of large amounts of dispensable content that is not
perceived by the user. Instead, taking into account the current and predicted user’s
perspective allows to reduce the amount of transmitted data and greatly increase the
QoE [29, 58, 154].

2.1.3 The Choice of the Transport Protocol

The two transport protocols dominating the Internet since its early days are UDP [158]
and TCP [201]. Both serve quite different purposes.

TCP was designed to support a reliable and connection-oriented data transfer. De-
signed to operate over networks where individual packets might get lost or arrive out
of order, it uses retransmission and receiver-side buffering to deliver the data to the

15

Chapter 2. Background

application completely and in strict order. In addition, it is equipped with congestion
avoidance and congestion control mechanisms that adjust the sending rate based on the
sender’s estimation of the available network capacity, in order to ensure the stability of
the network and a fair allocation of resources. Since its first design in 1974 [25], TCP
has been subject to a considerable optimization and reshaping process, and is currently
used to transport over 90% of the data on the Internet [100].

In contrast to TCP, UDP provides means to send data with a minimum of protocol
mechanisms. It is transaction-oriented, that is, there is no overhead for connection
establishment and teardown. It does not provide mechanisms to ensure reliability, that
is, the delivery of the individual data packets is not guaranteed. Morever, it does not
provide any mechanisms to avoid or react to network congestion. All such mechanisms,
if required, have to be implemented by the upper protocols or by the application itself.

For the transmission of data that require a particularly low delay on the order of
tens or hundreds of milliseconds, as, e.g., with real-time applications such as interactive
streaming, UDP is clearly the preferred choice. For these services, the utility of the
individual packets quickly decreases with the increasing delay, and becomes zero when
it exceeds a certain threshold. TCP, however, sacrifices timeliness for reliability by
retransmitting lost packets while delaying the delivery of all subsequent packets until
all packets can be delivered in order, considerably increasing the delay in the presence
of packet losses. In addition, many TCP flavors interpret packet losses and sporadic
transmission delay peaks as congestion signals, and react by reducing their sending rate.
Depending on the deployed video encoding technique, however, using a higher sending
rate, while tolerating a certain amount of lost packets, may lead to a higher QoE.

On the other hand, however, streaming services that are using an unreliable transport
protocol such as UDP need to deploy mechanisms mitigating the impact of packet losses
and out-of-order delivery. Although most decoders are able to operate in the presence
of packets losses, reconstructing transmitted video frames from incomplete information
results in more or less visible artefacts. Moreover, since modern video compression
methods deploy inter-frame coding that leverages temporal redundancy in the content,
decoding a frame typically involves accessing previous, or even subsequent frames [185].
Thus, the loss of a packet does not only result in one corrupted frame but propagates to
a number of other frames. In order to mitigate this impact, applications have to deploy
mechanisms, such as retransmissions, forward error correction [64], error concealment
techniques [30, 208, 212], error-resilient encoding [191], or a combination of those [226].
Typically, UDP is combined with RTP/RTCP [173], which facilitate monitoring the QoS
and reacting to changing network conditions. In addition, with a lossy transmission the
Group of Pictures (GOP) size should not exceed a certain threshold in order to limit the
error propagation, which negatively influence the compression rate.

Whenever the receiver is willing to tolerate a delay on the order of seconds or more,
as in the case of live streaming or VoD, the effects of retransmission delays and varying
sending rate can be mitigated by introducing a playback buffer at the receiver side.
In this case, TCP becomes a valid choice [109]. In addition, using TCP also offers
several benefits. Services that leverage a reliable transport protocol do not have to react
to packet losses, since the lost packets are retransmitted. In addition, TCP provides
built-in congestion avoidance and congestion control mechanisms, that are necessary to

16

2.1. Internet-Based Video Streaming

maintain network stability, as well as to ensure basic fairness among competing flows. It
thus helps reducing the complexity of the streaming application. Furthermore, reliable
communication enables the usage of efficient video compression technologies that are
particularly sensitive to packet losses (the loss of an I-frame may result in several seconds
of corrupted playback).

However, this gain does not come for free. The retransmissions make the throughput
dynamics more complex, and thus require more sophisticated adaptation algorithms. In
addition, the operation of the congestion avoidance and congestion control mechanisms,
further increases the complexity. Many video quality adaptation approaches rely on
explicit or implicit throughput estimations. Consequently, their performance is highly
correlated with the accuracy of the estimations. This is particularly true for low-delay
streaming, since, due to its delay constraints, it has a tight limitation on the maximum
level of the playback buffer. Therefore, performing efficient adaptation on top of reliable
protocols such as TCP is highly challenging.

RealVideo, which is one of the first popular streaming solutions introduced in 1997,
leveraged UDP in order to benefit from the better utilization of network resources and
reduced throughput and delay fluctuations, but suffered from problems such as lost or
delivered out of order packets. One recent example is WebRTC5, a multimedia commu-
nication framework for web browsers.

Other early streaming applications, such as VivoActive 1.0, were using TCP, which
helped to keep the design simple. The impact of throughput fluctuations was mitigated
by building up a playback buffer of 5-10 seconds prior to starting the streaming ses-
sion [42]. In the last years, streaming solutions that make use of HTTP, which uses
TCP as transport protocol, have become increasingly popular and are meanwhile dom-
inating the Internet traffic.

There also exist approaches that can be seen as a compromise between UDP and
TCP, e.g. performing TCP-friendly end-to-end congestion control but without the delay-
constrained reliability [60, 94, 164]. Several such approaches have been standardized but
have not seen wide deployment.

2.1.4 Adaptive Streaming

Any OTT streaming technology has an inherent challenge. The Internet is a so-called
best-effort network; it was not designed to provide any QoS guarantees. Considerable
effort has been put into developing networking architectures addressing this shortcom-
ing [10, 21, 62, 224]. So far, however, none of them has seen wide deployment. One
part of the problem lies in the complexity of implementing QoS models, forcing network
operators to resort to costly ”brute-force” solutions based on resource overprovisioning.

Another way to overcome the problem is to adapt the media characteristics of the
streamed content to the dynamically varying network conditions. This approach is also
more in line with the traditional Internet design principle, requiring that the complexity
belongs at the edges, while the core should be kept simple and stateless [19]. This idea
becomes manifest in the concept of adaptive streaming.

5https://webrtc.org

17

https://webrtc.org

Chapter 2. Background

In fact, a dynamic adaptation of the operating parameters of an application to the
available resources is a general problem which rises in different contexts. Whenever
the scarcity of the resources does not allow to satisfy the maximum requirements of
each single application, two basic issues need to be addressed. First, how to allocate
the available resources to the individual applications, and second, how to meet the
operational objectives of each application despite the undersupply.

To keep the system design simple, these two issues are often solved separately, leading
to suboptimal performance. For example, an operating system might allocate an equal
fraction of the Central Processing Unit (CPU) time to each application, even though the
demands of the applications can be quite different. Another example is allocating the
same fraction of the network capacity to a background file transfer and a video stream.
While the user might not even notice that her or his backup completed earlier than
expected, they would most probably be quite unhappy to watch their favorite movie in
a low quality.

A more advanced approach might take into account the extent to which an appli-
cation is capable of adapting its operation to the available resources, e.g., in form of a
utility function [143]. A generic middleware adaptation framework which jointly solves
these two problems by using control theory is presented in [124]. It consists of two
main components, a task control model performing the resource allocation, and a fuzzy
control model mapping the allocated resources to the configuration parameters of an
application. The developed framework is successfully applied to an application which,
at the client side, tracks objects in a video stream transmitted from a server. In this
example, the application-layer adaptation is performed by trading off the rendered video
quality against an accurate and stable tracking.

Adaptive delivery of multimedia content has been in the focus of the research commu-
nity for quite some time [32, 96, 104, 110, 145, 163, 205, 210]. The proposed approaches
and frameworks are quite diverse: controlling the encoding rate of a live source [104, 203],
server-based or network-based filtering [94], transcoding [6], selecting a subset of avail-
able media layers [127, 149, 191], selecting from a set of independent media representa-
tions [132], or by a combination of several of these approaches [226]. Other examples
include adapting interactive streaming services to the varying end-to-end delay [72].

One of the early approaches is SureStream [132], introduced in 1998. With Sure-
Stream, multiple representations of the original content are stored in a single file. While
monitoring the network conditions, the client instructs the server to switch to a particu-
lar representation. The approach benefits from reduced complexity due to the client-side
implementation of the adaptation logic. It is also worth noting that it is not tied to a par-
ticular file format or video coding. Also, SureStream was one of the first systems built on
the Internet Engineering Task Force (IETF) and World Wide Web Consortium (W3C)
standards for Internet multimedia [42].

One of the currently most successful streaming technologies, HAS, includes adapta-
tion as its core design feature. Among the first works proposing HAS-based approaches
are [24, 132]. However, it took almost a decade until HAS has seen wide deployment
and commercial success. HAS flavors such as Apple HTTP Live Streaming (HLS)6 or
Microsoft Smooth Streaming [223] has been used by various streaming services, and

6https://developer.apple.com/streaming/

18

https://developer.apple.com/streaming/

2.1. Internet-Based Video Streaming

have been supported by most operating systems and browser environments. In 2011, an
open standard Moving Picture Expert Group (MPEG)-Dynamic Adaptive Streaming
over HTTP (DASH) [50, 180] was created to facilitate the interoperability.

In a HAS system, the video content is encoded in several representations that may
differ w.r.t. various characteristics such as the resolution, frame rate, compression tech-
nology, compression rate, video format, etc. They are typically configured by the service
provider during the planning phase [175]. Typically, the representations differ w.r.t.
their mean media bit rates, that is, the average number of bits representing one second
of video.

Each representation is split into segments, typically containing several seconds of
video data. Each segment starts with a random access point of the stream such that
segments from different representations can be concatenated to obtain a valid video
file. Consequently, switching the representation is feasible on each segment boundary.
Note that this approach requires a suitable container format that enables fast transitions
between representations, and has a low overhead [165].

HAS-based solutions are typically client-driven. In the beginning of the streaming
session, the client downloads an Extensible Markup Language (XML) file called the
Media Presentation Description (MPD) or the manifest file. It contains the stream
meta data, including links to the individual segments, or an instruction on how to
construct the links from the individual components such as, e.g., the base Uniform
Resource Locator (URL), the file naming scheme, the representation index, and the
segment index.

The client then issues a series of HTTP GET or GET RANGE requests to download
the segments, typically in chronological order, selecting a representation for each of
them from the set of available representations. More recently, the HTTP/2 standard has
introduced the Server Push feature that allows the server to respond with a preconfigured
sequence of segments to a single request. This feature has the potential to reduce the
protocol overhead and increase the responsiveness, which can be used to improve the
efficiency of low-delay streaming [198, 214]. After a segment is downloaded, it is stored
in the playback buffer until the playback of the previous segment has been completed.

If the download is not completed in time, the playback is halted. We term this event
a buffer underrun. According to multiple studies, the frequency and the duration of the
buffer underruns have the strongest impact on the QoE. Consequently, in order to avoid
underruns, a client strives to keep the playback buffer at a level that is high enough
to mitigate the impact of throughput drops and link outages. Especially in wireless
networks, where the link quality is affected by interference and fading effects, but also
in busy networks with a lot of cross-traffic, strong throughput fluctuations are quite
common.

Since the individual representations typically have different media bit rates, the client
is able to control the buffer level to a certain extent by dynamically selecting an appropri-
ate representation for each downloaded segment. Here, one need to distinguish between
VoD and live streaming. With VoD, the complete video content is available for down-
load the whole time throughout the streaming session. With live streaming, the content
is being recorded, encoded, and published to the servers while being streamed. Conse-
quently, a VoD client may theoretically prefetch the complete rest of the content into

19

Chapter 2. Background

its playback buffer while streaming, if the media bit rate of the selected representation
is sufficiently small as compared to the available network throughput. In contrast, with
live streaming the possibility to prefetch content is severely limited. Particularly with
low-delay live streaming, the buffer level cannot exceed a few seconds.

We remark, however, that even with VoD, where the complete content is available for
download, the buffer level is typically bounded from above. This bound is determined
by several factors. It may be determined by the available storage capacity, especially for
embedded devices that may have tight memory resources. It may also be limited by the
service providers in an effort to prevent the client from wasting network resources by
downloading content that won’t be presented because, e.g., the user quits the streaming
session prematurely or because a throughput increase allows the client to switch to a
higher quality, discarding the already downloaded low-quality content.

As already mentioned, if a segment cannot be downloaded prior to its playback
deadline, the playback is interrupted. The subsequent procedure again depends on the
type of the streaming session. With VoD, a client waits until the segment is downloaded,
then resumes the playback at the position where it has been interrupted. In addition, the
client may even further delay the playback to prefetch more content into the playback
buffer in order to minimize the risk of another playback interruption in quick succession.
In contrast, a low-delay live streaming client has to satisfy latency requirements, defined
by the user or the service provider. Consequently, when a segment is delayed, the client
may have to skip its playback and proceed with one of the subsequent segments.

In this context it is worth noting that short segment duration helps improving the
client’s responsiveness to throughput changes. At the same time, however, small seg-
ments increase the overhead due to the higher number of HTTP requests as well as
reduce the video compression efficiency due to the decreased GOP size. Typical segment
durations lie between 2 and 15 seconds.

Since HTTP offers no means to cancel an ongoing request, the only way to avoid a
buffer underrun in the case of a sudden throughput drop or to avoid wasting bandwidth
downloading a segment whose playback will be skipped is to use a different TCP con-
nection and to shutdown the old one. Since opening a new TCP connection is associated
with communication overhead, the client may maintain multiple TCP connections, using
them in a Round Robin manner in order to keep their internal state such as congestion
window size and Round-Trip Time (RTT) estimation up-to-date. In this way, the client
is able to immediately start using another TCP connection, while closing and replacing
the old one.

At the core of a HAS client is an adaptation algorithm that selects the representation
for each of the downloaded video segment. The adaptation is not part of the MPEG-
DASH standard and thus it has been subject to intensive research efforts over the last
years. To meet its adaptation decisions, an adaptation algorithm is using the information
it can acquire from its environment. Most often this information includes the dynamics
of the past throughput, with a level of details depending on the underlying platform,
and the dynamics of the level of the playback buffer. More sophisticated approaches
leverage cross-layer information from lower layers of the protocol stack or other network
entities, such as a local network controller. They may also leverage context information,
such as the location [166], mobility pattern, or available sensor data.

20

2.2. Quality of Experience

As we already have mentioned, the segment size may vary across the segments of
the same representation if Variable Bit Rate (VBR) encoding has been used to generate
the media data. The information about the sizes of the individual segments may or
may not be available to the client. It may be conveyed by the MPD file but not all
possible formats contain this information. It may also be fetched by the client by using,
e.g., HTTP HEAD requests, prior to requesting the actual segment. Finally, it may
be signaled to the client using in-band mechanisms such as the DASH Events which
have been included into the second edition of the MPEG-DASH standard [51]. If no
information about the segment sizes is available, the client may approximate them by
the average segment sizes that it can compute from the average media bit rates of the
individual representations, contained in the MPD.

Using precise knowledge about the individual segment sizes is particularly beneficial
in the case of low-delay streaming, where this information can help the client to precisely
estimate if a certain segment can be downloaded prior to its playback deadline or not.
In the case of VoD, the typical buffer sizes of several tens of seconds and the typical
segment durations of few seconds make the benefit of knowing the precise segment size
less pronounced. In this case, the average segment size computed over the number of
segments that correspond to the target buffer level should be fairly closely approximated
by the average segment size of the representation.

The adaptation algorithm used by a streaming client has a strong impact on the
QoE. If, e.g., the adaptation decisions follow the short-term changes of the network
throughput, the resulting average video quality may be quite high but the overall QoE
will decrease due to a high rate of quality fluctuations. On the other hand, a conservative
approach might reduce the risk of playback interruptions due to video segments missing
their playback deadline, but at the same time decrease the overall video quality. Thus,
a good adaptation strategy needs to maintain a balance between several trade offs that
we will discuss in more details in Section 2.2.

2.2 Quality of Experience

When developing a system or evaluating its performance, it is crucial to define the goals
it has to achieve. For a video streaming service, identifying these goals and expressing
them in a way that facilitates objective measurement has turned out to be a highly
challenging task.

At the dawn of the OTT streaming era, QoS metrics of the lower networking layers,
such as the packet loss rate or delay jitter, were used to assess the streaming performance.
Later, it has been recognized that an evaluation of a multimedia delivery service must
inevitably take into account human’s perception and cognitive processing, involved in
consuming the video content [217]. These phenomena, however, are influenced by a large
amount of hardly measurable factors.

The notion of the QoE was introduced in an effort to assess these phenomena and help
making them accessible to an objective evaluation process. The International Telecom-
munication Union (ITU) defines QoE as ”the overall acceptability of an application or
service, as perceived subjectively by the end-user”, which might be influenced by ”user
expectations” and ”context” [90]. In the following, we describe the main factors influ-

21

Chapter 2. Background

encing QoE, along with the available evaluation methodologies, with a closer look on
QoE for OTT streaming.

2.2.1 QoE Influence Factors

The number of factors influencing the QoE is immense, and many of them have a high
level of subjectivity, which results in extremely difficult modeling. Based on [20, 162],
we group them into the following categories: System Influence Factors (SIF’s), Context
Influence Factors (CIF’s), and Human Influence Factors (HIF’s).

System Influence Factors

SIF’s are factors related to the properties and characteristics that determine the tech-
nically produced quality of an application or service. They include properties of the
content, such as the amount of detail or motion, or the amount of depth in a 3D video.
Further, they include device-related factors, such as the display characteristics [108],
support for 3D [188], or computational power. They also include media-related and
network-related factors, that constitute the focus of the present work.

It is mostly unavoidable that video content recorded in a high quality has to be
compressed in order to be transmitted over a network since there is typically a sub-
stantial gap between the network throughput and the media bit rate of the recorded
video. To a certain degree, the compression may be performed without a noticeable
quality degradation. However, compressing High-Definition (HD), 4K and 8K Ultra-
High-Definition (UHD), or even VR streams such that they can be transmitted over the
Internet inevitably leads to a visible distortion, including, e.g., blocking effects, blurring,
edginess, motion jerkiness, etc. After being compressed, the content has to be encoded
into a certain format that can be processed by the target playback device. The na-
ture and parameters of the used compression method, the encoding format, resolution,
sampling rate, and frame rate are media-related SIF’s.

Network-related SIF’s include the end-to-end characteristics of the network path from
the source to the streaming client. They include throughput, delay, packet loss rate, as
well as their temporal variations. These factors are frequently termed QoS, although
the official definition of this term has a broader scope [89].

Context Influence Factors

CIF’s include situational properties of the user’s environment [103]. They include the
physical context (indoor/outdoor, quiet/noisy, lighting conditions, but also the level of
activity, such as sitting/walking/jogging), the temporal context (time of day/week/-
month/year), the social context (is the person alone or not, does the experience involve
inter-personal actions), the economic context (service cost), and the task context (level of
distraction). For example, a user might be not interested in a long movie during working
hours, or in slow music during a physical exercise. The same video content might leave a
totally different quality impression when watched on a mobile phone while riding on the
bus than when watched on a TV screen at home. Context-aware multimedia services
have recently become an active research topic, empowered by the increasing intelligence

22

2.2. Quality of Experience

and the ubiquity of interconnected devices that are able to recognize situational context,
learn user’s preferences, and consolidate the information to provide services tailored to
user’s needs under the given circumstances [231].

Human Influence Factors

HIF’s include the demographic and socio-economic background of a person, her or his
physical and mental constitution, or the emotional state. It was shown that, e.g., user’s
expectations, prior knowledge and skills, and technology affinity may significantly affect
QoE [169, 182, 217]. Due to their subjectivity and relation to internal states and pro-
cesses, however, the influence of HIF’s on QoE is difficult to model and is still poorly
understood [162].

Controlling QoE Influence Factors

If a streaming services operates over a managed network, many network-related factors
can be controlled by the service provider, e.g., by investing into the equipment and the
infrastructure, and by optimizing the network configuration for the requirements of the
particular service. Thus, in this case both network-related and media-related factors can
be jointly optimized to deliver a high QoE. An example for such a service is Internet
Protocol Television (IPTV).

With OTT streaming, however, the situation is different. The Internet ”does its best”
to deliver the packets in a fast and reliable way but does not provide any guarantees.
Consquently, both network-related and media-related SIF’s can and typically do vary
during the course of a streaming session. In order to provide a high or even the best
possible QoE, a streaming technology has to dynamically adapt the characteristics of
the streamed media to the varying network conditions. This adaptation may be defined
as adjusting media-related and/or network-related SIF’s that can be controlled to those
that cannot.

Finally we would like to remark that while taking into account the CIF’s and the
HIF’s has the potential to increase the QoE of streaming services, their complex and sub-
jective nature, and the lack of an established model combining them into a quantifiable
metric, are hindering them from entering state-of-the-art technologies.

2.2.2 QoE Evaluation Methodology

Once the influencing factors presented in Section 2.2.1 are identified, it is necessary to
determine their impact on the QoE, as well as their relative importance. The methods
for doing that can be grouped into three categories: subjective tests, objective models,
and data-driven models [31].

Subjective tests

With subjective tests, QoE of a set of videos is evaluated by human viewers in a lab-
oratory environment [91]. Asking a person directly is a natural way to determine the
quality of his or her experience. Still, subjective tests have certain limitations. First,

23

Chapter 2. Background

they are costly due to the required time, equipment, and human effort. Moreover, they
are conducted in a laboratory environment, with a limited variability of tested video
characteristics, test conditions, and viewer demography. Finally, subjective tests cannot
be used for a real-time QoE evaluation required, e.g., in order to dynamically tune the
QoE of a service.

Objective models

To avoid these drawbacks, many studies have been focusing on objective models to allow
computing QoE from measurable influencing factors without human intervention [33,
107, 131]. Ideally, they should reflect the way video signals are processed by the Human
Visual System (HVS). Objective models should correlate with subjective test results,
and may be validated using the latter as the ground truth. Some objective quality
models rely on subjective tests to train model parameters.

Objective models can be categorized into Full Reference (FR), Reduced Reference
(RR), and No Reference (NR) models, depending on the amount of information they
require about the original content.

One commonly used, although imperfect, method is to quantify the difference be-
tween the original and the distorted video, potentially weighing the errors according to
spatial and temporal features of the video. Many studies use the Sum of Squared Dif-
ferences (SSD), or its equivalents, such as the Mean Squared Error (MSE) or the Peak
Signal-to-Noise Ratio (PSNR) [150].

Another approach that takes into account the fact that the HVS is highly trained
to extract structural information from images, and is thus very sensitive to structural
distortion, is the Structural Similarity (SSIM) index [213]. Yet another approach is the
Video Quality Metric (VQM) [157] that has been accepted by the ITU-T as a recom-
mended objective video quality metric.

In order to develop QoE prediction models that do not depend on the original videos,
network statistics (such as the packet loss) and spatiotemporal features extracted or
estimated from the distorted video, may be leveraged. A performance evaluation study
in [93] compares 9 FR, RR, NRmodels that take into account network statistics extracted
from the received video bitstream.

Unfortunately, all mentioned approaches are designed to measure the quality of a
video subject to impairments resulting from packet losses, and other artefacts, rather
than losslessly transmitted adaptive video, as in the case of HAS.

Data-driven models

Recently, data-driven models have emerged as a promising way to circumvent the draw-
backs of the other two methods. Data-driven models leverage large-scale data collections
created from the feedback provided by the streaming clients. The large volume of the
collected data allows to replace sophisticated models required to draw valid and reliable
conclusions from small data sets by simpler models without affecting the performance.
Based on the collected data, individual influence factors can be mapped to metrics such
as the user engagement, which reflects the viewing time, the number of watched videos
and the probability of return [12, 43, 111].

24

2.2. Quality of Experience

2.2.3 QoE for HTTP-Based Adaptive Streaming

QoE for HAS is currently a very active and fast developing research area [11, 162,
175, 181]. The main two design aspects of HAS that influence the degrees of freedom for
maximizing QoE are (i) the choice of TCP as transport protocol, and (ii) the client-driven
data flow control. The choice of a lossless transport protocol eliminates impairments
due to packet losses. Instead, packet losses are translated into delayed packets and
throughput fluctuations. Locating the application-layer stream control at the client
determines the information available as input to the decision process.

The main factors influencing QoE that can be controlled by a HAS client are: the
number and duration of playback interruptions, the adaptation trajectory (determining
the video representations selected for the individual video segments and the frequency
of representation transitions), the initial delay, and, in the case of live streaming, the
live latency. In the following, we describe each of these factors in more details.

Playback interruptions

When a streaming client’s playback buffer has been drained, and the next video segment
does not arrive before its playback deadline, the playback must be halted – a playback
interruption occur. This is often referred to as a buffer underrun. In the case of VoD,
a buffer underrun is typically followed by a rebuffering period, where the client waits
until enough video data is accumulated in the buffer to resume playback. The conditions
that need to be fulfilled before the playback is resumed depend on the client’s rebuffering
strategy. In the case of live streaming, rebuffering increases the live delay since a segment
is played out at a later time than its playback deadline. In the case of a soft bound on
the live latency, as determined by the service provider or by the user, the client might
chose this option. In the case of a strict bound, the client has to skip the playback of the
late segment, cancel its download, and continue with downloading one of the subsequent
segments, in order to stick to the configured latency bounds.

Adaptation trajectory

The selected video representations, or the adaptation trajectory, is obviously a factor
that dramatically influences the overall QoE, by influencing the video quality (video
distortion) of the individual video segments. A classical approach to characterize the
video quality is the PSNR, which is typically a strictly concave function of the media
bit rate. Video quality is, however, not the only important property of an adaptation
trajectory. Recent studies have shown that also quality transitions have a significant
impact on the QoE of an adaptive streaming session. It is worth noting, that due
to partially quite significant media bit rate fluctuations within a single representation,
resulting from VBR encoding used by many service providers, quality fluctuations cannot
always be completely avoided, even in the presence of a stable network throughput.

Initial delay

At the start of a streaming session, the user’s playback buffer is empty, so that the user
has to wait until enough video data is downloaded in order to start the playback. This

25

Chapter 2. Background

phase is sometimes termed prebuffering or initial buffering. In contrast to rebuffering,
during prebuffering, a streaming client typically does not have information about the
network conditions. Especially when a user frequently starts a new streaming session,
e.g., by switching TV channels, or when she or he repeatedly watches short videos, even
a moderate start-up delay of 2 seconds might severely degrade the QoE and even make
the user decide not to watch the video at all [111].

Live latency

In the case of live streaming, an additional factor that plays an important role is the
latency. While currently, OTT live streaming services might exhibit a latency of several
tens of seconds, many services would strongly benefit from reducing this value. In partic-
ular, low-delay services such as surveillance or passive participation in video conferences,
requires lower delays on the order of a few seconds.

Maximizing QoE

Note that the individual factors described above cannot be considered separately. For
example, in order to minimize the number and duration of playback interruptions and
the number of quality transitions, one may always select the lowest video quality, which,
obviously, is suboptimal w.r.t. the overall QoE if the available network capacity actually
allows a higher media bit rate. On the other hand, maximizing the video quality by
always selecting the highest representation will too often result in an unacceptably high
number of playback interruptions.

Some of the described factors, such as rebuffering, initial delay, and quality transi-
tions, have not been part of traditional QoE metrics for broadcast-based video trans-
mission, but have a tremendous impact on QoE for adaptive OTT streaming. Still, the
relative importance of the individual factors is not completely understood. Nevertheless,
the number of studies dedicated to this topic has been dramatically increasing with the
growing popularity of video streaming services, so that a lot of valuable insights are
available to help designing QoE-optimized streaming approaches.

Many studies suggest that the number and duration of rebuffering periods have the
most severe impact on QoE, especially with live streaming [43]. In particular, users are
willing to accept a higher initial delay and higher video distortion, if it helps minimizing
rebuffering periods [76, 160, 175, 179].

Other studies confirm the negative impact of video quality transitions resulting from
dynamically changing the representation [122, 219, 221, 234]. In particular, some studies
come to the conclusion that a lower overall video quality might be tolerated if it helps
reducing the amount of representation changes [155].

Minimizing the initial delay is another important goal of a streaming client. The
large-scale study in [111] reveals that a delay beyond 2 seconds may cause the viewers
to abandon the video.

As already mentioned in Section 2.2.2, the user engagement is another important
metric, which is especially of interest for content providers because it directly relates to
advertising-based revenue schemes [12, 43, 111].

26

2.3. Small Cell Wireless Networks

2.3 Small Cell Wireless Networks

Since the time when the Internet first entered our lives, we have been observing a steady
increase in the traffic demand, stimulated by the advance of new services, miniaturiza-
tion of electronic devices, and the expanding coverage and increasing speeds of access
networks. An essential enabler of this success is the wireless communication technology,
which provides connectivity on the go, covering areas lacking the infrastructure required
for fixed line access.

It is, however, well understood that the current trend of wireless technology (e.g.,
Long-Term Evolution (LTE) [174]) cannot cope with the exponential traffic increase
expected in the following years [37], unless the density of the deployed infrastructure
is increased correspondingly [7]. In fact, throughout the history of wireless networks,
throughput gains resulting from the increased network density exceeded the gains from
individual other factors by an order of magnitude [26].

It is widely agreed that the next generation of wireless networks will involve a combi-
nation of multiuser Multiple Input Multiple Output (MIMO) technology, cell densifica-
tion, and nested tiers of smaller and smaller cells, operating at higher and higher carrier
frequencies [26]. Consequently, we have recently observed a surge of research on a dense
deployment of base station antennas, in the form of massive MIMO schemes [78, 85, 139]
and in the form of densely deployed small cell networks [26, 77].

Reducing the wireless cell size by using scaled-down macrocell Base Stations (BS’s)
requires a substantial amount of planning, integration, management, and maintenance,
involving significant Capital Expenditures (CAPEX’s) and Operational Expenditures
(OPEX’s). In contrast, the network design concept of small cell networks is based on
the idea of a very dense deployment of low-cost, low-power BS’s that are substantially
smaller and cheaper than the macrocell equipment.

To achieve an appropriate backhaul capacity, small cell BS’s may reuse the already
existing wireless or wireline access points. In addition, caching and preloading of pop-
ular (video) content can significantly reduce the load on the backhaul [63, 177], due to
the highly uneven popularity distribution of video content [65, 177], potentially com-
plemented by recommendation engines optimizing the hit rate [112]. Moreover, small
cells can greatly improve indoor signal quality as compared to macrocells, which has the
potential to substantially improving the overall efficiency due to the fact that a large
fraction of voice and data traffic originates indoors [156].

The design and performance analysis of efficient resource allocation mechanisms in
small cell networks is challenging because of several factors. User terminals are typically
covered by multiple BS’s with different link properties. Optimal resource allocation
requires Channel State Information (CSI), which grows with the amount of transmitters
and receivers. Due to the dense deployment of BS’s and the high frequency reuse factor,
the capacity of a small cell network is severely impacted by intercell interference.

One the one hand, one potential benefit of the small cell technology is its self-
organization capability. On the other hand, a centralized network entity may enable
a certain degree of cooperation among the BS’s in order to further increase the effi-
ciency [141]. While, consistently with the current wireless standards, the individual
cells may deploy intra-cell orthogonal access, such as Frequency Division Multiple Ac-

27

Chapter 2. Background

cess (FDMA) or Time Division Multiple Access (TDMA), the centralized controller may
allocate the downstream traffic to the cells, and control the BS associations.

28

CHAPTER3
Related Work

In this chapter, we review the existing literature on those aspects of adaptive streaming
that are related to our work. We begin with adaptation strategies for Video on Demand
(VoD) streaming clients, which is the most actively pursued research direction. We
proceed by reviewing the literature on low-delay live streaming, followed by prediction-
based adaptation. We then focus on the studies addressing cross-layer optimization
for streaming, especially in wireless networks. Afterwards, we outline works studying
optimal adaptation approaches. Finally, we study the literature on Transmission Control
Protocol (TCP) throughput prediction.

3.1 Video on Demand

In the last years, there has been a significant number of studies on adaptation algorithms
for HTTP-Based Adaptive Streaming (HAS)-based VoD. Various approaches have been
proposed that are based on the control theory [220, 229, 230, 232], Markov decision
processes [18, 97], machine learning [38], dynamic programming [128], data-driven tech-
niques [12, 69, 135, 166], and various other heuristics selecting the video quality based on
the client’s playback buffer level and/or average throughput [98, 129, 133, 134, 146, 197].

Unfortunately, due to the lack of a standard evaluation methodology and performance
metrics for HAS systems, comparing the performance results of the individual studies is
hardly possible. Consequently, several studies perform comparative evaluations of the
adaptation behavior of multiple (three or more) clients [3, 82, 148, 199].

Akhshabi et al. [3] experimentally evaluate three HAS clients, focusing on the follow-
ing three aspects: reaction to persistent or short-term throughput changes, the ability
of two players to properly operate on a shared network path, and if a player is able to
sustain a short playback delay and thus perform well with live content. The authors

29

Chapter 3. Related Work

identify significant inefficiencies in each of the studied players.

Timmerer et al. [199] compare the performance of 10 adaptive streaming clients in a
controlled environment, and using real-world measurements. The evaluation reveals that
all the tested players exhibit deficiencies and that there is no clear winner. However, it
also reveals that two relatively simple approaches perform reasonably well in the tested
scenarios.

Liu et al. [133] propose an adaptation algorithm that selects the representation based
on the throughput measured during the download of the last segment, and a minimum
buffer level threshold, below which no quality increase is performed. The algorithm
performs conservative upward transition and more aggressive downward transition. A
simulative evaluation is performed using artificial background traffic, without a baseline
approach.

Zhou et al. [229] propose an adaptation algorithm that leverages a throughput esti-
mation and a Proportional-Derivative (PD) controller in order to keep the buffer level
within a target interval. The details of the throughput estimation method are not
specified. A simulative performance evaluation is conducted with constant throughput,
short-term throughput spikes, and long-term throughput spikes.

