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Abstract—We aim to investigate Reinforcement Learning (RL)
methods for efficient resource management in Vehicular Edge
Computing (VEC). To this end, we present an open-source,
modular, lightweight, discrete-event simulation framework which
integrates state-of-the-art tools for improved performance evalua-
tion. By integrating realistic mobility traces, our approach presents
an opportunity to evaluate the performance and scalability
of different RL-based task scheduling and resource allocation
policies in diverse scenarios. This offers flexibility and insights
into the generalizability of RL-based scheduling policies. We
make the framework available as open-source to foster broader
accessibility, support research in the field. We present early results
to demonstrate the potential of this simulator.

I. INTRODUCTION

The proliferation of computationally intensive applications,
such as Generative AI, Virtual Reality, and Augmented Reality,
has increased the demand for more computing and networking
resources [1]. While traditional distributed computing infrastruc-
tures (e.g., cloud computing and edge computing) are readily
available, their scalability is hindered by high latency and band-
width limitations (in cloud computing); and server maintenance
and deployment costs (in edge computing). These challenges
have sparked interest toward novel resource infrastructures that
extend beyond traditional server deployments.

One emerging paradigm is Virtual Edge Computing (V-
Edge) [2], which proposes the use of computational power of ev-
eryday devices to form a unified resource pool, independent of
the fixed infrastructure. In the vehicular domain, this paradigm
is conceptualized in the form of Vehicular Micro Clouds
(VMCs) [3]. VMCs represent a cluster of stationary or mobile
vehicles with processing, memory, storage, and communication
resources that are available on-demand, therefore enabling
Vehicular Edge Computing (VEC).

Due to the inherent mobility of vehicles, however, the
VEC exhibits dynamic behavior with fluctuating availability of
resources. This variability imposes challenges with respect to
resource management and utilization. As such, the prediction of
resource availability and demand, and effective allocation of re-
sources becomes essential for maintaining system stability and
performance. Machine Learning (ML) approaches, particularly
Reinforcement Learning (RL), emerge as a feasible solution
for addressing these challenges due to their ability to learn
and adapt in complex, dynamic environments. By leveraging
historical data and real-time information, these approaches offer

a proactive means to manage resources, ultimately leading to
more resilient and efficient VEC infrastructure.

RL-based approaches, in particular Deep Reinforcement
Learning (DRL), have already been used in the literature [4]–[7].
For instance, Guo et al. [4] and Binh et al. [5] use DRL
techniques to optimize task offloading decisions in VEC.
Similarly, Liu et al. [6] combine DRL and Directed Acyclic
Graphs (DAGs) to allocate interdependent subtasks to vehicles,
optimizing the overall task completion time. Wu et al. [7]
introduce VEC-Sim, which uses DRL to model the mobility
trajectories and driving behaviors of vehicles. Nevertheless,
many studies rely on simplified models, overlooking the impact
of real-world scenarios on RL systems’ behavior. While some
works offer a more comprehensive approach, their proprietary
nature restricts opportunities for further research.

To address these challenges, adequate tooling support is
needed. Schettler et al. [8] studied how to integrate RL into the
popular Veins simulation framework. Despite the advantages,
simulation performance and flexibility were limited, particularly
when considering distributed and edge computing applications.

In this paper, we propose a novel simulation framework
designed specifically for RL-based task scheduling and resource
allocation in VEC. Key features include: (1) Realistic Modeling:
The framework integrates authentic vehicle mobility traces,
ensuring an accurate representation of road traffic behavior; (2)
Flexibility for ML Research: It enables rigorous investigation
of RL policies across diverse VMCs scenarios; (3) Open Source
Access: We release the simulation framework as open-source,
fostering further research and collaboration in the field.1

II. SIMULATION ENVIRONMENT AND COMPONENTS

Our simulation framework integrates SimPy2, a process-
based discrete-event simulation library, with SUMO3, a mi-
croscopic traffic simulator, to simulate road traffic flow and
vehicle mobility. Furthermore, the PyTorch machine learning
framework is incorporated to develop deep learning models for
RL algorithms. Together, these components facilitate the inves-
tigation of complex and diverse scenarios that closely mimic
real-world conditions offering insights into the performance
and scalability of RL-based solutions.

1https://github.com/agnmmd/ve-sim
2https://simpy.readthedocs.io/en/latest/
3https://eclipse.dev/sumo/



SimPy 

PyTorch

Scheduler

SUMO

TraCI
Mobility
Traces

Policy

Environment Agent

DNN

Vehicles

Tasks

step

vehicle:
id, pos

schedule
state:

vehicles,
tasks

action

reward

Figure 1. Main components of the simulation framework.

Figure 1 shows the relevant system-model components of the
simulation framework. The main system-model components in
the simulator include Vehicles, Tasks and Scheduler. Vehicles
are modeled as mobile compute resources with certain pro-
cessing capacity that can both generate and process tasks. The
mobility of the vehicles is determined by the simulated SUMO
scenario, whose traces are fed to our simulation environment
through the TraCI interface. Tasks, on the other hand, present
a computational workload that require processing resources.
They are defined by attributes such as complexity, deadline,
and priority, which can be used as scheduling criteria. Tasks
can either be processed locally, by the generating vehicle, or
migrated to another vehicle. The scheduler plays the central
role for determining task assignment and resource allocation.
It has an overview of the scenario state (available tasks
and resources) and matches tasks and resources following
a certain Policy. The policy essentially specifies the criteria
for selecting the next task and resource to be matched and
scheduled. These criteria can be based on heuristic methods
(e.g., prioritizing the task with the earliest deadline or lowest
complexity first, or in the case of vehicles, the vehicle with
the highest processing capacity or dwell time), and RL-based
algorithms. For RL-based policies, the current system state,
comprising of information about vehicles and tasks, is fed to
the Environment component. The actual observation space is a
vector that combines task information and resource capabilities
(i.e., count of available resources, complexity and deadline of
the selected task, processing power of each available resource.)
The action space consist of the currently available resources.

An Agent, implementing a specific RL algorithm, then
interacts with the Environment to learn optimal decision-
making strategies for matching tasks with appropriate resources,
guided by a predefined reward function. The agent receives a
positive reward when it selects the fastest available resource
that can complete the task before its deadline; neutral feedback
when it correctly selects the fastest resource, regardless of the
deadline; and it is strongly penalized when it doesn’t select
the fastest available resource.

III. PRELIMINARY SIMULATION RESULTS

To demonstrate the feasibility of our approach, we imple-
mented a Deep Q-Learning (DQN) algorithm for the RL agent.
The agent’s task is to select the best resource for processing
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(a) Collected rewards per episode
(blue) and moving average (orange).
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(b) Ratio of selecting the best resource
in an episode’s action space (green).

Figure 2. Learning performance of the RL agent.

a given task, and eventually learn the optimal task-resource
matching. The agent is rewarded when the resource selection
leads to a successful task completion before the deadline, and
punished otherwise. We evaluated the system in a scenario
where tasks and resources are dynamically generated, modeling
real-world variability. Furthermore, we set the parameters in
our simulation (i.e., task’s complexity, deadlines and arrival
rate and resource’s processing capacity) to model a VEC with
limited resources and time-sensitive tasks.

Figure 2 shows the performance of the implemented RL-
based policy, indicating agent’s ability to learn to select the
best available resource (Figure 2b) guided by the reward
function (Figure 2a). Figure 2a shows the convergence of
the reward at about 250 episodes. This leads to excellent
resource selection (cf. Figure 2b). The results demonstrate the
framework’s potential to support RL-based task scheduling and
resource allocation in dynamic VEC environments.
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