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Abstract

Recently, HTTP-Based Adaptive Streaming has become the de facto standard for video streaming
over the Internet. It allows the client to dynamically adapt media characteristics to varying network
conditions in order to maximize Quality of Experience, that is, minimize playback interruptions, while
maximizing video quality at a reasonable level of quality changes. In the case of live streaming, where
buffering possibilities are limited, this task becomes particularly challenging. An important factor
than might help improving performance is the capability to correctly predict network throughput dy-
namics on short to medium timescales. This problem becomes notably difficult in wireless networks
that are often subject to continuous throughput fluctuations.

In the present work, we develop an adaptation algorithm for HTTP-Based Adaptive Live Streaming
that, for each adaptation decision, maximizes a Quality of Experience based utility function depending
on the probability of playback interruptions, average video quality, and the amount of video quality
fluctuations. To compute the utility function, in particular the interruption probability, the algorithm
leverages throughput predictions, and dynamically estimated prediction accuracy.

We are trying to close the gap created by the lack of studies analyzing TCP throughput on short
to medium timescales. We study several time series prediction methods and model the distribution
of prediction errors. We observe that Simple Moving Average, despite being the most straightfor-
ward method, performs best in most cases. We also observe that the relative underestimation error
is best represented by a truncated normal distribution, while the relative overestimation error is best
represented by a Lomax distribution. Moreover, although underestimations and overestimations are
balanced in all traces, they exhibit a strong temporal correlation that we use to further improve pre-
diction accuracy.

We compare the proposed algorithm with a baseline approach that uses a fixed margin between
past throughput and selected media bit rate, and an oracle-based approach that has perfect knowledge
of future throughput for a certain time horizon.
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Chapter 1

Introduction

Over the last years, we have been observing a dramatic change in video consumption patterns. The era
of passive consumption of non-interactive "linear" content on a single device that does not offer much
functionality is clearly over. Enabled by advances in media compression technologies, miniaturization
and increasing processing power of electronic devices, complemented by ubiquitous availability of
broadband access networks, we are witnessing the establishment of a new mindset: watch what I
want, when I want, and where I want. A multitude of devices is at user’s command to gain access
to a vast sea of video content at any time and location: smartphones, tablets, PC’s, game consoles,
and, of course, TV sets that, however, underwent a transformation to become what is called Hybrid
TV’s, connected to the Internet and offering a multitude of interactive applications. [6, 8] Moreover,
as wearable devices such as smart watches and Google Glass begin to gain popularity, they might
take the digital media landscape to a whole new level. All these devices empower the user to watch
their favorite content on the best screen available at that moment, and not at the behest of the content
provider.

Another game changer has been the advance of Web 2.0 [32], that has expanded the focus of
Internet from publishing to participation, allowing anyone to publish to the world without having to
go through the closed systems that have dominated media since its very beginning. The plethora of
freely accessible User-Generated Content (UGC), shared over Social Networking Services, boosted
the demand for watching video over the Internet and brought online video into the mainstream. As
of today, the number of UGC objects is orders of magnitude higher than that of traditional movies
or TV programs and is rapidly evolving [26]. One prominent example reflecting this development is
YouTube that alone reaches more US adults at the age of 18-34 than any cable network. As of January
2015, over 6 billion hours of video are watched each month on YouTube, which is almost an hour for
every person on Earth. 100 hours of video are uploaded to YouTube every minute [9]. And: around
25.0% of the daily views on YouTube come from person-to-person sharing [13].

This development is being accompanied by a shift towards usage of wireless and mobile networks.
In 2013, wired devices still accounted for the majority of Internet traffic at 56%. The status quo,
however, is rapidly changing. Traffic from wireless and mobile devices is predicted to exceed traffic
from wired devices by 2018, accounting for 61% of the total Internet traffic. And by far the largest
part of it is video. Globally, video traffic is estimated to be 79% of all consumer Internet traffic
in 2018, up from 66% in 2013 [5]. The majority of streamed content is Video on Demand (VoD).
However, the amount of live streaming, such as of sports events, video gaming, or music concerts, is
experiencing rapid growth, promising significant revenues to the stakeholders [42].

This enormous amount of traffic places a huge burden on the Internet infrastructure and on state-of-
the-art wireless and mobile networks, and requires novel efficient solutions both in the area of wireless
and mobile networking and video streaming. While a classical broadcaster exclusively uses a channel
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to broadcast to everyone within reach, on the Internet, the medium is shared among many users and
a separate, unicast data stream is transmitted to every single receiver. Recent studies suggest that the
challenges have not yet been successfully addressed. In 2013, around 26.9% of streaming sessions
on the Internet experienced playback interruption due to rebuffering, 43.3% were impacted by low
resolution, and 4.8% failed to start altogether. [7]

One of the problems is the Internet was not designed to support applications that require config-
urable end-to-end Quality of Service (QoS) [2]. Considerable effort has been put into developing
networking architectures, addressing this shortcoming [10, 14]. So far, none of them achieved a sig-
nificant pervasiveness. Especially on wireless and mobile links, a user is exposed to interference,
cross-traffic, and fading effects, leading to continuously fluctuating QoS characteristics. As a con-
sequence, we lately have been observing a thriving period for adaptive streaming technologies that
are able to dynamically adjust the characteristics of the streamed media to varying network condi-
tions, leading to a smoother viewing experience with less playback interruptions and a more efficient
utilization of available network resources.

In particular, one technology has become the de facto standard for Internet streaming: HTTP-
Based Adaptive Streaming (HAS) [41]. Its advantage is that the usage of Hypertext Transfer Pro-
tocol (HTTP) allows to leverage the ubiquitous and highly optimized HTTP delivery infrastructure,
including Content Delivery Networks (CDN’s), caches, proxies, etc. This allows to reduce costs due
to maintenance of specialized video servers. Also, HTTP is usually allowed to traverse middleboxes,
such as Network Address Translation (NAT) devices and firewalls. Of prime importance is also that
HAS has good scalability properties due to the stateless nature of HTTP and because with HAS the
control logic resides within the client. Thus, the server is relieved from keeping extensive state, and
maintaining persistent feedback loops with the client. An open standard, MPEG-DASH (Dynamic
Adaptive Streaming over HTTP) [4, 39], has been introduced to facilitate interoperability.

An important feature of HAS is that it uses Transmission Control Protocol (TCP) to transport the
data, which has its pros and cons. On the one hand, TCP offers built-in congestion control and
congestion avoidance mechanisms, that are necessary to maintain network stability, as well as to
ensure basic fairness among competing flows. It also offers reliable communication by retransmitting
lost packets, which enables usage of efficient video compression technologies that are particularly
sensitive to packet losses. These features allow to reduce the complexity of the streaming application,
which otherwise would have to implement mechanisms to deal with losses and congestion. [47] On
the other hand, retransmissions delay subsequent packets, making TCP more challenging for live
streaming. Further, TCP reacts to packet losses and transmission delay peaks by reducing its sending
rate, which might negatively impact video quality.

The operation of HAS can be roughly described as follows. The video material is encoded in
several representations, that vary w.r.t. their media characteristics such as spatial resolution, frame
rate, compression level, etc. Typically, different representations have different media bit rates and
thus different requirements on network throughput. Representations are split into segments, typically
containing one to few seconds of video data. The data is encoded such that segments from different
representations can be seamlessly played back after each other. The client issues a series of HTTP
requests to download the segments in appropriate representations, trying to achieve certain goals.