Evensen et al. [55, 56] and Kaspar et al. [106] study HAS via multiple network inter-
faces, for VoD, live streaming with a soft latency bound, and low-delay live streaming
with a strict latency bound. They propose an algorithm that selects for the next segment
the highest representation that can be downloaded before the playback deadline, based
on the average aggregated throughput from the past two seconds. A deployed request
scheduler then assigns fractions of the video segment to the available network interfaces
for the download. The algorithm includes no mechanisms to limit the number of quality
transitions. In order to reduce the overhead due to the high number of sub-segment
requests, a new request is issued before the previous has been completed. The perfor-
mance is evaluated in an emulated test bed, and in real-world experiments. It reveals
that sub-segment requests with dynamically adjusted sizes are crucial to fully utilize the
aggregated capacity and achieve a high Quality of Experience (QoE), especially in the
cases with highly unequal link conditions.

Müller et al. [148] propose an adaptation approach that selects the representation
based on the average throughput of the whole streaming session, the average throughput
during the download of the preceding segment, and a factor depending on the current
buffer level. The exact formula is not provided. The evaluation is performed in an
emulated environment fed by three application-layer traces recorded on a mobile 3G
link while driving on a freeway, w.r.t. the total duration of playback interruptions, the
Mean Media Bit Rate (MMBR), and the number of quality transitions. Three algo-
rithms are used for comparison. The evaluation reveals that the proposed algorithm
performs exhibits a similar MMBR as Microsoft SmoothStreaming (MSS), the best-
performing baseline approach, accompanied by a higher number of quality transitions.
Other approaches show inferior quality due to a low MMBR or a high number of quality
interruptions.

Liu et al. [134] describes an approach to downloading segments using multiple parallel
TCP connections over a single network interface, when multiple clients compete for the
available network capacity.

30

3.1. Video on Demand

Several studies specifically look into client design aspects affecting performance and
fairness issues when multiple streaming clients compete for bottleneck capacity.

Zhu et al. [232] propose an adaptation scheme which is based on a Proportional-
Integral (PI) controller with the goal to combat video quality oscillations they observe
when multiple video clients share a common bottleneck. The algorithm uses buffer
level as input and does not explicitly take into account the network throughput. The
algorithm is evaluated against a baseline approach in a wired test bed with adjustable
network capacity but without cross-traffic. In the evaluation, one, two, and 36 clients
compete for capacity on a shared link. It is demonstrated that the proposed approach
is able to reduce the amount of quality transitions by up to 60% as compared to the
baseline approach, without degrading the average quality.

The adaptation algorithm FESTIVE, proposed by Jiang et al. [98], has the goal
of heuristically optimizing three performance metrics: maximizing the utilization of the
available network capacity, minimizing the number and magnitude of quality transitions,
and minimizing application-layer fairness between clients sharing a capacity bottleneck.
FESTIVE uses the harmonic mean over a fixed number of segment downloads to estimate
the available throughput. Based on this estimation, it selects a target video quality and
initiates a convergence procedure, whose speed depends on the distance between the
target and the current media bit rate, and the amount of quality transitions the client
has already performed in the recent past. These two factors are considered jointly
in order to resolve the trade off between the utilization and the amount of quality
fluctuations. In addition, FESTIVE randomizes the inter-request delays in order to avoid
the dependency of the adaptation trajectories on the initial state. The authors evaluate
FESTIVE against several commercial players, revealing its superior performance along
all three considered performance metrics. We use FESTIVE as a baseline approach for
the performance evaluation presented in Chapter 6.

The experiments performed by Huang et al. [82] reveal that some of the video quality
selection algorithms deployed in commercial services rapidly decrease the streamed video
bit rate below their fair share when confronted with an arrival of TCP background flow.
The authors observe that the problem is partially due to the TCP congestion control
algorithm which decreases the size of the congestion window after the idle period caused
by inter-request delays of approximately 4 seconds. Another factor is an inaccurate
estimation of the achievable throughput. Finally, an overly conservative behavior of the
deployed adaptation algorithms further degrades the performance.

An early work proposing a middleware framework enabling a coordination of (i)
the application-layer adaptation of the individual applications, and (ii) the system-wide
allocation of the shared resources is proposed by Li and Nahrstedt [124]. The authors are
using a task control model for a fair and efficient resource allocation, and a fuzzy control
model for mapping the allocated share to a parametrization of a particular application.

Huang and Nahrstedt [84] propose to adapt an interactive streaming service using a
genetic algorithm that searches for local non-dominated Pareto optima in the QoE space
including the synchronization quality, the latency, and the audio and video quality.

31

Chapter 3. Related Work

3.2 Low-Delay Live Streaming

As outlined in the previous section, there is a large number of recent studies focusing
on adaptation algorithms for HAS that do not address the low-delay requirement. They
typically consider playback buffer sizes of 10 to 30 seconds or more. In contrast, the
number of studies that specifically target live or low-delay HAS is significantly smaller.

Lohmar et al. [138] compare the delay and communication overhead in Hypertext
Transfer Protocol (HTTP)-based live streaming with the one in Real-Time Transport
Protocol (RTP)-based systems. They observe that with HTTP the transport delay is by
one segment duration larger and that the communication overhead becomes substantial
for sub-second segment durations (approx. 31 kbps for one second segments).

Evensen et al. [57] study how the interaction between segment download scheduling
on the application layer and the TCP congestion control dynamics can be used to im-
prove the performance when using non-persistent HTTP connections. Such techniques,
however, have limited applicability to low-delay streaming, due to the tight timing con-
straints. They propose two algorithms targeting a buffer size of 10 seconds, one of which
is using context information in form of a location-based throughput map.

Thang et al. [196] evaluate several adaptation algorithms using buffer sizes from 6
to 20 seconds. The authors observe that the used set of representations can significantly
affect the performance of individual methods, resulting in by up to a factor of 2.8 higher
average video quality. They also observe that none of the selected five methods performs
best in all cases but that the ranking depends on the throughput variability. However,
the study was performed using only one throughput trace.

Wei and Swaminathan [214] demonstrate that the server push feature introduced in
HTTP/2 can be used to support low-delay streaming by allowing a reduction in the seg-
ment duration, and thus the lower bound on the achievable delay, without suffering from
the super-linear increase in the number of requests observed with HTTP/1.1. However,
the study does not analyze the protocol overhead caused by response headers and the
reduction in video compression rate due to the decreased Group of Pictures (GOP) size.

Le et al. [118] propose an adaptation algorithm for live streaming that compares
potential adaptation trajectories for the next few segments and heuristically maximizes
the video quality represented by the Just Noticeable Difference (JND) metric. The
algorithm is evaluated using a maximum buffer size of 10 seconds and compared against
two baseline approaches. The evaluation shows that the algorithm exhibits lower average
video quality than the maximum of the two baseline methods. However, it is able to
reduce the average step size of a quality transition by 32% w.r.t. the minimum of the
two baseline methods. The performed evaluation used only one throughput trace.

Kupka et al. [113] compare various strategies that a HTTP-based live streaming
client has w.r.t. tuning into the stream, inter-request delays, and reacting to segments
that miss their playback deadline. The study is performed using a simple adaptation
algorithm that bases its decision on the throughput achieved during the download of the
last segment.

He et al. [72] propose a control-based cross-layer approach to adapt an interactive
streaming service to the end-to-end delay.

32

3.3. Prediction-Based Adaptation

3.3 Prediction-Based Adaptation

While many adaptive streaming clients leverage throughput averages computed in dif-
ferent ways over one or multiple time periods in the past, several studies explicitly create
models of the throughput process or compute throughput predictions.

Mok et al. [146] consider path probing techniques to obtain throughput estimations
that, however, typically requires support from the network infrastructure, server instru-
mentation, and/or modifying lower protocol layers. The proposed adaptation algorithm
is not evaluated.

Similar in spirit to our work is the study by Liu and Lee [136], which uses predictions
to match a target number of skipped segments and a minimum delay between quality
transitions to control the transitions frequency. The algorithm is evaluated in a mobile
network and compared against two baseline approaches. The evaluation reveals that the
baseline approaches, using default configurations, require up to an order of magnitude
more quality transitions in order to achieve a similar media bit rate and a similar num-
ber of skipped segments as the proposed algorithm. Unfortunately, only one network
environment is used for the evaluation, and the characteristics of the observed through-
put dynamics are not disclosed in the study. Also, the maximum buffer size used in the
evaluation is not specified.

Yin et al. [220] study the effect of prediction errors on the performance of two adap-
tation approaches, rate based and Model Predictive Control (MPC), compared against
a buffer based approach using synthetic throughput traces. The authors conclude that
when the prediction error exceeds 25%, prediction-based approaches might exhibit worse
performance than the buffer based algorithm. The used MPC algorithm is not described
in the publication.

The study by Tian and Liu [197] proposes a prediction-based adaptation algorithm,
where the media bit rate is selected to equal the predicted throughput times a dy-
namically varying adjustment factor. The proposed approach is, however, not designed
to support QoE-based performance targets and has a set of configuration parameters
that does not allow for a straightforward tuning of the algorithm for particular network
environments.

Li et al. [128] use dynamic programming to solve a Network Utility Maximization
(NUM) problem for a finite time horizon, for which a bandwidth estimation is computed
based on an Exponentially Weighted Moving Average (EWMA) of the recent segment
downloads. The proposed adaptation algorithm is evaluated using buffer size limits
between 30 and 50 seconds.

A heuristic adaptation algorithm is proposed by Le et al. [117] that tries to satisfy
constraints on future buffer levels over a finite time horizon using throughput predictions
obtained using a modified EWMA model where the weights are dynamically adjusted
based on the most recent relative prediction error. The algorithm is evaluated against
two baseline approaches using a single throughput trace and a buffer size of 20 seconds.
The evaluation reveals that the average video quality offered by the proposed algorithm
is by 3% (17%) higher, the average quality transition magnitude is by 27% (9%) lower,
and the number of quality transitions by 80% higher (46% lower) as compared to the
two baseline approaches.

33

Chapter 3. Related Work

3.4 Cross-Layer Approaches

Many studies targeting adaptive streaming adopt the perspective of a streaming client,
while modeling the network environment as a black box. A number of studies, however,
specifically focus on video transmission over wireless networks, leveraging cross-layer
techniques that jointly perform video quality selection and network resource allocation,
for different types of wireless networks.

In most such studies, video quality selection is performed in a centralized way [1, 28,
35, 49, 54, 67, 80, 116, 126, 170, 193]. In contrast, we assume a client-driven approach,
where every streaming client performs adaptation individually and asynchronously w.r.t.
the other clients, which is inline with the HAS streaming model [50, 183].

Moreover, while these studies focus on a setting with a single base station, we consider
a small cell network [26] with a dense base station deployment and a bandwidth reuse
factor of 1. This setting is considered one of the candidate solutions to cope with the
recently observed dramatic increase of wireless and mobile traffic.

Several works have developed joint transmission scheduling and video quality adap-
tation schemes following a NUM approach, where the network utility function captures
some notion of fair maximization of the users’ QoE.

Joseph and De Veciana [102] apply this approach to a network described by a convex
feasible rate region. In wireless, this essentially corresponds to a single-cell scenario.
Bethanabhotla et al. [16] solve the NUM problem using the Lyapunov drift-plus-penalty
method applied to the same multi-cell wireless network model considered in our paper,
where the network utility is a concave function of the long-term average video qualities.
The approach couples the transmission scheduling slot duration to the video segment
size, requiring large start-up delays to combat buffer underruns. In contrast, we use a
control-theoretic approach to control users playback buffers, complemented by heuristics
aiming at further increasing QoE. An early work considering NUM in a wireless network,
using the classical congestion pricing framework, is reported by He et al. [71].

Essaili et al. [54] propose a cross-layer approach to jointly control the resource alloca-
tion in a wireless network and the video quality adaptation of the clients in a centralized
network controller. The goal is to maximize the sum of the utilities, where the indi-
vidual utility functions are proportional to the Peak Signal-to-Noise Ratio (PSNR) of
the streamed content. The approach can be deployed with legacy streaming clients by
overwriting the HTTP requests at a network proxy. In contrast to our work, the au-
thors focus on a single cell, propose a centralized approach, and do not include means
to mitigate video quality fluctuations. The conducted performance evaluation reveals
that the cross-layer optimization improves the median Mean Opinion Score (MOS) by
approximately 0.5.

In their work performed in the context of Wireless Mesh Networks (WMN’s), Hua and
Xie [81] propose to merge the individual unicast video streams on a segment-by-segment
base in order to avoid redundant transmissions. Sundaram and Hua [186] extend this
work by a fast handover schemes to enable seamless streaming to fast moving clients.

Analogously to cross-layer approaches, streaming clients may use context information
to improve their adaptation behavior. Context may include information such as the loca-
tion, the mobility pattern, or sensor data. One approach that uses location-throughput

34

3.5. Optimal Adaptation

maps to perform adaptation decisions is presented by Riiser et al. [166].

Finally, Klaue et al. [107] and Kang et al. [105] propose frameworks that leverage
cross-layer information to evaluate the performance of video streaming services.

3.5 Optimal Adaptation

An approach to calculating optimal adaptation trajectories using a Markov decision
process is presented by Jarnikov and Özçelebi [97]. With this approach, an optimal
strategy is calculated for a given distribution function of segment download times. The
objective function is a linear function giving constant penalty to playback interruptions
and changes of video quality, and a reward proportional to the selected video quality.
The authors perform a numerical evaluation of the approach using fixed, uniform and
normal distributions of the available bandwidth. A potential limitation of this approach
is that the temporal correlation of segment download times is not considered.

Zou et al. [235] assume perfect information about future throughput to compute
optimal adaptation trajectories that can be used to benchmark existing algorithms and
evaluate the potential for performance increase. In contrast to our work, the proposed
approach does not minimize the video quality fluctuations.

3.6 TCP Throughput Prediction

Since having accurate throughput predictions is beneficial for a number of applications
running over TCP, there are dedicated studies that address this subject, see He et al. [70]
for an overview. Since, however, the main application of TCP was for a long time bulk
data transfer, many of those studies predict throughput averaged over much longer time
intervals than required for low-delay streaming [70, 152]. He et al. [70] observed that time
series prediction methods perform quite well on the time scale of 50 seconds (Root Mean
Square Relative Error (RMSRE) is less than 0.4 for about 90% of studied traces), but
the accuracy strongly varies across studied network paths. Evaluations are often limited
to wired networks which, however, are not subject to channel state dynamics and effects
caused by the data link layer to the extent seen with wireless technologies [70, 144,
152]. Some of the developed approaches use information available only at the sender,
or they require cross-layer information, or additional path measurements that need to
be supported by the other end-point [144, 152]. In addition, some analytical models
target specific TCP flavors making their performance uncertain given recently developed
variants [152].

A number of studies investigate the prediction of the available bandwidth in wireless
networks [176]. This information might be considered to improve the accuracy of the end-
to-end TCP throughput prediction, especially in cases where the access link constitutes
the bottleneck. However, it requires a cross-layer interface to the lower protocol layers,
restricting the set of targeted platforms. We remark that while Linux supports cross-
layer communication with the data link layer using the radiotap headers1, conveying

1http://www.radiotap.org

35

http://www.radiotap.org

Chapter 3. Related Work

them on other platforms, including Internet browser environments, is challenging to
impossible.

36

CHAPTER4
Notation

In this section, we will introduce the basic notation used throughout the paper. A
summary is provided in Table 4.1. Some of the approaches introduced in the subsequent
chapters require minor extensions of the basic notation, these extensions will be described
in the corresponding chapters.

The duration of the video content contained in one segment is assumed to be constant
and is denoted by τ ∈ R+. We use index i ∈ {0, 1, . . . , n − 1}, n ∈ N+, to indicate a
particular segment in a stream.

We denote the finite set of available video representations by R, indexed by j ∈
{0, 1, . . . ,m− 1}, m = |R|. We assume that R only contains representations feasible for
the considered user. (A representation might be infeasible if its playback requires features
not supported by the user device or if its properties are excluded by configuration.
Unsupported features might include, e.g., 3D, particular video codecs, high resolutions,
etc. Properties excluded by configuration might include, e.g., low video quality, explicit
content, etc.)

For a segment i from representation j, we denote by sij ∈ N+ its size in bits, and
by rij = sij/τ its Mean Media Bit Rate (MMBR). Note that both may vary across
segments of the same representation if Variable Bit Rate (VBR) encoding has been used
to generate the media data. We denote by rj =

1
n

∑n−1
i=0 rij the MMBR of representation

j. We write rmin = minm−1j=0 rj and rmax = maxm−1j=0 rj for the lowest and highest MMBR
among the representations in R. Whenever the representation is clear from the context
or otherwise unambiguously specified, we might omit the index j. Thus, si might,
e.g., denote the size of a downloaded segment i, while ri = si/τ will then denote its
MMBR. We write r↑

i and r↓
i to denote the MMBR of the next higher and the next lower

representation than the one that was used to download segment i. Finally, we denote
by r(t) the MMBR of the segment being downloaded by the user at time t.

37

Chapter 4. Notation

Figure 4.1: Illustration of the basic time-related notation

We use the following non-negative real-valued variables to denote continuous time
in seconds. An illustration is provided in Figure 4.1. tri denotes the time when the
request to download segment i is sent by the user. tdi (tci) denotes the time when the
first (last) bit of segment i is received by the user. tpi denotes the time when the playback
of segment i is started.

We denote by β(t) the level of the user’s playback buffer at time t, expressed in
seconds of stored video content. More precisely, it is defined as the time until the
playback deadline of the first segment whose download is not yet completed:

β(t) = max {tpi | t
c
i ≤ t}+ τ − t . (4.1)

Note that the maximum transport latency for segment i is given by β (tri). We denote by
βmin (t1, t2) = mint∈[t1,t2] β(t) the minimum buffer level reached during a time interval
[t1, t2].

We remark that in the context of video streaming the buffer level is typically mea-
sured in seconds of stored content, not in the volume of bytes representing this content.
The reason is that from the application layer perspective, it is the duration of the stored
content that influences the performance by indicating how strongly the performance may
be impacted by a sudden throughput decrease. In addition, for adaptive streaming, the
stored data volume is not proportional to the corresponding content duration, due to
the potentially different encoding rates of the stored video segments. We do not consider
scenarios where the size of the playback buffer is constrained by the available storage
space since, due to the relatively small considered buffer levels of at most several tens
of seconds, and due to the large amounts of storage available on most device platforms,
those case are rare. Moreover, such constraints can be easily incorporated into the
presented approaches.

38

We denote the total relative duration of interrupted playback until time t by Σ(t) ∈
[0, 1]. Σ(t) is computed as the total absolute duration of interrupted playback until time
t, divided by t. As described in Section 2.1.4, in a Video on Demand (VoD) streaming
session, and in a live streaming session with a soft latency bound (that is, the latency
is allowed to increase), this corresponds to the total relative time spent in rebuffering.
In a live streaming session with a hard latency bound, where delayed segments have to
be skipped, this corresponds to the total number of segments skipped before the time t,
divided by the total number of segments, whose playback deadline is less than or equal
to t.

When segment i is downloaded and played in representation j different from the
representation of the previous successfully downloaded segment, a quality transition
occurs. The fraction of segments that were successfully downloaded in a different quality
than their predecessors until time t is denoted by Ω(t) ∈ [0, 1].

We denote by ρ (t1, t2) the mean application layer throughput in the time interval
[t1, t2]. Note that the traffic generated by a streaming client might contain inter-request
periods. In the case of VoD they arise when the playback buffer level has reached its
maximum value and the client has to wait prior to starting the download of the next
segment. In the case of live streaming, the client might have to wait until the next
segment becomes available at the server. When computing average application layer
throughput, we exclude the inter-request periods in order to obtain an estimate of the
throughput that was actually achieved during the data transmission. In particular, we
first define the segment throughput of a downloaded segment i by ρi = si/(t

c
i − tri).

For incomplete downloads, tci must be replaced by the time when the download was
interrupted, while si must be replaced by the number of actually downloaded bytes.
Note that defined this way, segment throughput accounts for the round-trip time. We
then define the application layer throughput as the mean segment throughput in the
time interval [t1, t2]:

ρ (t1, t2) =

∑n−1
i=0 ρi · |[tri , tci] ∩ [t1, t2]|∑n−1

i=0 |[tri , tci] ∩ [t1, t2]|
. (4.2)

Here, |[a, b]| = b− a denotes the length of an interval [a, b]. For time intervals, for which
the denominator equals 0, ρ (t1, t2) is not defined. Note that effectively, the sum needs
only be computed over {l1, . . . , l2}, where l1 corresponds to the last segment requested
before t1, l2 is the first segment whose download was completed after t2. For time
intervals, for which the denominator equals 0, ρ (t1, t2) is not defined. To simplify the
presentation, we will occasionally use ρ(t) to denote instantaneous throughput, which
roughly corresponds to ρ (t1, t2), with t ∈ [t1, t2], t2 − t1 small.

39

Chapter 4. Notation

τ ∈ R+ Video segment duration in seconds

n ∈ N+ Number of segments in the stream

i ∈ {0, 1, . . . , n− 1} Segment index

R Set of available video representations

m = |R| ∈ N+ Number of available representations

j ∈ {0, 1, . . . ,m− 1} Representation index

sij ∈ N+ Size in bits of segment i from representation j

rij = sij/τ MMBR of segment i from representation j

si ∈ N+ Size in bits of a downloaded segment i

ri = si/τ MMBR of a downloaded segment i

rj =
1
n

∑n−1
i=0 rij MMBR of representation j

rmin = minm−1j=0 rj Representation with the lowest available MMBR

rmax = maxm−1j=0 rj Representation with the highest available MMBR

r↑
i and r↓

i

MMBR of the next higher (lower) representation than
the one used to download segment i

r(t) MMBR of the segment being downloaded at time t

tri ∈ R+ Time when the request for segment i is sent

tdi ∈ R+ and tci ∈ R+ Time when the first (last) bit of segment i is received

tpi ∈ R+ Playback deadline of segment i

β(t) Playback buffer level in sec. at time t, defined in (4.1)

βmin (t1, t2) Minimum buffer level in the time interval [t1, t2]

Σ(t) ∈ [0, 1] Relative duration of interrupted playback until t

Ω(t) ∈ [0, 1] Relative number of representation transitions until t

ρi = si/(t
c
i − tri) Segment throughput of segment i

ρ (t1, t2) Mean throughput in [t1, t2], defined in (4.2)

ρ(t) Instantaneous throughput at time t

Table 4.1: Basic notation

40

CHAPTER5
Joint Transmission
Scheduling and Quality
Selection in Dense
Wireless Networks

To cope with the enormous traffic increase that has been observed over the last years
and that will most probably continue into the future [37], it is necessary to increase the
density of the deployed wireless infrastructure. Hence, in this chapter, we present our
design of an efficient system that supports a large number of unicast video streaming
sessions in a dense wireless access network, such as a small cell network. To achieve
our goals, we use a cross-layer approach – we jointly consider the two problems of
wireless transmission scheduling and video quality adaptation, using techniques inspired
by the robustness and simplicity of Proportional-Integral-Derivative (PID) controllers.
We show that the control-theoretic approach allows to efficiently utilize the available
wireless resources, providing a high Quality of Experience (QoE) to a large number of
users.

5.1 Introduction

The traffic from wireless and mobile devices will exceed the traffic from wired devices by
2018. By that time, it will account for 61 percent of the total Internet traffic. And by

41

Chapter 5. Joint Transmission Scheduling and Quality Selection

far the largest part of it will be video content [37]. It is well understood that the current
trend of cellular technology (e.g., Long-Term Evolution (LTE) [174]) cannot cope with
the traffic increase caused by the various new video services, unless the density of the
deployed wireless infrastructure is increased correspondingly. In fact, throughout the
history of wireless networks, throughput gains resulting from increased network density
exceeded the gains from individual other factors by an order of magnitude [26].

This motivates the recent flurry of research on massive and dense deployment of
Base Station (BS) antennas, either in the form of ”massive Multiple Input Multiple
Output (MIMO)” solutions (hundreds of antennas at each cell site) [168] or in the form of
very dense small cell networks (multiple nested tiers of smaller and smaller cells, possibly
operating at higher and higher carrier frequencies) [26]. If supplied with sufficient storage
capacity that would allow to cache frequently demanded content, these technologies can
also help reducing the load on the backhaul (i.e., the wired network connecting the
access network to the Internet), which have recently become a bottleneck in cellular
networks [63].

This development confronts video streaming technologies with the challenge to deal
with highly dynamically varying network conditions that are typical for wireless links.
Even a static user in an indoor residential or office Wireless Local Area Network (WLAN)
is typically exposed to interference, fading effects, and cross-traffic. The link quality
fluctuations further increase in the case of mobile users.

Consequently, in our work we focus on designing an efficient mechanism to support
a large number of parallel streaming sessions in a wireless access network, such as a
small cell network. In order to maximize the performance, we use a cross-layer approach
– we jointly consider the two problems of wireless transmission scheduling and video
adaptation.

To reach our goals, we apply the technology of Proportional-Integral-Derivative
(PID) control; inspired by the analytical tractability of the approach, complemented
by its powerful features. A PID controller is typically used to stabilize a dynamic sys-
tem around a given target state. Its strength lies in the ability to do so in the presence
of model uncertainties (that is, the system parameters are not completely known and
might be time-varying) and disturbances (unknown, potentially random, inputs to the
system). In our case, we use it to stabilize the clients’ playback buffers around configured
target values, in the presence of dynamically changing network conditions due to user
arrivals and departures, mobility, and fading effects.

We evaluate the developed approach by means of simulations in different deployment
scenarios, such as long-term users with low user churn, short-term users with high user
churn, and a mix of short-term and long-term users. We use QoE-related performance
metrics such as the total rebuffering time, the average video quality, the video quality
fluctuations, the start-up delay, and the media bit rate fairness.

5.2 System Model and Notation

In the following, we extend the basic description of a HTTP-Based Adaptive Stream-
ing (HAS) system from Section 2.1.4, and the basic notation from Chapter 4 (summarized
in Table 4.1), to include a multi-user setting and a sufficiently detailed wireless network

42

5.2. System Model and Notation

model, required by the cross-layer approach presented in this chapter. Wherever neces-
sary, symbols defined in Chapter 4 are used with an additional subscript u referring to
the user. A summary of the extensions is provided in Table 5.1, which also includes the
notation introduced in the subsequent sections.

5.2.1 Streaming Model

We consider a set of users, where each user wants to watch a video file from a set of
provided files. Recall that in accordance with the HAS model [183], each video file is
segmented in chunks of τ seconds duration, and each segment is encoded in several rep-
resentations, each representation providing a different video quality and thus a different
MMBR. Further, each segment starts with a random access point of the stream, thus
allowing a video client to concatenate segments from different representations during the
playback. A video client sequentially issues HTTP GET or GET RANGE requests to
download the individual segments. The meta information about the available segments
and representations is downloaded by the client prior to starting the streaming session,
e.g., in form of an Extensible Markup Language (XML) file, called the Manifest or the
Media Presentation Description (MPD). This technology has been standardized in the
open standard MPEG-DASH [50].

After a segment is downloaded, it is stored in the playback buffer until the playback
of the previous segment has been completed. If a segment is not downloaded until its
playback deadline, a buffer underrun occurs causing a playback interruption, typically
followed by a rebuffering period, during which the playback is halted. At the start of
the streaming session, the video client may delay the start of the playback in order to
prebuffer a certain amount of video (start-up delay).

The goal of a video client is to maintain a high QoE by adapting the selected segment
representations to the available network throughput. Among the main factors influencing
the QoE are (1) the total rebuffering duration, (2) the average video quality, (3) the
number of quality transitions, and (4) the duration of the start-up delay. The exact
nature of QoE for adaptive streaming is an ongoing research problem, see also Section 2.2.

5.2.2 Distributed Cross-Layer Design

We assume that the users are connected to a wireless network, consisting of a set of
BS’s linked with a central network controller. While the individual streaming clients
issue requests for the video segments asynchronously, each at its own pace, the network
controller performs transmission scheduling for all the BS’s involved. Note the different
time scales of these two types of processes. While the segments are requested every few
seconds, the transmission scheduling decisions must be met at a much faster time scale,
tens or hundreds of milliseconds, as described in more details further below.

In order to jointly optimize the two processes of quality selection and transmission
scheduling, an information exchange is required between the individual streaming clients
and the network controller. We assume that there is a control plane channel that allows
the clients to pass to the network controller (via the BS’s) their throughput demands
at the beginning of each video segment download. We do not assume the existence of a

43

Chapter 5. Joint Transmission Scheduling and Quality Selection

Figure 5.1: Small cell network model. A user node can be served by multiple serving
nodes. Transmission scheduling is coordinated by a centralized network controller.

reverse control channel; the streaming clients are estimating the allocated network ca-
pacity by measuring their throughput. If such a channel exists, however, it may enhance
the performance by supplying the users with a more exact information on their capac-
ity share. We remark that there are ongoing standardization efforts towards enabling
coordinated operation of HTTP-based streaming clients that may provide the required
control channels [52].

The approach presented in this chapter is a cross-layer approach that requires a
cooperating among the individual layers of the protocol stack. In particular, the video
quality selection process is taking place at the application layer of the client’s protocol
stack, while the transmission scheduling process resides at the PHY/MAC layers of the
BS’s and the network controller. The interaction of the proposed approach with the
transport layer is discussed in Section 5.3.

The BS’s either store cached video files, or have a (wired or wireless) connection to
video server(s), which we assume not to be the system bottleneck. In general, some user
nodes might also participate in the distribution of video data; therefore, we generally
refer to BS’s and user nodes serving as streaming sources as serving nodes. See Figure 5.1
for an illustration.

5.2.3 Wireless Network Model

We formally define the network as a bipartite graph Gt = (Ut, S, Et), where t is the time
index, Ut denotes the set of users, S denotes the set of serving nodes, and Et contains
edges for all pairs (s, u) ∈ S × Ut for which there exists a potential transmission link

44

5.2. System Model and Notation

between s and u at time t. We denote by

Nt(u) = {s ∈ S : (s, u) ∈ Et ∧ ρsu(t) ≥ ρmin} (5.1)

the neighborhood of user u at time t. Similarly,

Nt(s) = {u ∈ Ut : (s, u) ∈ Et ∧ ρsu(t) ≥ ρmin} . (5.2)

Here, ρsu(t) denotes the link rate of the wireless link between serving node s and user
u, while ρmin is a technology dependent minimum link rate. In the following, we omit
the index t to simplify the notation.

Although the approach presented in this paper works with different kinds of wireless
network models, we will focus on the wireless network model used in [16], as described
in the following. The wireless channel for each link (s, u) is modeled as a frequency and
time selective underspread fading channel [202]. Using Orthogonal Frequency-Division
Multiplexing (OFDM), the channel can be converted into a set of parallel narrowband
sub-channels in the frequency domain (subcarriers), each of which is time-selective with
a certain fading channel coherence time. The small-scale Rayleigh fading channel co-
efficients can be considered as constant over time-frequency ”tiles” spanning blocks of
adjacent subcarriers in the frequency domain and blocks of OFDM symbols in the time
domain.

We assume that the transmission scheduling decisions performed at the central net-
work controller are met according to the underlying PHY and MAC air interface specifi-
cations. For example, in an LTE setting, users are scheduled over resource blocks which
are tiles of 7 OFDM symbols x 12 subcarriers, spanning (for most common channel
models) a single fading state in the time-frequency domain.

Nevertheless, it is unreasonable to assume that the rate can be adapted on each single
resource block. As a matter of fact, rate adaptation is performed according to some
long-term statistics that capture the large-scale effects of propagation, such as distance
dependent path loss and interference power. It is well-known that with a combination
of rate adaptation and hybrid ARQ, a link rate given as the average with respect to
the small-scale fading of the instantaneous rate function, for given large scale pathloss
coefficients and interference power, can be achieved. This averaging effect with respect to
the small scale fading is even more true when massive MIMO transmission is used, thanks
to the fact that, due to the large dimensional channel vectors, the rate performance tends
to become deterministic [85, 168]. Therefore, in our treatment we shall use the link rate
function given by eq. (5.3).

We assume that the serving nodes transmit at a constant power, and that the small
cell network makes use of universal frequency reuse, that is, the whole system band-
width is used by all serving nodes. We further assume that every user u, when decoding
a transmission from a particular serving node s ∈ N (u), treats the inter-cell interfer-
ence as noise. Under these system assumptions, the maximum achievable rate during a
scheduling time slot tk for link (s, u) ∈ E is given by

ρsu (tk) = W · E

[
log

(
1 +

Psgsu(tk) |fsu|2

1 +
∑

s′∈N (u)\{s} Ps′gs′u(tk) |fs′u|2

)]
, (5.3)

45

Chapter 5. Joint Transmission Scheduling and Quality Selection

where Ps is the transmit power of the serving node s, fsu is the small-scale fading gain
from serving node s to user u, gsu(tk) is the slow fading gain (path loss) from serving
node s to user u, and W is the system bandwidth.

Consistently with the current wireless standards, we consider the case of intra-cell
orthogonal access. This means that each serving node s serves its neighboring users
u ∈ N (s) using orthogonal Frequency Division Multiple Access (FDMA)/Time Division
Multiple Access (TDMA). We denote by αsu(tk) the fraction of time/spectrum serving
node s uses to serve user u in scheduling time slot tk. It must hold

∑
u∈N (s) αsu(tk) ≤ 1

for all s ∈ S. The throughput of user u in time slot tk is then given by

ρu(tk) =
∑

s∈N (u)

αsu(tk)ρsu(tk) . (5.4)

The underlying assumption, which makes this rate region achievable, is that the serving
node s is aware of the slowly varying path loss coefficients gsu(tk) for all u ∈ N (s), such
that rate adaptation is possible. This is consistent with the rate adaptation schemes
currently implemented in LTE and IEEE 802.11 [147, 151, 174].

5.3 Interaction with Transport Protocols

In this chapter, we are specifically focusing on optimizing the operation of the wireless
segment of the access network. In general, effects introduced by an end-to-end trans-
port protocol with congestion avoidance and congestion control functionality, such as
Transmission Control Protocol (TCP), might result in a discrepance between the allo-
cated link rate and the effective throughput, especially if the bottleneck is outside of
the access network, reducing the performance of approaches such as the one presented
here. In our work, we assume that user nodes can be served at the rate allocated by
the wireless network without a “starvation” caused by core network bottlenecks. This
assumption is supported by the current trend towards increasing the locality of video
content, e.g., by pushing Content Delivery Network (CDN) nodes closer to the access
networks [121], or by temporarily or permanently storing the requested video in or close
to the access network [63, 177, 190].

