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Abstract—Cognitive radio (CR) is considered a relevant com-
munication paradigm to deal with the increasing demands in
modern communications systems. Adaptive schemes are required
to recognize channel conditions and to properly adjust main
transmission parameters to improve the quality of communica-
tions. In this direction, blind algorithms to recover constellation,
from phase-modulated signals, represent a means to implement
cognitive capabilities to allow automatic modulation recognition
(AMR) on receivers. Commonly, the most popular approaches for
blind constellation recovery are based on a two-step scheme. The
first step uses to equalize channel effects and reduce inter-symbol
interference (ISI). The second step carries out constellation
recovery utilizing phase locked loop (PLL) systems like the
Costas Loop, then to classify the incoming signal. This work
proposes a novel single-step blind adaptive filter solution, inspired
by an adaptive interference canceler, for joint equalization and
constellation symbol recovery from received phase shift keying
(PSK) waveforms. Furthermore, we propose new coefficients
update mechanisms based on the constant amplitude of PSK
signals. The proposed solution exhibits reduced computational
complexity compared to the state of the art and a reduced time of
convergence. Additionally, the proposed scheme does not require
a training sequence to operate properly. The obtained results
clearly show that the proposed scheme significantly improves
accuracy regarding phase symbol estimation and ISI reduction.

Index Terms—LMS, adaptive filter, blind symbol phase esti-
mation, PSK.

I. INTRODUCTION

THE huge increase in the number of wireless connected
devices for daily use is facing the scarcity of limited

spectrum resources [1]. By 2023, the total of connected
machine to machine (M2M) and internet of things (IoT)
devices is predicted to be 14.7 billions [2]. Dealing with
the reduced availability of connections, cognitive radio (CR)
offers mechanisms to support smart and dynamic policies
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Fig. 1. Block diagram for the CR-receiver operation.

accounting for a flexible spectrum usage [3]. CR is supported
by dynamical mechanisms allowing to re-adapt transmitters
and receivers on the physical (PHY), medium access control
(MAC), and network layers [4].

In the PHY layer, CR devices are conceived with au-
tonomous capabilities to select communication parameters as
the frequency band to operate, the modulation format, or the
coding scheme. In this way, the receiver-side must be equipped
with robust methods to detect and identify the received signal
to dynamically adjust the received parameters [5]. To illustrate,
Fig. 1 depicts the variety of components a CR receiver may
perform partially or completely (i.e., as a full CR or “Mitola
radio” [6]). Incoming signals are detected through spectrum
sensing (SS) operations, then the received modulation is
identified through automatic modulation recognition (AMR)
methods, and finally, the carried information may be decoded
autonomously [7]. These components may be used to au-
tonomously decode the emitted information as an ultimate goal
or to provide awareness about the channel status: spectrum
occupancy [8], modulation format, information rate of emitted
signals, etc [9].

Specifically, AMR mainly concerns two steps, namely, the
signal preprocessing and the classification algorithm that can
include feature extraction (illustrated in Fig. 1 as the constel-
lation recovery block) [7]. Signal preprocessing copes with
undesirable channel effects conceiving noise reduction and
channel equalization techniques, as well as signal parameter
estimation. Classification algorithms, comprised of likelihood
and feature-based techniques, estimate the transmitted modu-
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lation format thereafter.
This paper focuses on AMR techniques concerning feature

extraction for the signal classification step. Specifically, we
address techniques to recover constellation points from phase
shift keying (PSK) waveforms and illustrate its applicability
to quadrature amplitude modulation (QAM) as well. Based
on the recovered constellation, a variety of classification
techniques (cf. [7]) can be applied to distinguish the received
signal from binary phase shift keying (BPSK), quadrature
phase shift keying (QPSK), 8PSK, or QAM. Moreover, the
recovered constellation points can be used as a signal feature to
distinguish primary users (PUs) from secondary users (SUs).
That is, the use of a given frequency band by PUs can be
better identified not only by its occupancy, but also through the
modulation format used by the PU. Furthermore, the recovered
constellation points can be used to determine the mobile or
static condition of the PU based on the rotation of the received
constellation points as an additional feature [10].

In the literature, reported methods to recover phase from
PSK or QAM waveforms are mainly conceived through phase
locked loop (PLL) like the Costas Loop [11]. These are
also conceived with the inclusion of signal preprocessing
methods like channel equalizers and filters to reduce the
impact of noise and undesirable channel effects [7]. However,
these techniques introduce processing delays and further inter-
symbol interference (ISI) produced by the phase response and
the limited bandwidth of the used linear time invariant (LTI)
filters, respectively [12]. The induced delay incurs in a limited
convergence time, while ISI incurs in a degraded performance
to later classify the received signal.