For video streaming, identifying performance goals and expressing them in a way that facilitates
objective measurement has turned out to be an extremely challenging task. One of the main reasons is
that the ultimate target of a streaming service is a human being. Thus, an evaluation of such a service
must inevitably take into account human perception and cognitive processing, involved in consuming
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the video content. These phenomena, however, are influenced by a large amount of hardly measur-
able factors. The notion of Quality of Experience (QoE) was introduced in an effort to assess these
phenomena and help making them accessible to an objective evaluation process. The International
Telecommunication Union (ITU) defines QoE as "the overall acceptability of an application or ser-
vice, as perceived subjectively by the end-user", which might be influenced by "user expectations"
and "context" [3]. The number of factors influencing QoE is immense, and many of them have a high
level of subjectivity, which results in extremely complex modeling. [35]

With HAS, the degrees of freedom for maximizing QoE are determined by the choice of TCP as
transport protocol on the one hand, and by putting the adaptation logic into the client, on the other.
The media characteristics of available video representations are configured by the service provider
during the planning phase. [37] The main factors influencing QoE that can be controlled by a HAS
client are: initial delay, number and duration of rebuffering periods, selected video representation, and
number and amplitude of representation changes. Their relative importance for QoE is, however, still
poorly understood. Nevertheless, the number of studies dedicated to this topic has been dramatically
increasing with the growing importance of video streaming, so that a lot of valuable insights are
available to help designing QoE-optimized streaming mechanisms.

In particular, many studies suggest that the number and duration of rebuffering periods have the
most severe impact on QoE, especially with live streaming. [7] In particular, users are willing to
accept a higher initial delay and higher video distortion due to increased compression rate, if it helps
minimizing rebuffering periods. [37, 17, 34, 38] On the other hand, it was observed that video quality
fluctuations resulting from dynamically changing the representation can have a negative impact on
QoE. [25, 46] In particular, some studies come to the conclusion that a lower overall video quality
might be tolerated if it helps reducing the amount of representation changes. [33]

In the present study, we take up the position that a crucial factor influencing the ability of the client
to maximize QoE, in particular, to minimize rebuffering, is his capability to correctly estimate net-
work throughput dynamics on short to medium timescales. Specifically in the case of live streaming,
where the time horizon for prefetching segments is limited and the time between the moment when a
segment becomes available for download and its playback deadline typically constitutes few seconds,
a client can strongly benefit from having a precise estimation of network throughput. This task is
particularly challenging in wireless and mobile networks. It is further complicated by TCP’s conges-
tion avoidance and control feedback loop, as well as retransmission mechanisms, contributing to the
complexity of application-layer throughput dynamics.

Our contribution. In our work, we turn out attention to designing an adaptation algorithm for
HTTP-Based Adaptive Live Streaming (HALS). Our idea is, prior to each segment download, to
compare potential future adaptation trajectories and to select the one maximizing QoE. In order to
evaluate QoE of an adaptation trajectory, we define a utility function depending on three factors that
we call subutilities: (i) probability that a segment misses its playback deadline and thus the streaming
session enters a rebuffering period, (ii) the distortion of video, evaluated by means of Peak Signal-
to-Noise Ratio (PSNR), and (iii) the number and amplitude of representation changes. The utility is
computed from individual subutilities in accordance with available literature on QoE. In particular,
rebuffering subutility appears as a multiplicative factor and plays the role of an upper bound on the
total utility, reflecting its strong impact on QoE. The other factor is a weighted sum of subutilities
representing distortion and quality fluctuations that allows to resolve their trade-off in a configurable
way.

In order to compute the defined utility, in particular, the probability that a segment misses its play-
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back deadline, we study the predictability of TCP throughput in wireless networks over timescales
from 1 to 10 seconds. For our study we use TCP throughput traces collected in IEEE 802.11bg Wire-
less Local Area Networks (WLAN’s) throughout Berlin, Germany, including public hotspots (indoor
and outdoor), campus hotspots, and access points in residential environments. In particular, we focus
on traces with low average throughput (hundreds of kilobits to few megabits per second), and high
throughput fluctuations, which make the operation of a streaming client particularly challenging. We
evaluate different time series prediction methods using varying numbers of past throughput measure-
ments. We demonstrate that the most naïve method, Simple Moving Average (SMA) outperforms
more sophisticated methods on all timescales, independent of the specific throughput dynamics. This
means, somewhat surprisingly, that in studied environments, accounting for the trend in the past mea-
surements does not help to increase prediction accuracy.

We further observe that prediction accuracy strongly varies across studied traces. Therefore, it is
inefficient to assume a fixed prediction error and account for this error by a fixed margin between pre-
dicted throughput and selected media bit rate. On the contrary, it is crucial to dynamically estimate
the prediction accuracy, in order to allow clients to efficiently utilize available network resources, at
the same time being robust to throughput fluctuations. Consequently, we study approaches to model
the prediction error and to estimate it for individual streaming sessions. We demonstrate that the
overestimation error is extremely well represented by the Lomax distribution [22] on all considered
timescales. The underestimation error is best represented by a truncated normal distribution except
for the timescale of 1 second, where the truncated logistic distribution results in a slightly better
Kolmogorov-Smirnov distance [16] between the empirical and the theoretical Cumulative Distribu-
tion Function (CDF). In addition, we find out that although underestimations and overestimations are
balanced over the total duration of individual traces, they exhibit a strong temporal correlation that
can be used to further improve prediction accuracy.

Armed with these insights we develop a novel adaptation algorithm for live streaming, which takes
into account throughput predictions and an estimation of the relative prediction error, in order to max-
imize the defined QoE-related utility function. We evaluate the developed algorithm using collected
throughput traces and show that it outperforms the baseline approach which uses a fixed margin.

In the following, Chapter 2 presents related work, Chapter 3 describes our system model, Chapter 4
details collected throughput traces, Chapter 5 studies throughput predictability and prediction accu-
racy, Chapter 6 presents the developed adaptation algorithm, Chapter 7 evaluates its performance, and
Chapter 8 concludes the paper.
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Chapter 2

Related work

There is a lack of studies systematically investigating approaches for TCP throughput prediction on
short to medium timescales and evaluating their prediction accuracy. Consequently, only few works
present adaptation algorithms that explicitly take into account throughput predictions. A common ap-
proach followed by many adaptive streaming clients is to use throughput averaged over a number of
past measurements and one or multiple fixed safety margins to make adaptation decisions [30, 21, 27].
Other approaches leverage bandwidth probing techniques to obtain an estimation of network through-
put [31], which, however, require support from the network infrastructure, server instrumentation,
and/or modifying lower protocol layers.

Similar in spirit to our work is the rationale behind the adaptation algorithm proposed by Liu
and Lee [29]. In contrast to their work, however, we first study statistical properties of prediction
errors, which allows us to design an adaptation algorithm that uses a parametric approach, fitting the
CDF of the prediction error to a distribution type determined during the preceding study. Proceeding
this way requires significantly less data which allows the algorithm to operate without a database
of measurements collected in the same environment. In addition, we separately model prediction
errors on different timescales from 1 to 10 seconds. Moreover, we separately model underestimation
and overestimation errors, which have quite different distributions, and their temporal correlation,
which allows us to further improve prediction accuracy. Finally, instead of enforcing a minimum
time between video quality adaptations, we are maximizing a utility function that includes a quality
fluctuations related term, which is a more flexible approach, better suitable for live streaming, and
allowing for a higher resource utilization.

Yin et al. [45] study the effect of prediction errors on performance of three adaptation approaches,
buffer based, rate based, and Model Predictive Control (MPC). The study is using synthetic through-
put traces and, due to the lack of literature on the subject, assumes that the prediction error has a
normal distribution. In our study, we try to close this gap by evaluating several prediction methods
and modeling the achievable prediction error on different timescales. Further, we develop an adapta-
tion algorithm which takes into account the buffer level, throughput predictions on several timescales,
and dynamically estimated prediction accuracy, and which specifically targets live streaming.

Tian and Liu [43] propose a prediction-based adaptation algorithm, where the media bit rate is
selected to equal predicted throughput times dynamically varying adjustment factor. In contrast to
this work, we predict throughput separately on different timescales, dynamically estimate prediction
accuracy, and leverage temporal correlation of underestimations and overestimations. In addition,
we select a video representation by maximizing a QoE-based utility function, depending on buffer
underrun probability, video quality and video quality fluctuations.

Wang et al. [44] argue that for best performance, the mean media bit rate of streamed video should
be roughly half the available network throughput. In our work we study throughput prediction ac-
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curacy in different environments, which enables us to develop an algorithm that dynamically tunes
the margin between selected media bit rate and predicted throughput based on the buffer level and
estimated prediction accuracy.