It is also worth noting that we propose an approach aiming at jointly controlling the
resource allocation performed by the MAC/PHY layers of the wireless access network,
and the application-layer demand. Thus, in the absence of core network bottlenecks, an
additional end-to-end rate control is not required. Therefore, it is sufficient to deploy
a transport protocol with reduced or even without congestion avoidance and congestion
control functionality [23, 200].

Finally, we would like to remark that the presented scheme deploys heuristics to deal
with (i) the asynchrony of decisions performed by the network controller and individual
users, and (ii) their different timelines. These heuristics introduce a certain robustness
w.r.t. the exact throughput achieved in a particular scheduling time slot.

46

5.4. JINGER — Joint Scheduling and Quality Selection Scheme

u ∈ U A user and the set of users

s ∈ S A serving node and the set of serving nodes

(s, u) The transmission link from serving node s to user u

E ⊆ S × U Set of potential transmission links

N (u) ⊆ S Set of neighbors of user u, defined in (5.1)

N (s) ⊆ U Set of neighbors of serving node s, defined in (5.2)

tk k-th scheduling time slot

ρsu(tk) Link rate of (s, u) in time slot tk, def. in (5.3)

ρmin Technology dependent minimum link rate

αsu(tk) Fraction of time/spectrum allocated to (s, u) in tk

ρu(tk) Throughput of user u in time slot tk, def. in (5.4)

Kp,u, Kd,u, Ki,u PID controller parameters of user u, defined in (5.7)

gmax
Upper bound on the output of the saturated controller,
defined in (5.10)

gi,max Upper bound on the error integral, defined in (5.13)

ωu(t) PID controller output for user u, defined in (5.8)

ω̃u(t1, t2)
PID controller output during [t1, t2] for a sampled system,
defined in (5.15)

Table 5.1: Notation extensions for JINGER

5.4 JINGER — Joint Scheduling and Quality Selection
Scheme

In this section we present a partially distributed mechanism consisting of two compo-
nents: video quality selection, performed at the application layer of each streaming client
independently and asynchronously, and wireless transmission scheduling, performed at
the MAC/PHY layers of the central network controller at equidistant time intervals.

5.4.1 General Idea

In the setting we consider, the buffer level dynamics can be approximated in continuous
time by the following system of differential equations:

β̇u(t) =
ρu(t)

ru(t)
− 1, ∀u ∈ U . (5.5)

47

Chapter 5. Joint Transmission Scheduling and Quality Selection

Here, ru(t) is the MMBR of the video segment downloaded by user u at time t, while
ρu(t) is the instantaneous throughput (for the moment, we approximate the data transfer
by a continuous process). Note that ρu(t)/ru(t) is the rate at which the buffer is filled
by the arriving video data, and −1 is the rate at which the buffer is emptied by the
playback.

The general idea behind the approach presented in the following is to apply PID
control to the playback buffer levels of the individual clients by controlling their filling
rates ρu(t)/ru(t). Note that a standalone streaming client is typically only able to control
the media bit rate ru(t). In our approach, we assume that we are able to control both
the media bit rate and the throughput ρu(t). The challenge lies in the requirement to
control them in an asynchronous and distributed way, and in discrete time. We will
describe the challenges in more details at the end of this section. In the following, we
describe how we apply a PID controller to control the system described by (5.5).

Let us consider a general continuous-time dynamic system described by the following
equations {

ẋ(t) = f1 (x(t)) + z(t)

y(t) = f2 (x(t))
, (5.6)

where x(t) is the system state at time t, z(t) is the input to the system, y(t) is the system’s
output, and f1(·) and f2(·) are some functions. Assume that we want to stabilize system’s
output y(t) around a certain target value y∗. From the control theory we know that for
many systems this can be achieved in an efficient way by setting their input using a PID
controller, that is, by setting

z(t) = Kpe(t) +Kdė(t) +Ki

∫ t

0
e(ξ)dξ , (5.7)

where the error function e(t) = y(t)− y∗ is the deviation of system output y(t) from the
target value y∗, and Kp, Kd, and Ki are the controller parameters.

In order to apply the PID controller to control the playback buffer levels of the
individual clients whose dynamics are governed by (5.5), we proceed as follows. We
define the system state as the vector of the playback buffer levels β(t) =

(
βu(t), u ∈ U

)
,

representing the duration of the stored video content in seconds (defined in (4.1)). We
define the system output as identical to the system state.

The specific system in (5.5) that we consider can be mapped to the general system
equation (5.6) by defining f1 (β(t)) ≡ −1, f2 (β(t)) = β(t), and z(t) =

(
ρu(t)/ru(t), u ∈

U
)
. In other words, our goal is to stabilize users’ buffer levels β(t) around a target value

β∗ by setting the system’s input ρu(t)/ru(t) to the output of the PID controller.

In the following analysis, in order to simplify the notation, we set the target buffer
level β∗ = 0. This allows us to replace the error function e(t) = β(t) − β∗ in (5.7) by
β(t). However, all obtained results remain valid for the general case with an arbitrary
β∗ ∈ R. In the performance evaluation presented in Section 5.5, for example, β∗ is set
to 20 seconds.

In order to apply PID control to the buffer level dynamics (5.5), we have to set the

48

5.4. JINGER — Joint Scheduling and Quality Selection Scheme

system’s input ρu(t)/ru(t) to the controller output

ρu(t)

ru(t)
= Kp,uβ(t) +Kd,uβ̇(t) +Ki,u

∫ t

0
βu(ξ)dξ

=:ωu(t)

(5.8)

for each user u ∈ U . Thus, the output of the controller ωu(t) sets the rate at which the
playback buffer is filled by the arriving video data. Note that ωu(t) does not have a unit.
Intuitively, it is the duration of the video content in seconds received by the client per
second. If we are able to control our system in this way, the buffer level dynamics will
obey the following differential equation

β̇u(t) = ωu(t)− 1, ∀u ∈ U , (5.9)

where ωu(t) is as defined in (5.8).
In the following we present a basic result on the stability of the system (5.9). Proposi-

tion 5.1 ensures that it converges to the target buffer level β∗ for arbitrary initial values,
and is thus globally asymptotically stable. This result guarantees that if we control the
arrival rate ρu(t)/ru(t) of the video data using a PID controller as in (5.8), the buffer
levels will return to the target level after a disturbance caused, e.g., by a throughput
change.

Proposition 5.1. System (5.9) is globally asymptotically stable if and only if Kd,u ̸= 1,
Kp,u

1−Kd,u
< 0 and

Ki,u

1−Kd,u
< 0.

Proof. In the following, we omit the user index u.
First, we observe that for Kd = 1 system (5.9) degenerates and is only solvable for

zero initial value: β(0) = 0.
Assuming Kd ̸= 1 and substituting γ(t) =

∫ t
0 β(ξ)dξ, we transform (5.9) into an

equivalent system of linear differential equations[
β̇(t)
γ̇(t)

]
=

[
a b
1 0

] [
β(t)
γ(t)

]
−
[
c
0

]
,

with a =
Kp

1−Kd
, b = Ki

1−Kd
, and c = 1

1−Kd
.

We proof the claim by explicitely constructing the general solution. We distinguish
two cases. Case I: a2 + 4b = 0. In this case, the solution for the initial value problem
β(0) = β0 is given by

β(t) =
(
β0 + (0.5β0 − 1)at

)
e

1
2
at .

It converges to 0 for t → ∞ if and only if a < 0. For case II: a2 + 4b ̸= 0, we obtain

β(t) =
dβ0 − aβ0 + 2c

2d
e0.5(a−d)t +

βx0 + aβ0 − 2c

2d
e0.5(a+d)t ,

with d =
√
a2 + 4b. It converges to 0 for t → ∞ if and only if Re(a + d) < 0 and

Re(a− d) < 0, where Re(·) denotes the real part of a complex number. This, however,
is equivalent to a < 0 and b < 0, proving the claim.

49

Chapter 5. Joint Transmission Scheduling and Quality Selection

Global asymptotic stability is a very attractive property of a system. In a real-world
deployment, however, it is not always possible to set the buffer filling rate ρu(t)/ru(t)
on the left-hand side of (5.8) such that the equality holds, due to three issues. In the
following, we list these issues, along with references to the sections where we address
them.

• The buffer filling rate ρu(t)/ru(t) can be only set to the values from the interval[
0,

ρu,max

ru,min

]
. Here, ρu,max is the maximum throughput that can be allocated to

the user u by the network, and ru,min is the smallest available media bit rate.
The lower bound 0 is attained if the download is paused. The upper bound is
attained when the user downloads the representation with the lowest MMBR at
the maximum available throughput. This means that controller gain values outside
of this region cannot be applied to the system. Such a controller with a limited gain
is called saturated. It might become unstable due to the problem called integral
windup. We describe this problem in more details and present our solution to it
in Section 5.4.2.

• In a real deployment scenario, both ρu(t) and ru(t) cannot be adapted in continuous
time, as demanded by (5.8). They can only be adjusted at certain time instants,
and after that they are kept constant for a certain period of time. Such a control
system is called a sampled system. Moreover, ρu(t) (transmission scheduling) and
ru(t) (quality selection) are set at different time instants, since quality selection is
performed once per video segment, while transmission scheduling is performed once
per scheduling time slot. Consequently, our system under study is a distributed
system. We address these two issues in Section 5.4.3.

• Finally, even if an ideal PID control could be applied to stabilize the buffer levels
as in (5.8), it would not be sufficient to ensure high QoE. It would allow to
avoid buffer underruns but, in addition, we also would like to avoid excessive
video quality fluctuations and unfairness among the individual users. From the
perspective of the buffer level stability, assigning a user low throughput and low
video quality stabilizes his buffer level as good as assigning him high throughput
and high video quality, whereas from the perspective of QoE the second situation
is clearly preferred. We will address these issues in Sections 5.4.4 and 5.4.5.

Finally, we remark that it may be reasonable to define different target levels β∗u for
different users, in order to account for their individual mobility patterns, link statistics,
and QoE expectations. We may imagine a specific per-user adaptation, e.g., at the
application layer, that acts on the control parameter β∗u. In the present work we do not
address this outer control, and assume a common target β∗ for all users.

5.4.2 Integral Windup

As mentioned in the previous section, in practice, it is not always possible to set control
variables ρu(t) and ru(t) such that the equality (5.8) is satisfied, due to a limited link
rate on the one hand, and due to a limited set of available media bit rates on the other

50

5.4. JINGER — Joint Scheduling and Quality Selection Scheme

hand. A control system where the input variable cannot be set to the controller output
whenever the controller output is particularly low or particularly high is called saturated.

Saturated PID controllers have been subject of intensive research in the last decade.
Partially, the attention has been motivated by the control of robotic manipulators. One
issue with saturated controllers is the so-called integral windup. For large deviations of
the system state β(t) from its target value, the unsaturated controller would apply a
high positive or negative gain to bring β(t) back to β∗. Due to the saturation, however,
only a smaller gain can be applied. Thus, it takes more time to bring the state back
to the target value. During this time, however, the error integral obtains a larger value
than it would have had without the saturation. The result is a higher overshoot and
oscillations, leading to potential instability.

To formalize the notion of saturation, we use the following notation

[x]xmax
xmin

=

⎧⎪⎨⎪⎩
xmin for x ≤ xmin

xmax for x ≥ xmax

x otherwise

.

With this definition, the saturated and thus more realistic (closer to being imple-
mentable) version of the system (5.9) can be written as

β̇u(t) = [ωu(t)]
gmax
0 − 1, ∀u ∈ U , (5.10)

with gmax > 1, and ωu(t) as defined in (5.8).

The following proposition, which leverages ideas and results from [5] and [75], shows
that for a small enough |Ki,u|, the saturated system (5.10) retains its global asymptotic
stability property. To obtain the following result, we setKd,u = 0. We remark that this is
common practice in many applications. The reason behind it is that when the derivative
of the system state is estimated from sampled measurements and the measurements
are noisy, the derivative action amplifies the noise, introducing additional jitter in the
system variables.

Proposition 5.2. Assume Kp,u < 0, Ki,u < 0, and Kd,u = 0. Then, for every set of
initial values [βmin, βmax] with βmin ≤ 0 ≤ βmax there exists a K̃i,u > 0 such that for
|Ki,u| < K̃i,u and β(0) ∈ [βmin, βmax] the solution of the initial value problem (5.10)
converges to 0 for t → ∞. This property is sometimes called semi-global practical
stability.

Proof. Throughout the proof, we will omit the user index u.

We start by observing that with Kp < 0, Ki < 0, and Kd = 0, the conditions of
Proposition 5.1 are fulfilled.

We proceed by substituting γ(t) = Ki

∫ t
0 β(ξ)dξ. We obtain the equivalent formula-

tion {
β̇(t) =

[
Kpβ(t) + γ(t)

]gmax

0
− 1

γ̇(t) = Kiβ(t)
. (5.11)

51

Chapter 5. Joint Transmission Scheduling and Quality Selection

Observe that the unique equilibrium of this system is (0, 1). In order to shift the equi-

librium to (0, 0), we define β̃(t) = β(t)− 1−γ(t)
Kp

and γ̃(t) = γ(t)− 1. We obtain⎧⎨⎩
˙̃
β(t) =

[
Kpβ̃(t) + 1

]gmax

0
− 1 +Ki

(
1
Kp

β̃(t)− 1
K2

p
γ̃(t)

)
˙̃γ(t) = Ki

(
β̃(t)− 1

Kp
γ̃(t)

) .

Next, we write the integral gain as Ki = ϵK̄i and substitute the time variable t′ = ϵt,
where ϵ > 0. We define new variables χ(t′) = β̃(t′/ϵ) and ζ(t′) = γ̃(t′/ϵ) to obtain a
”fast” version of our system⎧⎨⎩ ϵχ′(t′) =

[
Kpχ(t

′) + 1
]gmax

0
− 1 + ϵK̄i

(
1
Kp

χ(t′)− 1
K2

p
ζ(t′)

)
ζ ′(t′) = K̄i

(
χ(t′)− 1

Kp
ζ(t′)

) . (5.12)

Observe that (0, 0) is the equilibrium point of (5.12). Further, observe that (χ(t′), ζ(t′)) →
(0, 0) as t′ → ∞ implies that

(
β̃(t), γ̃(t)

)
→ (0, 0) as t → ∞, and thus, stability results

for (5.12) transfer to (5.10). Further, for ϵ ≪ 1, the system (5.12) is in the form of the
standard singular perturbation [75].

Now, it is relatively straightforward to validate that the conditions of Theorem 3
in [75] are fulfilled for system (5.12), proving the claim.

Note that this result only guarantees stability if the integral coefficient Ki,u is small
enough. However, makingKi,u smaller than necessary might have negative impact on the
convergence speed. In practice, it is difficult to compute the maximum value Ki,u that
still ensures stability. Therefore, in the following, we present an alternative approach to
solve the problem of integral windup: conditional integration. With this approach, the
value of the integral part of the controller is not allowed to exceed certain hard limits.

In particular, we use the equivalent form (5.11) of the saturated system (5.10), and
apply a bound gi,max on the error integral. We obtain⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

β̇u(t) =
[
Kp,uβ(t) + γu(t)

]gmax

0
− 1

γ̇u(t) =

⎧⎪⎨⎪⎩
max (0,Ki,uβu(t)) if γu(t) ≤ 1− gi,max

min (0,Ki,uβu(t)) if γu(t) ≥ 1 + gi,max

Ki,uβu(t) otherwise

. (5.13)

The resulting controller is then given by

ρu(t)

ru(t)
=
[
Kp,uβ(t) + γu(t)

]gmax

0
, (5.14)

with βu(t), γu(t) as defined by (5.13). The advantage of this formulation is that it
accounts for the saturated gain, and is thus practically implementable, and that it limits
the value of the error integral, reducing the impact of integral windup. An analytic study
of the performance of this anti-windup strategy is, however, notably complex, forcing us
to resort to a simulative evaluation, presented in Section 5.5.

Further potential anti-windup strategies include limiting the integral action of the
controller from growing by keeping it constant whenever the controller enters saturation,
adding anti-windup compensating terms to the integral action, etc. (see, e.g., [194]).

52

5.4. JINGER — Joint Scheduling and Quality Selection Scheme

5.4.3 Sampled Distributed System

So far, we studied a system, where control decisions, that is, transmission scheduling
and video adaptation, are made in continuous time. In practice, however, both control
decisions take place at discrete time instances, while in between, the values of the control
variables are fixed. In this section, we reformulate our approach to adapt it to this
requirement.

The challenge here stems from the fact that while we may assume that transmission
scheduling takes place regurlarly, at equidistant time intervals, quality selection can
only take place when a user starts downloading a new video segment, which happens
for each user independently and, in general, on a different time scale than transmission
scheduling.

Moreover, time intervals between individual segment downloads may be subject to
considerable variation over time. Whenever the buffer level of a user is in equilibrium
(that is, it stays around the target level for a certain period of time), the average du-
ration of a segment download equals the duration of the segment itself. However, when
the buffer level is increasing or decreasing, the duration of a segment download might
be subject to significant fluctuations. In addition, segment sizes might substantially de-
viate from representation averages, due to VBR encoding used by modern compression
technologies, causing further variations of download times.

Let us for the moment assume that both control decisions, scheduling and adaptation
take place simultaneously at some given time instants tℓ, ℓ ∈ N+. In order for the sampled
system to have the same state as the continuous system at the given time instants tℓ,
we need to set the control variables as follows:

ρu(t)

ru(t)
=

βu(tℓ+1)− βu(tℓ)

tℓ+1 − tℓ
=:ω̃u(tℓ,tℓ+1)

+1 , ∀t ∈ [tℓ, tℓ+1) , (5.15)

where βu(tℓ+1) is computed by solving the initial value problem defined by (5.13).

Proposition 5.3. Assume that the conditions of Proposition 5.1 are fulfilled. Then,
sampled control (5.15) and continuous-time saturated control with anti-windup (5.14)
lead to identical system states at time instants tℓ, ℓ ∈ N+.

Proof. The claim is proven by substituting (5.15) into (5.5), integrating the right hand
side, and using β(tℓ+1) that solves the initial value problem (5.13).

In a real deployment, however, ρu(t) and ru(t) cannot be set simultaneously. In-
stead, we are dealing with a distributed system, where transmission scheduling and
quality selection are performed independently from each other and at different time in-
stants. Consequently, in the following two sections, we present heuristics for controlling
transmission scheduling and quality selection in a distributed way.

5.4.4 Quality Selection

In the following, we present several heuristics that complement the mechanisms presented
in the previous sections, so that we obtain a distributed, practically implementable ap-

53

Chapter 5. Joint Transmission Scheduling and Quality Selection

proach. While this section covers the quality selection part, the subsequent Section 5.4.5
covers transmission scheduling.

Recall that with HTTP-based adaptive streaming, each video segment is available
for the download in several representations. Each representation offers a different video
quality and thus has a different MMBR. In the approach presented in this chapter, the
client selects the video quality based on the MMBR of the corresponding representation.

The idea we leverage to organize the operation of the proposed controller in a dis-
tributed way is the following. The network on the one hand and each individual user
on the other hand shall try to maintain the equality (5.15) every time they adapt their
respective decision variable. The network does so at the beginning of each scheduling
time slot, while each user does so when it is about to request a new video segment.

We denote by triu the time, when the user u is about to request the next segment i.
We transform (5.15) to obtain a first version of the quality selection rule

r̃iu =
ρu (t

r
iu)

1 + ω̃u

(
triu, t

r
i+1,u

) , (5.16)

where tri+1,u is the time when the download of segment i would be completed if the buffer
dynamics would obey (5.13), allowing to request the subsequent segment i + 1. tri+1,u

can be computed by solving

βu
(
tri+1,u

)
= β (triu) + τ −

(
tri+1,u − triu

)
,

with βu(t) being the solution to the initial value problem defined by (5.13). Using the
quality selection rule (5.16), the buffer levels at the time instants, when the users issue
new segment requests, would equal those of the system defined in (5.13), given that the
network throughput remains constant. Thus, the client selects the media bit rate based
on (i) the network throughput, (ii) the current buffer level, (iii) the target buffer level
at the end of the segment download, as determined by the output of the controller.

In order to avoid excessive quality fluctuations and provide a smooth adaptation
trajectory, we extend (5.16) by using exponential moving average for the selected video
quality. In addition, the user shall approximate the network throughput by a simple
moving average over the past T seconds. We obtain a second version of the quality
selection rule

r̂iu = (1− α)r̂i−1,u + α
ρu (t

r
iu − T, triu)

1 + ω̃u

(
triu, t

r
i+1,u

) , (5.17)

where r̂i−1,u is the previously selected video quality, and α ∈ (0, 1) and T ∈ R+ are
configuration parameters.

Further, since only a finite set of media bit rates is available, we round r̂iu down to
the next available value: riu = max {r ∈ Ru | r ≤ r̂iu}. If {r ∈ Ru | r ≤ r̂iu} is empty,
the representation with the lowest available MMBR is selected. Thus, riu represents the
final quality decision of user u for the segment i.

In order for the buffer level dynamics to resemble the dynamics of the system (5.13),
the user would have to select the video quality r̃iu. Instead, due to the reasons described
above, she or he selects the video quality riu. In order to account for the difference

54

5.4. JINGER — Joint Scheduling and Quality Selection Scheme

between these two values, for the case when riu ≤ r̃iu, we introduce a delay after the
download of the current segment, computed as follows. If the media bit rate r̃iu were se-
lected and assuming user’s throughput ρu (t

r
iu) would remain constant until the download

is completed, the buffer level when requesting the next segment i+ 1 would be

β
(
tri+1,u

)
= β (triu)− τ

(
1− r̃iu

ρu (triu)

)
. (5.18)

If the actually selected media bit rate is smaller, however, the buffer level after the
download will be larger. Consequently, we delay the subsequent request until the buffer
level drops below β(tri+1,u), as defined by (5.18). It is worth noting that since

β (triu)− β
(
tri+1,u

)
= τ

(
1− r̃iu

ρu (triu)

)
≤ τ ,

the buffer level will never drop by more than one segment duration at a time as a result
of a deliberately delayed request.

In order to complete the description of the quality selection approach, we describe
in the following the handling of buffer underruns and the start-up procedure.

As described in Section 5.2, during a particularly long period of low throughput a
buffer underrun may occur, causing a playback interruption. In order to avoid multiple
interruptions within a very short period of time, the client starts to play out a segment
only after it has been fully downloaded. On the other hand, we limit the duration of the
rebuffering period to the download time of one segment, that is, once we have at least
one segment in the buffer, the playback is immediately restarted.

Finally, at the begin of the streaming session when no throughput information is
available, the client downloads the first segment in lowest quality in order to minimize
the start-up delay.

5.4.5 Transmission Scheduling

The goal of the network is, on the one hand, to provide the capacities required by the
users, that is, to maintain (5.15) at the beginning of each scheduling time slot. On the
other hand, it shall allocate the remaining capacity, if available, in a fair manner in order
to ensure a high resource utilization and to eventually enable users to switch to a higher
video quality. In order to achieve these goals, we let the network controller solve a series
of linear optimization problems.

In the following, we present the scheduling process for the scheduling time slot tk.
We assume that the most recent segment requested by each user prior to the beginning of
the scheduling time slot tk has the index i. In general, each user independently requests
segments at his own pace, and thus the segment indexes will be different. However,
while this assumption does not restrict the generality of the results, it greatly improves
the readability.

We denote by ρriu = riu (1 + ω̃u (tiu, ti+1,u)) the throughput demand of user u. Here,
riu is the quality selected by the user by applying the quality selection procedure de-
scribed in the previous section.

55

Chapter 5. Joint Transmission Scheduling and Quality Selection

First, the network controller maximizes the minimum fraction of each user’s through-
put relative to his demand, similar to the well-known maximum concurrent flow problem.
At the same time, the controller tries to improve fairness by encouraging users streaming
at a low quality to switch to a higher quality, if there are sufficient network resources.
This is achieved by artificially raising the demand ρriu of the 10% of the users with
the lowest demands to the 10th percentile across all users. We obtain the following
optimization problem:

max min
u∈U

ρu(tk)

max (ρriu, ρ10(tk))
(TS1)

s.t.
∑

u∈N (s)

αsu ≤ 1 , ∀s ∈ S (C1)

αuh ≥ 0 , ∀s ∈ S, ∀u ∈ U , (C2)

where ρ10(tk) is the 10-percentile of (ρiu, u ∈ U). Recall that

ρu(tk) =
∑

s∈N (u)

αsuρsu(tk) .

We denote the optimum value of (TS1) by ϑ∗.
In the second step, the network controller fixes the minimum relative allocated ca-

pacity to its optimum value ϑ∗, and maximizes the minimum allocated capacity.

max min
u∈U

ρu(tk) (TS2)

s.t. ϑ∗ ≤ ρu(tk)

max (ρriu, ρ10(tk))
, ∀u ∈ U (C3)

(C1), (C2) .

We denote the optimum value of (TS2) by ρ∗min.
Finally, it fixes the minimum allocated relative capacity ϑ∗ and the minimum allo-

cated absolute capacity to ρ∗min and maximizes the total network throughput. In order
to avoid high-amplitude throughput spikes for the individual users, it limits the capac-
ity allocated to a user to either twice the median demand across all users or twice the
minimum allocated capacity ρ∗min, whichever is larger.

max
∑
u∈U

ρu(tk) (TS3)

s.t. ρu(tk) ≥ ρ∗min, ∀u ∈ U (C4)

ρu(tk) ≤ 2max
(
ρ∗min, ρ50(tk)

)
, ∀u ∈ U (C5)

(C1), (C2), (C3) ,

where ρ50(tk) is the median demand across all users.
Since the maximum number of users per serving node is typically limited by a

technology dependent value, the number of optimization variables and constraints is
O (max (|S|, |U |)), which can be handled very efficiently by modern linear program
solvers even for large networks. Also note that most solvers allow to iteratively modify
and reoptimize a model, which reduces the complexity of subsequent optimizations such
as we have here.

56

5.5. Evaluation

5.5 Evaluation

In the following, we present our evaluation setting and results. All results were obtained
by means of simulations. The simulation code was written in C++, we used Gurobi [68]
to solve optimization problems, and we used odeint [2] to solve differential equations.

Section 5.5.1 describes the performance metrics. Section 5.5.2 describes the general
setting, such as network and video parameters. Section 5.5.3 elaborates on the goal and
design of the individual experiments. Finally, Section 5.5.4 presents evaluation results.

5.5.1 Performance Metrics

We use the following metrics to assess the performance of the proposed system.

Stability

A well-known issue with closed-loop control systems is their potential to become unsta-
ble, leading to high-amplitude fluctuations of the system state. Although not necessarily
harmful per se, instability can have a dramatic impact on other performance metrics.
We evaluate stability by means of buffer level statistics, such as the maximum buffer
level overshoot and the minimum buffer level of a user during a simulation run.

Rebuffering Duration

When a client’s video buffer has been drained so that the next video segment does not
arrive before its playback deadline, the playback must be halted. This is often refered to
as a buffer underrun. A buffer underrun is followed by a rebuffering period, where the
client waits until enough video data is accumulated in the buffer to resume playback. The
conditions that need to be fulfilled before the playback is resumed depend on client’s
rebuffering strategy. In our design, we resume playback after at least one segment is
completely downloaded. In our evaluation we look at the cumulative rebuffering time a
user experienced during a simulation run.

Prebuffering Duration (Start-Up Delay)

At the start of a streaming session, client’s video buffer is empty, so it has to wait until
enough video data is downloaded to start playback. In contrast to rebuffering, a client at
this state typically does not have information about the network conditions. Especially
when a user frequently starts a new streaming session, e.g., by switching TV channels,
or when she or he repeatedly watches short videos, even a moderate start-up delay might
severely degrade QoE and even make the user decide not to watch the video at all.

Mean Video Quality

The mean video quality is obviously a factor that dramatically influences the overall
QoE, although studies have shown that it cannot be considered as a standalone QoE
measure for adaptive video streaming. In our evaluation, we identify the mean video
quality with the mean representation index selected during the course of a streaming

57

Chapter 5. Joint Transmission Scheduling and Quality Selection

session. Assuming exponentially increasing distances between MMBR’s of the individual
representations, the representation index is roughly proportional to the video distortion
in terms of the Peak Signal-to-Noise Ratio (PSNR) [184].

Number of Quality Transitions

Recent studies have revealed the impact of temporal quality fluctuations on the overall
QoE. As a measure of quality fluctuations we use the fraction of segments played out in
a different quality than the preceding segment, denoted by Ω ∈ [0, 1]. That is, Ω = 0.01
means that one segment out of 100 was played in a different quality than its predecessor.
For a segment duration of 2 seconds, e.g., this would mean one quality adaptation in
200 seconds.

Note that quality transitions cannot not be completely avoided. They are necessary
to compensate throughput fluctuations but also MMBR variations across segments of
the same representation, stemming from the VBR encoding used by most modern video
compression technologies.

MMBR Fairness

Although a selfish user might not care about that, from the perspective of a service
provider and/or system designer, a fare distribution of MMBR’s among clients sharing
a common bandwidth resource is essential for the overall system performance. In our
evaluation, we computed MMBR fairness as follows. Taking the set of MMBR’s of all
users in one simulation run, we defined the unfairness index as the interquartile range,
that is, the distance between the 0.25 and the 0.75 quantiles. The name unfairness index
accounts for the fact that higher values correspond to lower fairness or higher unfairness.

5.5.2 Evaluation Setting

In this section we describe the evaluation setting, such as video, network and controller
parameters.

5.5.2.1 Video-Related Settings

For evaluation, we used a mix of 6 videos, contributed by the University of Klagen-
furt [120]. For each video, we selected 6 representations, ranging from approximately
500 kbps to 4.5 Mbps, with roughly exponentially increasing distances between MMBR’s.
The segment duration was 2 seconds. The target buffer level of the video clients was set
to 20 s. In the performance evaluation study in Section 7.4, this value is shown to be
sufficient to provide good performance in wireless networks.

5.5.2.2 Network-Related Settings

The simulated network spans an area of 50 x 50 meters, covered by 25 serving nodes,
distributed on a uniform grid. The duration of a scheduling time slot is set to 10 ms.

58

5.5. Evaluation

The path loss coefficients gsu(t) between serving node s and user u are based on the
WINNER II channel model [114]:

gsu(t) = 10−0.1PL(dsu(t)) ,

where dsu(t) is the distance from serving node s to user u at time t, and where

PL(d) = A log d+B + C log 0.25f0 + χdB . (5.19)

In (5.19), d is expressed in meters, the carrier frequency f0 in GHz, and χdB denotes
a shadowing log-normal variable with variance σ2

dB. The parameters A, B, C and σ2
dB

are scenario-dependent constants. Among the several models specified in WINNER II
we chose the A1 model [114], representing an indoor small cell scenario. In this case,
3 ≤ d ≤ 100, and the model parameters are given by A = 18.7, B = 46.8, C = 20,
σ2
dB = 9 in Line-of-Sight (LOS) condition, or A = 36.8, B = 43.8, C = 20, σ2

dB = 16
in Non-Line-of-Sight (NLOS) condition. For distances less than 3 m, we extended the
model by setting PL(d) = PL(3). Each link is in LOS or NLOS independently and at
random, with a distance-dependent probability pl(d) and 1− pl(d), respectively, where

pl(d) =

{
1 if d ≤ 3 m

1− 0.9(1− (1.24− 0.6 log d)3)1/3 otherwise
.

In the following experiments, d is updated in every scheduling time slot, while the random
components, χdB and pl are updated every 5 seconds (except when d falls below 3 m,
which forces the link to switch into the LOS mode immediately, to maintain a consistent
setting).

Finally, links with a link rate below 2 Mbps in a particular scheduling time slot are
not used for transmission during this time slot. We call the remaining links active links.

To visualize the resulting network conditions, Figure 5.2 shows some connectivity
statistics. The left column shows statistics for users uniformly distributed over the
simulated area, while the right column illustrates the case of clustered users, where
users’ distances to the center of the simulated area are exponentially distributed with
λ = 0.2 ln 4. The top subfigures show the histogram of the number of serving nodes that
can serve a client at a particular location. The subfigures in the second row show the
histogram of link rates over all active links. The subfigures in the third row show the
histogram of the sum of link rates for a client. The bottom subfigures show the average
number of users served by a serving node, for different total numbers of users in the
network, plus 10th and 90th percentiles.

5.5.2.3 Controller Parameters

All experiments are performed with varying controller parameters, and varying numbers
of users. In all experiments, Kd is set to 0, due to the reasons described in Section 5.4.2.
In the following, whenever appropriate, results are only provided for selected parameter
values, in order to improve the readability.

For better illustration, we would like to give an intuition for the scale of the param-
eters. For Kp = −0.05, if the buffer level is below the target value by 20 seconds (as,

59

Chapter 5. Joint Transmission Scheduling and Quality Selection

Figure 5.2: Connectivity statistics for uniformely distributed users (left) and clustered
users (right). From top to bottom: number of serving nodes per client; active link rates;
sum of link rates per client; average number of users per serving node for different total
numbers of users in the network (with 10th and the 90th percentiles). See Section 5.5.2.2
for details.

60

5.5. Evaluation

e.g., at the beginning of a streaming session), and the integral gain is at its equilibrium
value (which is 1 in our case), then the client would try to download the video at twice
the playback speed. That is, in one second the client would try to download two seconds
of video, which would get him closer to the target value by 1 second. For a deviation of
10 seconds, the download rate would be 150% of the playback rate, and so on.

For each controller configuration, 30 runs were performed.

5.5.3 Experimental Design

We evaluate the proposed system in three types of experiments, each of them focusing
on certain deployment scenarios, such as long-term users with no user churn, short-
term users with high user churn, and a mix of short-term and long-term users. The
performance is then compared with the performance of the baseline approach, described
below.

Each of the experiments is executed with two different user distributions, called
uniform and clustered in the following. With the former, arriving users are dropped
at a random location, uniformly distributed over the simulated area. With the latter,
arriving users are clustered around the center of the simulated area, with exponentially
distributed distance (λ = 0.2 ln 4).

Upon joining the network, each user starts to watch a randomly selected video from
a random point within the video. If she or he arrives at the end of the video, she or he
continues to watch from the beginning.

Experiment 1

The first experiment is intended to analyze system’s behavior under constant load (fixed
number of users) and without user churn (all users are long-term users). In particular,
all users arrive during an initial arrival phase at the begin of the simulation and remain
in the network until its end. Thus, after the arrival phase, the number of users in the
network remains constant.