In a different approach, we introduce a method based on
adaptive filter (AF) techniques, avoiding the use of LTI-filters
and thereby shortening the processing delay. AF have been
widely employed on several signal processing applications
such as equalization [13] and tracking of signal parame-
ters [14]. Still, its inherent adaptation process makes AFs also
a potential candidate for phase recovery applications.

We report a new solution based on the adaptive noise
canceler model by Widrow et al. [15]. The proposed AF-
based scheme can be implemented with a classical update
mechanism, such as least mean squares (LMS), but we also
introduce novel coefficients update mechanisms that report
considerable benefits to accelerate the rate of convergence.
This newly proposed solution is based on an adaptive noise
canceler filter where processing is carried out with constant
modulus coefficients and it is then denoted as CMC. Fur-
thermore, taking advantage of the constant amplitude of PSK
waveforms, the use of the CMC method implicitly introduces
a channel equalization mechanism to some extent. That is,
a preprocessing technique is jointly applied when using these
adaptive techniques to adjust the filter coefficients. We confirm
the feasibility and performance of our proposed techniques us-
ing analytic and geometrical descriptions, as well as simulation
results.

Our main contributions can be summarized as follows:
• we introduce a low complex AF technique for the con-

stellation recovery of PSK signals;
• we extend this method to recover the constellation points

of QAM waveforms;
• we present a new update mechanism, namely CMC, to

increase the convergence speed of the filter in comparison
to the traditional LMS technique;

• we show how CMC also introduces a channel equaliza-
tion mechanism to some extent; and

• we compare the impact of realistic channel models to
recover the constellation points.

The remainder of the paper is structured as follows. First,
related work is discussed in Section II. Then, the system model
is presented in Section III to analytically describe waveforms
and the implemented AF structure. The AF’s coefficients are
updated following the proposed CMC mechanisms in Sec-
tion IV with an illustrative example to discuss its functioning
and performance in Section V. Then, the resulting performance
is shown through learning curves, constellation points, and
eye-patterns using realistic channel models in Section VI.
Finally, Section VII concludes the paper and summarizes some
future directions.

II. RELATED WORK

Reported solutions to recover constellation points for PSK
and QAM waveforms are mainly based on PLL schemes, such
as a Costas Loop [16] and a Square Loop [17], or through
the maximum likelihood (ML) [18] method. All of which are
using an equalization for undesirable channel effects in the
signal preprocessing step (cf. Fig. 1). The use of PLL and
Costas Loop schemes are one of the most employed meth-
ods to track the phase of incoming signals without training
sequences [11]. Although ML affords the best performance,
its implementation is typically prohibitive due to the total
number of multiplications, exponent arithmetic operations, and
integration procedures.

As depicted in Fig. 2 a), the Costas Loop decomposes the
received waveform for in-phase and quadrature components,
from which the received constellations points can be decoded.
The feedback loop through the error detector, loop filter,
and numerically controlled oscillator (NCO) replicates the
carrier frequency of the emitted waveform. The in-phase and
quadrature branches recover the constellation points after a
down-conversion operation through the multipliers and filters
blocks.

Using a single loop PLL, the constellation points of the re-
ceived signal can also be estimated [12], but its applicability is
usually limited to BPSK waveforms. As depicted in Fig. 2 b),
the input BPSK signal is squared to remove the carried data
(binary) then allowing the PLL to track only the instantaneous
phase of the carrier (at twice the original carrier frequency).
The PLL output signal is then used to recover the constellation
points after a frequency division by two.

These two schemes exhibit two major drawbacks. Although
they are less complex than the ML detector, they still re-
quire down converters, which in turn incur in filter blocks
implementation (second-order at least) with the corresponding
implementation of adders and multipliers. Besides, the use of
filters inherently introduces ISI and delay in the processing
chain [12]. As long as filtering reduces the bandwidth of
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Fig. 2. Block diagrams to recover PSK constellation points, where ϕ[n]
represents the phase at the output of the NCO. a) Costas Loop. b) Square
Loop.

the recovered message, it becomes a symbol-spreader, and
inevitably it will also introduce delay due to the non-zero
group delay response.