Jarnikov et al. [20] propose an adaptation algorithm based on a Markov decision process. With this
approach, an optimal strategy is calculated offline for a given throughput distribution. We argue that
assuming a fixed distribution, and neglecting temporal correlations, does not properly account for the
variability of throughput dynamics in different environments.

Further improvement of an algorithm such as the one proposed in this work can potentially be
achieved by complementing it with a data-driven, potentially location-based, approach operating as
an outer loop on a macroscopic level [28, 36, 15].

A important research topic is QoE for adaptive video streaming [11, 37, 35, 40]. Rebuffering, initial
delay, and quality fluctuations are factors that have not been part of traditional QoE metrics for video,
but that have a tremendous impact on user’s perception of adaptive video streamed over a best-effort
network, such as the Internet. User engagement is another important metric, which is especially of
interest for content providers since it is directly related to advertising-based revenue schemes [12, 7].
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Chapter 3

System model and notation

In the considered scenario a HAS client is live-streaming an event. The event to be streamed shall start
at t = 0. The stream is partitioned into segments. We denote the duration of video content contained
in one segment by τ . In order to simplify the presentation, we assume that all segments have equal
duration. We use index i ∈ {1,2, . . . ,n} to indicate a particular segment in a stream.

Segment i shall contain video material covering the time period [iτ, (i+1)τ], and become available
for download at time (i+ 1)τ . We assume that a segment must be completely downloaded prior to
being processed by the client, and that the processing time at the client (that is, demultiplexing and
decoding) is equal to 0, that is, the playback of a segment can start immediately after it has been com-
pletely downloaded. We argue that these fixed delays can be omitted without loss of generality. Using
fixed non-zero delays would not affect the results but would make the notation more cumbersome.

Each segment is available in several representations. We denote the set of available representations
by R, indexed by j ∈ {1,2, . . . ,m}, with m = |R|. W.l.o.g., R shall contain only representations
feasible for the considered user. (A representation might be infeasible if its playback requires features
not supported by the user or if its properties are excluded by configuration.)

We denote by si j the size in bits, and by r̄i j = si j/τ the Mean Media Bit Rate (MMBR) of segment i
from representation j. We denote by r̄ j = 1/n∑

n
i=1 r̄i j the MMBR of representation j. If the represen-

tation of a segment is clear from the context, we might omit index j. Thus, si might, e.g., denote the
size of a downloaded segment i, from the representation that was used to download it. Consequently,
r̄i = si/τ then denotes the MMBR of segment i.

We use the following real-valued variables to denote continuous time in seconds. tr
i denotes the

time when the request to download segment i is sent by the user (at tr
i , the client either just finished

downloading the previous segment i−1, or segment i just became available at the server). tc
i denotes

the time when the last bit of segment i is received by the user. t p
i denotes the time when the playback

of segment i is started. See Figure 3.1 for an illustration.
We denote the maximum playback delay by ∆

p
max ≥ 2τ , that is, playback of segment i must not start

later than iτ +∆
p
max. The lower bound of 2τ stems from the fact that a segment can only be published

τ seconds after its start, and that it takes, on average, up to further τ seconds to download it. Typical
values for ∆

p
max are assumed to be around 2 to 10 seconds. The actual playback delay, ∆p ∈

[
2τ, ∆

p
max
]
,

is determined by the initial delay during the start of the streaming session and can be readjusted during
each rebuffering event. The start of playback of segment i is thus given by t p

i = iτ +∆p. The value
of ∆p determines the maximum attainable buffer level, given by ∆p− τ , and thus determines client’s
sensitivity to throughput fluctuations and potential link outages. A client might dynamically tune ∆p

based on estimated throughput and link outage statistics. We leave that for future work and assume
∆p = ∆

p
max, maximizing the attainable buffer level, defined by

β (t) = max
{

t p
i | t

c
i ≤ t

}
+ τ− t ,
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Figure 3.1: Illustration of client and server (event) timelines.

which is the time until all segments downloaded until time t are played back, see Figure 3.1.
We denote by ρ (t1, t2) the mean application layer throughput in the time interval [t1, t2], that is, the

number of bits received by the application from the TCP layer during this time interval, divided by
t2− t1.
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Chapter 4

TCP throughput traces

For our study of TCP throughput prediction, as well as for performance evaluation of the devel-
oped adaptation algorithm, we recorded TCP throughput traces in IEEE 802.11bg networks at differ-
ent locations throughout Berlin, Germany, including public hotspots (indoor and outdoor), campus
hotspots, and access points in residential environments. The duration of the traces varies between
1500 and 1800 seconds each. The traces were collected using Lenovo ThinkPad L430 and T420
laptops, running Ubuntu 13.04 and Ubuntu 14.04 operating systems, with default Media Access Con-
trol (MAC) and TCP configurations.

From the set of collected traces we selected 10 that have a mean application-layer throughput
between few hundreds of kilobit and few megabit per second. This throughput does not allow the
client to select highest video representation, which we assume to be High-Definition (HD) video with
an MMBR around 4 to 7 Mbps [23, 42]. In addition, the selected traces exhibit high throughput
fluctuations that make low-delay live streaming particularly challenging.

From the traces, we generated time series containing incoming packets statistics, computed over
sliding time intervals of 1 s to 10 s duration, shifted with a step size of 1 s. In addition to throughput
statistics, our traces contain internal TCP and internal MAC information. The latter have been col-
lected by putting the network interface into monitor mode and using radiotap headers [1]. TCP infor-
mation includes delay jitter statistics and statistics of outstanding bytes. MAC information includes
number of own frames received, number of other frames received, modulation scheme statistics,
Signal Strength Indicator (SSI) statistics, and retransmission statistics.

To give a rough idea about properties of individual traces, Figure 4.1 presents basic throughput
statistics. It shows median throughput, CV, auto-correlation at lag 1, and auto-correlation after differ-
encing, at lag 1. Lag 1 means here that the lag equals the size of the averaging interval. The values are
presented as Empirical Cumulative Distribution Functions (ECDF’s), where each point in the graph
corresponds to one trace. All traces can be downloaded from http://ns.tkn.tu-berlin.
de/miller/. The software used to collect and process the data can be handed out upon request.
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Figure 4.1: Application layer throughput statistics: median of the throughput, CV, auto-correlation
at lag 1, and auto-correlation, after differencing, at lag 1. Lag 1 means here that the lag
equals the size of the sampling interval.
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Chapter 5

Short-Term TCP throughput prediction

In this chapter, we present results on TCP throughput prediction for timescales from 1 to 10 seconds.
Section 5.1 describes a selection of studied time series prediction methods, Section 5.2 presents evalu-
ation results for three simple methods: SMA, linear extrapolation, and double exponential smoothing
(Holt-Winters), and Section 5.3 presents modeling of the relative prediction error.

5.1 Prediction methods

We evaluated a number of time series prediction techniques, including SMA, linear extrapolation,
Cubic Smoothing Splines (CSS), several flavors of exponential and double exponential smoothing,
Autoregressive Integrated Moving Average (ARIMA), machine learning based methods, etc. A
selection of studied methods is briefly described in the following. We abbreviate the methods by
〈type〉:〈n〉:〈parameters〉, where 〈type〉 is the name of the method, n is the number of past measure-
ments used as input, and 〈parameters〉 include further optional configuration parameters.

5.1.1 Simple moving average

SMA is probably the most simple prediction method imaginable. The predicted value is the average
over a number of past measurements. The configuration parameters are: the number of past measure-
ments, and the type of used mean value: arithmetic, geometric, or harmonic. In the following, we
abbreviate this method with SMA:〈n〉:〈mean type〉, where n≥ 1 is the number of past measurements
and type is one of {ar,gm,hm}. SMA:2:ar, e.g., means that the predicted value is the arithmetic mean
from two past measurements. In particular, we denote the naïve approach of using the most recent
measurement as predicted value with SMA:1:ar.