The initial arrival phase starts at t = 0. The users arrive at a rate of 10 users per
second until a predefined number of users is reached. Then, the simulation continues
with a constant number of users for another 400 seconds.

Experiment 1*

In order to compare the performance with a baseline approach, we rerun experiment
1 with the following transmission scheduling and quality selection. In each scheduling
time slot, every user is receiving data form exactly one serving node, namely the one
with the highest Signal-to-Interference-plus-Noise Ratio (SINR). (This is not always the
closest serving node, due to the random component in the pathloss.) Further, the client
selects the video representation with the highest media bit rate that is still below the
average throughput from the last 5 seconds.

61

Chapter 5. Joint Transmission Scheduling and Quality Selection

Experiment 2

In this setting, the goal is to analyze the system’s performance under continuous user
churn. That is, users continuously join and leave the network. As in experiment 1, there
is an initial arrival phase, during which users arrive at a rate of 10 users per second until
a certain number of users is reached. After that, ’old’ users leave the network, while new
users join it, at a rate of 2 users per second.

Experiment 3

This experiment is intended to study system’s behavior under constantly increasing load,
in a deployment scenario with both short-term and long-term users. Here, new users
continuously join the network at a constant rate of 2 users per second, and remain active
until the end of the simulation run.

5.5.4 Evaluation Results

In this section, we present the evaluation results for the four types of experiments de-
scribed in the previous section. But beforehand we would like to illustrate the system
dynamics based on one example run. Figure 5.3 shows the dynamics of one user during
a run of experiment 3, with Kp = −0.05, Ki = −0.00001, Kd = 0, gi,max = 0.1. The
experiment runs for 500 seconds, that is, in the end there are 1000 users in the network.
The plot shows the first user in the network, who starts to stream at second 0. The
top subfigure shows the accumulated link rate from all neighboring serving nodes. The
second subfigure shows the network throughput allocated to the user. Note that in the
scheduling time slots that correspond to inter-request delays, no resources are allocated
to the user and thus his throughput drops to 0. The third subfigure shows the selected
video representation, the fourth subfigure shows the buffer level. Finally, the bottom
subfigure shows the total time spent in rebuffering.

5.5.4.1 Stability

One of the issues that needs to be taken care of when designing a closed-loop controller
is system’s stability. In order to study stability, we analyze the buffer level statistics of
each user during each of the simulation runs. In particular, we look at the maximum and
minimum buffer levels, where the maximum and minimum operators are first applied to
the traces of individual users, then to the resulting per user values, and finally to the
whole set of runs for a specific configuration. In the following, we present the results
for experiment 1, with a uniform distribution of users across the simulated area. The
results for the other settings are consistent with the presented findings and are therefore
omitted here. Finally, in order for the results not to be biased by the system behavior
during the initial arrival phase, we remove the initial arrival phase and the subsequent
100 seconds from each trace.

The first and the second rows in Figure 5.4 show the maximum buffer level overshoot
(that is, the maximum difference between user’s buffer level and the target buffer level).
As expected, if the integral gain coefficient is large, as compared to the proportional gain
coefficient, the system tends to become unstable. At the same time, however, we observe

62

5.5. Evaluation

Figure 5.3: Dynamics of one user during an example run of experiment 3. See Sec-
tion 5.5.4 for details.

that the conditional integration anti-windup technique successfully combats this effect,
if gi,max is sufficiently small. Also the minimum buffer level, depicted in the third and
fourth rows in Figure 5.4, confirms the efficiency of the conditional integration technique
in avoiding system instability. We also studied the mean buffer level. We observed that

63

Chapter 5. Joint Transmission Scheduling and Quality Selection

it is within few seconds of the target buffer level, even for unstable configurations, and
omit it here.

In the following, we only report results for Kp = −0.05, Ki = −0.00001, and gi,max =
0.1, which we confirmed to be a stable configuration, and omit the results for the other
configurations.

5.5.4.2 Rebuffering

One of the main factors influencing QoE for video streaming is the amount of time a
client spends rebuffering video data while the playback is halted. This happens when
the playback buffer has been drained and the next segment does not arrive before its
playback deadline.

Figure 5.5 shows mean and maximum total rebuffering per user, where the mean
and the maximum are first taken over all users of a simulation run, and then over all
runs performed for a setting. As in the previous section, we remove the initial arrival
phase and the subsequent 100 seconds from each trace, for experiments 1, 1*, and 2
(experiment 3 does not contain an initial arrival phase).

As expected, we observe that the number of users the network can accomodate
without rebuffering is higher with a uniform distribution of users. Moreover, we observe
that the baseline approach results in significantly higher rebuffering values.

5.5.4.3 Prebuffering (Start-Up Delay)

Another critical factor influencing QoE is the prebuffering duration, or the start-up
delay. Especially in a mobile context, when users tend to watch shorter videos, long
start-up delays can be very annoying.

Figure 5.6 shows the mean and maximum prebuffering delays for experiments 2 and
3, for the uniform and the clustered user distributions. For experiment 2, only users who
arrived after the initial phase are considered. For experiment 3, to facilitate comparison,
the x-axis shows the number of users based on the user arrival rate of 2 users per second,
instead of time.

With Kp = −0.05 and a target buffer level of 20 seconds, new users try to download
the first segment at twice the media bit rate, that is, within one second. When there are
few users in the system, the network can satisfy the corresponding throughput requests
and even allocate some additional capacity to the individual users. When there are too
many users in the system, the network cannot allocate the requested capacity for every
user. When the load is moderate, many user receive exactly the requested capacity,
resulting in one second prebuffering delay, as can be seen in Figure 5.6, left column.

5.5.4.4 Mean Video Quality

Figure 5.7 (top subfigure) illustrates the mean video quality, represented by the mean
representation index, across all users. It displays the results for all four experiments, for
uniform (left column) and clustered (right column) user distributions.

As in the previous sections, the arrival phase was removed for experiments 1, 1*, and
2. In addition, the first 30 seconds of each user’s trace were removed from experiments

64

5.5. Evaluation

Figure 5.4: Stability analysis based on the buffer level statistics from experiment 1, see
Section 5.5.4.1 for details. Top subfigures: maximum buffer level overshoot (difference
between the buffer level and the target buffer level). Bottom subfigures: minimum buffer
level.

65

Chapter 5. Joint Transmission Scheduling and Quality Selection

Figure 5.5: Mean and maximum total rebuffering per user. See Section 5.5.4.2 for details.

2 and 3, since a user always starts to stream at lowest available quality. Because of the
latter, the results for experiments 2 and 3 do not include settings with less than 60 users,
since in those settings no user remains in the network longer than 30 seconds.

We observe that experiment 1 and 1* exhibit comparable average video qualities for
both user distributions. With clustered user distribution, the controller driven approach
offers slightly better values, especially for small numbers of users.

5.5.4.5 Quality Transitions

Several studies have shown that severe quality fluctuations can dramatically degrade the
QoE even if the average quality is high. Especially in cases when the network conditions
may change very fast, such as in wireless networks, video clients have to implement
adaptation strategies that restrain from immediately adapting the video quality to the
throughput variations but that only react to long-term changes, where ”long-term” is
relative to the size of the playback buffer.

The middle subfigure in Figure 5.7 shows the number of quality transitions for all four
experiments. As described in Section 5.5.1, we express the number of quality transitions
as the fraction of segments that were played in a different quality than their predecessor,
denoted by Ω ∈ [0, 1]. With this definition, a value of 0.01 means that an adaptation
takes place every 100 segment. With a segment duration of 2 seconds, this corresponds
to one adaptation in 200 seconds. Note that since the set of available representations
is discrete, the amount of quality transitions depends on the exact resource share of
individual users. If the resource share is close to an available media bit rate, fluctuations
are less likely than if it is in the middle between two representations, explaining the

66

5.5. Evaluation

Figure 5.6: Mean and maximum prebuffering duration (start-up delay) for experiments
2 (top) and 3 (bottom). See Section 5.5.4.3 for details.

uneven shape of the curve.
We observe that the amount of adaptations is up to twice as high with the baseline

approach as with the controller driven approach.

5.5.4.6 Media Bit Rate Fairness

Finally, the bottom subfigure in Figure 5.7 illustrates the (un)fairness by showing the
interquartile range over all users in a network of their respective MMBR’s. The higher
the value, the lower the fairness. We observe that, except for the case of clustered users
with less than 60 users in the network, the controller driven approach offers significantly
better fairness than the baseline approach.

67

Chapter 5. Joint Transmission Scheduling and Quality Selection

Figure 5.7: From top to bottom: mean video quality (representation index); number of
quality transitions Ω; mean interquartile range of MMBR’s (unfairness indicator). See
Sections 5.5.4.4, 5.5.4.5, and 5.5.4.6 for details.

68

CHAPTER6
Prediction-Based
Low-Delay Live
Streaming

Although the majority of the video content currently being streamed over the Internet is
VoD, the amount of live streaming is growing rapidly [187]. In the case of live streaming,
the task of dynamically adapting the media characteristics to varying network conditions
in order to ensure a high QoE becomes particularly challenging due to the latency
constraints. The challenge further increases if a client uses a wireless access network,
where the throughput is subject to considerable fluctuations. Consequently, live streams
often exhibit latencies of up to 20 to 30 seconds.

In our second contribution, we introduce an adaptation algorithm for HTTP-based
live streaming called LOLYPOP (Low-Latency Prediction-Based Adaptation) that is
designed to operate with a transport latency of just a few seconds. To reach this goal,
LOLYPOP leverages TCP throughput predictions on multiple time scales, from 1 to 10
seconds, along with an estimate of the relative prediction error distribution. In addition
to satisfying the latency constraint, the algorithm heuristically maximizes the QoE by
maximizing the average video quality as a function of the number of skipped segments
and quality transitions. In order to select an efficient prediction method, we studied the
performance of several time series prediction methods in IEEE 802.11 wireless access
networks.

We evaluated LOLYPOP under a large set of experimental conditions, limiting the
transport latency to 3 seconds, against a state-of-the-art adaptation algorithm from the
literature, called FESTIVE. We observed that the average video quality is by up to a

69

Chapter 6. Prediction-Based Low-Delay Live Streaming

factor of 3 higher than with FESTIVE. We also observed that LOLYPOP is able to
reach a broader region in the QoE space, and thus it is better adjustable to the user
profile or service provider requirements.

6.1 Introduction

In a live streaming system, the video content is recorded and published while being
streamed, in contrast to being prerecorded and stored at the server as in the case of
VoD. The difference between the time when the content is recorded and the time when
it is rendered on the user’s device is often termed live latency. In order to provide the
“live” experience, the live latency is typically constrained by an upper bound. This
severely limits the capability of the client to prefetch content to alleviate transport
latency variations caused by varying network conditions, thus making the design of the
system more challenging.

While current live streaming services can exhibit a latency of several tens of seconds,
low-delay streaming refers to live streaming with a particularly low upper bound on the
latency: a few seconds or less. Such a requirement is desirable for scenarios such as
transmissions of sports events. Moreover, a low latency is absolutely necessary in the
case of video conferencing and online gaming, where active participants have latency
requirements on the order of hundred milliseconds [92], which is infeasible for HAS,
while permanently or temporarily passive participants may be served with a delay of a
few seconds.

HAS, however, was primarily developed to replace the progressive download of VoD
content and therefore its usage for low-delay streaming has received little attention in the
research community. Typical buffer sizes used in studies for evaluation and deployment
of HAS-based clients are on the order of tens of seconds. The capability of the HAS
approach to efficiently stream low-delay content, especially in wireless networks, is still
an open question.

Consequently, in our second contribution we demonstrate that efficient HAS-based
low-delay live streaming is possible by leveraging short-term TCP throughput predic-
tions over multiple time scales, from 1 to 10 seconds, along with estimations of the
relative prediction error distribution. We design a novel prediction-based algorithm
called Low-Latency Prediction-Based Adaptation (LOLYPOP) that supports quality-
based adaptation with a transport latency on the order of a few seconds. The approach
introduced in LOLYPOP jointly considers four QoE components: the live latency, the
number of playback interruptions, the number of quality transitions, and the average
video quality. Its goal is to maximize the average video quality as a function of the op-
erating point defined by the other three components. The operating point is controlled
by three input parameters: the target live latency, an upper bound on the number of
quality transitions, and a parameter controlling the number of playback interruptions.
Thus, LOLYPOP provides configurable QoE that can be adjusted to the nature of the
video, the user context and preferences, or the service provider’s business model.

At the core of LOLYPOP is an estimation of download success probabilities for
individual segments. To obtain these estimations, LOLYPOP leverages predictions of
throughput distributions, computed from a time series prediction and an error estima-

70

6.2. System Model and Notation

tion. We evaluate several time series prediction methods using TCP throughput traces
collected in IEEE 802.11 WLANs, including public hotspots (indoor and outdoor), cam-
pus hotspots, and access points in residential environments. We observe, somewhat
surprisingly, that taking the average over the previous T seconds as a prediction for the
next T seconds provides the best prediction accuracy among the considered methods for
all considered time scales. That is, taking into account the trend does not help to reduce
the prediction error.

We implement a prototype of the algorithm and evaluate it against FESTIVE [98],
a well-known adaptation algorithm from the literature. We limit the transport latency
to 3 seconds using a segment duration of 2 seconds. We observe that LOLYPOP is able
to reach a broad range of operating points and thus can be flexibly adapted to the user
profile or service provider requirements. Furthermore, we observe that at the individual
operating points, LOLYPOP provides an average video quality which is by up to a factor
of 3 higher than the quality achieved by the baseline approach.

6.2 System Model and Notation

In the following, we extend the basic description of a HAS system from Section 2.1.4, and
the basic notation from Chapter 4 (summarized in Table 4.1), to the case of a low-delay
live streaming client. A summary of the extensions is provided in Table 6.1, which also
includes notation introduced in the subsequent sections.

In a live streaming system, the video content is recorded and published while being
streamed, in contrast to being prerecorded and stored at the server as in the case of VoD.
The difference between the time when the content is recorded and the time when it is
rendered on the user’s device is often termed the live latency. In order to provide the
“live” experience, it is typically constrained by an upper bound. This severely limits the
capability of the client to prefetch content to alleviate transport latency variations caused
by varying network conditions, thus making the design of the system more challenging.
The live latency consists of several components: sever-side processing (cutting, encoding,
etc.), publishing (making available for download, distributing among CDN nodes, etc.),
transport latency (downloading the content), and client-side processing (demultiplexing,
decoding, rendering).

Recall that in an HAS system, the video content is encoded in several representa-
tions varying w.r.t. their media characteristics such as the spatial resolution, frame rate,
compression rate, etc. They are configured by the service provider during the planning
phase [175]. Each representation is split into segments, typically containing several sec-
onds of video data, such that switching the representation is feasible on each segment
boundary. The client issues Hypertext Transfer Protocol (HTTP) requests to download
the segments in chronological order, selecting the representation for each of them. After
the segment is downloaded, it is stored in the playback buffer until its playback deadline
is reached. With live streaming, a segment becomes available for download during the
course of the streaming session. If the download is not completed before the playback
deadline, the playback is skipped. Since different representations typically have different
media bit rates, the client is able to satisfy the latency constraint by dynamically se-
lecting an appropriate representation for each segment. Note that the segment duration

71

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.1: Illustration of the time-related notation for low-delay live streaming

affects the client’s responsiveness to throughput changes and thus facilitates achieving
low latencies. At the same time, however, small segments increase the overhead due
to the higher number of HTTP requests as well as reduce the video compression effi-
ciency due to the decreased Group of Pictures (GOP) size. Typical segment durations
lie between 2 and 15 seconds.

Since HTTP offers no means to cancel an ongoing request, the only way to prevent
wasting bandwidth by downloading the remaining bytes of a segment whose playback has
to be skipped is to shutdown the TCP connection. Since opening a new TCP connection
is associated with communication overhead, we assume that the client maintains multiple
TCP connections, using them in a Round Robin manner in order to keep their internal
state such as congestion window size and Round-Trip Time (RTT) estimation up-to-
date. Whenever a TCP connection is closed, other connections are used, while the
closed connection is replaced by a new one.

One of the main goals of the adaptation logic is to maximize the QoE. In the
following, we define QoE as the quadruplet (live latency, number of skipped segments,
number of quality transitions, average video quality). We use the term video quality
to refer to the video distortion, which is typically a concave function of the video bit
rate [184]. As stated previously, it is necessary to consider these factors jointly since
optimizing any one parameter individually leads to poor QoE.

Our approach is to heuristically maximize the average video quality as a function of
the triplet: live latency, number of skipped segments and number of quality transitions,
which we define as an operating point. Since the duration of the streaming session is
not known in advance (the user might quit the session prematurely), the number of
skipped segments and the number of quality transitions are expressed in relative terms:
fraction of skipped segments and fraction of segments that result in a transition. The
operating point may be defined by the user, the operating system, the client software,
or the content provider. It might depend on various factors, such as the nature of the
video, the user context, the provider’s business model, etc.

We assume that segment i contains video material covering the time period [iτ, (i+
1)τ] and becomes available for download at time (i + 1)τ . Consequently, the time tri
when the request to download segment i is sent by the user arises from the maximum of
two values: the time when the client finished downloading segment i − 1, and the time
when segment i becomes available at the server. We denote the target live latency by ∆.
Consequently, the playback deadline of segment i is tpi = iτ +∆. The value of ∆ bounds

72

6.3. LOLYPOP — Adaptation Algorithm for Low-Delay Live Streaming

∆ Target live latency

Σ∗ ∈ [0, 1]
LOLYPOP input parameter controlling the number of skipped seg-
ments Σ

Ω∗ ∈ [0, 1]
LOLYPOP input parameter controlling the number of quality tran-
sitions Ω

i0 Selected tune-in segment, defined in (6.1)

P p
ij Download success probability for segment i from repr. j

kp Number of past throughput values used for prediction

ρ̂(t1, t2) Predicted throughput for the time interval [t1, t2]

ϵ(t1, t2) Relative prediction error for [t1, t2] (unsigned), defined in (6.2)

ϵ̃(t1, t2) Relative prediction error for [t1, t2] (signed), defined in (6.3)

ρ̂i Predicted segment throughput for segment i

Tmax Maximum prediction horizon in seconds

Table 6.1: Notation extensions for LOLYPOP

the maximum transport latency, which is given by ∆ − τ if other latency components
are neglected. Note that the maximum transport latency for individual segments can
be smaller since it depends on the playback buffer level at the time of the request. The
maximum transport latency for segment i is thus given by 0 < β (tri) ≤ ∆ − τ , where
β(t) is the playback buffer level representing the duration of the stored video content in
seconds (defined in (4.1)). See Figure 6.1 for an illustration.

6.3 LOLYPOP — Adaptation Algorithm for Low-Delay
Live Streaming

In this section, we present our design of LOLYPOP, a novel prediction-based adaptation
algorithm for low-delay live streaming over HTTP.

6.3.1 Algorithm Description

As described in Section 6.2, the goal of LOLYPOP is to maximize the average video
quality as a function of the operating point, defined by the triplet (∆,Σ,Ω). The input
parameters controlling the reached operating point are: (i) the target latency ∆, (ii) Σ∗ ∈
[0, 1], which controls the fraction of skipped segments, and (iii) Ω∗ ∈ [0, 1], which is an
upper bound on the (relative) number of quality transitions. The output of the algorithm
is the representation for the next segment to be downloaded. The approach leverages
throughput predictions and prediction error estimations to compute the probability P p

ij

that the download of segment i in quality j will be completed before its playback deadline.

73

Chapter 6. Prediction-Based Low-Delay Live Streaming

Computation of P p
ij is described in detail in Section 6.5.5. For now, we assume that P p

ij

is given.

Let us consider the decision about downloading the segment i. First, LOLYPOP
identifies the highest representation j′ such that the probability for missing the playback
deadline is bounded by Σ∗, i.e. 1−P p

ij′ ≤ Σ∗. If no representation satisfies this condition
or the download success probabilities cannot be computed (e.g., because the streaming
session has just started or after a period of zero throughput), j′ is set to 0.

In the second step, LOLYPOP computes Ω(t), the fraction of segments that were
played in a different quality than their predecessor. If Ω(t) > Ω∗, and j′ > j←, where j←

is the representation of the last successfully downloaded segment i← < i, representation
j← is selected in order to prevent Ω(t) from further exceeding the upper bound Ω∗. The
pseudocode for the described algorithm is presented in Algorithm 1.

Algorithm 1: LOLYPOP

Input: τ, R ▷ Video parameters

Input: tri , t
p
i , Σ

∗, Ω∗, Tmax ▷ Invocation time, playback deadline, config. parameters

Input: (P p
ij , j ∈ {0, . . . , |R| − 1}) ▷ Estimated download success probabilities, or -1

Input: j← ∈ {0, . . . , |R| − 1} ▷ Repr. of the last successf. downloaded segment

Output: j∗ ▷ Selected representation

Require: (i+ 1)τ ≤ tri < tpi ≤ tri + Tmax ▷ Segment i available, playback deadline not
passed and within prediction horizon

1 if P p
ij = −1, ∀j ∈ {0, . . . , |R| − 1} then ▷ No estimation available

2 j∗ = 0 ▷ Select lowest representation

3 else ▷ An estimation of download success probabilities is available

4 j′ = max
(
{0} ∪

{
j ∈ {0, . . . , |R| − 1} | 1− P p

ij ≤ Σ∗
})

▷ Max. representation
satisfying Σ∗, or 0

5 if Ω (tri) ≤ Ω∗ then ▷ Transition to a higher representation is possible

6 j∗ = j′ ▷ Select the computed representation

7 else ▷ Transition to a higher representation is not possible

8 j∗ = min (j′, j←) ▷ Select the computed representation, if below the previous

The intuition for letting LOLYPOP switch to a lower representation, even if the
upper bound on the quality transitions is exceeded, is that preventing a quality decrease
can significantly increase the number of skipped segments. According to a large-scale
study of user engagement (time before the user quits a streaming session), it is always
better to drop video quality than to let the streaming stall [43].

6.3.2 Tuning into the Stream

Starting a new streaming session at time t0, the client decides which segment i0 to
download first and in which representation. After the download, the clients delays the
playback until the playback deadline tpi0 = i0τ + ∆, in order to fully benefit from the
configured target latency ∆. Starting with the newest available segment maximizes
the download success probability (there is more time until the playback deadline), but
increases the initial delay (the client has to wait longer after the download). In con-
trast, taking an older segment whose playback deadline is sufficiently far into the future
minimizes the initial delay given that the download can be completed in time.

74

6.4. TCP Throughput Traces

LOLYPOP adopts the latter approach, selecting the oldest segment whose playback
deadline is at least τ seconds into the future:

i0 = min {i ≥ 0 | (i+ 1)τ ≤ t0 ≤ tpi − τ} , (6.1)

and downloading it in the lowest quality to minimize the risk of skipping the first segment
and thus increasing the initial delay. The expectation is that the available network
resources support the download of a segment in its lowest quality in less time than the
segment duration, while, due to the small segment duration, the low quality of the first
segment should have negligible impact on the QoE of the whole session. If the first
segment is downloaded in time, the start-up delay tpi0 − ti0 lies in the interval [τ, ∆− τ],
which can be seen by using the definition of i0, and that of the playback deadline
tpi0 = i0τ +∆.

LOLYPOP applies the same decision process when the client skips a segment and
has to select a segment to proceed with.

6.4 TCP Throughput Traces

As previously stated, LOLYPOP leverages estimations of probabilities P p
ij that segment i

can be downloaded in representation j before its playback deadline. In order to develop
an efficient estimator, it requires a data set, that is, a collection of TCP throughput
traces from IEEE 802.11 WLANs, to evaluate the accuracy and error distributions of
different time-series prediction methods. In addition, such a data set is required to
evaluate the proposed adaptation algorithm under different network conditions. Due
to the targeted transport latency of a few seconds, the required data set must contain
throughput averages computed over relatively small time intervals: 1 second or less. To
the best of our knowledge, there exists no such publicly available data set. Therefore,
we collected a representative set of TCP throughput traces in IEEE 802.11 networks
in different environments at various locations throughout Berlin, Germany and Irbid,
Jordan. Our selected locations include public hotspots (indoor and outdoor), campus
hotspots, and access points in residential environments. The traces were collected using
laptops running Ubuntu 13.04 and Ubuntu 14.04 operating systems with default Media
Access Control (MAC) and TCP configurations.

We collected 127 traces of continuous downstream TCP flows, lasting between 600
and 3600 seconds each. In order to focus on the more challenging scenarios, we removed
traces with a Coefficient of Variation (CV) of less than 0.1 resulting in 92 traces with a
total length of 45 hours. As a sender, we used either a server located at the TU Berlin
campus (running Ubuntu 12.04) or an Amazon EC2 micro instance located in Ireland
(running Ubuntu 14.04). All traces are available upon request.

Each of the collected traces contains several types of information. First, it contains
the first 96 bytes of each incoming TCP packet belonging to the monitored TCP flow.
Second, it contains the first 512 bytes of each received IEEE 802.11 frame independent
of its destination address, including radiotap headers1 that contain internal MAC in-
formation, such as the retransmission flag, the Modulation and Coding Scheme (MCS),

1http://www.radiotap.org

75

http://www.radiotap.org

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.2: A complete example trace with a CV of 0.879, recorded at a busy outdoor
hotspot of a major German telecommunications operator.

and the Signal Strength Indicator (SSI). Except for the radiotap headers, the captured
frames are encrypted. Finally, the traces contain periodically recorded values of internal
TCP variables, obtained using the tcp info data structure via the socket interface. From
the traces, we computed time series containing various statistics from overlapping time
intervals of 1 s to 10 s duration shifted with a step size of 1 s. In addition to throughput
statistics, we computed statistics of cross-layer information such as for TCP: delay jit-
ter statistics and the statistics of outstanding bytes, and, for MAC: the number of own
frames received, the number of other frames received, MCS and SSI statistics, and the
statistics of retransmissions. Figure 6.2 shows the throughput, averaged over one second
intervals, of one complete trace with a CV of 0.879 recorded at a busy outdoor hotspot
of a major German telecommunications operator.

Figure 6.3 provides an illustration of throughput variability and temporal correlation
that are among the main factors affecting predictability. The figure shows boxplots for
selected sampling intervals of the mean throughput, Coefficient of Variation (CV), auto-
correlation at lag 1, and auto-correlation after differencing at lag 1. The CV is defined
as the standard deviation divided by the mean. Auto-correlation at lag 1 shows how
probable it is that a large throughput value is followed by another large value (auto-
correlation close to 1) or a small value (auto-correlation close to -1). A value close to
0 indicates no temporal correlation between subsequent values. Auto-correlation after
differencing quantifies the correlation of throughput changes. The computed statistics
confirm that our traces cover a broad range of network conditions. 50% of the traces
have a mean throughput between 4 and 11 Mbps, while for 90% of traces the mean
lies between approximately 1 and 13 Mbps. The range of throughput fluctuations,
represented by the CV, varies approximately from 0.1 to 1.3. An interesting observation
is that 75% of traces show auto-correlation values of over 0.6 at a sampling interval of
2 seconds, while 95% still have auto-correlation values over 0.3, indicating significant
temporal correlation between subsequent measurements. At the same time, the time
series of throughput changes exhibits a strong negative auto-correlation, indicating that
a throughput increase is likely to be followed by a throughput decrease.

76

6.5. Short-Term TCP Throughput Prediction

Figure 6.3: Trace statistics: mean throughput (equal for all sampling intervals), Coeffi-
cient of Variation (CV), auto-correlation at lag 1, and auto-correlation, after differencing,
at lag 1. Horizontal line: median, box: quartiles, whiskers: 0.5 and 0.95 quantiles, flier
points: outliers.

6.5 Short-Term TCP Throughput Prediction

In this section, we present our approach to estimating download success probabilities
required by LOLYPOP. It is based on predicting TCP throughput and estimating the
relative prediction error distribution.

6.5.1 Methodology

Our goal is to estimate the probabilities P p
ij that the download of sij bytes, requested

at time tri , will be completed by the time tpi . We achieve this by using a time series
prediction complemented by estimating the relative prediction error distribution. A
time series prediction method uses several past values to compute one or several future
values. Thus, from ρ (t− (k + 1)T, t− kT), k ∈ {0, . . . , kp − 1}, it computes predictions
ρ̂ (t+ kT, t+ (k + 1)T), k ∈ {0, . . . , kf − 1}, where T is the averaging interval.

As described in Section 6.2, the upper bound on the download duration tpi − tri for
segment i takes values from the range (0,∆p − τ], depending on the completion time
of the preceding download. We, therefore, have the following two options to compute
predictions. We can fix T and whenever tpi − tri > T , compute a prediction for multiple
steps into the future or, we compute predictions using multiple values for T and then
use the smallest one such that T ≥ tpi − tri . In the course of the study, we observed that
the latter approach performs significantly better. Consequently, we focus on predictions
on multiple time scales, always for one step into the future. We focus on time scales
from 1 to 10 seconds because of their relevance to low-delay streaming.

Given a prediction ρ̂ (t1, t2) and the corresponding measured throughput ρ (t1, t2),
we compute the relative prediction error as

ϵ (t1, t2) =
|max (ρ̂ (t1, t2) , ρmin)−max (ρ (t1, t2) , ρmin)|

max (ρ (t1, t2) , ρmin)
. (6.2)

Here, the maximum operator prevents a distortion of results whenever ρ ≈ 0 or ρ̂ ≤ 0. In

77

Chapter 6. Prediction-Based Low-Delay Live Streaming

the following, we set ρmin = 10 kbps. We separately evaluate the overestimation and the
underestimation errors, due to their different error ranges ((0,∞) and (0, 1] respectively)
and due to their different impacts on the adaptation. An overestimation increases the
risk of skipping a segment, which has the strongest impact on QoE. An underestimation
decreases the risk of interruptions but reduces the video quality.

6.5.2 Prediction Methods

We evaluated a number of time series prediction methods, including Simple Moving
Average (SMA), linear extrapolation, Cubic Smoothing Splines (CSS), several flavors
of exponential and double exponential smoothing, Autoregressive Integrated Moving
Average (ARIMA), and several machine learning based methods [27]. Due to their
simplicity and superior performance, our throughput prediction results presented in the
subsequent sections will focus on three simple methods: SMA, linear extrapolation,
and double exponential smoothing (Holt-Winters). In this section, we provide a brief
description for a subset of the used methods.

We abbreviate the methods by ⟨type⟩:⟨kp⟩:⟨parameters⟩, where ⟨type⟩ is the name of
the method, kp is the number of past throughput values used as input, and ⟨parameters⟩
include further optional configuration parameters. For example, SMA:kp:ar denotes
SMA with arithmetic mean, and HW:kp:mse denotes Holt-Winters with Mean Squared
Error (MSE) used for parameter tuning.

Simple Moving Average

SMA is one of the simplest prediction methods. The predicted value is the average
over a number of past measurements. The configuration parameters are the number
of past measurements and the type of the used mean value: arithmetic, geometric,
or harmonic. In the following, we abbreviate this method with SMA:⟨kp⟩:⟨mean type⟩,
where kp ≥ 1 is the number of past measurements, and ‘mean type’ is one of {ar, gm,hm}.
For example, SMA:2:ar means that the predicted value is the arithmetic mean from two
past measurements. In particular, we denote the näıve approach of using the most recent
measurement as the predicted value with SMA:1:ar.

Simple Exponential Smoothing

Similar to SMA, Simple Exponential Smoothing (SES) computes the predicted value
by averaging over past measurements. However, it assumes that the most recent mea-
surements have a higher significance for the prediction, and assigns older measurements
exponentially decreasing weights. For given past measurements x0, . . . , xkp−1, the pre-
dicted value is computed as x̂kp = akp−1, where ak is recursively computed as

ak = αxk + (1− α)ak−1 ,

and a0 = x0. Besides the number of past measurements kp, it has a configuration
parameter α ∈ [0, 1]. We tune α for each prediction by minimizing the MSE within past

78

6.5. Short-Term TCP Throughput Prediction

measurements, given by

1

kp − 1

kp−1∑
k=1

(xk − ak−1)
2 .

We abbreviate SES with SES:⟨kp⟩:mse, where kp ≥ 2 is the number of past measure-
ments, and ”mse” indicates the approach used to tune α.

Linear Extrapolation

Linear extrapolation is another straightforward prediction method that differs from SMA
in that it takes into account the linear trend from the past measurements. More specif-
ically, linear extrapolation fits a linear curve into the set of given past measurements,
minimizing the MSE, and computes the prediction from extrapolating the curve to the
prediction horizon. It thus requires at least two past measurements to compute a predic-
tion. We abbreviate linear extrapolation with LinExt:⟨kp⟩, where kp ≥ 2 is the number
of past measurements.

Double Exponential Smoothing (Holt-Winters)

Similar to linear extrapolation, Double Exponential Smoothing (DES) tries to account
for the trend in the data. In the following, we use a variant of the method, usually
referred to as Holt-Winters DES. With Holt-Winters, for the given past measurements
x0, . . . , xkp−1, the prediction is computed as x̂kp = akp−1 + bkp−1, where ak, bk are
computed by the following recursive procedure.

ak = αxk + (1− α)(ak−1 + bk−1) , for k > 1

bk = β(ak − ak−1) + (1− β)bk−1 , for k > 1 ,

with a1 = x1, and b1 = x1 − x0.

The Holt-Winters method has two configuration parameters α and β that strongly
influence the prediction quality and thus have to be carefully tuned. In our work, we
tune them for each prediction by minimizing the MSE within the past measurements,
which is given by

1

kp − 2

kp−1∑
k=2

(xk − (ak−1 + bk−1))
2 .

Thus, this method requires at least three past values to compute a prediction. As
abbreviation, we use HW:⟨kp⟩:mse, where kp ≥ 3 is the number of the last values, and
mse indicates the approach used to tune α and β.

Cubic Smoothing Splines

The CSS model provides both smooth historical trend and a linear prediction function.
The method uses a likelihood approach to estimate the smoothing parameter. It is based
on finding piecewise cubic polynomials that are joined at the equally spaced time series
points [87].

79

Chapter 6. Prediction-Based Low-Delay Live Streaming

Locally Weighted Scatterplot Smoothing

Locally Weighted Scatterplot Smoothing (LOESS) is a non-parametric regression method
that tries to build a model describing the deterministic part of the variation in the data
by incrementally fitting localized subsets of the data using simple regression models.