Furthermore, in front of the constellation recovery, equal-
ization methods are typically included to compensate for
dispersive channels and reduce ISI. The preferred solutions to
blindly compensate channel effects rely on adaptive filtering to
equalize the amplitude of incoming phase-modulated signals.
The most popular ones are based on Godard’s constant modu-
lus algorithm (CMA), Shalvi-Weistein (SWA), and minimum
entropy criterion (MED) [19] algorithms. These solutions are
based on the constant amplitude of phase-modulated signals
such as PSK waveforms. These algorithms establish cost func-
tions to adjust the norm of received signals to a constant value,
then to correct induced amplitude variations of multipath
channels. Other CMA-based algorithms have been also defined
to improve the convergence rate and performance. Those are
the least squares (LSCMA), QR decomposition (QR-CMA),
recursive (RCMA), recursive least squares (RLSCMA), and
orthogonalized (O-CMA) [20].

III. SYSTEM MODEL

Considering PSK signals, the discrete waveform representa-
tion is expressed by x[n] = A cos(wcn+ϕ[n]), where A is the
signal amplitude, wc is the carrier frequency and ϕ[n] denotes
the time-varying symbol phase values in a finite set of M
phases. This waveform carries information on the symbol
phase parameter ϕ[n].

In the case of PSK signals, symbols can be described by
the in phase I[n] and quadrature Q[n] components as [21]

x[n] = I[n] cos(ωcn)−Q[n] sin(ωcn), (1)

where

I[n] = A cos(ϕ[n]), (2)
Q[n] = A sin(ϕ[n]).

+ +

r1[n]

r2[n]

x[n]

-
+

-

+ y[n] e[n]
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w1[n]

w2[n]

Fig. 3. Notch adaptive filter scheme [15].

In the case of the AF (notch filter scheme), it is conceived
by two reference signals, r1[n] and r2[n], and two filter
coefficients, w1[n] and w2[n], as depicted in Fig. 3 [15].
Given a single-frequency interference tone in x[n], the filter
output conforms a similar sequence y[n] based on the adjusted
coefficients and the reference signals. That is, the resulting
output sequence y[n] will estimate the incoming signal x[n]
as long as the adaptive algorithm operates to reduce the power
of the error sequence e[n] [14].

Besides, provided that the output filter computes

y[n] = w1[n] r1[n]− w2[n] r2[n], (3)

the filter coefficients w1[n] and w2[n] might estimate the
in phase and quadrature components according to a direct
comparison between Eq. (1) for the received PSK signal and
Eq. (3) for the AF output as

x[n] = I[n]︸︷︷︸
w1[n]

r1[n]︷ ︸︸ ︷
cos[ωcn]−Q[n]︸︷︷︸

w2[n]

r2[n]︷ ︸︸ ︷
(sin[ωcn]), (4)

where the coefficients w1[n] and w2[n] are used to estimate
I[n] and Q[n] from the received signal whenever the ref-
erence signals r1[n] and r2[n] are equal to cos[ωcn] and
sin[ωcn], respectively. Then, based on the scheme in Fig. 3,
we propose to directly recover the constellation points from
received PSK signals as (I[n], Q[n]) through the coefficient
pair (w1[n], w2[n]).

Through the adaptive filter scheme in Fig. 3 little knowledge
is required about the received PSK signal. Without resorting to
training sequences, this system allows in-phase and quadrature
carrier components to recover. Through this scheme, the signal
parameter to be given at the receiver side is the carrier
frequency ωc for the reference signals r1[n] and r2[n].

The AF scheme in Fig. 3 represents a Notch configuration
similar to the system presented in [15]. This scheme is typi-
cally used to cancel interference tones on a variety of appli-
cations. Recent works show significant results estimating the
carrier frequency of a single complex sinusoid with a Notch
filter and the recursive least squares (RLS) algorithm [22]. To
the best of our knowledge, none of the consulted works has
focused on recovering the phase of a given sinusoidal signal
to estimate the constellation points of PSK waveforms.

IV. COEFFICIENTS UPDATE MECHANISM: CMC

Reported solutions based on the AF scheme in Fig. 3
commonly implement LMS and RLS algorithms to update
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the weighting coefficients pair (ω1[n], ω2[n]) [22]. However,
a new updating mechanism may be devised by including
additional constraints to improve the convergence rate.

When the received signal x[n] represents a PSK waveform,
the AF coefficients will be located over a circumference of
radius A due to the constant amplitude of these waveforms.
In this respect, a new restriction is included when limiting
the location of the coefficients to be on a circumference
(i.e., coefficients of constant modulus). Similar to the CMA
acronym (constant modulus algorithm), this new solution is
referred to as constant modulus coefficients (CMC).