5.1.2 Simple exponential smoothing

With Simple Exponential Smoothing (SES), the predicted value is computed by averaging the past
measurements, exponentially decreasing weights of older measurements. For given past measure-
ments x1, . . . ,xn, the predicted value is computed as xn+1 = an, with

a1 = x1

ak = αxk +(1−α)an−1 .
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Besides the number of past measurements, it has a configuration parameter α ∈ [0,1]. We tune α for
each prediction by minimizing the Mean Squared Error (MSE) within past measurements, given by

1
n−1

n

∑
k=2

(xk−ak−1)
2 .

We abbreviate SES with SES:〈n〉:mse, where n ≥ 2 is the number of past measurements, and "mse"
indicates the approach used to tune α .

5.1.3 Linear extrapolation

Linear extrapolation is another straightforward prediction method that differs from SMA in that it
takes into account the linear trend from past measurements. More specifically, linear extrapolation
fits a linear curve into the set of given past measurements, minimizing the mean square error, and
computes the prediction from extrapolating the curve to the prediction horizon. It thus requires at least
two past measurements to compute a prediction. We abbreviate linear extrapolation with LinExt:〈n〉,
where n≥ 2 is the number of past measurements.

5.1.4 Double exponential smoothing

Similar to linear extrapolation, double exponential smoothing tries to account for the trend in the data,
however, it assumes that most recent measurements have a higher significance for the prediction, and
assigns older measurements exponentially decreasing weights. In the following, we use a variant of
the method, sometimes called Holt-Winters double exponential smoothing. With Holt-Winters, for
given past measurements x1, . . . ,xn, the prediction is computed as an+bn, where an, bn are computed
by the following recursive procedure.

a2 = x2

b2 = x2− x1

ak = αxk +(1−α)(ak−1 +bk−1) , for k > 2

bk = β (ak−ak−1)+(1−β )bk−1 , for k > 2 .

The Holt-Winters method has configuration parameters α and β that dramatically influence the
prediction quality and thus have to be carefully tuned. In our work we tune them for each prediction
by minimizing the MSE within past measurements, which is given by

1
n−2

n

∑
k=3

(xk− (ak−1 +bk−1))
2 .

Thus, this method requires at least three past values for the prediction. As abbreviation we use
HW:〈n〉:mse, where n≥ 3 is the number of last values, and "mse" indicates the approach used to tune
α and β .

5.1.5 Cubic smoothing splines

CSS model provides both smooth historical trend and a linear prediction function. The method uses
a likelihood approach to estimate the smoothing parameter. It is based on finding piecewise cubic
polynomials that are joined at the equally spaced time series points. [19]
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5.1.6 Locally Weighted Scatterplot Smoothing (LOESS)

LOESS is a non-parametric regression method that tries to build a model describing the deterministic
part of the variation in the data by incrementally fitting localized subsets of the data using simple
regression models.

5.1.7 Autoregressive model

Autoregression model predicts the variable of interest by using a linear combination of past measure-
ments, plus white noise. For past measurements x1, . . . ,xn, the prediction of an autoregressive model
of order p can be written as:

xn+1 = c+
n

∑
i=1

αixi +ωn ,

where c is a constant and ωn denotes white noise. The order p is selected by optimizing the Akaike
Information Criterion (AIC).

5.1.8 Autoregressive Integrated Moving Average (ARIMA)

ARIMA is a combination of autoregressive and moving average models, with the ability to use a
differenced or integrated representation of the time series. In our study, we were using a statistical
method proposed in [18] that uses a combination of unit root test, minimization of the AIC and
Maximum Likelihood Estimation (MLE) to reach an optimized ARIMA model.

5.2 Evaluation of prediction accuracy

In order to evaluate the prediction accuracy, we use relative prediction error as metric, which we
define as follows

ε (t1, t2) =
|max(ρ̂ (t1, t2) , ρmin)−max(ρ (t1, t2) , ρmin)|

max(ρ (t1, t2) , ρmin)
, (5.1)

where ρ̂ (t1, t2) is a throughput prediction for the time interval [t1, t2]. The maximum operator is
necessary to avoid a distortion of results whenever ρ ≈ 0 or ρ̂ ≤ 0. We set ρmin = 10 kbps.

We separately evaluate the overestimation and the underestimation error, due to the different error
ranges of (0,∞) and (0,1], respectively, and due to their different impact on the streaming client. An
overestimation increases the risk of missing a playback deadline, resulting in a playback interruption,
which has the strongest impact on QoE. An underestimation decreases the risk of interruptions but
at the same time also reduces the media bit rate. In all studied traces, the relative frequency of
underestimation and overestimation was close to 50% (see Section 5.4 for more details).

We made the, somewhat unexpected, observation that the increasing complexity of prediction meth-
ods such as ARIMA or machine learning based approaches does not improve prediction accuracy.
Our conclusion was that accounting for the trend in the data does not help decreasing the predic-
tion error. A potential explanation might be the negative auto-correlation of throughput time series
after differencing, depicted in Figure 4.1. In particular, we observed that the median of the relative
overestimation error of all studied methods is strictly greater than that of SMA:1:ar. Therefore, in

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-15-001 Page 16

This TR is updated by TR TKN-16-001, available at http://arxiv.org/abs/1603.00859



TU BERLIN

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
al

 C
D

F
U

n
d
er

es
ti
m

at
io

n
SMA:1:ar SMA:2:ar SMA:5:ar SMA:10:ar

0 0.2 0.4 0.6 0.8 1
Rel. prediction error

Sampling interval: 2 s

0.0

0.2

0.4

0.6

0.8

1.0

E
m

p
ir

ic
al

 C
D

F
O

v
er

es
ti
m

at
io

n

0 0.2 0.4 0.6 0.8 1
Rel. prediction error

Sampling interval: 5 s

0 0.2 0.4 0.6 0.8 1
Rel. prediction error

Sampling interval: 10 s

Figure 5.1: Relative prediction error for SMA on different timescales. (Higher values indicate higher
prediction accuracy.) See Section 5.2 for details.

the following, we present results focusing on three simple methods: SMA, linear extrapolation, and
double exponential smoothing (Holt-Winters).

In the first step, we use for evaluation the complete set of measurements from all collected traces.
The results are shown in Figures 5.1, 5.2, and 5.3. Figure 5.1 compares SMA using different numbers
of past measurements, computed from non-overlapping time intervals. We observe that the overesti-
mation error is smallest for SMA with only one past measurement, while the underestimation error
improves when using more measurements. Consequently, in the following, we use SMA:1 as refer-
ence for the overestimation error and SMA:10 for the underestimation error. Figure 5.2 compares
linear extrapolation with the respective reference method. We observe that two past measurements
provide worst results, improving with the increasing number of past measurements but always remain-
ing below the performance of SMA. Finally, Figure 5.3 compares Holt-Winters with SMA. Here, we
observe the same situation as with linear extrapolation. It is also worth noting that Holt-Winters has
a much higher computational complexity due to the optimization involved in tuning its configuration
parameters for every new prediction.

Figure 5.4 shows results for individual traces. In order to present them in a compact way, this figure
shows for each trace only three selected points of the ECDF, the fraction of measurements resulting
in a relative error smaller than 0.2, 0.5, and 1.0, respectively. Each point on a subfigure corresponds
to an individual trace so that the figures can be interpreted as ECDF’s over individual traces (where
smaller values indicate higher prediction accuracy). The first two rows show results for a timescale
of 2 seconds. The third and fourth rows for 5 seconds. The last two rows for 10 seconds. The first
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Figure 5.2: Relative prediction error for linear extrapolation on different timescales. (Higher values
indicate higher prediction accuracy.) See Section 5.2 for details.

column shows for each trace the fraction of measurements with a relative error below 0.2, the second
column below 0.5, and the last column below 1.0. The three missing subfigures are omitted since the
relative error in the case of underestimation never exceeds 1.0. To give an example, each point in the
subfigure in the top row first column shows the fraction of underestimations in a particular trace with
a relative error of less than 0.2. We observe that the per-trace comparison of prediction accuracy still
indicates that in all cases, SMA performs better than the more sophisticated methods.