Autoregressive Model

Autoregressive model predicts the variable of interest by using a linear combination of
past measurements, plus white noise. For past measurements x0, . . . , xkp−1, the predic-
tion of an autoregressive model can be written as:

x̂kp = c+

kp−1∑
k=0

αkxk + ωkp−1 ,

where c is a constant and ωkp−1 denotes white noise. The model parameters are selected
by optimizing the Akaike Information Criterion (AIC).

Autoregressive Integrated Moving Average

ARIMA is a combination of autoregressive and moving average models, with the ability
to use a differenced or integrated representation of the time series. In our study, we
were using a statistical method proposed in [86] that uses a combination of unit root
test, minimization of the AIC and Maximum Likelihood Estimation (MLE) to reach an
optimized ARIMA model.

6.5.3 Evaluation of the Prediction Accuracy

We evaluate the prediction methods in two steps. First, we compare the relative pre-
diction errors over the joint data set from all of the traces to identify the method that
performs best over a broad range of network environments. In the second step, we
evaluate how the prediction accuracy varies over individual traces.

To compare the prediction accuracy over the complete data set, we computed the
0.2-quantiles, 0.5-quantiles, and 0.9-quantiles of the prediction error. For example, a 0.2-
quantile of 0.3 means that in 20% of all collected data points, the relative prediction error
is below 0.3. Another example: a 0.9-quantile of 0.8 means that less than 10% of data
points have an error over 0.8. The results for the sampling interval of 5 seconds are shown
in Figure 6.4. We observe that SMA:1:ar has the best performance except for the 0.9-
quantile of the underestimation error, where SMA:10:ar is the best performing method.
For 50% of the data points, SMA:1:ar results in an overestimation error that does not
exceed 10%, while only less than 10% of data points have an overestimation error of
80% and larger. This is somewhat surprising since SMA:1:ar is the most näıve method
that uses only the most recent measurement as prediction. It also has a much lower
computational complexity than methods such as Holt-Winters due to the optimizations
involved in tuning the configuration parameters of the latter for every new prediction.
It seems that taking into account the trend in the past measurements does not improve
the prediction quality. This is consistent with the observation that in many traces

80

6.5. Short-Term TCP Throughput Prediction

Figure 6.4: Relative prediction error quantiles for the complete data set, on the time scale
of 5 seconds. The error bars show confidence intervals for the confidence level of 0.95 (a
varying subsampling factor has been used for decorrelation [119]). See Section 6.5.3 for
details.

the differences in subsequent throughput measurements show a negative correlation, as
depicted in Figure 6.3. Also, methods using a small number of history points implicitly
detect level shifts and do not propagate outliers. These two issues were reported to be
known challenges in TCP throughput prediction [70].

In the second step, we evaluate how the prediction accuracy varies over the individual
traces. For each trace and method, we compute the fractions of predictions with a relative
error less than 0.2, 0.5, and 1.0. The Empirical Cumulative Distribution Functions
(ECDF’s) of these fractions over individual traces for the sampling interval of 5 seconds,
is shown in Figure 6.5. The first/second/third column shows for each trace the fraction
of measurements with a relative error below 0.2/0.3/0.5 respectively. For example, the
point (0.8, 0.3) on the solid line in the middle column, bottom row, represents a trace,
where 80% of the overestimations have a relative error of 0.5 or less. Points below
(y-value less than 0.3) correspond to traces that have worse performance, while points
above (y-value over 0.3) correspond to traces with better performance. The fact that
the graph passes through point (0.8, 0.3) means that in 70% of traces (sampled at 5 s),
less than 20% of the overestimations have a relative error of 0.5 or more.

From Figure 6.5, we observe that the prediction strongly varies across traces. There

81

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.5: Performance of SMA:1:ar and SMA:10:ar for individual traces. See Sec-
tion 6.5.3 for details.

are traces, where 90% of overestimations have an error less than 20%, while 100% of
predictions have an error less than 50%. A video client might account for a relative error
of this magnitude by using a fixed safety margin, that is, by always selecting a media
bit rate which is 20% smaller than the predicted throughput. There are, however, traces
where almost 60% of the overestimations have a relative error of greater than 50%, while
more than 40% of the overestimations still have an error greater than 100%. Setting
a high fixed safety margin to account for such “bad” traces would result in significant
underutilization of network resources, lower media bit rate and thus lower QoE in the
“well-behaving” traces. On the other hand, selecting a low fixed safety margin would
increase the total number of skipped segments in the “bad” traces. Consequently, we
have to complement a time series prediction with an estimation of the prediction error
distribution.

Finally, in all of the studied traces, we observed that the probability for occurrences
of underestimations and overestimations are well balanced on all time scales. Both
occur in approximately 50%± 5% of cases. At the same time, they exhibit a significant
temporal correlation. In particular, the probability that an underestimation is followed
by an overestimation and vice versa is significantly over 50% for most traces for all time
scales, exceeding 80% or even 90% in some cases. This observation is directly related to
the distinct negative correlation of the throughput process after differencing, as depicted
in Figure 6.3. The distribution of per-trace values is depicted in Figure 6.6.

6.5.4 Estimating the Relative Prediction Error

In order to estimate the download success probability, it is not sufficient to perform a
time series prediction because the uncertainty of such a prediction can be quite high
(as shown previously) and because it can vary across different network environments.
Although there are approaches that allow to explicitly predict a distribution such as

82

6.5. Short-Term TCP Throughput Prediction

Figure 6.6: Per-trace probability that an underestimation is followed by an overestima-
tion and vice versa. Horizontal line: median, box: quartiles, whiskers: 0.5 and 0.95
quantiles, flier points: outliers. See Section 6.5.3 for details.

Gaussian process method [161], approaches such as SMA do not have this capability.
Therefore, we complement the predicted value by an estimate of the relative prediction
error distribution. A straightforward approach is to use the ECDF of past prediction
errors, and to account for the long-term non-stationarities by discarding values whose
age exceeds a certain threshold. Another approach is to select a distribution type and to
fit its parameters dynamically from the data. In our evaluation, we will use the former
method, since it results in good performance and since with the latter method the
computation of the model parameters involves an optimization step, which is resource-
consuming.

Nevertheless, we would like to briefly present our results on fitting several well-
known distribution types to the relative prediction errors: exponential, normal, logistic,
and Lomax (shifted Pareto) [101]. We observe that the Lomax distribution provides the
best fit. We therefore recommend to use the Lomax distribution to model prediction
errors when evaluating adaptation approaches with synthetic data, as done by Yin et
al. [220], for example.

For the underestimation errors, distributions are truncated to the range [0, 1], and for
the overestimation errors, to the range [0,∞). The Cumulative Distribution Function
(CDF) Ftr(·) of a distribution truncated to [a, b] is obtained from the original CDF F (·)
as

Ftr(x) =
F (x)− F (a)

F (b)− F (a)
, x ∈ [a, b] .

We fit a distribution to the data by minimizing the squared distance (L2-norm)
between its CDF and the truncated ECDF. In order to make the fit more precise in
the range which is relevant for adaptive streaming clients, we truncate ECDF’s to the
interval [0.1, 5.0] for the overestimation errors, and to the interval [0.1, 1.0] for the under-
estimation errors. Afterwards, Kolmogorov-Smirnov test is used to verify the goodness
of the fit [74].

The results are shown in Figure 6.7. The CDF’s are fitted to ECDF’s over the

83

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.7: Fitting distributions for the relative prediction errors. See Section 6.5.4 for
details.

joined set of data points from all traces. It turns out that both the underestimation
and the overestimation errors are extremely well represented by a Lomax distribution.
These findings are consistent with those obtained by fitting the prediction errors from
individual traces, which are omitted here.

6.5.5 Estimating the Download Success Probabilities

In this section, we describe our approach to estimating download success probabilities(
P p
ij , j ∈ {0, . . . , |R| − 1}

)
that at time tri sij bytes can be downloaded in representation

j before its playback deadline tpi . We denote by Tmax ∈ N the maximum prediction
horizon in seconds. Consequently, at time t ∈ N, the client computes the average
application layer throughput (as defined in (4.2)) for time intervals [t− T, t] for T ∈
{1, . . . , Tmax}, followed by computing throughput predictions for time intervals [t, t+ T].
If the throughput cannot be computed, no prediction is provided either. Finally, the
client computes the relative prediction error for the interval [t− T, t] as

ϵ̃ (t− T, t) =
max (ρ̂ (t− T, t) , ρmin)−max (ρ (t− T, t) , ρmin)

max (ρ (t− T, t) , ρmin)
. (6.3)

84

6.6. Evaluation

In contrast to the definition in (6.2), ϵ̃ (t− T, t) ∈ (−1,∞) is defined without taking the
absolute value for the purposes of presentation.

We assume that predictions are computed every second, so that at time tri , the
most recent predictions were computed at time ⌊tri ⌋. In order to calculate the download
success probabilities, the client determines the smallest time interval containing [tri , t

p
i]

for which a prediction is available. Note that it is not necessarily [⌊tri ⌋, ⌈t
p
i ⌉] since, due

to the distribution of inter-request delays or due to a throughput outage, a prediction
for this time interval might not be available.

Let tπi , T
∗ ∈ N be determined such that [tπi , t

π
i + T ∗] is the shortest time interval

containing [tri , t
p
i] for which a prediction is available, and let ρ̂i = ρ̂ (tπi , t

π
i + T) be the

corresponding throughput prediction. ϵi = ϵ (tπi , t
π
i + T) and ϵ̃i = ϵ̃ (tπi , t

π
i + T) shall

denote the relative prediction errors, as defined in (6.2) and (6.3). Further, we denote
by Φu

i (ϵi) and Φo
i (ϵi) the estimated CDF of the underestimation and overestimation

errors for ρ̂i, computed at tπi . Finally, P u
i ∈ [0, 1] shall denote the relative frequency of

underestimations.
With the introduced notation, the estimated CDF for ϵ̃i is given by

Φi (ϵ̃i) =

{
P u
i · Φu

i (ϵi) for ϵ̃i < 0

P u
i + (1− P u

i) · Φo
i (ϵi) otherwise .

(6.4)

Consequently, the download success probability P p
ij can be estimated as

P p
ij = P

[
sij

tpi − tri
≤ ρ̂i

1 + ϵ̃i

]
= Φi

(
ρ̂i (t

p
i − tri)

sij
− 1

)
. (6.5)

6.6 Evaluation

We evaluated the performance of LOLYPOP using our collected throughput traces and
comparing it against the state-of-the-art algorithm FESTIVE [98] as a baseline. The
setting and results are presented in the following.

6.6.1 Evaluation Setting

We implemented both LOLYPOP and FESTIVE in a streaming client prototype written
in Python2. We equipped the developed prototype with a feature that allowed it to be
executed in virtual time using a throughput trace file as input, thus allowing for a
simulative evaluation using collected traces.

We used Big Buck Bunny [17] as video content, which is an animated movie of
approximately 10 minutes duration. This video was selected due to the availability
of raw video data, allowing us to generate representations with high MMBR’s. We
encoded 9 representations with MMBR’s distributed between 100 and 20000 kbps with
exponentially increasing intervals: 101, 194, 377, 730, 1415, 2743, 5319, 10314, and 20000
kbps, using the H.264/MPEG-4 AVC [215] compression format. The chosen intervals
correspond to a roughly linear increase of the video quality in terms of PSNR [184]. The

2http://www.python.org

85

http://www.python.org

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.8: Ω as function of Ω∗ (left), and Σ as function of Σ∗ (right), for LOLYPOP. The
distributions over the traces are shown as boxplots, where the horizontal line represents
the median, the box represents the quartiles, and the whiskers represent the 0.05 and
0.95 quantiles.

encoding was performed using the avconv3 utility using two passes, with a configuration
targeting at low MMBR variations among individual segments.

The evaluation was performed using an upper bound on the transport latency of
3 seconds, corresponding to 1.5 times the segment duration. Neglecting segmentation
overhead at the server and decoding overhead at the client, this corresponds to an overall
live latency of 5 seconds. Each streaming session lasted for 5 minutes.

We evaluated LOLYPOP with different values for the configuration parameters Σ∗

and Ω∗. The goal was to explore the range of operating points with Σ ∈ [0, 0.1] and
Ω ∈ [0, 0.5]. We used Σ∗ ∈ {0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.1, 0.15,
0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95} and
Ω∗ ∈ {0.001, 0.005, 0.008, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15,
0.2, 0.3, 0.5}. In total, we evaluated 442 configurations. Note that we used Σ∗ values
that are much higher than the values for Σ we want to achieve. This is due to the
observation that tight restrictions on the number of quality transitions Ω∗ results in
much lower numbers of skipped segments than the value used for Σ∗.

The FESTIVE adaptation algorithm was evaluated with a broad range of values
around the default configuration evaluated by Jiang et al. [98]. We vary the values for
α (controlling the trade-off between the average quality and the quality fluctuations),
p (safety margin between the estimated bandwidth and the selected MMBR), and k
(controlling the amount of quality fluctuations by enforcing a minimum distance between
quality transitions). We used α ∈ {5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20},
p ∈ {0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95}, and k ∈ {1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 15, 20, 30, 40, 50}. In total, we evaluated 2880 configurations. We disabled
the randomizer feature of FESTIVE since it requires delaying requests. With low-delay
streaming, the randomizer feature can lead to an increased number of skipped segments.
We did not relax the restriction of FESTIVE that it switches the representation at most
one step at a time since we considered it as one of its core features. Finally, we would
like to point out that FESTIVE bases its decisions upon the knowledge of the MMBR
of a representation, while LOLYPOP uses the segment size of the next segment.

3http://libav.org/avconv.html

86

http://libav.org/avconv.html

6.6. Evaluation

Figure 6.9: Scatter plots of covered (Σ, Ω) regions for LOLYPOP (left), and FESTIVE
(right).

6.6.2 Evaluation Results

The evaluation goals are to understand the dependency of the reached operating point
on the algorithm configuration, to explore the region of reachable operating points, and
to evaluate the average video quality as a function of the operating point.

First, we study the dependency of the reached operating point, specifically of (Σ,Ω),
on the input parameters Σ∗ and Ω∗. Figure 6.8 (left) illustrates the ability of LOLYPOP
to satisfy the upper bound on the number of quality transitions Ω∗, by depicting Ω as a
function of Ω∗ exemplarily for Σ∗ = 0.1. The graphs for other values of Σ∗ are almost
identical and are omitted. We observe that LOLYPOP is able to enforce the upper
bound on the number of quality transitions quite accurately. One reason for the slight
overshoot is that we always allow downward quality transitions. Also note that a value
of Ω = 0.01 means that during the whole streaming session, there are only 3 quality
transition, which, in a wireless network, is an extremely low value. Figure 6.8 (right)
illustrates the dependency of Σ on Σ∗ for two values of Ω∗: 0.05 and 0.1. We observe
that Σ is significantly lower than Σ∗ and that a lower value for Ω∗ decreases Σ even
further. The intuition behind that is that whenever Ω∗ is exceeded during the course of
a streaming session, only downward quality transitions are permitted.

Next, we evaluate the region of reachable operating points. The broader this region
the more flexible the algorithm can be tuned to the QoE requirements defined for a
streaming session. Figure 6.9 shows scatter plots of achieved (Σ, Ω) values for LOLYPOP
(left) and FESTIVE (right). We observe that the studied LOLYPOP configurations
cover a broader range of (Σ, Ω) values and thus enable a more flexible adjustment to
user and/or application profiles. Note that a low value of Σ and/or Ω alone is not an
indicator of high QoE since it might be achieved by selecting an unnecessary low video
quality.

The fact that Σ values below 0.01 were not achieved by either algorithms is in part
explained by the throughput outages of several seconds durations contained in several
traces. In order to quantify these “unavoidable” fractions of skipped segments, we
simulate streaming sessions using an adaptation algorithm that always selects the lowest
quality. We observed that out of 92 used traces, 66 support streaming at lowest quality
without skipped segments. Furthermore, 7 traces have a Σ below 0.01, further 10 below

87

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.10: Average video quality as a function of the number of skipped segments
Σ for different numbers of quality transitions Ω. Dashed lines represent the confidence
intervals for the confidence level 0.95.

0.05, further 7 below 0.1, one had 0.12 and one has the highest Σ of 0.15.

As the main result of our evaluation, we would like to characterize the average video
quality as a function of the operating point. Figure 6.10 visualizes the average video
quality as a function of quality transitions for different numbers of skipped segments. For
different values of Σ (on the x-axis), we first determine the configuration that (i) achieves
the highest average video quality over all traces, (ii) whose average fraction of skipped
segments is less or equal to Σ, and (iii) whose average (relative) number of quality transi-
tions is less then or equal to Ω, where Ω ∈ {0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
The convex hulls of the resulting curves are depicted in Figure 6.10. It is accompanied
by the confidence interval for the confidence level of 0.95, computed after subsampling
the data with a subsampling factor of 0.1 to remove temporal correlation [119].

We observe that LOLYPOP achieves a higher average quality at all operating points.
The difference is particularly pronounced for small numbers of quality transitions, where
LOLYPOP achieves an up to 3 times higher average quality. For high numbers of quality
transitions, the difference slightly increases with the number of skipped segments. An
interesting observation is that all plots have a more or less pronounced “knee”, after
which the curve goes into saturation and the quality does not increase significantly. In
contrast, before the knee, a small increase in the number of skipped segments can bring
a huge increase in video quality. In the evaluated network environments, the “knee”
is typically slightly below Σ = 0.02. In other words, accepting 0.5 to 1 percent more
skipped segments, which corresponds to one to two more skipped segments every 400

88

6.6. Evaluation

Figure 6.11: Average video quality as a function of the number of quality transitions
Ω for different numbers of skipped segments Σ. Dashed lines represent the confidence
intervals for the confidence level 0.95.

seconds, can result in an up to twofold improvement in video quality (e.g., for Ω ≤ 0.2).

While Figure 6.10 shows mean values over all 92 traces, we generated similar plots for
each trace individually. In 31 traces, all 9 considered Ω thresholds resulted in both curves
having the same ranges and could thus be compared pointwise. In 21 out of the 31 traces,
all 9 curves for LOLYPOP were pointwise strictly greater than the corresponding curves
for FESTIVE, while there existed no trace where all 9 curves were pointwise greater
for FESTIVE. Furthermore, in order to perform a trace-by-trace comparison across all
traces, including those in which some curves had different ranges or were intersecting,
we compared the integrals of the curves. This comparison revealed that for Ω = 0.2,
in 53% of traces, LOLYPOP had a higher integral than FESTIVE; in 38% of traces,
FESTIVE had a higher integral; and in the remaining traces, the values were equal.
The corresponding values for Ω ∈ {0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5} are (76%,
22%), (82%, 16%), (76%, 22%), (78%, 20%), (86%, 12%), (87%, 11%), (87%, 11%),
(89%, 9%). We thus observe that for all considered Ω thresholds, in the majority of
traces, the performance of LOLYPOP averaged over the considered range of Σ values is
higher than the performance of FESTIVE.

Similarly to Figure 6.10, Figure 6.11 presents plots of quality vs. quality transitions
for different levels of skipped segments. Here, we observe a similar situtation, albeit
the “knee” effect is less pronounced in the case of LOLYPOP due to the relatively high
achieved video quality for low values of Ω.

Finally, Figure 6.12 depicts four example runs illustrating the behavior of the pro-
posed algorithm with different configurations. For each run, three plots are shown. The
top one depicts network throughput and segment MMBR. The middle one depicts the
representations selected for individual segments and the mean value. The bottom one
depicts the buffer level at playback deadlines (a value of 0 results in a skipped segment).
In the three upper left subplots, we see a run with low values for both Σ∗ and Ω∗. Set-
ting Ω∗ to 0.001, we effectively restrict the number of upward transitions to 1, since the
whole streaming session has less than 1000 segments. We observe that the algorithm
reacts not only to decreased throughput, as seen between seconds 30 and 50, but also to
increased uncertainty in throughput dynamics as seen after the strong downward fluc-
tuation at second 170. A higher Σ∗, as seen in the top right subplots, results in a more

89

Chapter 6. Prediction-Based Low-Delay Live Streaming

Figure 6.12: Four example runs with different algorithm configurations. See Section 6.6.2
for details.

90

6.6. Evaluation

aggressive behavior accepting a higher probability for skipping a segment and a higher
average quality. The two sets of subplots at the bottom depict runs with Ω∗ = 0.1. The
algorithm is allowed to have more quality transitions, resulting in a further improvement
of the average video quality.

91

92

CHAPTER7
Adaptation Algorithm for
Video on Demand

In this chapter, we present a novel adaptation algorithm for HAS-based VoD called
TOBASCO (Threshold-Based Adaptation Scheme for on-Demand Streaming). In con-
trast to the system presented in Chapter 5, TOBASCO does not rely on a cooperation
with the network, and is therefore suited for a standalone deployment in any network
environment. It also does not rely on cross-layer information, and can thus be deployed
on a broad range of platforms, including Set-Top Boxes (STB’s) and web browsers.
TOBASCO has a flexible parametrization, and thus can be adjusted to various service
provider and user requirements and QoE expectations. Moreover, even though designed
for VoD, it can be parametrized to operate with a small maximum buffer level of 10 to
20 seconds, which makes it suitable for live streaming with a moderate live latency, that
is, without the low delay requirement.

7.1 Introduction

There is little doubt that techniques that leverage cross-layer information can greatly
improve both the performance and efficiency of multimedia applications [170, 204, 222,
228]. Still, the deployment of such techniques is often problematic due to the required
communication with the lower layers of the protocol stack or the required support from
the network infrastructure. After all, the strict modularization of the Open Systems
Interconnection (OSI) reference model [233], and the end-to-end design principle [171]
were among the factors that paved the way for the success of the Internet.

Consequently, in this chapter, we present our design of an adaptation algorithm for

93

Chapter 7. Adaptation Algorithm for Video on Demand

VoD that operates as a standalone application, which means that it does not require
cross-layer information nor any coordination or support from the network. The only in-
formation used as input is the past throughput dynamics, and the buffer level dynamics,
which can both be monitored by the streaming client itself.

A major design goal when developing TOBASCO was to obtain a flexible approach
that can be parametrized to support a wide range of performance requirements that
correspond to different service provider policies and business models, as well as diverse
QoE requirements and expectations of the users. For example, TOBASCO can resolve
the trade-offs between the amount of playback interruptions, the continuity of the video
quality, and the maximization of the video quality in multiple ways, controlled by its
configuration parameters.

Last but not least, TOBASCO was designed to support a variety of network environ-
ments. It can be adjusted to efficiently operate over a stable and fast dedicated wired
link, or exposed to a highly fluctuating low throughput in a busy wireless cell.

While offering a high degree of flexibility, the parametrization of the presented algo-
rithm is straightforward and intuitive enough to simplify the deployment and to enable
its integration into various streaming solutions. Finally, TOBASCO has a low com-
putational complexity which helps reducing the energy consumption and increase its
practicality since some entertainment devices supporting video do not have the compu-
tational power of PC’s or smartphones.

TOBASCO has been integrated in several video player frameworks, such as the
GStreamer [66], VLC [206], and TAPAS [36]. It has been evaluated in emulated and real-
world network environments, using the commercial HAS player Microsoft Silverlight [142]
as the baseline approach. Further, its performance has been evaluated against the opti-
mal adaptation trajectories computed by the omniscient client presented in Chapter 8.
The evaluation shows that TOBASCO allows to efficiently avoid playback interruptions,
provides a smooth viewing experience by avoiding excessive video quality fluctuations,
achieves a high level of network resource utilization, and provides a fair resource allo-
cation in a multi-user environment. Moreover, it minimizes start-up delays, which is
particularly important for services, where users tend to frequently start new video ses-
sions. In particular, in the network environment used for the evaluation, the developed
algorithm achieves an average video bit rate which is by up to 35% higher than the base-
line approach, and within up to 85% of the optimum, at an up to an order of magnitude
smaller rebuffering duration.

7.2 Design Goals

Depending on the targeted deployment scenario, a streaming client may have different
design goals. In most cases, the main goal is to deliver the best possible QoE, subject to
the availability of the network resources. In addition, however, it is typically desirable to
maintain basic fairness when operating in multi-user environments. Finally, a streaming
client might be required to minimize costs engendered by content that is downloaded but
not presented to the user. (The latter happens when a user prematurely quits a streaming
session but also when, based on an adaptation decision, prebuffered low-quality content
is discarded to be replaced by the same content in a higher-quality representation.)

94

7.3. TOBASCO — Adaptation Algorithm for Video on Demand

For the algorithm presented in this chapter, the highest weight was put on maximizing
the QoE for the individual users, as is typical for applications operating over best-effort
networks, such as the open Internet. It is also worth noting, that due to the operation
on top of TCP, basic fairness of end-to-end resource allocation is already provided by its
built-in congestion avoidance and congestion control mechanisms. Nonetheless, in our
design, we explicitly account for design aspects important for operating in multi-user
environments.

As described in Section 2.2, quantifying QoE for an adaptive streaming session is a
complex and partially open research question. For our general-purpose algorithm, we
therefore focus on the four most important factors influencing user’s perception: (i) start-
up delay, (ii) rebuffering, (iii) mean video quality, and (iv) video quality fluctuations.
Note that these goals consitute several trade-offs. E.g., downloading each segment in
best possible representation results in frequent changes of playback quality whenever
the dynamics of the available throughput exhibit strong fluctuations. Also, minimizing
start-up delay implies minimizing initial video quality.

For the presented algorithm, the goal of minimizing rebuffering has been assigned
the highest priority since it was shown to have a dramatic impact on QoE. Further, we
tried to achieve a balance between mean quality and quality fluctuations, which can be
tailored to specific deployment requirements by a proper parameterization. We minimize
start-up delay by always downloading the first segment in lowest quality but, at the
same time, we introduce a fast start phase that quickly increases video quality in a more
aggressive way than during normal operation. For all performance aspects we introduce
configuration parameters that allow to tailor the behavior to individual requirements
such as, e.g., user’s viewing preferences, deployment environments, or specifications of
the content provider.

7.3 TOBASCO — Adaptation Algorithm for Video on
Demand

In this section, we describe the operation of TOBASCO in details. We present the
pseudocode, introduce the configuration parameters, and describe in details the two op-
eration modes: the adaptation phase, and the fast start. We use the notation defined in
Chapter 4 with minor extensions specific to the presented approach that are summarized
in Table 7.1.

7.3.1 General Idea

Similar to the ideas that led to the design of JINGER presented in Chapter 5, the general
idea behind TOBASCO is to stabilize the buffer level around a certain target value, which
is high enough to prevent buffer underruns during the periods of low throughput or link
outages.

Recall that the buffer level, the media bit rate of the transmitted video segment, and
the network throughput are connected by the following continuous-time approximation

β̇(t) =
ρ(t)

r(t)
− 1 .

95

Chapter 7. Adaptation Algorithm for Video on Demand

Here, β(t) is the buffer level at time t, representing the duration of the stored video
content in seconds (defined in (4.1)), ρ(t)/r(t) is the buffer filling rate due to the incoming
video data, while −1 is the buffer depletion rate due to the ongoing playback. In contrast
to the design of JINGER, the only variable that can be controlled by a standalone client
such as TOBASCO is the media bit rate r(t), or, more precisely, the segment MMBR,
as defined in Chapter 4.

Based on insights from the control theory, in our design we take into account both
the deviation from the target buffer level and the rate of buffer level change, which is
affine to the network throughput.

Roughly speaking, we increase the video quality when the buffer level is “high
enough” and decrease it when it is “too low”, similar to the proportional component
of a PID controller. Keeping it as simple as that, however, would inevitably result in
excessive quality fluctuations, annoying the user and degrading the QoE. Consequently,
instead of using a single target buffer level, we use a target buffer interval, within which
the video quality is not changed. Thus, we introduce a configurable hysteresis effect
into the dynamics of our system that prevents it from reacting to short-term throughput
variations, if the risk of a buffer underrun is low.

Another aspect we need to address is related to the fact that segment MMBR can
only take values from a discrete set, determined by the set of available representations.
It is, therefore, not possible to exactly match it to the available throughput. As a result,
without specific countermeasures, buffer level will be constantly increasing whenever the
MMBR of the selected representation is smaller than the throughput, and constantly
decreasing, whenever it is greater than the throughput. At the same time, however, we
expect a video client to stick to one representation in a network that offers a constant
throughput, or a throughput fluctuating with low amplitude or high frequency. The only
way to achieve that is to introduce inter-request delays whenever the selected MMBR is
less than the expected throughput but the next-higher MMBR is already too large.

On the other hand, introducing inter-request delays can lead to undesired effects
when multiple streaming clients share a common bottleneck resource. When a client
enters an inter-request delay, due to TCPs constant probing for free bandwidth, other
clients will try to utilize the freed resources by increasing their throughput. This can
lead to various effects and reduce overall fairness and efficiency. In our work, we try
to minimize the duration of individual delays by uniformly distributing them across
subsequent segment downloads.

7.3.2 Algorithm Description

The listing in Algorithm 2 presents the pseudo-code for the developed algorithm. In the
following, we will explain its individual elements in detail.

We assume that the algorithm is invoked at time tci−1, immediately after the download
of segment i − 1 has been completed. In order to efficiently adapt the video quality to
the throughput dynamics the algorithm takes two types of input: (i) past throughput
dynamics, and (ii) past playback buffer dynamics.

The algorithm computes two output values: (i) a representation for the download
of the next segment i, and (ii) the inter-request delay. The latter is expessed as the

96

7.3. TOBASCO — Adaptation Algorithm for Video on Demand

0 ≤ Bmin < Blow < Bhigh Minimum, low, and high buffer level thresholds

Btar = [Blow, Bhigh] Target buffer interval

Bopt = 0.5 (Blow +Bhigh) Optimum buffer level

∆β > 0 Duration of the time interval for computing βmin

∆t > 0 Duration of the time interval for thrpt. averaging

0 < α1, . . . , α5 ≤ 1 Safety margins for throughput estimation

Table 7.1: Notation extensions for TOBASCO

maximum buffer level Bdelay, above which the download of the next segment shall not
be started. The purpose of the inter-request delays is twofold. On the one hand, they
are reuqired to bound the buffer level from above if we already arrived at the highest
representation. But even more importantly, they are required to stabilize the buffer level
in the middle of the target interval when the selected MMBR does not exactly match
the network throughput, which is the typical scenario, since the set of the available
representations is finite. In the following sections, the operation of TOBASCO will be
explained in more details.

TOBASCO can be configured using the following set of parameters: 0 ≤ Bmin <
Blow < Bhigh, ∆β > 0, ∆t > 0, 0 < α1, . . . , α5 ≤ 1. They will be described in more
details in the following.

At the start of a streaming session, the algorithm always selects the lowest represen-
tation for the first segment to be downloaded. The advantage of this approach is that
it minimizes the prebuffering delay tp0 − tr0. The disadvantage is, that the first seconds
of the video may be downloaded at a lower quality than what can be sustained by the
network. In order to mitigate this effect, we introduce a fast start phase at the beginning
of the streaming session, with the goal to increase the video quality in a more aggressive
manner. In the following, we first describe the operation of the algorithm during the
phase which follows the fast start phase, which we call the adaptation phase.

7.3.3 Adaptation Phase

We define three thresholds for the buffer level: 0 ≤ Bmin < Blow < Bhigh. We use
Btar = [Blow, Bhigh] to denote the target interval, and Bopt = 0.5 (Blow +Bhigh) to
denote its center point. The algorithm tries to keep the buffer level close to Bopt. Note
that the only way to increase β̇(t), that is, the rate at which the buffer level is changing,
is to switch to a lower representation, while there are two ways to decrease β̇(t). The
first is to switch to a higher representation, while the second is to introduce inter-request
delays.

While β(t) ∈ Btar, we never switch to a different representation. The reason behind
it is not to react to short-term variations of the available throughput. If we observe a
positive or negative short-term throughput spike on an otherwise constant channel, we
do not want to change to a different representation since shortly afterward we would

97

Chapter 7. Adaptation Algorithm for Video on Demand

Algorithm 2: TOBASCO

Input: β
(
tci−1

)
, ρi−1 ▷ Current buffer level, last segment throughput

Input: ρ
(
tci−1 −∆t, t

c
i−1
)

▷ Mean throughput for past ∆t seconds

Input:
(
βmin (k∆β , (k + 1)∆β) , k = 0, . . . , ⌊tci−1/∆β⌋

)
▷ βmin time series

Output: ri, Bdelay ▷ Selected representation, inter-request delay

1 static fast start := true ▷ Initial mode is the fast start

2 Bdelay := 0 ▷ Default behavior: no inter-reqeuest delay

3 ri := ri−1 ▷ Default behavior: no quality change

4 if fast start ▷ Continuing fast start phase if (i) not at

5 ∧ ri−1 ̸= rmax ▷ highest representation yet, (ii) βmin

6 ∧ βmin (k∆β , (k + 1)∆β) ≤ βmin (k
′∆β , (k

′ + 1)∆β) , ∀ 0 ≤ k < k′ ≤ ⌊tci−1/∆β⌋
7 ∧ ri−1 ≤ α1 · ρ

(
tci−1 −∆t, t

c
i−1
)
then ▷ increasing, (iii) throughput high enough.

8 if β
(
tci−1

)
< Bmin then ▷ Buffer level below Bmin

9 if r↑
i−1 ≤ α2 · ρ

(
tci−1 −∆t, t

c
i−1
)
then ▷ Throughput high enough

10 ri := r↑
i−1 ▷ Increase video quality

11 else if β
(
tci−1

)
< Blow then ▷ Buffer level in [Bmin, Blow]

12 if r↑
i−1 ≤ α3 · ρ

(
tci−1 −∆t, t

c
i−1
)
then ▷ Throughput high enough

13 ri := r↑
i−1 ▷ Increase video quality

14 else ▷ Buffer level above Blow

15 if r↑
i−1 ≤ α4 · ρ

(
tci−1 −∆t, t

c
i−1
)
then ▷ Throughput high enough

16 ri := r↑
i−1 ▷ Increase video quality

17 if β
(
tci−1

)
> Bhigh then ▷ Buffer level above Bhigh

18 Bdelay := Bhigh − τ ▷ Delay next request

19 else ▷ We are in the adaptation phase

20 fast start := false ▷ Set state variable

21 if β
(
tci−1

)
< Bmin then ▷ Buffer level below Bmin

22 ri := rmin ▷ Selecting lowest quality

23 else if β
(
tci−1

)
< Blow then ▷ Buffer level below Blow

24 if ri−1 ̸= rmin ∧ ri−1 ≥ ρi−1 then ▷ Throughput too low

25 ri := r↓
i−1 ▷ Decrease quality

26 else if β
(
tci−1

)
< Bhigh then ▷ Buffer level in [Blow, Bhigh]

27 if ri−1 = rmax ▷ Already at highest quality, or

28 ∨ r↑
i−1 ≥ α5 · ρ

(
tci−1 −∆t, t

c
i−1
)
then ▷ throughput too low to switch up

29 Bdelay := max (β
(
tci−1

)
− τ, Bopt) ▷ Delay request if buffer level above Bopt

30 else ▷ Buffer level above Bhigh

31 if ri−1 = rmax ▷ Already at highest quality, or

32 ∨ r↑
i−1 ≥ α5 · ρ

(
tci−1 −∆t, t

c
i−1
)
then ▷ throughput too low to switch up

33 Bdelay := max (β
(
tci−1

)
− τ, Bopt) ▷ Delay next request

34 else ▷ We’re not at highest quality

35 ri := r↑
i−1 ▷ Increase the quality

be forced to change back. This behavior would decrease QoE by introducing quality
fluctuations. Thus, we configure the sensitivity of the algorithm to throughput spikes
by adjusting the size of the target interval Btar.