From Figures 5.1, 5.2, 5.3, and 5.4 we observe that with the reference method, a significant number
of predictions result in a relatively small prediction error of below 20%. For example, in some traces,
even on the timescale of 10 seconds, approximately 80% of predictions have an error smaller than
20%, while almost 100% of predictions have an error smaller than 50%. A relative error of this
magnitude could, in principle, be accounted for by a fixed safety margin, that is, by always selecting a
media bit rate which is by 20% smaller than the predicted throughput. There are, however, also "bad"
traces, where more than 40% of overestimated predictions have a relative error of greater than 50%,
while more than 20% of predictions still have an error greater than 100%, with even higher values for
the timescale of 2 seconds.

Setting a high fixed safety margin to account for "bad" traces would result in significant under-
utilization of network resources, lower media bit rate and thus lower QoE in the "well-behaving"
traces, while selecting a low fixed safety margin would increase the total re-buffering time in the
"bad" traces, which, again, has a dramatic impact on QoE. Therefore, in the following section, we
focus our attention on approaches to modeling and estimating the prediction error.
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Figure 5.3: Relative prediction error for double exponential smoothing (Holt-Winters) on different
timescales. (Higher values indicate higher prediction accuracy.) See Section 5.2 for
details.

5.3 Error modeling

In order to be able to use throughput predictions for adaptation decisions in the most efficient way,
we turn out attention to modeling and estimating the relative prediction error. The approach we
follow is to determine, which type of distributions fits well the ECDF of the prediction error. The
developed adaptation algorithm for HALS, presented in Chapter 6 leverages the obtained results and
estimates the parameters of this distribution for individual streaming sessions, or repeatedly through-
out a streaming session.

We use the following distributions: exponential, normal, logistic, and Lomax (shifted Pareto) [22].
For the underestimation error, distributions are truncated to the range [0,1], for the overestimation
error to the range [0,∞). The CDF Ftr(·) of a distribution truncated to [a, b] is obtained from the
original CDF F(·) as

Ftr(x) =
F(x)−F(a)
F(b)−F(a)

, x ∈ [a, b] .

We fit a distribution to the data by minimizing the squared distance (L2-norm) between its CDF
and the truncated ECDF. The ECDF is truncated in order to make the fit more precise in the range
which is relevant for adaptive streaming clients. The ECDF of the overestimation error is truncated to
the range [0.1,2.0], in the case of underestimation to the range [0.1,1.0]. Afterwards, Kolmogorov-
Smirnov test is used to verify the goodness of fit [16].
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Figure 5.4: Quantiles of the relative prediction error for different prediction methods in individual
traces. See Section 5.2 for details.
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Figure 5.5: Fitting distributions for relative prediction errors. See Section 5.3 for details.

The results are shown in Figure 5.5. The CDF’s are fitted to ECDF’s over the joined set of mea-
surements from all traces. It turns out that the overestimation error is extremely well represented by a
Lomax distribution. The underestimation error is best represented by a truncated normal distribution
except for the sampling interval of 1 second, where the truncated logistic distribution has a slightly
better Kolmogorov-Smirnov distance. These findings are consistent with those obtained by fitting the
prediction errors from individual traces, which are omitted here.

5.4 Underestimation and overestimation probabilities

Since underestimation and overestimation errors have different ranges, [0, 1], and [0, ∞), and due to
their different impact on the operation of a streaming client, we separately study the probabilities
for underestimation and overestimation occurrence. In the following, we limit our presentation to
SMA:1:ar.

In particular, we observed that in all studied traces the probability for occurrences of underestima-
tions and overestimation are extremely well balanced on all timescales. Both occur in approximately
50%± 2% of predictions in a trace. However, it turns out that they exhibit significant temporal cor-
relation. In particular, their conditional probabilities, if we take into account the nature of the last
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Figure 5.6: Conditional probability ranges (over traces) for underestimations (overestimations), given
that previous prediction was an underestimation (overestimation).

prediction error, are, in most cases, significantly below 50%. In particular, the probability to en-
counter two underestimations or two overestimations in a row goes down to as low as 30% for some
traces on some timescales. This observation is directly related to the distinct negative correlation of
the throughput process after differencing, depicted in Figure 4.1. It, once again, highlights the strong
variability of the throughput process on different timescales.

To provide an illustration, Figure 5.6 shows conditional probabilities for underestimation (overes-
timation), given that the previous prediction was an underestimation (overestimation) as well. The
figure shows maximum and minimum values over all traces. We will make use of this result when
computing rebuffering probabilities for video quality adaptation, presented in Section 6.
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Chapter 6

Prediction-based video adaptation

In this chapter, we present our design of a novel prediction-based adaptation algorithm for live stream-
ing that takes into account throughput predictions on different timescales, along with an estimation of
prediction accuracy, and heuristically maximizes a QoE-based utility function defined in the follow-
ing.

6.1 General idea

Our idea is, prior to each segment download, to compare potential future adaptation trajectories and
to select the one that maximizes QoE. In order to evaluate QoE of an adaptation trajectory, we define
a utility function depending on three factors that we call subutilities: (i) probability that a segment
misses its playback deadline and thus the streaming session enters a rebuffering period, (ii) the dis-
tortion of video, evaluated by means of PSNR, and (iii) the number and amplitude of representation
changes. The utility is computed from individual subutilities based on results on their relative impor-
tance, available in the literature. In particular, rebuffering subutility appears as a multiplicative factor
and plays the role of an upper bound on the total utility, reflecting its strong impact on QoE. The other
factor is a weighted sum of subutilities representing distortion and quality fluctuations that allows to
resolve their trade-off in a configurable way. In order to compute the defined utility, in particular,
the probability that a segment misses its playback deadline, we use the results of our study of TCP
throughput predictability from Chapter 5.

As defined in Chapter 3, the download of segment i starts at tr
i and has to be completed until t p

i > tr
i .

At tr
i , the client either just finished downloading the previous segment i−1, or segment i just became

available at the server. Now, the client has to select a representation j ∈ {1, . . . , |R|} for segment i.
Parallel to downloading segments, every second, the client is recomputing throughput predic-

tions for the following 1,2, . . . ,Tmax seconds. We denote by tπ
i ≤ tr

i the most recent time when
predictions were computed. That is, predictions are available for time intervals [tπ

i , tπ
i +T ], with

T ∈ {1,2, . . . ,Tmax}. Assume that l ≥ i is the segment with the latest playback deadline that is still
within the prediction horizon, that is, l = min

{
l′ ≥ i | t p

l′ ≤ tπ
i +Tmax

}
.

Let Til = (si, . . . ,sl) denote a vector of segment sizes, representing an adaptation trajectory, and
Til the set of possible adaptation trajectories Til . We define the utility of a trajectory as a function of
three subutilities, corresponding to estimated rebuffering probability, video quality, and video quality
fluctuations, respectively:

U(Til) =URB(Til) · (αQ ·UQ(Til)+(1−αQ) ·UQF(Til)) ,

where αQ ∈ [0, 1] is a configuration parameter, determining the relative weighting of overall mean
video signal quality versus quality fluctuations. The codomains of the subutilities, and thus of the
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utility, is the continuous interval [0,1]. The multiplicative nature of rebuffering subutility reflects
its strong impact on QoE, especially for live streaming. According to a large-scale study of user
engagement (time before the user quits a streaming session), it is always better to drop video quality
than to let the streaming stall [7].

Let T ∗
il ∈ Til be the adaptation trajectory that maximizes U(·). Once identified, the client down-

loads segment i from the representation it has in T ∗
il . Note that the representations for segments i′ > i

might later be selected differently than in T ∗
il . The reason that the optimization still has to be per-

formed over Til and not over Tii is that otherwise the state of the client after downloading segment i
would not be part of the optimization. In this case, a client might, e.g., choose to change to a higher
quality even though chances are high that he will have to switch back for subsequent segments. The
computation of individual subutilities is explained in the following sections.