Now, assume that we observe a decrease of the available throughput. Once the
buffer level falls below Blow, we react to this change by selecting a lower representation.
We continue to switch to a lower representation as long as we are below Blow and the

98

7.3. TOBASCO — Adaptation Algorithm for Video on Demand

segment throughput of the last downloaded segment is smaller than the MMBR of the
currently selected representation. We use the latter condition as an approximation to
the condition that the instantaneous buffer level changing rate is positive:

ρi−1
ri−1

≈
ρ
(
tci−1

)
r
(
tci−1

) > 1 ⇔ β̇
(
tci−1

)
> 0 . (7.1)

Condition (7.1) prevents the client from excessively undershooting the available through-
put – if we are below Blow but the buffer level is increasing, there is no need to change
the representation. This corresponds to the influence of the derivative action of a PID
controller.

Next, assume that we observe an increase of the available throughput. Once the
buffer level increases beyond Bhigh, we react based on the following two options. We can
either decide to stay with the current representation and to delay the subsequent down-
load, or we decide to select the next higher representation. Our decision here depends
on the mean segment throughput measured during the last ∆t seconds. If the MMBR
of the next higher representation is below a preconfigured fraction of the mean segment
throughput: r̄↑

i−1 < α5 · ρ
(
tci−1 −∆t, t

c
i−1
)
, we prefer to keep the current representation

and to delay the request. Otherwise, we select the next higher representation. Note
that in this expression, selecting α5 < 1 increases the robustness of the algorithm to
measurement uncertainties. If we decide to keep the representation, we need to delay
the subsequent download in order to bring the buffer level back to the target interval.

The presented mechanisms already allow to efficiently avoid playback interruptions
by stabilizing the buffer level within the configured interval. Leaving it like that, however,
would result in a buffer level that is constantly fluctuating around Bhigh, instead of
staying close to Bopt, thus unnecessarily increasing the sensitivity of the client to positive
throughput spikes. In fact, if the buffer level is above Bopt and rising but we know that
the conditions for increasing the representation are not fulfilled, there is no reason to
wait until β(t) reaches Bhigh before introducing inter-request delays. Therefore, we
add the following mechanism. Whenever the buffer level is in [Bopt, Bhigh] but the
expected network throughput is not high enough to increase the representation, we delay
subsequent downloads until the buffer level falls back to Bopt. By keeping the buffer level
close to Bopt we achieve a symmetric sensitivity to both positive and negative throughput
spikes.

Here, we would like to point out that although we could bring the buffer level to its
optimum value much faster by delaying a download until the buffer level falls back to
Bopt, this approach has a strong disadvantage that comes into play when multiple clients
share a common link. In fact, if one of the clients delays a request by a certain time,
the TCP congestion control of the other client will be able to increase its throughput,
potentially triggering an increase of the video quality. Once, however, the first client
resumes download, both instances of TCP will again converge to the fair share of the
available bandwidth forcing the second client to adjust his representation once again.
Consequently, in order to avoid these unnecessary fluctuations, we try to minimize the
duration of individual inter-request delays.

Finally, as an additional precaution to prevent buffer underruns, we immediately
switch to the lowest available bit rate, whenever the buffer level falls below the config-

99

Chapter 7. Adaptation Algorithm for Video on Demand

urable threshold Bmin. The reason is that underruns have a dramatic impact on QoE
and thus their suppression must have the highest priority. Whenever β(t) < Bmin, there
is a high probability of a buffer underrun in the presence of throughput fluctuations.

Note that we restrict the client to switching one representation at a time in order to
avoid abrupt quality transitions with a high magnitude. If video content is offered with
a high number of representations, such behavior would increase the risk of underruns
since the time to reach the desired representation might be too long. However, we
assume that due to the high storage costs and the little benefit from offering a dense
representation set, video services will be typically provided with a small or moderate
number of representations.

In summary, roughly speaking, available configuration parameters influence the adap-
tation strategy in the following way. The lower threshold of the target buffer interval
influences the average buffer level. Thus, low values increase the risk of buffer underruns
but they increase the ”liveness” of the streaming session, which is important for trans-
mission of live content. The size of the target buffer interval influences the sensitivity to
throughput fluctuations. Low values let the video client switch the video quality more
often in order to more closely follow throughput fluctuations and thus increase the aver-
age video quality by better utilizing the available bandwidth. On the other hand, high
values provide a more steady video quality. ∆t has a similar impact on the sensitivity to
throughput spikes, especially to positive ones, since the client uses average throughput
from past ∆t seconds in order to decide if an increase of video quality can be sustained
by the network.

7.3.4 Fast Start Phase

As already mentioned, at the beginning of a streaming session, the algorithm selects the
lowest representation for the first segment in order to minimize the delay between the
user’s request to watch the video and the actual start of the playback. In order to quickly
ramp up to the best quality that is feasible with the current throughput dynamics, we
introduce a fast start phase that is more aggressive than the adaptation phase presented
in the previous section. Entering adaptation phase right from the start of the streaming
session would force the user to wait until the buffer level reaches Bhigh before increasing
the quality of the video for the first time. Setting Bhigh to, e.g., 50 seconds would imply
that the user will watch the first 50 seconds of the stream in lowest quality even on a
high-speed link.

The fast start phase works as follows. For each subsequent download we select the
next higher representation as long as its MMBR is below a certain fraction of segment
throughput measured over the last ∆t seconds. The fraction varies in three steps depend-
ing on the current buffer level. For β

(
tci−1

)
< Bmin, we switch to a higher representation

if r̄↑
i−1 ≤ α2 · ρ

(
tci−1 −∆t, t

c
i−1
)
. For β

(
tci−1

)
∈ [Bmin, Blow) we use α3 ≥ α2. Finally, for

β
(
tci−1

)
≥ Blow we use α4 ≥ α3. Thus, the algorithm becomes more and more aggressive

the higher the buffer level.
The fast start phase terminates, when one of the following conditions is violated:

(i) r̄i−1 ̸= r̄max ,

(ii) βmin (k∆β, (k + 1)∆β) ≤ βmin (k
′∆β, (k

′ + 1)∆β) , ∀ 0 ≤ k < k′ ≤ ⌊tci−1/∆β⌋ ,

100

7.4. Evaluation

(iii) r̄i−1 ≤ α1 · ρ
(
tci−1 −∆t, t

c
i−1
)
.

Condition (i) lets us terminate the fast start phase after we arrive at the highest available
representation. Condition (ii) ensures that we enter the adaptation phase if the buffer
level minima over equidistant intervals are not monotonically increasing, which is more
robust than to require monotonicity of the instantaneous buffer levels. Finally, condition
(iii) forces us to quit the fast start phase when the MMBR of the selected representation
approximates the mean segment throughput.

7.4 Evaluation

In this section we present the settings and the results of two evaluation campaigns for
TOBASCO that have been performed using prototypical implementations. One imple-
mentation has been performed at the Technische Universität Berlin, where TOBASCO
has been implemented as a plugin for the open source multimedia player VLC [206],
using the C++ programming language. In addition, TOBASCO has been implemented
it as a platform-independent software library using, again C++. The library provides an
Application Programming Interface (API) that can be used to interface it with HTTP
streaming clients. In particular, it has been integrated with one of the first MPEG-DASH
client prototypes developed by STMicroelectronics1, which is based on the open source
multimedia framework GStreamer [66]. The GStreamer plugin has been developed for
the Linux operating system and was intended to run on a STB box platform.

7.4.1 Evaluation Using an Emulated Wireless Cell

In this section, we present the setting and the results for the performance evaluation of
TOBASCO, performed using an emulated IEEE 802.11a WLAN cell. The evaluation was
performed using the plugin for the multimedia player VLC. As a baseline approach, we
used the Microsoft Silverlight player [142]. In addition, we compared the performance
with optimal adaptation trajectories computed by an omniscient client presented in
Chapter 8.

7.4.1.1 Setting

For the evaluation we emulated a typical Internet path, starting with an IEEE 802.11a
indoor WLAN access link. The setup is illustrated in Figure 7.1.

For the emulation of the wireless network, we used a very detailed site-specific model,
developed based on the BOWL testbed [4], and implemented in the NS-3 network simu-
lator [167]. The model consists of eight nodes, and each of the possible 56 unidirectional
links is modeled separately. Seven of the nodes are used as stations, and one as the access
point. Of the resulting downstream links, two offer a rather low average long-term TCP
throughput of 1.4 and 1.7 Mbps, while the remaining five links offer around 20 Mbps
on average. (Note that these values represent the throughput of the individual links in
the absence of cross-traffic.) The emulation runs on a desktop PC with an Intel Core i7

1http://www.st.com

101

http://www.st.com

Chapter 7. Adaptation Algorithm for Video on Demand

Figure 7.1: Evaluation setup. The access network is an emulated IEEE 802.11a WLAN,
based on a site-specific model of the BOWL testbed [4].

CPU and 8 GB RAM, under the Linux operating system (Ubuntu 13.04). We will call
this machine the emulation host in the following. The one-way delays on the emulated
links connecting the stations and the access points with the Ethernet interfaces of the
emulation host were set to a constant value of 1 ms.

The setting further contains two PC’s, called server hosts in the following, hosting
a Linux-based plain HTTP server (Apache 2), and a Windows-based Microsoft Internet
Information Services (IIS) server. The former is used to serve MPEG-DASH-based video
streams, as well as HTTP-based background traffic, while the latter is used to serve Mi-
crosoft Smooth Streaming video streams, used for a performance comparison. Finally,
the setting is completed by three further PC’s, called client hosts in the following, which
are used to run MPEG-DASH clients (Linux-based), Microsoft Smooth Streaming clients
(Windows-based), and HTTP background clients (Linux-based), respectively. The em-
ulation host is connected to the client hosts and server hosts via a switched Gigabit
Ethernet network.

The video traffic was always routed via the station with the second lowest maximum
throughput of 1.7 Mbps. In addition to the video traffic, we generated synthetic back-
ground traffic mimicking the behavior of 14 HTTP clients (two per emulated wireless
station), based on the stochastic model from Pries at al. [159].

The video sequence that we used was Big Buck Bunny [17]. We encoded the raw
video data in 6 representations, distributing the MMBR’s of the individual representa-
tion logarithmically between 100 kbps and 5 Mbps. We set the GOP size to 2 seconds,
which is the maximum value allowed for Microsoft SmoothStreaming (MSS). The en-
coded data was split into segments of two seconds duration, and two manifest files were
generated, one for the MPEG-DASH client, and one for MSS. We assured that the dif-
ferences in segment sizes between the two alternative stream versions was small enough

102

7.4. Evaluation

Figure 7.2: MMBR variation across segments: mean, minimum, maximum (the latter
two are shown as percentage of the mean). (Note the logarithmic scale of the y-axis.)

to be negligible. It constituted on average 0.17%, while the maximum was 1.34%. The
distribution of segment bit rates (which are proportional to the segment sizes in bytes)
is illustrated in Figure 7.2. The complete video sequence is slightly longer than 596
seconds so we obtained 298 full segments and one short segment, which was omitted
from the setting.

Note that media bit rate fluctuations across segments of the same representation
may significantly affect the performance of a streaming client. Depending on the format
of the manifest file, the client might not know the actual segment media bit rate (and
thus its size in bits) in advance, but has to base its decisions upon the MMBR of the
representation only. Due to VBR encoding, however, the segment media bit rate may
easily fluctuate by up to a factor of 10 and more. Our dataset was encoded such as to
keep these fluctuations small. To be precise, they are bounded by 95% of representation’s
mean values, as shown in Figure 7.2.

In order to have a fair comparison, we padded the MPEG-DASH manifest file with
random characters to make it of the same size as the joint size of the three files that
must be downloaded by the MSS client: the Hypertext Markup Language (HTML) file,
the Silverlight Application Package (XAP) file and the manifest file.

In addition to comparing the performance of the two studied streaming clients with
each other, we compared them to the optimal performance, computed using the approach
presented in Chapter 8. Here, we proceeded as follows. Each experiment with a video
client was followed by an experiment under the same conditions, where the video client
was replaced by a TCP flow lasting for the duration of the video sequence. The through-
put process of the TCP flow was then used as input V (t) for the optimization problems
OP1 and OP2, presented in Chapter 8, to calculate optimal adaptation trajectories. We
did not use the throughput process as recorded by the video client since it may be sub-
optimal due to the fact that streaming clients typically introduce inter-request delays in
order to prevent their buffer level from exceeding certain limits.

We conducted two sets of experiments. In the first set, one streaming client shares

103

Chapter 7. Adaptation Algorithm for Video on Demand

the wireless link with 14 other clients, generating HTTP traffic. In the second set, in
order to analyze fairness aspects, two streaming clients are studied in the otherwise equal
setting.

All experiments were repeated approximately 50 times. Confidence intervals in some
of the figures are omitted to improve the readability.

7.4.1.2 Single Client

In this set of experiments, we let one streaming client share the wireless link with HTTP
background traffic. We compared the performance of the proposed algorithm using differ-
ent configurations against the performance of the MSS client, and with the performance
of the omniscient client.

In all TOBASCO configurations, the minimum buffer threshold was set to βmin = 2 s.
The lower threshold βlow of the target buffer interval was varied between 5 s and 20 s.
The size B of the target buffer interval was varied between 5 s and 20 s. Further, we
varied the time period ∆t for averaging the past throughput from 5 s to 10 s. Other
parameters were fixed to the following values: α1 = 0.75, α2 = 0.8, α2 = 0.8, α2 = 0.8,
α2 = 0.9.

The results are presented in Figure 7.3. The figure shows the MMBR, the number of
quality changes, the total rebuffering time, and the mean buffer level for the individual
clients, averaged over multiple instances of the experiment. We observe that TOBASCO
always outperforms the MSS client w.r.t. the MMBR (78% to 90% of the optimum vs.
62%). It also outperforms the MSS client w.r.t. the mean per-client rebuffering duration,
and, for some of the configurations, w.r.t. the number of quality changes. The evaluation
suggests that for the given setting, good values for the configuration of TOBASCO are:
βmin = 10s, B = 20s, and ∆t = 5s.

Note that the optimal trajectory is able to almost perfectly utilize its fair share of
the link capacity. Its MMBR almost equals the achievable TCP throughput on that
link. Also note that the average number of quality transitions required by the optimal
trajectory is as low as approximately 2 (and, in fact, might be even lower since the
presented values are upper bounds to the optimum, as described in more details in
Section 8.4).

Another interesting observation is that TOBASCO is able to achieve its performance
with a lower average buffer level than the MSS client. For example, for the configuration
βlow = 5 s, B = 20 s, ∆t = 10 s, the DASH client achieves a high MMBR, a low rebuffer-
ing time and number of quality changes, with an average buffer level of approximately
17 seconds.

By analyzing the individual adaptation trajectories produced by TOBASCO we ob-
serve that some rebuffering events are caused by segments whose size significantly exceeds
the average segment size of the representation. Since the segment size of the individual
segments is not known to the client before it issues the request, it might too late notice
that it is not possible to download the segment before its playback deadline. A possible
solution for this issue would be to retrieve the segment sizes, taking into account a cer-
tain communication overhead, via HTTP HEAD requests prior to starting the streaming
session or in parallel to it, or to use an MPD format containing information about the

104

7.4. Evaluation

Figure 7.3: Performance of a single streaming client sharing the wireless link with HTTP
background traffic.

individual segment sizes.

7.4.1.3 Multiple Clients

In this experiment, we added a second streaming client to the setting used in the set of
experiments described in Section 7.4.1.2, in order to evaluate the adaptation strategies
w.r.t. fairness. The traffic of the two clients was routed over the same wireless station.

Figure 7.4 shows the MMBR, the number of quality changes, the total rebuffering
time, and the mean buffer level. Shown values are averages over the two clients and over
multiple instances of each experiment. We observe that the conclusions from the setting

105

Chapter 7. Adaptation Algorithm for Video on Demand

Figure 7.4: Performance of two video clients sharing the wireless link with HTTP back-
ground traffic.

with a single client still hold when two clients share the wireless bottleneck link.

Figure 7.5 shows the difference among the two clients averaged over the individual
runs. We observe that optimal trajectories have almost perfect fairness since all values
are close to 0. Further, we observe that the fairness of the DASH client is comparable
or better than that of the MSS client.

7.4.2 Evaluation Using Real-World Measurements

A second evaluation campaign was performed using several artificial and real-world sce-
narios. On the one hand, we performed experiments streaming over the local loop with-

106

7.4. Evaluation

Figure 7.5: Fairness among two video clients sharing the wireless link with HTTP back-
ground traffic.

out cross-traffic, artificially limiting the throughput using the open source tool Dum-
myNet [22]. On the other hand, we performed experiments in a busy domestic WiFi
with a high level of interference and heavy cross-traffic. We observed that the algorithm
performs remarkably well even under extremely challenging network conditions. Further,
it exhibits a stable and fair behavior when two clients share a common network path.

In all experiments we used the following values for the configuration parameters.
We set the minimum buffer level, below which we immediately switch to the lowest
representation, to Bmin = 10 s. We set the target interval to [20, 50] s. The discretiza-
tion parameter for the buffer level was set to ∆β = 1 s. The available throughput
was measured and averaged over the past ∆t = 10 s. The safety margins were set to

107

Chapter 7. Adaptation Algorithm for Video on Demand

Figure 7.6: Single client, unrestricted throughput

(α1, . . . , α5) = (0.75, 0.33, 0.5, 0.75, 0.9).

As the video sequence we used the computer-animated movie Big Buck Bunny [17]
that was formatted according to the MPEG-DASH specification using the open source
MPEG-DASH content generation tool DASHEncoder [120] and made available at the
web site of University of Klagenfurt, Austria. The sequence has a duration of approxi-
mately 600 seconds. The segment size is τ = 2 s. The available mean media bit rates are
45, 89, 131, 178, 221, 263, 334, 396, 522, 595, 791, 1033, 1245, 1547, 2134, 2484, 3079,
3527, 3840, and 4220 kbps.

Figure 7.6 shows the convergence properties of the algorithm on a link with ”unlim-
ited” bandwidth (local loop). The top subfigure shows the selected MMBR, the bottom
subfigure shows the dynamics of the buffer level β(t). The playback started approxi-
mately 250 ms after the begin of the download. After 1.25 s, the algorithm started to
download segments from the highest available representation.

In order to avoid abrupt quality changes, the proposed algorithm change represen-
tation one level at a time. In configurations with a large number of representations, as
the presented one (20 representations), convergence speed could be further improved by
allowing the algorithm to skip representations while adapting quality. In real deploy-
ments, however, the number of available representations will typically be lower due to
storage costs on the one hand, but also because performance improvements from ad-
ditional representations become smaller with a growing number of representations (see
also the results in Section 8.4).

Figure 7.7 shows the reaction of the algorithm to persistent throughput changes.
The top subfigure shows the artificial throughput limitation, the measured segment

108

7.4. Evaluation

Figure 7.7: Single client, persistent throughput changes (200 s).

throughput, and the selected MMBR. The bottom subfigure shows the dynamics of the
buffer level. After the initial phase, where the throughput was limited to 1000 kbps, the
throughput limitation was shifted to 2000 kbps for 200 seconds, and then back to 1000
kbps. The algorithm reacted by adapting the MMBR of the stream after a moderate
delay.

Figure 7.8 shows the results of a run, where the client was exposed to periodic short-
term throughput spikes lasting for 5 s each. The desired behavior here is not to follow
the individual spikes but rather to stay with a representation that is sustainable with
the available network resources. This is exactly the behavior exhibited by the algorithm.

Figure 7.9 shows an experiment in a shared indoor IEEE 802.11bg WLAN, in a
domestic environment, with a high level of interference and heavy cross-traffic. We
observe that the algorithm is able to follow the dynamics of the network throughput in
a robust manner.

The last two figures, 7.10 and 7.11, show an artificial and a real-world scenario where
two players share a common link. In the first scenario, the test is performed over the
local loop with total throughput restricted to 2000 kbps. In the second scenario, the
clients stream over a domestic WiFi, as described above. In both scenarios, we observe
that the clients are able to share the available bandwidth in a stable and fair manner.

Finally, we remark that in all performed runs no buffer underruns occured.

109

Chapter 7. Adaptation Algorithm for Video on Demand

Figure 7.8: Single client, periodic throughput fluctuations (periodicity: 5 s).

Figure 7.9: Single client, shared indoor WiFi in residential area (high interference, heavy
cross-traffic).

110

7.4. Evaluation

Figure 7.10: Concurrent clients, total throughput restricted to 2 Mbps.

Figure 7.11: Concurrent clients, shared indoor WiFi in residential area (high interference,
heavy cross-traffic).

111

112

CHAPTER8
Optimal Adaptation by
an Omniscient Client

Performance evaluation is an art [95]. In the case of adaptive streaming, there exist
several specific challenges. One of them, discussed in Section 2.2, is the lack of an
established QoE metric. Another one is the dependency of the performance on the
particular network environment. Meanwhile, there exists a large body of literature on
adaptation algorithms for HTTP-based video streaming. Unfortunately, most of the
results of the individual studies are hardly comparable. In this chapter, we propose an
approach to computing optimal adaptation trajectories that can be used as a benchmark
for the evaluation of adaptation approaches for VoD.

8.1 Introduction

One of the open issues in the area of adaptive video streaming is the methodology
for performance evaluation of adaptation algorithms. In a typical generic performance
evaluation study, we either compare the performance to some predefined requirements,
or we measure its gain against state-of-the-art solutions, or we compare its performance
to the optimum performance that can be achieved under given conditions.

To the best of our knowledge, there currently exist no widely accepted benchmarks to
measure the performance of adaptive streaming clients in best-effort networks. Neither is
any of the existing clients widely accepted as a basis for performance comparison. Finally,
little has been done on developing approaches to calculating optimal performance of a
HAS client under given network conditions. Such an approach, however, would not only
allow to benchmark the performance of any streaming client, it would also allow to study

113

Chapter 8. Optimal Adaptation by an Omniscient Client

the impact of the networking environment and of configuration parameters such as the
maximum allowed start-up delay, number of available video representations, etc., on the
streaming performance.

Consequently, in the following, we propose an approach to computing optimal adap-
tation trajectories, given the complete information on the throughput process (that is,
the amount of data that can be downloaded until time t, for each t). That is, we adopt
the perspective of an omniscient client.

This approach can be used in the following three ways. First, we can calculate an
optimal trajectory for a throughput process that was recorded by a streaming client dur-
ing a streaming session. The optimal trajectory can then be compared with the client’s
actual trajectory to quantify the performance. In many cases, however, streaming clients
introduce delays between subsequent requests so that the recorded throughput process
itself is already sub-optimal, such that it no longer can be used to compute an optimal
adaptation trajectory. Thus, instead of using a trace recorded by a streaming client, we
shall use a trace recorded by a continuous TCP flow under comparable network condi-
tions. Finally, optimal trajectories can be calculated for artificial throughput processes
in order to study the impact their features have on the optimal performance.

8.2 Optimization Objectives

As discussed in details in Section 2.2, the following factors have the strongest influence
on the QoE for HAS in the case of VoD:

• the duration and distribution of playback interruptions,

• the distortion of the video (video quality),

• the frequency of media bit rate transitions,

• the start-up delay.

To the best of our knowledge, there exist no widely accepted or standard QoE metric,
which quantifies the human perception of all these factors together. Consequently, we use
the following objectives and constraints for the optimization of adaptation trajectories.

We use the start-up delay as an independent variable, that is, our approach allows
to compute an optimal trajectory for a predefined start-up delay. Further, we impose a
hard constraint on the absence of buffer underruns, reflecting the common understanding
that such underruns have the highest impact on the QoE. As for the optimization
objective, we first maximize the MMBR over the duration of the streaming session.
This maximization in general results in a space of optimal solutions that are potentially
prone to frequent video quality transitions. Therefore, we subsequently minimize the
number of quality switches.

8.3 Computation of Optimal Adaptation Trajectories

The main challenge in designing efficient adaptation strategies for adaptive video stream-
ing is that the throughput on a path in a best-effort network, such as the Internet, is a

114

8.3. Computation of Optimal Adaptation Trajectories

V (t) Data volume received during the time interval [0, t]

SR Vector of all segment sizes, defined in (8.1)

SMPD Size of the MPD file

S Tuple of all media parameters relevant for the optimization

TE Time of the earliest possible start of the playback

TS Time of the actual start of the playback

T̃S = TS − TE Start-up delay component, which is controlled by the client

xij ∈ {0, 1} Optimization variable indicating if segment i is downloaded in
representation j

Table 8.1: Notation extensions for the omniscient client

random process. It is thus extremely challenging to reliably predict it for the relevant
time horizon, typically ranging from several seconds to several tens of seconds for VoD
services. In the following, we use the term throughput process to denote the total amount
of data V (t) in bytes received by a client during the time [0, t].) The question that we
address in this section is how to calculate an optimal adaptation trajectory, given the
complete knowledge of the future throughput V (t), t ∈ [0, T].

In the following, we will adopt the notation introduced in Chapter 4. Recall that
R denotes the set of available representations, n denotes the number of segments, τ
denotes the duration of video content contained in a segment (w.l.o.g. we assume that
the segment duration is constant across all segments), and sij denotes the size in bits of
segment i from representation j. We extend this notation by the elements described in
the following, summarized in Table 8.1. We write

SR = (sij , i ∈ {0, . . . , n− 1} , j ∈ {0, . . . ,m− 1}) , (8.1)

with m = |R|, for the vector containing the segment sizes of all available segments. We
denote by SMPD the size of the MPD file in bytes. We associate with the content to be
streamed the tuple S = (SMPD, R, n, τ, SR).

Obviously, the earliest time when the playback can start is when the MPD file and
the first segment of the representation with the lowest MMBR are downloaded. We
denote this time by TE . We remark, however, that the computed optimal adaptaiton
trajectories do not always require the client to download the first segment in the lowest
representation. Given a throughput process V (t) and a video configuration S, TE is
always well-defined. Depending on the content format, an initialization segment might
be required to be downloaded upfront in order to initialize the decoder. In these cases,
TE denotes the time when the MPD file, the initialization segment, and the first segment
of the lowest representation are downloaded. For simplicity, we do not account for the
initialization segment in the following formalization and refer by i = 0 to the first
segment of a representation.

115

Chapter 8. Optimal Adaptation by an Omniscient Client

We define TS to be the time span between the start of the download (t = 0) and the
beginning of the playback. Obviously, we demand TS ≥ TE . The important value for the
optimization, however, is not TS but the time between the earliest possible time when
the playback can start and the actual start of playback, denoted by T̃S = TS−TE , which
we define as the start-up delay. The reason is that the time TE cannot be influenced by
the client, while T̃S depends on the client’s adaptation strategy.

The resulting playback deadlines for the individual segments are given by tpi = TS+iτ .
The maximum amount of data a video player can download until the playback deadline
of segment i is thus given by V (tpi).

In order to formulate the optimization problem, we denote by xij ∈ {0, 1} the op-
timization variables stating if the client downloads segment i from representation j or
not.

In the following, we first maximize the MMBR of the streaming session (which is
equivalent to the maximization of the total amount of data downloaded by the video
client), demanding the absence of playback interruptions. We obtain the following opti-
mization problem.

(OP1) max
n−1∑
i=0

m−1∑
j=0

sijxij (8.2)

s.t.

m−1∑
j=0

xij ≥ 1 for all i = 0, . . . , n− 1 (8.3)

k∑
i=0

m−1∑
j=0

sijxij ≤ V (tpk) for all k = 0, . . . , n− 1 . (8.4)

Here, constraint (8.3) ensures that each segment is downloaded from at least one
representation, while constraint (8.4) ensures that each segment is downloaded before
its playback deadline. Note that constraint (8.4) implicitly accounts for the configured
start-up delay (included in the definition of the playback deadlines tpi).

Problem OP1 has a set of optimal solutions that are more or less prone to video
quality fluctuations. Unnecessary quality switches, however, negatively impact the QoE.
Therefore, we subsequently solve the following optimization problem OP2 in oder to
select the optimum solution of OP1 that has the minimum number of quality switches.

116

8.4. Influence of the Number of Representations

We denote by V ∗ the optimal objective value of the problem OP1.

(OP2) min
1

2

n−2∑
i=0

m−1∑
j=0

(xij − xi+1,j)
2 (8.5)

s.t.
m−1∑
j=0

xij ≥ 1 for all i = 0, . . . , n− 1 (8.6)

k∑
i=0

m−1∑
j=0

sijxij ≤ V (tpk) for all k = 0, . . . , n− 1 (8.7)

n−1∑
i=0

m−1∑
j=0

sijxij ≥ V ∗ . (8.8)

While constraints (8.6) and (8.7) replicate the constraints (8.3) and (8.4) in OP1,
constraint (8.8) ensures that the minimization of the new objective function (8.5) (the
total number of quality switches) does not result in a sub-optimal value for the MMBR.

The problem OP1 is known as a Multiple-Choice Nested Knapsack Problem (MCNKP) [9,
130]. More precisely, it is a special case, where the values of the items and the weights of
the items are equal. (This variant of the Knapsack Problem is sometimes referred to as
the Subset Sum Problem.) MCNKP is NP-hard but there exist pseudo-polynomial time
algorithms. Problem OP2 is a Quadratic MCNKP. We use the optimization software
Gurobi [68], to solve both problems.

8.4 Influence of the Number of Representations

In Chapter 7, we have shown how the optimal trajectories computed by the omni-
scient client can be used to evaluate the performance of an adaptation algorithm using
the example of TOBASCO. Another example for the use of the optimal trajectories
is evaluating the influence of the media encoding parameters, such as the number of
representations, and of the adaptation parameters, such as the start-up delay, on the
QoE.

While a large number of representations gives the client a greater flexibility in adapt-
ing to the network conditions, it makes the adaptation more complex, and results in
higher storage costs for the content provider. Several studies perform performance eval-
uations using different numbers of representations, coming to a conclusion that the in-
fluence on different algorithms is strongly varying. Some algorithms even exhibit worse
performance if confronted with large representation sets.

Figure 8.1 shows the influence of the number of representations, and of the configured
start-up delay on the optimal performance in terms of the mean media bit rate, and in
terms of the mean number of quality transitions. The evaluation setting is as described
in Section 7.4.1.

We observe an initially perfectly linear dependency of the average video bit-rate on
the start-up delay, followed by a saturation. Maybe somewhat surprisingly, the im-
provement from a start-up delay of 60 sec is only around 12%. Further, we observe no

117

Chapter 8. Optimal Adaptation by an Omniscient Client

0 10 20 30 40 50 60
400

410

420

430

440

450

460

av
.
v
id
eo

 b
it
-r
at

e
[k
b
p
s]

6 representations

14 representations

0 10 20 30 40 50 60

start-up delay [s]

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

n
u
m
.
of
 s
w
it
ch

es

Figure 8.1: Influence of the number of representations, and of the start-up delay on
the optimal adaptation trajectories. Vertical bars show the confidence intervals for the
confidence level of 95%.

improvement from increasing the number of the used representations from 6 to 14. The
reason is that despite of the high fluctuation of the wireless link throughput (fading plus
cross-traffic), 6 representations are enough to utilize all the available bandwidth. We
remark that in real deployment scenarios, a high number of available video representa-
tions might be quite unrealistic, since it results in higher encoding and storage costs for
content providers.

In order to speed-up calculations when solving the optimization problem OP2, we
allowed an absolute optimality tolerance gap of up to 5 (that is, the actual optimum
might be even lower than the calculated value by at most 5). The average value for the
gap during the evaluation added up to 1.83. For 6 representations it was 1.51, for 14
representations it was 2.15, due to the higher computational complexity. Thus, the higher
amount of quality switches for 14 representations might partially be explained by the
inexact computations. An important insight, however, is the remarkably small amount of
switches required to achieve optimal performance despite of a highly fluctuating network
throughput.

118

CHAPTER9
Universal Streaming
Client Architecture

In 2011, when the work on this thesis has been started, the HAS paradigm was just about
to start into its success story. Consequently, there was a lack of reference implementa-
tions that could have been used as an evaluation platform or, at least, as a starting point
for own developments. Thus, we developed own implementations that we integrated into
multimedia frameworks such as GStreamer [66], VLC [206], or dash.js [45]. In addition,
in order to perform performance evaluation on a large scale, some of the approaches
have been implemented as simulation modules. During the course of the implementa-
tion works, a client architecture has emerged that has proved itself efficient and flexible
in fitting our needs. This architecture is presented in the following.

9.1 Introduction

A video streaming client is a complex system consisting of several modules providing
quite different functionality. Video data has to be downloaded, demultiplexed, decoded,
and presented to the user. Prior to starting a streaming session, a HAS client has to
download and parse the MPD file, which typically has XML format. In order to efficiently
perform adaptation decisions, it has to monitor the network conditions dynamics, poten-
tially including cross-layer information, e.g., internal state variables from the transport
and/or MAC layers of the protocol stack. It might also make use of context information,
such as, e.g., situational properties of the user environment (indoor/outdoor, mobility
pattern, level of distraction). Finally, it shall support a distributed operation of in-
dividual components, in order to support cloud-assisted [211], or network-assisted [52]

119

Chapter 9. Universal Streaming Client Architecture

operation.

The framework embracing the individual modules must be designed such that the
functional blocks can be easily replaced by other ones to facilitate the evolution of the
system as well as testing experimental approaches. In particular, the APIs must be well-
defined and powerful enough to transport all the necessary information, while flexible
enough to enable the transfer of individual functional blocks to other environments, e.g.,
network simulator frameworks.

Moreover, in order to reduce costs and complexity involved in the development and
maintenance of multiple software packages, a streaming client is typically required to per-
form efficiently on a variety of platforms, from web browser environments, over Personal
Computers (PC’s) and mobile terminal operating systems (smartphones, tablets, wear-
ables, etc.), to embedded devices such as TV sets and STB’s.

During the course of the works presented in this thesis, several adaptation strategies
were implemented, as simulation models, as prototypes, or both. During this process,
the following requirements to the software design have emerged.

• The design must be suitable for low-delay live streaming and VoD.

• Modularization allowing for flexible deployment of different adaptation algorithms.

• Distributed operation of individual functional blocks.

• Support for cross-layer information exchange.

• Support for multi-interface operation.

The proposed architecture satisfying these requirements is proposed in the following.

9.2 Architecture

It turned out that the most convenient way to satisfy the identified requirements was to
have an event-driven design with a controller module that implements a state machine
with a predefined finite set of feasible events at each state, and with a set of corresponding
actions that are executed when an event occurs in a certain state. In addition, individual
modules can dynamically register own event/actions pairs, if necessary, or override the
existing ones. Figure 9.1 depicts the functional blocks of the proposed architecture.

Note that the controller here is not related to the PID controller in Chapter 5. Rather,
the controller presented here has the goal to coordinate the operation of the individual
functional blocks of the streaming client. All the adaptation algorithms presented in the
previous chapters reside in the Adaptation Engine, except for the transmission scheduling
component in Chapter 5, which resides outside of the client at the central network
controller.

We slightly abuse the notation by using the letter e with a subscript to denote an
event, and the capital letter S with a subscript to denote the state of the client state
machine. Both letters have been used in the preceding chapters but in a different context,
so that a confusion can hopefully be avoided.

120

9.2. Architecture

Figure 9.1: Functional blocks of the proposed streaming client architecture.

In the following, we present two example state machines: one for low-delay live
streaming, and one for VoD. Note that the presented sets of states and sets of events
are not meant to be complete, but should rather illustrate the usage of the proposed
design. For example, they do not include the functionality required to download and
parse the MPD. Further, we omit the cases of interrupted segment downloads (e.g., due
to a connectivity problem), or cancelled segment downloads (e.g., due to an anticipated
deadline miss by the segment being downloaded).

Also note that we abstain from specifying the details of the actions executed when a
particular event occurs in a particular state since at least some of them depend on the
particular implementation or adaptation approach. For example, if a live streaming client
observes the event ep:u (playback deadline reached for a segment whose download has
not been completed yet), one possible approach is to wait until the segment download is
completed, increasing the live latency, while another approach is to cancel the download
and continue with one of the subsequent segments in order to stick to a maximum delay
bound. (The latter approach is the one we have chosen for our low-latency adaptation
algorithm LOLYPOP presented in Chapter 6.)

Finally, we would like to remark that our focus was on developing and evaluating
adaptation algorithm, rather than having a client supporting the numerous features of
the MPEG-DASH standard, or having all the functionality required by a full-fledged
video player. However, we believe that the presented design can successfully be applied

121

Chapter 9. Universal Streaming Client Architecture

also to these cases.

9.3 State Machine for a Live Streaming Client

Table 9.1 lists and describes the states of the live streaming client. Functionality such as
downloading, parsing, and updating the MPD is omitted to improve the readability of
the state diagram. Note that the waiting state SW is entered when the client completes
the download of a segment but can neither proceed with the download since the next
segment is not available yet, nor can it start the playback since the playback deadline
of the segment has not been reached. This situation can occur when tuning into a live
stream, as described in Section 6.3.2.

State Description

S0 initial state

SD downloading only (not playing)

SP playing only (not downloading)

SDP downloading and playing

SW waiting (idle, neither downloading nor playing)

ST terminal state

Table 9.1: States of a live streaming client

Table 9.2 lists and describes the events for the case of a live streaming client. In ad-
dition to the events representing the start and the termination of the streaming session,
the set of events contains three categories: occurrence of a playback deadline, com-
pletion of a segment download, and start of the segment availability. A category may
contain multiple events. For example, the event category ’playback deadline’ contains
one event that occurs when the playback deadline occurs while the playback buffer is
empty, and another event that occurs while the subsequent segment has already been
buffered. Another approach to account for these distinctions would be to define separate
states, however, this would lead to a more complex state machine and a more complex
implementation.

Figure 9.2 presents the state machine for the live streaming client. If a particular
event is not listed for a particular state, it is infeasible in this state and results in
undefined behavior.

122

9.4. State Machine for a Video on Demand Streaming Client

Event Description

e0 start of the streaming session

ep:b playback deadline for a buffered segment

ep:u playback deadline for an unbuffered segment

ed:a segment download completed, next segment available

ed:u segment download completed, next segment unavailable

ea segment becomes available for download

eT end of playback

Table 9.2: Events of a live streaming client

Figure 9.2: State diagram for the live streaming client

9.4 State Machine for a Video on Demand Streaming
Client

Table 9.3 lists and describes the states of a VoD streaming client. The set of states is
almost identical with that of the live streaming client, except that it lacks the waiting
state SW . While a VoD client may use inter-request delay to prevent the playback buffer
level from exceeding a certain upper bound, it would never be completely idle. Note that
a client is only idle if the buffer is empty so that the playback is interrupted, but at the
same time it cannot start a new download. A potential reason for that can be that the
next segment is not available yet. In a VoD streaming session, however, all segments are
available for the download right from the start of the session.

Table 9.4 lists and describes the set of events for the case of a VoD streaming client.
Here, the differences as compared to the live streaming client are more significant than
with the set of possible states. Note that the evets ep:b and ep:u are no longer defined

123

Chapter 9. Universal Streaming Client Architecture

State Description

S0 initial state, prior to starting the streaming session

SD downloading only (not playing)

SP playing only (not downloading)

SDP downloading and playing

ST terminal state, after the streaming session terminated

Table 9.3: States of a VoD streaming client

in terms of a playback deadline but in terms of finishing the playback of a previous
segment.

Event Description

e0 start of the streaming session

ep:b playback completed, next segment is buffered

ep:u playback completed, next segment unbuffered

ep:f playback of the final segment completed

ed segment download completed, next segment available

ed:irs segment download completed, start of an inter-request delay

ed:f segment download completed, next segment is final

eirc inter-request delay completed

eT end of playback

Table 9.4: Events of a VoD streaming client

Figure 9.3 depicts an example state diagram for a VoD streaming client. Note that
depending on the adaptation logic alternative state diagrams are possible. For example,
if a segment download is completed in the downloading state SD, the state diagram in
Figure 9.3 suggests an immediate transition to the downloading and playing state SDP.
Alternatively, this transition might be replaced by an internal transition (not changing
the state), while the transition to SDP might be triggered by a separate event that
corresponds to reaching a particular buffer level or a time deadline, where the specific
buffer level or the deadline are determined by the adaptation logic.

124

9.4. State Machine for a Video on Demand Streaming Client

Another example for an alternative implementation is the definition of the event eirc
that lets the client resume the playback by initiating a transition from the state repre-
senting an inter-request delay (playing, not downloading) to the playing/downloading
state SDP. As in the preceding example, this event may be defined as reaching a certain
buffer level, or a time deadline, that may be determined by the adaptation logic. Related
to the definition of this event is the assumption that the event ep:u cannot occur during
an inter-request delay since that would mean that the download was paused even though
the last segment in buffer was being played out.

Figure 9.3: State diagram for the VoD streaming client

125

126

CHAPTER10
Conclusions and Future
Work

The video delivery landscape is currently an extremely fast evolving ecosystem. The
classical linear television is being transformed, complemented, and partially replaced by
new services that are by design interactive, individualized, and interconnected with the
social platforms. One of the pillars required to support this evolution is an ubiquitous
high-speed communication platform, such as the Internet. Due to its core design prin-
ciples, however, the Internet does not provide any Quality of Service (QoS) guarantees,
and thus, applications have to dynamically adapt their requirements to the available
QoS level. In particular in wireless networks, that will soon be the dominating Internet
access technology, the users, specifically if they are mobile, are exposed to continuous
link quality fluctuations. Moreover, the time constraints in the case of live streaming,
and the continuously increasing throughput requirements of the video services (High-
Definition (HD), Ultra-High-Definition (UHD), Virtual Reality (VR), Augmented Real-
ity (AR), etc.), further increase the challenge.

In the present thesis, we have approached the problem of maximizing the QoE of
video streaming services by dynamically adapting the video characteristics to the net-
work conditions. We have developed adaptation algorithms for three important and
challenging deployment scenarios: multiple unicast sessions in a small cell wireless net-
work, low-delay live streaming in wireless networks, and VoD in diverse network envi-
ronments. All the developed adaptation algorithms have been implemented either as
modules for network simulators, or as prototypes, or both. They have been evaluated in
realistic network environments, and succeeded in improving the considered performance
metrics as compared to the corresponding baseline approaches. In addition, we have

127

Chapter 10. Conclusions and Future Work

developed a series of optimization problems that compute optimal adaptation trajecto-
ries from the perspective of an omniscient client, and thus can serve as a benchmark for
the performance evaluation of streaming clients. Finally, based on the insights gained
while performing the various implementations, we have designed a flexible and efficient
streaming client architecture.

We envision further potential in using big data techniques to complement and fur-
ther optimize the developed adaptation approaches by analysing the performance char-
acteristics of a large number of monitored streaming sessions, either offline or in real
time. Another highly topical area of research covers the extension of adaptive streaming
techniques to multi-view video, such as tele-immersion, VR, or Free-Viewpoint Televi-
sion (FTV). Optimization techniques that allow to transmit only the content which
is required to render the current user’s perspective have the potential to greatly boost
the QoE. Last but not least, developing techniques allowing to perform adaptation to
the user’s context, including the environment, level of activity, social context, and task
context, will enable a truly individualized experience.

128

APPENDIXA
Acronyms

AIC Akaike Information Criterion

ALM Application Layer Multicast

AP Access Point

API Application Programming Interface

AR Augmented Reality

ARIMA Autoregressive Integrated Moving Average

BOWL Berlin Open Wireless Lab

BS Base Station

CAPEX Capital Expenditure

CDF Cumulative Distribution Function

CDN Content Delivery Network

CIF Context Influence Factor

CPU Central Processing Unit

CSI Channel State Information

CSS Cubic Smoothing Splines

CV Coefficient of Variation

129

Appendix A. Acronyms

DASH Dynamic Adaptive Streaming over HTTP

DES Double Exponential Smoothing

DSL Digital Subscriber Line

DVB Digital Video Broadcasting

DVD Digital Versatile Disc

ECDF Empirical Cumulative Distribution Function

eMBMS evolved Multimedia Broadcast Multicast Service

EWMA Exponentially Weighted Moving Average

FDMA Frequency Division Multiple Access

FR Full Reference

FTP File Transfer Protocol

FTV Free-Viewpoint Television

GOP Group of Pictures

HAS HTTP-Based Adaptive Streaming

HD High-Definition

HIF Human Influence Factor

HLS Apple HTTP Live Streaming

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HVS Human Visual System

IETF Internet Engineering Task Force

IIS Internet Information Services

IP Internet Protocol

IPTV Internet Protocol Television

ITU International Telecommunication Union

JND Just Noticeable Difference

LOESS Locally Weighted Scatterplot Smoothing

LOS Line-of-Sight

130

LTE Long-Term Evolution

MAC Media Access Control

MCNKP Multiple-Choice Nested Knapsack Problem

MCS Modulation and Coding Scheme

MIMO Multiple Input Multiple Output

MLE Maximum Likelihood Estimation

MMBR Mean Media Bit Rate

MOS Mean Opinion Score

MPC Model Predictive Control

MPD Media Presentation Description

MPEG Moving Picture Expert Group

MSE Mean Squared Error

MSS Microsoft SmoothStreaming

NAT Network Address Translation

NLOS Non-Line-of-Sight

NR No Reference

NUM Network Utility Maximization

OFDM Orthogonal Frequency-Division Multiplexing

OPEX Operational Expenditure

OSI Open Systems Interconnection

OTT Over-the-Top

P2P Peer-to-Peer

PC Personal Computer

PD Proportional-Derivative

PI Proportional-Integral

PID Proportional-Integral-Derivative

PSNR Peak Signal-to-Noise Ratio

QoE Quality of Experience

131

Appendix A. Acronyms

QoS Quality of Service

RLM Receiver-Driven Layered Multicast

RMSRE Root Mean Square Relative Error

RR Reduced Reference

RTCP Real-Time Control Protocol

RTP Real-Time Transport Protocol

RTSP Real-Time Streaming Protocol

RTT Round-Trip Time

SAND Server and Network Assisted DASH

SES Simple Exponential Smoothing

SIF System Influence Factor

SINR Signal-to-Interference-plus-Noise Ratio

SLA Service-Level Agreement

SMA Simple Moving Average

SSD Sum of Squared Differences

SSI Signal Strength Indicator

SSIM Structural Similarity

STB Set-Top Box

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

UDP User Datagram Protocol

UHD Ultra-High-Definition

URL Uniform Resource Locator

VBR Variable Bit Rate

VCR Videocassette Recorder

VoD Video on Demand

VQM Video Quality Metric

VR Virtual Reality

132

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

WMN Wireless Mesh Network

XAP Silverlight Application Package

XML Extensible Markup Language

133

134

APPENDIXB
Publications

This appendix contains the publication list of the author of the presented thesis. Pub-
lications containing content included in this thesis are marked with a “*”.

Journal papers:

* Konstantin Miller, Abdel-Karim Al-Tamimi, and Adam Wolisz. QoE-Based
Low-Delay Live Streaming Using Throughput Predictions. ACM Transactions on
Multimedia Computing, Communications, and Applications, 13(1), Nov. 2016

Niels Karowski, Konstantin Miller, and Adam Wolisz. Greedy Multi-Channel
Neighbor Discovery. Submitted, arXiv peprint 1506.05255, Nov. 2015

* Konstantin Miller, Dilip Bethanabhotla, Giuseppe Caire, and Adam Wolisz.
A Control-Theoretic Approach to Adaptive Video Streaming in Dense Wireless
Networks. IEEE Transactions on Multimedia, 17(8):1309-1322, Aug. 2015

Tobias Harks, and Konstantin Miller. The Worst-Case Efficiency of Cost Sharing
Methods in Resource Allocation Games. Operations Research, 59(6):1491-1503,
Dec. 2011

Conference proceedings:

* Konstantin Miller, Nicola Corda, Savvas Argyropoulos, Alexander Raake, and
Adam Wolisz. Optimal Adaptation Trajectories for Block-Request Adaptive Video
Streaming. In Proc. of the Packet Video Workshop (PV), San Jose, CA, USA, Dec.
2013

135

Appendix B. Publications

* Konstantin Miller, Emanuele Quacchio, Gianluca Gennari, and Adam Wolisz.
Adaptation Algorithm for Adaptive Streaming over HTTP. In Proc. of the Packet
Video Workshop (PV), Munich, Germany, May 2012

Kai-Simon Goetzmann, Tobias Harks, Max Klimm, and Konstantin Miller. Op-
timal File Distribution in Peer-to-Peer Networks. In Proc. of the Symposium on
Algorithms and Computation (ISAAC), Yokohama, Japan, Dec. 2011

Konstantin Miller and Adam Wolisz. Transport Optimization in Peer-to-Peer Net-
works. In Proc. of the Euromicro Conference on Parallel, Distributed and Network-
Based Computing (PDP), Ayia Napa, Cyprus, Feb. 2011

Konstantin Miller, Thorsten Biermann, Hagen Woesner, and Holger Karl. Network
Coding in Passive Optical Networks. In Proc. of the IEEE Symposium on Network
Coding (NetCod), Toronto, ON, Canada, June 2010

Jorge Carapinha, Roland Bless, Christoph Werle, Konstantin Miller, Virgil Do-
brota, Andrei Bogdan Rus, Heidrun Grob-Lipski, and Horst Roessler. Quality of
Service in the Future Internet. In Proc. of the ITU-T Kaleidoscope, Pune, Maha-
rashtra, India, Dec. 2010

Tobias Harks and Konstantin Miller. Efficiency and Stability of Nash Equilibria
in Resource Allocation Games. In Proc. of the Conference on Game Theory for
Networks (GameNets), Istanbul, Turkey, Mar. 2009

Konstantin Miller and Tobias Harks. Utility Max-Min Fair Congestion Control
With Time-Varying Delays. In Proc. of IEEE Conference on Computer Commu-
nications (INFOCOM), Phoenix, AZ, USA, Apr. 2008

Technical reports:

*Konstantin Miller, Abdel-Karim Al-Tamimi, and AdamWolisz. QoE-Based Low-
Delay Live Streaming Using Throughput Predictions. Technical Report TKN-16-
001, Telecommunication Networks Group (TKN), Technische Universität Berlin,
Mar. 2016

Niels Karowski, and Konstantin Miller. Optimized Asynchronous Passive Multi-
Channel Discovery of Beacon-Enabled Networks. Technical Report TKN-15-002,
Telecommunication Networks Group (TKN), Technische Universität Berlin, Mar.
2015

Konstantin Miller, Abdel-Karim Al-Tamimi, and Adam Wolisz. Low-Delay Adap-
tive Video Streaming Based on Short-Term TCP Throughput Prediction. Techni-
cal Report TKN-15-001, Telecommunication Networks Group (TKN), Technische
Universität Berlin, Feb. 2015

Tobias Harks and Konstantin Miller. The Impact of Marginal Cost Pricing in Re-
source Allocation Games. Technical Report 032-2008, Combinatorial Optimization
and Graph Algorithms (COGA) Group, Technische Universität Berlin, Nov. 2008

136

Patents:

* Konstantin Miller and Emanuele Quacchio. Media-Quality Adaptation Mecha-
nisms for Dynamic Adaptive Streaming. Pending patent, no. USPTO US 13/775,885,
2013

137

138

References

[1] A. S. Abdallah and A. B. Mackenzie. A Cross-Layer Controller for Adaptive Video Stream-
ing over IEEE 802.11 Networks. In Proc. of IEEE International Conference on Commu-
nications (ICC), 2015.

[2] K. Ahnert and M. Mulansky. Odeint - Solving Ordinary Differential Equations in C++.
In Proc. Numerical Analysis and Applied Mathematics (ICNAAM), 2011.

[3] S. Akhshabi, A. C. Begen, and C. Dovrolis. An Experimental Evaluation of Rate-
Adaptation Algorithms in Adaptive Streaming over HTTP. In Proc. of ACM Multimedia
Systems Conference (MMSys), 2011.

[4] M. Al-Bado, C. Sengul, and R. Merz. What Details Are Needed For Wireless Simulations?
- A Study of a Site-Specific Indoor Wireless Model. In Proc. of IEEE Conference on
Computer Communications (INFOCOM), 2012.

[5] J. Alvarez-Ramirez, R. Kelly, and I. Cervantes. Semiglobal Stability of Saturated Linear
PID Control for Robot Manipulators. Automatica, 39(6):989–995, 2003.

[6] E. Amir, S. McCanne, and H. Zhang. An Application Level Video Gateway. In Proc. of
ACM Multimedia (MM), 1995.

[7] J. G. Andrews. Seven Ways that HetNets are a Cellular Paradigm Shift. IEEE Commu-
nications Magazine, 51(3):136–144, 2013.

[8] A. Arefin, Z. Huang, K. Nahrstedt, and P. Agarwal. 4D TeleCast: Towards Large Scale
Multi-Site and Multi-View Dissemination of 3DTI Contents. In Proc. of International
Conference on Distributed Computing Systems (ICDCS), 2012.

[9] R. D. Armstrong, P. Sinha, and A. A. Zoltners. The Multiple-Choice Nested Knapsack
Model. Management Science, 28(1):34–43, 1982.

[10] C. Aurrecoechea, A. T. Campbell, and L. Hauw. A Survey of QoS Architectures. Multi-
media Systems, 6(3):138–151, 1998.

[11] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang. A Quest for an
Internet Video Quality-of-Experience Metric. In Proc. of ACM Workshop on Hot Topics
in Networks (HotNets), 2012.

[12] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang. Developing a
Predictive Model of Quality of Experience for Internet Video. In Proc. of ACM SIGCOMM,
2013.

139

References

[13] A. Begen, T. Akgul, and M. Baugher. Watching Video over the Web: Part 1: Streaming
Protocols. IEEE Internet Computing, 15(2):54–63, 2011.

[14] A. Begen, T. Akgul, and M. Baugher. Watching Video over the Web: Part 2: Applications,
Standardization, and Open Issues. IEEE Internet Computing, 15(3):59–63, 2011.

[15] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer Protocol – HTTP/1.0.
Request for Comments (RFC) 1945, Internet Engineering Task Force (IETF), 1996.

[16] D. Bethanabhotla, G. Caire, and M. J. Neely. Adaptive Video Streaming for Wireless
Networks With Multiple Users and Helpers. IEEE Transactions on Communications, 63
(1):268–285, 2015.

[17] Blender Foundation. Big Buck Bunny movie. http://www.bigbuckbunny.org. Accessed:
24 Jun 2016.

[18] A. Bokani, M. Hassan, and S. Kanhere. HTTP-Based Adaptive Streaming for Mobile
Clients using Markov Decision Process. In Proc. of Packet Video Workshop (PV), 2013.

[19] R. Bush and D. Meyer. Some Internet Architectural Guidelines and Philosophy. Request
for Comments (RFC) 3439, Internet Engineering Task Force (IETF), 2002.

[20] P. L. Callet, S. Möller, and A. Perkis. Qualinet White Paper on Definitions of Quality of
Experience. Technical report, European Network on Quality of Experience in Multimedia
Systems and Services (QUALINET), 2013.

[21] J. Carapinha, R. Bless, C. Werle, K. Miller, V. Dobrota, A. B. Rus, H. Grob-Lipski, and
H. Roessler. Quality of Service in the Future Internet. In Proc. of ITU-T Kaleidoscope,
2010.

[22] M. Carbone and L. Rizzo. Dummynet Revisited. ACM SIGCOMM Computer Communi-
cation Review, 40(2):12, 2010.

[23] G. Carlucci, L. D. Cicco, and S. Mascolo. HTTP over UDP: an Experimental Investigation
of QUIC. In Proc. of ACM/SIGAPP Symposium On Applied Computing (SAC), 2015.

[24] S. Carmel, T. Daboosh, E. Reifman, N. Shani, Z. Eliraz, D. Ginsberg, E. Ayal, and K. Saba.
Network Media Streaming. Patent No. 6,389,473. Filed 24 Mar 1999, Issued 14 May 2002.

[25] V. G. Cerf and R. E. Kahn. A Protocol for Packet Network Intercommunication. IEEE
Transactions on Communications, 22(5), 1974.

[26] V. Chandrasekhar, J. G. Andrews, and A. Gatherer. Femtocell Networks: A Survey. IEEE
Communications Magazine, 46(9):59–67, 2008.

[27] C. Chatfield. The Analysis of Time Series: an Introduction. Taylor & Francis, 6th edition,
2003.

[28] C. Chen, X. Zhu, G. D. Veciana, A. C. Bovik, and R. W. Heath, Jr. Rate Adaptation
and Admission Control for Video Transmission with Subjective Quality Constraints. IEEE
Journal of Selected Topics in Signal Processing, 9(1):22–35, 2015.

[29] S. Chen, Z. Gao, and K. Nahrstedt. F.Live: Towards Interactive Live Broadcast FTV
Experience. In Proc. of IEEE Conference on Computer Communications (INFOCOM),
2016.

140

http://www.bigbuckbunny.org

References

[30] Y. Chen, K. Xie, F. Zhang, P. Pandit, and J. Boyce. Frame Loss Error Concealment for
SVC. Journal of Zhejiang University SCIENCE A, 7(5):677–683, 2006.

[31] Y. Chen, K. Wu, and Q. Zhang. From QoS to QoE: A Tutorial on Video Quality Assess-
ment. IEEE Communications Surveys & Tutorials, 17(2):1126–1165, 2015.

[32] Z. Chen, S.-M. Tan, R. H. Campbell, and Y. Li. Real Time Video and Audio in the World
Wide Web. In Proc. of International World Wide Web Conference, 1995.

[33] S. Chikkerur, V. Sundaram, M. Reisslein, and L. J. Karam. Objective Video Quality As-
sessment Methods: A Classification, Review, and Performance Comparison. IEEE Trans-
actions on Broadcasting, 57(2):165–182, 2011.

[34] Y.-H. Chu, S. Rao, S. Seshan, and H. Zhang. A Case for End System Multicast. IEEE
Journal on Selected Areas in Communications, 20(8):1456–1471, 2002.

[35] S. Cicalò and V. Tralli. Distortion-Fair Cross-Layer Resource Allocation for Scalable Video
Transmission in OFDMA Wireless Networks. IEEE Transactions on Multimedia, 16(3):
848–863, 2014.

[36] L. D. Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. TAPAS: A Tool for Rapid
Prototyping of Adaptive Streaming Algorithms. In Proc. of VideoNext: Design, Quality
and Deployment of Adaptive Video Streaming, 2014.

[37] Cisco. Cisco Visual Networking Index: Forecast and Methodology, 2013 - 2018. White
Paper, Cisco Systems, Inc., 2014.

[38] M. Claeys, S. Latré, J. Famaey, and F. De Turck. Design and Evaluation of a Self-Learning
HTTP Adaptive Video Streaming Client. IEEE Communications Letters, 18(4):716–719,
2014.

[39] K. Cleary. Video on Demand - Competing Technologies and Services. In Proc. of the
International Broadcasting Convention (IBC), 1995.

[40] B. Cohen. Incentives Build Robustness in BitTorrent. In Proc. First Workshop on Eco-
nomics of Peer-to-Peer Systems, 2003.

[41] comscore. U.S. Digital Future in Focus. White Paper, comScore, Inc., 2014.

[42] G. J. Conklin, G. S. Greenbaum, K. O. Lillevold, A. F. Lippman, and Y. A. Reznik. Video
Coding for Streaming Media Delivery on the Internet. IEEE Transactions on Circuits and
Systems for Video Technology, 11(3):269–281, 2001.

[43] Conviva. Viewer Experience Report. Report, Conviva, 2014.

[44] Y. Cui, B. Li, and K. Nahrstedt. oStream: Asynchronous Streaming Multicast in
Application-Layer Overlay Networks. IEEE Journal on Selected Areas in Communica-
tions, 22(1):91–106, 2004.

[45] dash.js. dash.js: DASH Industry Forum Reference Player. http://dashif.org/

reference/players/javascript/. Accessed: 25 Jun 2016.

[46] S. Deering. Host Extension for IP Multicasting. Request for Comments (RFC) 1112,
Internet Engineering Task Force (IETF), 1989.

141

http://dashif.org/reference/players/javascript/
http://dashif.org/reference/players/javascript/

References

[47] J. K. Dey-Sircar, J. D. Salehi, J. F. Kurose, and D. Towsley. Providing VCR Capabilities
in Large-Scale Video Servers. In Proc. of ACM Multimedia (MM), 1994.

[48] C. Diot, B. N. Levine, B. Lyles, H. Kassem, and D. Balensiefen. Deployment Issues for
the IP Multicast Service and Architecture. IEEE Network, 14(1):78–88, 2000.

[49] I. Djama, T. Ahmed, A. Nafaa, and R. Boutaba. Meet In the Middle Cross-Layer Adapta-
tion for Audiovisual Content Delivery. IEEE Transactions on Multimedia, 10(1):105–120,
2008.

[50] Dynamic adaptive. Dynamic Adaptive Streaming over HTTP (DASH), First Edition.
International Standard ISO/IEC 23009, 2012.

[51] Dynamic adaptive. Dynamic Adaptive Streaming over HTTP (DASH), Second Edition.
International Standard ISO/IEC 23009, 2014.

[52] Dynamic adaptive. Dynamic Adaptive Streaming over HTTP (DASH), Part 5: Server and
Network Assisted DASH (SAND). International Standard ISO/IEC 23009-5, 2015.

[53] H. Erikson. MBONE: The Multicast Backbone. Communications of the ACM, 37(8):54–60,
1994.

[54] A. E. Essaili, D. Schroeder, D. Staehle, M. Shehada, W. Kellerer, and E. Steinbach.
Quality-of-Experience Driven Adaptive HTTP Media Delivery. In Proc. IEEE Interna-
tional Conference on Communications (ICC), 2013.

[55] K. Evensen, T. Kupka, D. Kaspar, P. Halvorsen, and C. Griwodz. Quality-Adaptive
Scheduling for Live Streaming over Multiple Access Networks. In Proc. of Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), 2010.

[56] K. Evensen, D. Kaspar, C. Griwodz, P. Halvorsen, A. F. Hansen, and P. Engelstad. Us-
ing Bandwidth Aggregation to Improve the Performance of Quality-Adaptive Streaming.
Signal Processing: Image Communication, 27(4):312–328, 2012.

[57] K. Evensen, T. Kupka, H. Riiser, P. Ni, R. Eg, C. Griwodz, and P. Halvorsen. Adaptive
Media Streaming to Mobile Devices: Challenges, Enhancements, and Recommendations.
Advances in Multimedia, pages 1–21, 2014.

[58] J. L. Feuvre and C. Concolato. Tiled-Based Adaptive Streaming using MPEG-DASH. In
Proc. of ACM Multimedia Systems Conference (MMSys), 2016.

[59] R. Fielding, U. C. Irvine, J. Gettys, J. C. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. Hypertext Transfer Protocol - HTTP/1.1. Request for Comments (RFC)
2616, Internet Engineering Task Force (IETF), 1999.

[60] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Congestion Control for
Unicast Applications. In Proc. of ACM SIGCOMM, 2000.

[61] J. W. Forgie. ST - A Proposed Internet Stream Protocol. Internet Experiment Note (IEN)
119, 1979.

[62] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A Distributed Re-
source Management Architecture that Supports Advance Reservations and Co-Allocation.
In Proc. of International Workshop on Quality of Service (IWQoS), 1999.

142

References

[63] N. Golrezaei, A. F. Molisch, A. G. Dimakis, and G. Caire. Femtocaching and Device-to-
Device Collaboration: A New Architecture for Wireless Video Distribution. IEEE Com-
munications Magazine, 51(4):142–149, 2013.

[64] J. Goshi, A. E. Mohr, R. E. Ladner, E. A. Riskin, and A. F. Lippman. Unequal Loss
Protection for H.263 Compressed Video. IEEE Transactions on Circuits and Systems for
Video Technology, 15(3):412–419, 2005.

[65] C. Griwodz, M. Bär, and L. C. Wolf. Long-Term Movie Popularity Models in Video-on-
Demand Systems or The Life of an on-Demand Movie. In Proc. of ACM Multimedia (MM),
1997.

[66] GStreamer. GStreamer Open Source Multimedia Framework. http://gstreamer.

freedesktop.org. Accessed: 25 Jun 2016.

[67] Y. Guo, L. Gao, D. Towsley, and S. Sen. Smooth Workload Adaptive Broadcast. IEEE
Transactions on Multimedia, 6(2):387–395, 2004.

[68] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual, 2015.

[69] J. Hao, R. Zimmermann, and H. Ma. GTube: Geo-Predictive Video Streaming over HTTP
in Mobile Environments. In Proc. of ACM Multimedia Systems Conference (MMSys), 2014.

[70] Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large Transfer TCP Through-
put. Computer Networks, 51(14):3959–3977, 2007.

[71] W. He, X. Liu, and K. Nahrstedt. A Feedback Control Scheme for Resource Allocation in
Wireless Multi-Hop Ad Hoc Networks. In Proc. of Conference on Mobile and Ubiquitous
Systems: Networking and Services (MobiQuitous), 2005.

[72] W. He, K. Nahrstedt, and X. Liu. End-to-End Delay Control of Multimedia Applications
over Multihop Wireless Links. ACM Transactions on Multimedia Computing, Communi-
cations, and Applications, 5(2):1–20, 2008.

[73] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and B. Leong. A Random
Linear Network Coding Approach to Multicast. IEEE Transactions on Information Theory,
52(10):4413–4430, 2006.

[74] M. Hollander, D. A. Wolfe, and E. Chicken. Nonparametric Statistical Methods. Wiley,
3rd edition, 2014.

[75] F. Hoppensteadt. Asymptotic Stability in Singular Perturbation Problems. II: Problems
Having Matched Asymptotic Expansion Solutions. Journal of Differential Equations, 15:
510–521, 1974.

[76] T. Hossfeld, S. Egger, R. Schatz, M. Fiedler, K. Masuch, and C. Lorentzen. Initial Delay
vs. Interruptions: Between the Devil and the Deep Blue Sea. In Proc. of Workshop on
Quality of Multimedia Experience (QoMEX), 2012.

[77] J. Hoydis and M. Kobayashi. Green Small-Cell Networks. IEEE Vehicular Technology
Magazine, 6(1):37–43, 2011.

[78] J. Hoydis, S. ten Brink, and M. Debbah. Massive MIMO: How Many Antennas Do We
Need? In Proc. Allerton Conference, 2011.

143

http://gstreamer.freedesktop.org
http://gstreamer.freedesktop.org

References

[79] HTTP 0.9. HTTP 0.9. http://www.w3.org/Protocols/HTTP/AsImplemented.html,
1991. Accessed: 25 Jun 2016.

[80] H. Hu, X. Zhu, Y. Wang, R. Pan, J. Zhu, and F. Bonomi. Proxy-Based Multi-Stream
Scalable Video Adaptation Over Wireless Networks Using Subjective Quality and Rate
Models. IEEE Transactions on Multimedia, 15(7):1638–1652, 2013.

[81] K. A. Hua and F. Xie. A Dynamic Stream Merging Technique for Video-on-Demand
Services over Wireless Mesh Access Networks. In Prof. of IEEE Communications Society
Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2010.

[82] T.-Y. Huang, N. Handigol, B. Heller, N. McKeown, and R. Johari. Confused, Timid, and
Unstable: Picking a Video Streaming Rate is Hard. In Proc. of ACM Internet Measurement
Conference (IMC), 2012.