6.2 Rebuffering subutility

The rebuffering subutility is a function of the probability that any segment in the given adaptation
trajectory will miss its playback deadline. It attains 1 if the probability is 0, and decreases exponen-
tially, at a configurable rate, until it attains 0 when the rebuffering probability reaches 1. In order
to compute the rebuffering probability, we leverage TCP throughput predictions over a time horizon
of up to 10 seconds. Further, we use an estimation of probability that the next prediction will result
in an underestimation or overestimation. Finally, we use an estimation of the CDF of the relative
underestimation and relative overestimation error from a configurable amount of past predictions.

We denote by ρ̂ik = ρ̂ (tπ
i , tπ

i +T ) the predicted throughput for the smallest interval [tπ
i , tπ

i +T ],
T ∈ {1,2, . . . ,Tmax}, that contains

[
tr
i , t p

k

]
, for a k ∈ {i, . . . , l}. The corresponding measured through-

put shall be denoted by ρik. εik = ε (tπ
i , tπ

i +T ) shall denote the relative prediction error for ρ̂ik, as
defined in (5.1). Further, we denote by Φu

ik (εik) and Φo
ik (εik) the estimated CDF of the underesti-

mation and overestimation errors for ρ̂ik, respectively, computed at tπ
i . The type of distribution shall

be selected based on results from Chapter 5, while distribution parameters are estimated for each
streaming session individually by minimizing the squared distance between the CDF of the selected
distribution and ECDF of prediction errors collected over past αcdf ·T seconds, as described in more
details in Chapter 5. Pu

ik ∈ [0,1] shall denote the probability of underestimation, that is P [ρ̂ik < ρik],
estimated over past αcdf ·T seconds, as described in Section 5.4. αcdf is a configuration parameters,
determining the amount of past measurements used to estimate error distributions and underestima-
tion/overestimation probabilities.

To simplify notation, similar to (5.1), we shall define

ε̃ik =
max(ρ̂ik,ρmin)−max(ρik,ρmin)

max(ρik,ρmin)
,

which is the relative prediction error without taking the absolute value, that is, ε̃ik ∈ (−1,∞). The
CDF for ε̃ik is then given by

Φik (ε̃ik) =

{
Pu

ik ·Φu
ik (|ε̃ik|) for ε̃ik < 0

Pu
ik +

(
1−Pu

ik

)
·Φo

ik (|ε̃ik|) otherwise .

The probability that a segment l′ ∈ {i, . . . , l} in Til will miss its playback deadline can now be
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estimated by

P

[
∑

l′
i′=i si′

t p
l′ − tr

i
≤ ρ̂il′

1+ εil′

]
= Φil′

(
ρ̂il′
(
t p
l′ − tr

i
)

∑
l′
i=1 si

−1

)
.

Then, the probability that any segment in Til will miss its playback deadline and thus a rebuffering
will occur can be estimated by

PRB (Til) = 1−
l

∑
l′=i

Φil′

(
ρ̂il′
(
t p
l′ − tr

i
)

∑
l′
i′=i si′

−1

)
.

We define the rebuffering subutility to be exponentially decreasing in the probability for a segment
to miss its playback deadline:

URB (Til) =
eαRBPRB(Til)− eαRB

1− eαRB
,

which is the exponential function shifted and rescaled to pass through (0,1) and (1,0). Configuration
parameter αRB < 0 can be used to tune the slope of the function. For αRB→ 0, the function converges
to the linear function f (x) = 1− x. For αRB→−∞, the function converges to

f (x) =

{
1 if x = 0
0 otherwise .

6.3 Video quality subutility

In order to quantify the video quality of a given adaptation trajectory, we evaluate its PSNR and map
it linearly to the interval [0, 1]. Although PSNR does not adequately represent QoE, it can serve as an
indicator of the distortion due to the compression applied to create a representation. The PSNR of the
representation with lowest quality is mapped to 0, while the PSNR of the representation with highest
quality is mapped to 1.

Let {γ1, . . . ,γm} be the PSNR values of the representations in R. The video quality subutility of
segment si j from representation j shall be defined as

UQ (si j) =
γ j− γ1

γm− γ1
.

The video quality subutility of an adaptation trajectory shall be defined as mean video quality subu-
tility computed over representations of individual segments

UQ (Til) =
1

l− i+1

l

∑
l′=i

UQ (sl′) .

6.4 Quality fluctuations subutility

We define the quality fluctuations subutility as one minus mean change in video quality between
subsequent segments of an adaptation trajectory. In order to compute the quality fluctuations subutility
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for a trajectory Til = (si, . . . ,sl), we construct an auxiliary trajectory T̃il = (s̃i, . . . , s̃l), where s̃i′ is the
segment size of segment i′ if it would have been selected from the same representation as segment
i′−1 in trajectory Til . That is, segment si′−1 and segment s̃i′ are always from the same representation.
With this auxiliary trajectory, quality fluctuations subutility can be expressed as

UQF (Til) = 1− 1
l− i+1

l

∑
l′=i
|UQ (sl′)−UQ (s̃l′)| .

6.5 Tuning into the stream

When the client is about to join a live stream, he has to decide with which segment to start the
download, which quality to select for the first segment, and when to display it to the user. The decision
influences QoE in several ways. It impacts the initial delay, the maximum buffer level attainable
during the streaming session (see Section 3 for details), and the initial video quality. Moreover, the
choice is restricted by the maximum delay constraint that we assume is defined by the service provider
or by the client profile.

In the presented approach, our solution is to maximize the attainable buffer level to increase ro-
bustness against throughput fluctuations that might lead to rebuffering. Since live streaming requires
a relatively low maximum delay, its sensitivity to throughput fluctuations is particularly high. In
addition, rebuffering was shown to have dramatic impact on QoE.

We maximize the attainable buffer level by presenting the first segment to the user when its max-
imum playback deadline is reached, in opposite to displaying it immediately after it is downloaded.
This creates a moderate initial delay, which was shown to be preferred by viewers to rebuffering. In
addition, we download the first segment in lowest quality, in order to avoid the situation where it
misses its playback deadline and has to be skipped, unnecessarily increasing the initial delay. Due to
the typically small duration of individual segments, we assume that it has negligible impact on QoE.

Assume that t is the time when a user tunes into a live stream. We select the first segment i0 to be
downloaded as the oldest available segment whose playback deadline is at least τ seconds into the
future, at lowest quality:

i0 = min
{

i≥ 0 | (i+1)τ ≤ t ∧ t p
i ≥ t + τ

}
. (6.1)

The intuition behind that is that it is reasonable to assume that the available network resources should
at least support the download of a segment in lowest quality in less time than the segment duration.

Upon completing the download, the client waits until t p
i0 = i0τ +∆p, before presenting it to the user,

in order to maximize the attainable buffer level, as described in Chapter 3. If the first segment can be
downloaded before its playback deadline, as expected, the start-up delay will thus lie in the interval
[τ, ∆p− τ], which can be seen by transforming (6.1), using t p

i = iτ +∆p.

6.6 Missing playback deadlines

Whenever a segment cannot be downloaded before its playback deadline, its download is canceled,
and a tune-in procedure, described in Section 6.5 is initiated.
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Chapter 7

Adaptive streaming client evaluation

In this section, we present the results of the evaluation of the proposed adaptation method based on
simulations using throughput traces described in Section 4. Its performance is compared to the base-
line approach using a fixed margin between past average throughput and the MMBR of the selected
representation. It is further compared to the performance of an approach that has perfect knowledge
of future throughput for a limited time horizon.

We use the following performance metrics: fraction of skipped segments, mean video quality subu-
tility, and mean quality fluctuations subutility, computed over individual streaming sessions, lasting
for the duration of individual traces. The videos for the evaluation are taken from the dataset pro-
vided by Lederer et al. [24]. The segment duration equals 2 seconds. For each video, we are using 10
representations, with MMBR’s ranging from 100 to 4200 kbps.

Some of the traces contain short periods when the throughput falls below the lowest available
segment MMBR, so that a certain fraction of segments inevitably has to be skipped, independent
of the deployed adaptation strategy. In order to compute this fraction, we simulate an adaptation
algorithm that always selects the lowest representation, leading to a video quality subutility of 0 and a
quality fluctuations subutility of 1. In the following, when we present the fraction of skipped segments
for a simulation run, we always subtract the fraction of such "unplayable" segments.

The performance of the developed approach is compared to a baseline approach that uses a fixed
margin between past average throughput and the MMBR of the selected representation. The margin
is varied between 0.7 and 0.9. Effectively, this means that the baseline approach uses SMA:1:ar to
predict throughput, assumes that the prediction is always an overestimate, and that the relative error
is fixed.

We also compare to an oracle-based approach which has full knowledge about future throughput
for a horizon of 10 seconds, and which selects for the next segment the highest representation that
does not result in rebuffering within this time horizon.

We set the maximum playback delay to ∆
p
max = 5 seconds, which corresponds to a maximum trans-

mission delay of ∆
p
max− τ = 3 seconds, that is, 1.5 times the segment duration. Theoretically it is

possible to further reduce the maximum transmission delay to equal segment duration, which, how-
ever, we consider infeasible since it would dramatically increase system’s sensitivity to throughput
fluctuations.

We set αcdf = 60. That is, the error for a prediction 2 seconds into the future is computed by
estimating CDF parameters from past 2αcdf = 120 seconds. We set αRB = −200, which results in a
steeply decreasing rebuffering subutility, since we define it our highest priority to avoid rebuffering,
potentially sacrificing video quality and taking into account quality fluctuations.

Finally, we set αQ = 0.6, giving quality subutility a slightly higher weight for the overall utility,
than the quality fluctuations subutility.
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Figure 7.1: Evaluation results: fraction of skipped segments (reduced by "unplayable" segments),
video quality subutility, and quality fluctuations subutility. Vertical lines display confi-
dence intervals for a confidence level of 0.9.

The results of the evaluation are depicted in Figure 7.1. With the proposed algorithm, the mean frac-
tion of skipped segments, without "unplayable" segments, is measured at approximately 10−4. This
means that on average, a segment that could be played if perfect knowledge about future through-
put would be available is skipped every half an hour. Recall that our highest priority is to keep the
rebuffering rate as low as possible. The study in [7], e.g., suggests that live stream viewers can
be extremely sensitive to rebuffering and might quit a streaming session after experiencing a single
rebuffering event after a long time of uninterrupted viewing.

The mean quality subutility amounts to approximately one third of what is achieved given perfect
knowledge about future throughput. The remaining two thirds constitute the inevitable tribute to the
uncertainty of future throughput dynamics. Considering quality fluctuations, the proposed algorithm
even achieves a higher subutility than the oracle approach.

We observe that in order to achieve a comparably small fraction of skipped segments using the
fixed margin approach, a margin strictly greater than 0.9 is required (for exactly 0.9 the value is
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still slightly higher). At the same time, however, such a high margin results in significantly lower
mean video quality and higher quality fluctuations. Further decreasing the margin downgrades the
performance even more, leading to a fraction of skipped segments that is one order of magnitude
higher.

Finally, we remark that in the present study we focused on network conditions with extremely high
throughput fluctuations. Using the fixed margin approach on a link with moderate or low throughput
fluctuations would further decrease resource utilization and thus further downgrade the performance.
In the extreme case, if the throughput is constant, a fixed margin x leads to a resource utilization
of 1− x. In contrast, since our algorithm dynamically estimates the relative prediction error, with
constant throughput it is able to achieve a utilization close to 1. Thus, one of the strengths of the
proposed method lies in its ability to perform equally well in very different network environments.
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Chapter 8

Conclusion

In the presented study, we proposed an adaptation algorithm for HALS. It is based on the idea to
compare potential future adaptation trajectories and to select the one maximizing QoE. QoE is eval-
uated based on a utility function depending on (i) the probability that a segment misses its playback
deadline, (ii) the distortion of the video, and (iii) the number and amplitude of representation changes.

In order to compute the defined utility, in particular, the probability that a segment misses its play-
back deadline, we studied predictability of TCP throughput in wireless networks over timescales
from 1 to 10 seconds. We evaluated different time series prediction methods using varying numbers
of past throughput measurements. We demonstrated that the most naïve method, SMA, outperforms
more sophisticated methods on all timescales, independent of the specific throughput dynamics. We
further observed that prediction accuracy strongly varies across studied traces. Consequently, we
studied approaches to model the prediction error and to estimate it for individual streaming sessions.
We demonstrated that the overestimation error is extremely well represented by the Lomax distribu-
tion [22] on all considered timescales. The underestimation error is best represented by a truncated
normal distribution except for the timescale of 1 second, where the truncated logistic distribution
results in a slightly better Kolmogorov-Smirnov distance between the empirical and the theoretical
CDF. In addition, we found out that although underestimations and overestimations are balanced
over the total duration of individual traces, they exhibit a strong temporal correlation that we used to
further improve prediction accuracy.

Using obtained insights, the proposed adaptation algorithm takes into account throughput predic-
tions and an estimation of the relative prediction error, in order to maximize the defined QoE-based
utility function. We evaluated the developed algorithm using collected throughput traces and showed
that it outperforms the baseline approach which uses a fixed margin between past throughput and
selected media bit rate.

Our ongoing and future work includes extending our collection of traces and including traces from
mobile networks. It also includes studying the influence of ON/OFF patterns, generated by inter-
request delays, on throughput prediction accuracy. Moreover, we are investigating how the prediction
can be further improved by taking into account cross-layer information from TCP and MAC layers.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-15-001 Page 30

This TR is updated by TR TKN-16-001, available at http://arxiv.org/abs/1603.00859



TU BERLIN

Bibliography

[1] Radiotap. http://www.radiotap.org.

[2] Definition of Terms Related to Quality of Service (ITU-T E.800). International Telecommuni-
cation Union Recommendation, 2008.

[3] Vocabulary for Performance and Quality of Service, Amendment 2: New Definitions for Inclu-
sion in Recommendation ITU-T P.10/G.100. International Telecommunication Union Recom-
mendation, 2008.

[4] MPEG-DASH (ISO/IEC 23009-1). Standard, 2012.

[5] Cisco Visual Networking Index: Forecast and Methodology, 2013 - 2018. Cisco, Inc. Report,
2014.

[6] U.S. Digital Future in Focus. comScore, Inc. Whitepaper, 2014.

[7] Viewer Experience Report. Conviva Report, 2014.

[8] Internet TV: Bringing Control to Chaos. Conviva Whitepaper, 2015.

[9] YouTube Statistics. http://www.youtube.com/yt/press/statistics.html, 2015.

[10] Cristina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A Survey of QoS Architectures.
Multimedia Systems, 6(3):138–151, 1998.

[11] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and Hui Zhang.
A Quest for an Internet Video Quality-of-Experience Metric. In In Proc. of ACM Workshop on
Hot Topics in Networks (HotNets), Redmond, WA, USA, 2012.

[12] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and Hui Zhang.
Developing a Predictive Model of Quality of Experience for Internet Video. In Proc. of ACM
SIGCOMM, Hong Kong, 2013.

[13] Tom Broxton, Yannet Interian, Jon Vaver, and Mirjam Wattenhofer. Catching a Viral Video.
Journal of Intelligent Information Systems, 40(2):241–259, December 2013.

[14] Jorge Carapinha, Roland Bless, Christoph Werle, Konstantin Miller, Virgil Dobrota, An-
drei Bogdan Rus, Heidrun Grob-Lipski, and Horst Roessler. Quality of Service in the Future
Internet. In In Proc. of ITU-T Kaleidoscope, Pune, India, 2010.

[15] Jia Hao, Roger Zimmermann, and Haiyang Ma. GTube: Geo-Predictive Video Streaming over
HTTP in Mobile Environments. In In Proc. of ACM Multimedia Systems Conference (MMSys),
Singapore, 2014.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-15-001 Page 31

This TR is updated by TR TKN-16-001, available at http://arxiv.org/abs/1603.00859



TU BERLIN

[16] Myles Hollander, Douglas A. Wolfe, and Eric Chicken. Nonparametric Statistical Methods.
Wiley, 2014.