[83] Y. Huang, T. Z. Fu, D.-M. Chiu, J. C. Lui, and C. Huang. Challenges, Design and Analysis
of a Large-Scale P2P-VoD System. ACM SIGCOMM Computer Communication Review,
38(4):375–388, 2008.

[84] Z. Huang and K. Nahrstedt. Perception-Based Playout Scheduling for High-Quality Real-
Time Interactive Multimedia. In Proc. of IEEE Conference on Computer Communications
(INFOCOM), 2012.

[85] H. Huh, G. Caire, H. C. Papadopoulos, and S. a. Ramprashad. Achieving ”Massive MIMO”
Spectral Efficiency with a Not-so-Large Number of Antennas. IEEE Transactions on Wire-
less Communications, 11(9):3226–3239, 2012.

[86] R. J. Hyndman and Y. Khandakar. Automatic Time Series Forecasting: The Forecast
Package for R. Journal of Statistical Software, University of California, Los Angeles,
Department of Statistics, 27(3):1–22, 2008.

[87] R. J. Hyndman, M. L. King, I. Pitrun, and B. Billah. Local Linear Forecasts Using Cubic
Smoothing Splines. Australian & New Zealand Journal of Statistics, 47(1):87–99, 2005.

[88] ITU-T. One-Way Transmission Time. Recommendation G.114, International Telecommu-
nication Union (ITU), 2003.

[89] ITU-T. Definition of Terms Related to Quality of Service. Recommendation E.800, Inter-
national Telecommunication Union (ITU), 2008.

[90] ITU-T. Vocabulary for Performance and Quality of Service, Amendment 2: New Defini-
tions for Inclusion in Recommendation ITU-T P.10/G.100. Recommendation, International
Telecommunication Union (ITU), 2008.

[91] ITU-T. Methodology for the Subjective Assessment of the Quality of Television Pictures.
Recommendation BT.500-13, International Telecommunication Union (ITU), 2012.

[92] ITU-T. Requirements for Low-Latency Interactive Multimedia Streaming. Recommenda-
tion F.746.1, International Telecommunication Union (ITU), 2014.

[93] ITU-T. Hybrid Perceptual Bitstream Models for Objective Video Quality Measurements.
Recommendation J.343, International Telecommunication Union, 2014.

[94] S. Jacobs and A. Eleftheriadis. Streaming Video Using Dynamic Rate Shaping and TCP
Congestion Control. Journal of Visual Communication and Image Representation, 9(3):
211–222, 1998.

144

http://www.w3.org/Protocols/HTTP/AsImplemented.html

References

[95] R. Jain. The Art of Computer Systems Performance Analysis: Techniques for Experimental
Design, Measurement, Simulation, and Modeling. Wiley-Interscience, 1991.

[96] D. Jannach, K. Leopold, C. Timmerer, and H. Hellwagner. A Knowledge-Based Framework
for Multimedia Adaptation. Applied Intelligence, 24(2):109–125, 2006.

[97] D. Jarnikov and T. Özçelebi. Client Intelligence for Adaptive Streaming Solutions. Signal
Processing: Image Communication, 26(7):378–389, 2011.

[98] J. Jiang, V. Sekar, and H. Zhang. Improving Fairness, Efficiency, and Stability in HTTP-
Based Adaptive Video Streaming With FESTIVE. IEEE Transactions on Networking, 22
(1):326–340, 2014.

[99] D. Johansen, H. Johansen, T. Aarflot, J. Hurley, Å. Kvalnes, C. Gurrin, S. Zav, B. Olstad,
E. Aaberg, T. Endestad, H. Riiser, C. Griwidz, and P. Halvorsen. DAVVI: A Prototype for
the Next Generation Multimedia Entertainment Platform. In Proc. of ACM Multimedia
(MM), 2009.

[100] W. John and S. Tafvelin. Analysis of Internet Backbone Traffic and Header Anomalies
Observed. In Proc. of ACM Internet Measurement Conference (IMC), 2007.

[101] N. L. Johnson, S. Kotz, and N. Balakrishnan. Continuous Univariate Distributions. Wiley,
2nd edition, 1994.

[102] V. Joseph and G. De Veciana. NOVA: QoE-Driven Optimization of DASH-Based Video
Delivery in Networks. In Proc. of IEEE Conference on Computer Communications (IN-
FOCOM), 2014.

[103] S. Jumisko-Pyykkö and T. Vainio. Framing the Context of Use for Mobile HCI. Interna-
tional Journal of Mobile Human Computer Interaction, 2(4):1–28, 2010.

[104] H. Kanakia, P. P. Mishra, and A. R. Reibman. An Adaptive Congestion Control Scheme
for Real Time Packet Video Transport. IEEE/ACM Transactions on Networking, 3(6):
671–682.

[105] K. Kang, W. J. Jeon, K.-J. Park, R. H. Campbell, and K. Nahrstedt. Cross-Layer Quality
Assessment of Scalable Video Services on Mobile Embedded Systems. IEEE Transactions
on Mobile Computing, 9(10):1478–1490, 2010.

[106] D. Kaspar, K. Evensen, P. Engelstad, and A. F. Hansen. Using HTTP Pipelining to
Improve Progressive Download over Multiple Heterogeneous Interfaces. In Proc. of IEEE
International Conference on Communications (ICC), 2010.

[107] J. Klaue, B. Rathke, and A. Wolisz. EvalVid - A Framework for Video Transmission
and Quality Evaluation. In Proc. of Conference on Modelling Techniques and Tools for
Computer Performance Evaluation (TOOLS), 2003.

[108] M. A. Klompenhouwer. Flat Panel Display Signal Processing. PhD Thesis, Technische
Universiteit Eindhoven, 2006.

[109] C. Krasic, K. Li, and J. Walpole. The Case for Streaming Multimedia with TCP. In Proc.
of Interactive Distributed Multimedia Systems (IDMS), 2001.

[110] C. Krasic, J. Walpole, and W.-C. Feng. Quality-Adaptive Media Streaming by Priority
Drop. In Proc. of Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV), 2003.

145

References

[111] S. S. Krishnan and R. K. Sitaraman. Video Stream Quality Impacts Viewer Behavior:
Inferring Causality Using Quasi-Experimental Designs. IEEE/ACM Transactions on Net-
working, 21(6):2001–2014, 2013.

[112] D. K. Krishnappa, M. Zink, C. Griwodz, and P. Halvorsen. Cache-Centric Video Recom-
mendation: An Approach to Improve the Efficiency of YouTube Caches. ACM Transactions
on Multimedia Computing, Communications, and Applications, 11(4):1–20, 2015.

[113] T. Kupka, P. Halvorsen, and C. Griwodz. An Evaluation of Live Adaptive HTTP Segment
Streaming Request Strategies. In Proc. of IEEE Conference on Local Computer Networks
(LCN), 2011.

[114] P. Kyosti, J. Meinila, L. Hentila, X. Zhao, T. Jamsa, C. Schneider, M. Narandzic, M. Milo-
jevic, A. Hong, J. Ylitalo, V.-M. Holappa, M. Alatossava, R. Bultitude, Y. de Jong, and
T. Rautiainen. WINNER II Channel Models. Deliverable D1.1.2, V1.2, IST-4-027756,
2007.

[115] J. Lazzaro. Framing Real-Time Transport Protocol (RTP) and RTP Control Protocol
(RTCP) Packets over Connection-Oriented Transport. Request for Comments (RFC) 4571,
Internet Engineering Task Force (IETF), 2006.

[116] H. Le, A. Behboodi, and A. Wolisz. Quality Driven Resource Allocation for Adaptive
Video Streaming in OFDMA Uplink. In Proc. IEEE Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC), 2015.

[117] H. T. Le, D. V. Nguyen, N. P. Ngoc, A. T. Pham, and T. C. Thang. Buffer-Based Bitrate
Adaptation for Adaptive HTTP Streaming. In Proc. Conference on Advanced Technologies
for Communications (ATC), 2013.

[118] H. T. Le, H. N. Nguyen, N. P. Ngoc, A. T. Pham, H. L. Minh, and T. C. Thang. Quality-
Driven Bitrate Adaptation Method for HTTP Live-Streaming. In Proc. IEEE International
Conference on Communication Workshop (ICCW), 2015.

[119] J.-Y. Le Boudec. Performance Evaluation of Computer and Communication Systems.
EPFL Press, 2.3 edition, 2015.

[120] S. Lederer, C. Müller, and C. Timmerer. Dynamic Adaptive Streaming over HTTP Dataset.
In Proc. of ACM Multimedia Systems Conference (MMSys), 2012.

[121] T. Leighton. Improving Performance on the Internet. Communications of the ACM, 52
(2):44–51, 2009.

[122] B. Lewcio, B. Belmudez, T. Enghardt, and S. Möller. On the Way to High-Quality Video
Calls in Future Mobile Networks. In Proc. of Workshop on Quality of Multimedia Experi-
ence (QoMEX), 2011.

[123] B. Li and J. Liu. Multirate Video Multicast over the Internet: An Overview. IEEE
Network, 17(1):24–29, 2003.

[124] B. Li and K. Nahrstedt. A Control-Based Middleware Framework for Quality-of-Service
Adaptations. IEEE Journal on Selected Areas in Communications, 17(9):1632–1650, 1999.

[125] B. Li, Z. Wang, J. Liu, and W. Zhu. Two Decades of Internet Video Streaming: A
Retrospective View. ACM Transactions on Multimedia Computing, Communications, and
Applications, 9(1s):1–20, 2013.

146

References

[126] M. Li, Z. Chen, and Y.-P. Tan. Scalable Resource Allocation for SVC Video Streaming Over
Multiuser MIMO-OFDM Networks. IEEE Transactions on Multimedia, 15(7):1519–1531,
2013.

[127] W. Li. Overview of Fine Granularity Scalability in MPEG-4 Video Standard. IEEE
Transactions on Circuits and Systems for Video Technology, 11(3):301–317, 2001.

[128] Z. Li, A. C. Begen, J. Gahm, Y. Shan, B. Osler, and D. Oran. Streaming Video over HTTP
with Consistent Quality. In Proc. of ACM Multimedia Systems Conference (MMSys), 2014.

[129] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. C. Begen, and D. Oran. Probe and Adapt:
Rate Adaptation for HTTP Video Streaming At Scale. IEEE Journal on Selected Areas
in Communications, 32(4):719–733, 2014.

[130] E. Y.-H. Lin. A Biblographical Survey on Some Well-Known Non-Standard Knapsack
Problems. INFOR, 36(4):274–317, 1998.

[131] W. Lin and C.-C. Jay Kuo. Perceptual Visual Quality Metrics: A Survey. Journal of
Visual Communication and Image Representation, 22(4):297–312, 2011.

[132] A. F. Lippman. Video Coding for Multiple Target Audiences. In Proc. of Visual Commu-
nications and Image Processing, 1999.

[133] C. Liu, I. Bouazizi, and M. Gabbouj. Rate Adaptation for Adaptive HTTP Streaming. In
Proc. of ACM Multimedia Systems Conference (MMSys), 2011.

[134] C. Liu, I. Bouazizi, M. M. Hannuksela, and M. Gabbouj. Rate Adaptation for Dynamic
Adaptive Streaming over HTTP in Content Distribution Network. Signal Processing: Im-
age Communication, 27(4):288–311, 2012.

[135] X. Liu, F. Dobrian, H. Milner, J. Jiang, V. Sekar, I. Stoica, and H. Zhang. A Case for a
Coordinated Internet Video Control Plane. In Proc. of ACM SIGCOMM, 2012.

[136] Y. Liu and J. Y. B. Lee. On Adaptive Video Streaming with Predictable Streaming
Performance. In Proc. of IEEE Global Communications Conference (GLOBECOM), 2014.

[137] Y. Liu, Y. Guo, and C. Liang. A Survey on Peer-to-Peer Video Streaming Systems. Peer-
to-Peer Networking and Applications, 1(1):18–28, 2008.

[138] T. Lohmar, T. Einarsson, P. Fröjdh, F. Gabin, and M. Kampmann. Dynamic Adaptive
HTTP Streaming of Live Content. In Proc. of IEEE Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM), 2011.

[139] T. L. Marzetta. Noncooperative Cellular Wireless with Unlimited Numbers of Base Station
Antennas. IEEE Transactions on Wireless Communications, 9(11):3590–3600, 2010.

[140] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven layered multicast. ACM
SIGCOMM Computer Communication Review, 26(4):117–130, 1996.

[141] A. Michaloliakos, R. Rogalin, Y. Zhang, K. Psounis, and G. Caire. Performance Modeling
of Next-Generation WiFi Networks. Computer Networks, 2016.

[142] Microsoft Silverlight. Microsoft Silverlight Multimedia Player. http://www.microsoft.

com/silverlight/. Accessed: 25 Jun 2016.

147

http://www.microsoft.com/silverlight/
http://www.microsoft.com/silverlight/

References

[143] K. Miller and T. Harks. Utility Max-Min Fair Congestion Control with Time-Varying
Delays. In Proc. of IEEE Conference on Computer Communications (INFOCOM), 2008.

[144] M. Mirza, J. Sommers, P. Barford, and X. Zhu. A Machine Learning Approach to TCP
Throughput Prediction. IEEE/ACM Transactions on Networking, 18(4):1026–1039, 2010.

[145] R. Mohan, J. R. Smith, and C.-S. Li. Adapting Multimedia Internet Content for Universal
Access. IEEE Transactions on Multimedia, 1(1):104–114, 1999.

[146] R. K. P. Mok, X. Luo, E. W. W. Chan, and R. K. C. Chang. QDASH: A QoE-Aware
DASH System. In Proc. of ACM Multimedia Systems Conference (MMSys), 2012.

[147] A. F. Molisch. Wireless Communications. Wiley, 2010.

[148] C. Müller, S. Lederer, and C. Timmerer. An Evaluation of Dynamic Adaptive Streaming
Over HTTP in Vehicular Environments. In Proc. of Workshop on Mobile Video (MoVid),
2012.

[149] J.-R. Ohm. Advances in Scalable Video Coding. Proceedings of the IEEE, 93(1):42–56,
2005.

[150] J.-R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand. Comparison of the
Coding Efficiency of Video Coding Standards – Including High Efficiency Video Coding
(HEVC). IEEE Transactions on Circuits and Systems for Video Technology, 22(12):1669–
1684, 2012.

[151] E. H. Ong, J. Kneckt, O. Alanen, Z. Chang, T. Huovinen, and T. Nihtila. IEEE 802.11ac:
Enhancements for Very High Throughput WLANs. In Proc. of IEEE Symposium on Per-
sonal, Indoor and Mobile Radio Communications (PIMRC), 2011.

[152] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP Reno Performance: A
Simple Model and Its Empirical Validation. IEEE/ACM Transactions on Networking, 8
(2):133–145, 2000.

[153] V. Pai, K. Kumar, K. Tamilmani, V. Sambamurthy, and A. E. Mohr. Chainsaw: Elimi-
nating Trees from Overlay Multicast. In Proc. of Workshop on Peer-to-Peer Systems IV,
2005.

[154] Z. Pan, Y. Ikuta, M. Bandai, and T. Watanabe. A User Dependent System for Multi-View
Video Transmission. In Proc. of Conference on Advanced Information Networking and
Applications (AINA), 2011.

[155] T. D. Pessemier, K. D. Moor, W. Joseph, L. D. Marez, and L. Martens. Quantifying the
Influence of Rebuffering Interruptions on the User’s Quality of Experience During Mobile
Video Watching. IEEE Transactions on Broadcasting, 59(1):47–61, 2013.

[156] picochip. The Case For Home Base Stations. Technical Report, Picochip, 2007.

[157] M. H. Pinson and S. Wolf. A New Standardized Method for Objectively Measuring Video
Quality. IEEE Transactions on Broadcasting, 50(3):312–322, 2004.

[158] J. Postel. User Datagram Protocol. Request for Comments (RFC) 768, Internet Engineer-
ing Task Force (IETF), 1980.

148

References

[159] R. Pries, Z. Magyari, and P. Tran-Gia. An HTTP Web Traffic Model Based On the
Top One Million Visited Web Pages. In Proc. of Conference on Next Generation Internet
(NGI), 2012.

[160] H.-T. Quan and M. Ghanbari. Temporal Aspect of Perceived Quality in Mobile Video
Broadcasting. IEEE Transactions on Broadcasting, 54(3):641–651, 2008.

[161] C. E. Rasmussen and C. K. I. Williams. Gaussian processes for machine learning. The
MIT Press, 1st edition, 2006.

[162] U. Reiter, K. Brunnström, K. D. Moor, M.-C. Larabi, M. Pereira, A. Pinheiro, J. You,
and A. Zgank. Factors Influencing Quality of Experience. In Quality of Experience, pages
55–74. Springer International Publishing, 2014.

[163] R. Rejaie, M. Handley, and D. Estrin. Quality Adaptation for Congestion Controlled
Playback Video over the Internet. In Proc. of ACM SIGCOMM, 1999.

[164] R. Rejaie, M. Handley, and D. Estrin. RAP: An End-to-End Rate-Based Congestion
Control Mechanism for Realtime Streams in the Internet. In Proc. of IEEE Conference on
Computer Communications (INFOCOM), 1999.

[165] H. Riiser, P. Halvorsen, C. Griwodz, and D. Johansen. Low Overhead Container Format
for Adaptive Streaming. In Proc. of ACM Multimedia Systems Conference (MMSys), 2010.

[166] H. Riiser, T. Endestad, P. Vigmostad, C. Griwodz, and P. Halvorsen. Video Streaming Us-
ing a Location-Based Bandwidth-Lookup Service for Bitrate Planning. ACM Transactions
on Multimedia Computing, Communications, and Applications, 8(3):1–19, 2012.

[167] F. Riley and T. R. Henderson. The ns-3 Network Simulator. In Modeling and Tools for
Network Simulation. Springer, 2010.

[168] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufves-
son. Scaling Up MIMO. IEEE Signal Processing Magazine, 30(1):40–60, 2012.

[169] A. Sackl, K. Masuch, S. Egger, and R. Schatz. Wireless vs. Wireline Shootout: How
User Expectations Influence Quality of Experience. In Proc. of Workshop on Quality of
Multimedia Experience (QoMEX), 2012.

[170] H. Saki and M. Shikh-Bahaei. Cross-Layer Resource Allocation for Video Streaming over
OFDMA Cognitive Radio Networks. IEEE Transactions on Multimedia, 17(3):333–345,
2015.

[171] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-End Arguments in System Design.
ACM Transactions on Computer Systems, 2(4):277–288, 1984.

[172] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP). Request
for Comments (RFC) 2326, Internet Engineering Task Force (IETF), 1998.

[173] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport Protocol for
Real-Time Applications. Request for Comments (RFC) 3550, Internet Engineering Task
Force (IETF), 2003.

[174] S. Sesia, I. Toufik, and M. Baker. LTE: The Long Term Evolution - From Theory to
Practice. Wiley, 2009.

149

References

[175] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-Gia. A Survey on
Quality of Experience of HTTP Adaptive Streaming. IEEE Communications Surveys &
Tutorials, 17(1):469–492, 2014.

[176] S. H. Shah, K. Chen, and K. Nahrstedt. Available Bandwidth Estimation in IEEE 802.11-
Based Wireless Networks. In Proc. of ISMA Bandwidth Estimation Workshop (BEst),
2003.

[177] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and G. Caire. FemtoCaching:
Wireless Content Delivery Through Distributed Caching Helpers. IEEE Transactions on
Information Theory, 59(12):8402–8413, 2013.

[178] T. Silverston and O. Fourmaux. Measuring P2P IPTV Systems. In Proc. of Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV), 2007.

[179] K. D. Singh, Y. Hadjadj-Aoul, and G. Rubino. Quality of Experience Estimation for
Adaptive HTTP/TCP Video Streaming Using H.264/AVC. In Proc. of IEEE Consumer
Communications and Networking Conference (CCNC), 2012.

[180] I. Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the Internet.
IEEE Multimedia, 18(4):62–67, 2011.

[181] W. Song and D. W. Tjondronegoro. Acceptability-Based QoE Models for Mobile Video.
IEEE Transactions on Multimedia, 16(3):738–750, 2014.

[182] F. Speranza, F. Poulin, R. Renaud, M. Caron, and J. Dupras. Objective and Subjective
Quality Assessment with Expert and Non-Expert Viewers. In Proc. of Workshop on Quality
of Multimedia Experience (QoMEX), 2010.

[183] T. Stockhammer. Dynamic Adaptive Streaming over HTTP – Standards and Design Prin-
ciples. In Proc. of ACM Multimedia Systems Conference (MMSys), 2011.

[184] G. J. Sullivan and T. Wiegand. Rate-Distortion Optimization for Video Compression.
IEEE Signal Processing Magazine, 15(6):74–90, 1998.

[185] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand. Overview of the High Efficiency
Video Coding (HEVC) Standard. IEEE Transactions on Circuits and Systems for Video
Technology, 22(12):1649–1668, 2012.

[186] V. Sundaram and K. A. Hua. Seamless Video Streaming: A Light Weight Session Handoff
Scheme for Dynamic Stream Merging Based Wireless Mesh Networks. In Proc. of IEEE
International Conference on Multimedia and Expo Workshops Seamless (ICME), 2012.

[187] P. Sweeting. Video in 2014: Going Live and Over the Top. Research Report, Gigaom,
2014.

[188] W. J. Tam, F. Speranza, S. Yano, K. Shimono, and H. Ono. Stereoscopic 3D-TV: Visual
comfort. IEEE Transactions on Broadcasting, 57(2):335–346, 2011.

[189] M. Tamai, K. Yasumoto, N. Shibata, M. Ito, and K. Nahrstedt. Transcasting: Cost-
Efficient Video Multicast for Heterogeneous Mobile Terminals. In Proc. of IEEE/IFIP
International Workshop on Quality of Service (IWQoS), 2008.

[190] B. Tan and L. Massoulié. Optimal Content Placement for Peer-to-Peer Video-on-Demand
Systems. IEEE/ACM Transactions on Networking, 21(2):566–579, 2013.

150

References

[191] W.-t. Tan and A. Zakhor. Real-Time Internet Video Using Error Resilient Scalable Com-
pression and TCP-Friendly Transport Protocol. IEEE Transactions on Multimedia, 1(2):
172–186, 1999.

[192] M. Tanimoto. Overview of Free Viewpoint Television. Signal Processing: Image Commu-
nication, 21(6):454–461, 2006.

[193] K. Tappayuthpijarn, T. Stockhammer, and E. Steinbach. HTTP-Based Scalable Video
Streaming Over Mobile Networks. In Proc. of IEEE International Conference on Image
Processing (ICIP), 2011.

[194] S. Tarbouriech and M. Turner. Anti-Windup Design: An Overview of Some Recent Ad-
vances and Open Problems. IET Control Theory and Applications, 3(1):1–19, 2009.

[195] D. B. Terry and D. C. Swinehart. Managing Stored Voice in the Etherphone System. ACM
Transactions on Computer Systems, 6(1):3–27, 1988.

[196] T. C. Thang, H. T. Le, A. T. Pham, and Y. M. Ro. An Evaluation of Bitrate Adaptation
Methods for HTTP Live Streaming. IEEE Journal on Selected Areas in Communications,
32(4):693–705, 2014.

[197] G. Tian and Y. Liu. Towards Agile and Smooth Video Adaptation in Dynamic HTTP
Streaming. In Proc. of ACM Conference on Emerging Networking Experiments and Tech-
nologies (CoNEXT), 2012.

[198] C. Timmerer and A. Bertoni. Advanced Transport Options for the Dynamic Adaptive
Streaming over HTTP. arXiv preprint, 2016.

[199] C. Timmerer, M. Maiero, and B. Rainer. Which Adaptation Logic? An Objective and
Subjective Performance Evaluation of HTTP-based Adaptive Media Streaming Systems.
arXiv preprint, 2016.

[200] B. Trammell and J. Hildebrand. Evolving Transport in the Internet. IEEE Internet
Computing, 18(5):60 – 64, 2014.

[201] Transmission Control Protocol. Transmission Control Protocol. Request for Comments
(RFC) 793, Internet Engineering Task Force (IETF), 1981.

[202] D. Tse and P. Viswanath. Fundamentals of Wireless Communication. Cambridge Univer-
sity Press, 2005.

[203] T. Turletti and C. Huitema. Videoconferencing on the Internet. IEEE/ACM Transactions
on Networking, 4(3):340–351, 1996.

[204] M. van der Schaar and S. S. N. Cross-Layer Wireless Multimedia Transmission: Challenges,
Principles, and New Paradigms. IEEE Wireless Communications, 12(4):50–58, 2005.

[205] A. Vetro and C. Timmerer. Digital Item Adaptation: Overview of Standardization and
Research Activities. IEEE Transactions on Multimedia, 7(3):418–426, 2005.

[206] VLC Media Player. VLC Media Player. http://www.videolan.org/vlc/. Accessed: 26
Jun 2016.

[207] L. Vu, I. Gupta, J. Liang, and K. Nahrstedt. Mapping the PPLive Network: Studying the
Impacts of Media Streaming on P2P Overlays. Technical Report UIUCDCS-R-2006-2758,
University of Illinois at Urbana-Champaign, 2006.

151

http://www.videolan.org/vlc/

References

[208] B. W. Wah, X. Su, and D. Lin. A Survey of Error-Concealment Schemes for Real-Time
Audio and Video Transmissions over the Internet. In Proc. of Symposium on Multimedia
Software Engineering (MSE), 2000.

[209] M. Wang and B. Li. R2: Random Push with Random Network Coding in Live Peer-to-Peer
Streaming. IEEE Journal on Selected Areas in Communications, 25(9):1655–1666, 2007.

[210] X. Wang and H. Schulzrinne. Comparison of Adaptive Internet Multimedia Applications.
IEICE Transactions on Communications, E82-B(6):806–818, 1999.

[211] X. Wang, T. T. Kwon, Y. Choi, H. Wang, and J. Liu. Cloud-Assisted Adaptive Video
Streaming and Social-Aware Video Prefetching for Mobile Users. IEEE Wireless Commu-
nications, 20(3):72–79, 2013.

[212] Y. Wang and Q.-F. Zhu. Error Control and Concealment for Video Communications: A
Review. Proceedings of the IEEE, 86(5):974–997, 1998.

[213] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image Quality Assessment:
From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing,
13(4):600–612, 2004.

[214] S. Wei and V. Swaminathan. Low Latency Live Video Streaming over HTTP 2.0. In Proc.
of Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), 2014.

[215] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra. Overview of the H. 264/AVC
Video Coding Standard. IEEE Transactions on Circuits and Systems for Video Technology,
13(7):560 –576, 2003.

[216] D. Wu, Y. T. Hou, W. Zhu, Y.-Q. Zhang, and J. M. Peha. Streaming Video over the
Internet: Approaches and Directions. IEEE Transactions on Circuits and Systems for
Video Technology, 11(3):282–300, 2001.

[217] W. Wu, A. Arefin, R. Rivas, K. Nahrstedt, R. M. Sheppard, and Z. Yang. Quality of
Experience in Distributed Interactive Multimedia Environments: Toward a Theoretical
Framework. In Proc. of ACM Multimedia (MM), 2009.

[218] Z. Yang, K. Nahrstedt, Y. Cui, B. Yu, J. Liang, S.-H. Jung, and R. Bajscy. TEEVE:
The Next Generation Architecture for Tele-Immersive Environments. In Proc. of IEEE
Symposium on Multimedia (ISM), 2005.

[219] C. Yim and A. C. Bovik. Evaluation of Temporal Variation of Video Quality in Packet
Loss Networks. Signal Processing: Image Communication, 26(1):24–38, 2011.

[220] X. Yin, V. Sekar, and B. Sinopoli. Toward a Principled Framework to Design Dynamic
Adaptive Streaming Algorithms over HTTP. In Proc. of ACM Workshop on Hot Topics
in Networks (HotNets), 2014.

[221] L. Yitong, S. Yun, M. Yinian, L. Jing, L. Qi, and Yang Dacheng. A Study on Quality of
Experience for Adaptive Streaming Service. In Proc. of IEEE International Conference on
Communications Workshops (ICC), 2013.

[222] W. Yuan, K. Nahrstedt, S. V. Adve, D. L. Jones, and R. H. Kravets. GRACE-1: Cross-
Layer Adaptation for Multimedia Quality and Battery Energy. IEEE Transactions on
Mobile Computing, 5(7):799–815, 2006.

152

References

[223] A. Zambelli. IIS Smooth Streaming Technical Overview. Microsoft Corporation, 2009.

[224] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource
ReSerVation Protocol. IEEE Network, 7(5):8–18, 1993.

[225] M. Zhang, S. Member, Q. Zhang, S. Member, and L. Sun. Understanding the Power of
Pull-Based Streaming Protocol: Can We Do Better? IEEE Journal on Selected Areas in
Communications, 25(9):1678–1694, 2007.

[226] Q. Zhang, G. Wang, W. Zhu, and Y.-Q. Zhang. Robust Scalable Video Streaming over
Internet with Network-Adaptive Congestion Control and Unequal Loss Protection. In Proc.
of Packet Video Workshop (PV), 2001.

[227] X. Zhang, J. Liu, B. Li, and Y.-S. Yum. Coolstreaming/DONet: A Data-Driven Overlay
Network for Peer-to-Peer Live Media Streaming. In Proc. of IEEE Conference on Computer
Communications (INFOCOM), 2005.

[228] M. Zhao, X. Gong, J. Liang, W. Wang, X. Que, and S. Cheng. QoE-Driven Cross-Layer
Optimization for Wireless Dynamic Adaptive Streaming of Scalable Videos over HTTP.
IEEE Transactions on Circuits and Systems for Video Technology, 25(3):451–465, 2015.

[229] C. Zhou, X. Zhang, L. Huo, and Z. Guo. A Control-Theoretic Approach to Rate Adaptation
for Dynamic HTTP Streaming. In Proc. of IEEE Visual Communications and Image
Processing (VCIP), 2012.

[230] C. Zhou, C. W. Lin, X. Zhang, and Z. Guo. A Control-Theoretic Approach to Rate
Adaption for DASH Over Multiple Content Distribution Servers. IEEE Transactions on
Circuits and Systems for Video Technology, 24(4):681–694, 2014.

[231] L. Zhou, N. Xiong, L. Shu, A. Vasilakos, and S.-S. Yeo. Context-Aware Middleware for
Multimedia Services in Heterogeneous Networks. IEEE Intelligent Systems, 25(2):40–47,
2010.

[232] X. Zhu, Z. Li, R. Pan, J. Gahm, and R. Ru. Fixing Multi-Client Oscillations in HTTP-
based Adaptive Streaming: A Control Theoretic Approach. In Proc. IEEE Workshop on
Multimedia Signal Processing (MMSP), 2013.

[233] H. Zimmermann. OSI Reference Model - The ISO Model of Architecture for Open Systems
Interconnection. IEEE Transactions on Communications, 28(4):425–432, 1980.

[234] M. Zink, O. Künzel, J. Schmitt, and R. Steinmetz. Subjective Impression of Variations in
Layer Encoded Videos. In Proc. of International Workshop on Quality of Service (IWQoS),
2003.

[235] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic, R. Jana, X. Jin, J. Rexford, and
R. K. Sinha. Can Accurate Predictions Improve Video Streaming in Cellular Networks?
In Proc. of Workshop on Mobile Computing Systems and Applications (HotMobile), 2015.

153

	Title Page
	Acknowledgments
	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Background
	2.1 Internet-Based Video Streaming
	2.1.1 A Historical Overview
	2.1.2 The Streaming Landscape
	2.1.3 The Choice of the Transport Protocol
	2.1.4 Adaptive Streaming

	2.2 Quality of Experience
	2.2.1 QoE Influence Factors
	2.2.2 QoE Evaluation Methodology
	2.2.3 QoE for HTTP-Based Adaptive Streaming

	2.3 Small Cell Wireless Networks

	3 Related Work
	3.1 Video on Demand
	3.2 Low-Delay Live Streaming
	3.3 Prediction-Based Adaptation
	3.4 Cross-Layer Approaches
	3.5 Optimal Adaptation
	3.6 TCP Throughput Prediction

	4 Notation
	5 Joint Transmission Scheduling and Quality Selection in Dense Wireless Networks
	5.1 Introduction
	5.2 System Model and Notation
	5.2.1 Streaming Model
	5.2.2 Distributed Cross-Layer Design
	5.2.3 Wireless Network Model

	5.3 Interaction with Transport Protocols
	5.4 JINGER — Joint Scheduling and Quality Selection Scheme
	5.4.1 General Idea
	5.4.2 Integral Windup
	5.4.3 Sampled Distributed System
	5.4.4 Quality Selection
	5.4.5 Transmission Scheduling

	5.5 Evaluation
	5.5.1 Performance Metrics
	5.5.2 Evaluation Setting
	5.5.3 Experimental Design
	5.5.4 Evaluation Results

	6 Prediction-Based Low-Delay Live Streaming
	6.1 Introduction
	6.2 System Model and Notation
	6.3 LOLYPOP — Adaptation Algorithm for Low-Delay Live Streaming
	6.3.1 Algorithm Description
	6.3.2 Tuning into the Stream

	6.4 TCP Throughput Traces
	6.5 Short-Term TCP Throughput Prediction
	6.5.1 Methodology
	6.5.2 Prediction Methods
	6.5.3 Evaluation of the Prediction Accuracy
	6.5.4 Estimating the Relative Prediction Error
	6.5.5 Estimating the Download Success Probabilities

	6.6 Evaluation
	6.6.1 Evaluation Setting
	6.6.2 Evaluation Results

	7 Adaptation Algorithm for Video on Demand
	7.1 Introduction
	7.2 Design Goals
	7.3 TOBASCO — Adaptation Algorithm for Video on Demand
	7.3.1 General Idea
	7.3.2 Algorithm Description
	7.3.3 Adaptation Phase
	7.3.4 Fast Start Phase

	7.4 Evaluation
	7.4.1 Evaluation Using an Emulated Wireless Cell
	7.4.2 Evaluation Using Real-World Measurements

	8 Optimal Adaptation by an Omniscient Client
	8.1 Introduction
	8.2 Optimization Objectives
	8.3 Computation of Optimal Adaptation Trajectories
	8.4 Influence of the Number of Representations

	9 Universal Streaming Client Architecture
	9.1 Introduction
	9.2 Architecture
	9.3 State Machine for a Live Streaming Client
	9.4 State Machine for a Video on Demand Streaming Client

	10 Conclusions and Future Work
	Appendix A Acronyms
	Appendix B Publications
	References