[17] T. Hossfeld, Sebastian Egger, Raimund Schatz, Markus Fiedler, Kathrin Masuch, and
C. Lorentzen. Initial Delay vs. Interruptions: Between the Devil and the Deep Blue Sea. In
In Proc. of Workshop on Quality of Multimedia Experience (QoMEX), Yarra Valley, Australia,
2012.

[18] Rob J. Hyndman and Yeasmin Khandakar. Automatic Time Series Forecasting: The Forecast
Package for R. Journal of Statistical Software, University of California, Los Angeles, Depart-
ment of Statistics, 27(3):1–22, 2008.

[19] Rob J. Hyndman, Maxwell L. King, Ivet Pitrun, and Baki Billah. Local Linear Forecasts Using
Cubic Smoothing Splines. Australian & New Zealand Journal of Statistics, 47(1):87–99, 2005.

[20] Dmitri Jarnikov and Tanır Özçelebi. Client Intelligence for Adaptive Streaming Solutions. Sig-
nal Processing: Image Communication, 26(7):378–389, August 2011.

[21] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness, Efficiency, and Stability in
HTTP-Based Adaptive Video Streaming with FESTIVE. In In Proc. of ACM Conference on
emerging Networking EXperiments and Technologies (CoNEXT), Nice, France, 2012.

[22] Norman Lloyd Johnson, Samuel Kotz, and Narayanaswamy Balakrishnan. Continuous Univari-
ate Distributions. Wiley, 1994.

[23] Dilip Kumar Krishnappa, Divyashri Bhat, and Michael Zink. DASHing YouTube: An Analysis
of Using DASH in YouTube Video Service. In In Proc. of IEEE Conference on Local Computer
Networks (LCN), Sydney, Australia, 2013.

[24] Stefan Lederer, Christopher Müller, and Christian Timmerer. Dynamic Adaptive Streaming over
HTTP Dataset. In In Proc. of ACM Multimedia Systems Conference (MMSys), Chapel Hill, NC,
USA, 2012.

[25] Blazej Lewcio, Benjamin Belmudez, Theresa Enghardt, and Sebastian Möller. On the Way to
High-Quality Video Calls in Future Mobile Networks. In In Proc. of International Workshop on
Quality of Multimedia Experience (QoMEX), Mechelen, Belgium, 2011.

[26] Baochun Li, Zhi Wang, Jiangchuan Liu, and Wenwu Zhu. Two Decades of Internet Video
Streaming: A Retrospective View. ACM Transactions on Multimedia Computing, Communica-
tions, and Applications, 9(1s):1–20, 2013.

[27] Chenghao Liu, Imed Bouazizi, and Moncef Gabbouj. Rate Adaptation for Adaptive HTTP
Streaming. In In Proc. of ACM Multimedia Systems Conference (MMSys), San Jose, CA, USA,
2011.

[28] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. A
Case for a Coordinated Internet Video Control Plane. In In Proc. of ACM SIGCOMM, Helsinki,
Finland, 2012.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-15-001 Page 32

This TR is updated by TR TKN-16-001, available at http://arxiv.org/abs/1603.00859



TU BERLIN

[29] Yan Liu and Jack Y. B. Lee. On Adaptive Video Streaming with Predictable Streaming Perfor-
mance. In In Proc. of IEEE Global Communications Conference (GLOBECOM), Austin, TX,
USA, 2014.

[30] Konstantin Miller, Emanuele Quacchio, Gianluca Gennari, and Adam Wolisz. Adaptation Al-
gorithm for Adaptive Streaming over HTTP. In Proc. of the Packet Video Workshop, Munich,
Germany, 2012.

[31] Ricky K. P. Mok, Xiapu Luo, Edmond W. W. Chan, and Rocky K. C. Chang. QDASH: A QoE-
Aware DASH System. In In Proc. of ACM Multimedia Systems Conference (MMSyS), Chapel
Hill, NC, USA, 2012.

[32] Tim O’Reilly. What Is Web 2.0: Design Patterns and Business Models for the Next Generation
of Software. Communications & Strategies, 1:17–37, 2007.

[33] Toon De Pessemier, Katrien De Moor, Wout Joseph, Lieven De Marez, and Luc Martens. Quan-
tifying the Influence of Rebuffering Interruptions on the User’s Quality of Experience During
Mobile Video Watching. IEEE Transactions on Broadcasting, 59(1):47–61, 2013.

[34] Huynh-Thu Quan and Mohammed Ghanbari. Temporal Aspect of Perceived Quality in Mobile
Video Broadcasting. IEEE Transactions on Broadcasting, 54(3):641–651, 2008.

[35] Ulrich Reiter, Kjell Brunnström, Katrien De Moor, Mohamed-Chaker Larabi, Manuela Pereira,
Antonio Pinheiro, Junyong You, and Andrej Zgank. Factors Influencing Quality of Experience.
In Quality of Experience, pages 55–74. Springer International Publishing, 2014.

[36] Haakon Riiser, Tore Endestad, Paul Vigmostad, Carsten Griwodz, and Pal Halvorsen. Video
Streaming Using a Location-Based Bandwidth-Lookup Service for Bitrate Planning. ACM
Transactions on Multimedia Computing, Communications, and Applications, 8(3):1–19, 2012.

[37] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hossfeld, and Phuoc
Tran-Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE Communi-
cations Surveys & Tutorials, to appear, 2014.

[38] Kamal Deep Singh, Yassine Hadjadj-Aoul, and Gerardo Rubino. Quality of Experience Es-
timation for Adaptive HTTP/TCP Video Streaming Using H.264/AVC. In In Proc. of IEEE
Consumer Communications and Networking Conference (CCNC), Las Vegas, NV, USA, 2012.

[39] Iraj Sodagar. The MPEG-DASH Standard for Multimedia Streaming Over the Internet. IEEE
Multimedia, 18(4):62–67, 2011.

[40] Wei Song and Dian W. Tjondronegoro. Acceptability-Based QoE Models for Mobile Video.
IEEE Transactions on Multimedia, 16(3):738–750, 2014.

[41] Thomas Stockhammer. Dynamic Adaptive Streaming over HTTP – Standards and Design Prin-
ciples. In In Proc. of ACM Multimedia Systems Conference (MMSys), San Jose, CA, USA,
2011.

[42] Paul Sweeting. Video in 2014: Going Live and Over the Top. Gigaom Research Report, 2014.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-15-001 Page 33

This TR is updated by TR TKN-16-001, available at http://arxiv.org/abs/1603.00859



TU BERLIN

[43] Guibin Tian and Yong Liu. Towards Agile and Smooth Video Adaptation in Dynamic HTTP
Streaming. In In Proc. of ACM Conference on emerging Networking EXperiments and Tech-
nologies (CoNEXT), Nice, France, 2012.

[44] Bing Wang, Jim Kurose, Prashant Shenoy, and Don Towsley. Multimedia streaming via TCP: An
analytic performance study. ACM Transactions on Multimedia Computing, Communications,
and Applications, 4(2):1–22, May 2008.

[45] Xiaoqi Yin, Vyas Sekar, and Bruno Sinopoli. Toward a Principled Framework to Design Dy-
namic Adaptive Streaming Algorithms over HTTP. In In Proc. of ACM Workshop on Hot Topics
in Networks (HotNets), Los Angeles, CA, USA, 2014.

[46] Liu Yitong, Shen Yun, Mao Yinian, Liu Jing, Lin Qi, and Yang Dacheng. A Study on Quality
of Experience for Adaptive Streaming Service. In In Proc. of IEEE International Conference on
Communications (ICC) Workshops, 2013.

[47] Qian Zhang, Guijin Wang, Wenwu Zhu, and Ya-Qin Zhang. Robust Scalable Video Streaming
over Internet with Network-Adaptive Congestion Control and Unequal Loss Protection. In In
Proc. of Packet Video Workshop, Kyongju, Korea, 2001.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-15-001 Page 34

This TR is updated by TR TKN-16-001, available at http://arxiv.org/abs/1603.00859