A. The CMC Concept

Considering the AF structure in Fig. 3, its two coefficients’
trajectory can be restricted to a circumference of constant ra-
dius, as given by the amplitude of the received PSK waveform.
To illustrate this mechanism, Fig. 4 provides a geometrical
representation in the case of BPSK signals, where the points
S1 and S2 represent the steady state constellation points.
Following this reasoning, the point c must be guided, over
the circumference of radius A (amplitude of PSK waveform),
to either points S1 or S2 whenever the incoming phase is
0 or π, respectively. Similar to the LMS algorithm, the
direction of movement of the point c is provided by the
opposite direction of a given gradient vector −∇̂J[n], which
indicates the direction of the minimum value of the error
signal e[n] (cf. Fig. 3). Considering the two coefficients filter
in Fig. 3, this gradient vector is defined by two components
∇̂J[n] = [∇̂J1[n] ∇̂J2[n]].

Based on this geometrical representation, a new intuitive
mechanism to update the phase of point c is based on the
projection of −∇̂J[n] over a vector T, which is tangent to the
circumference as represented in Fig. 4 for the transition be-
tween S1 and S2. The projection −∇̂JT [n] =

〈
−∇̂J[n],T

〉
,

indicates the counterclockwise rotation of c indicating the next
step coordinates for the point c. The Fig. 4 depicts the case
where −∇̂J[n] has a positive projection on the tangent vec-
tor T. This is the case where a symbol of negative phase, from
a given BPSK signal, is after a symbol of positive phase. Under
these conditions, the phase of the point c is updated to the
counterclockwise direction over the circumference of radius A.
These geometrical mechanisms represent the fundamentals of
the proposed solution to update the two AF coefficients. At
this point, we remark the need to estimate the amplitude of
the received PSK waveform, which can be directly derived
following the CMA algorithm as E{x4[n]}

E{x2[n]} [23].
Following the geometrical representation in Fig. 4, to derive

the equations to update the AF coefficients, we depart from
the relation

w1[n] = A cos(ϕ̂[n]), (5)
w2[n] = A sin(ϕ̂[n]),

where ϕ̂[n] is the parameter to be updated in order to find a
closer similarity to the original transmitted phase sequence
ϕ[n]. Based on these parametric relations, a rule must be
established to update ϕ̂[n] for each adaptive iteration when
decrementing the amplitude of the error sequence e[n]. To do

S2 S1
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+
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T T,J
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=

Fig. 4. Illustration of the proposed CMC updating mechanism.

so, we use the sign of the projected gradient vector (−∇̂JT [n])
to indicate the counter or the clockwise direction of ϕ̂[n], and
the magnitude of the gradient vector (‖ ∇̂J[n] ‖) to quantify
the step to afford in the next iteration as

∆ϕ̂[n] = µ sign
(
−∇̂JT [n]

) ‖ ∇̂J[n] ‖
Jmax

π, (6)

where µ is the step size, ‖ ∇̂J[n] ‖ is the magnitude
of gradient vector ∇̂J[n], sign

(
−∇̂JT [n]

)
establishes the

proper counterclockwise or clockwise direction, where sign (·)
denotes the sign operation, Jmax represents the maximum
value of ‖ ∇̂J[n] ‖, and ‖∇̂J[n]‖

Jmax
indicates the angle as a

fraction of π to be updated.
According to this coefficient update mechanism, the product

of both terms sign
(
−∇̂JT [n]

)
and ‖∇̂J[n]‖

Jmax
provides a normal-

ized quantity on the interval [−1, 1]. Having this as a resultant
factor of π, as indicates Eq. (6), it is interpreted as the phase
in the interval [−π, π], and accordingly as a movement over
the circumference in Fig. 4.

The gradient vector ∇̂J[n] is computed similarly to the LMS
algorithm as

∇̂J1,2[n] =
d e2[n]

dw1,2
= 2e[n]r1,2[n], (7)

where r1[n] = cos(wn) and r2[n] = sin(wn) are defined in
accordance to (4) and e[n] = x[n] − y[n] as represented in
the scheme depicted in Fig. 3. Finally, the proposed updating
mechanism is derived from (6) yielding to the new updating
mechanism as

CMC-1

ϕ̂(n+ 1) = ϕ̂(n)− µ sign
(
−∇̂JT [n]

) ‖ ∇̂J[n] ‖
Jmax

π, (8)

However, after evaluating this mechanism in simulations
(not illustrated here), results indicates that Eq. (8) produces
abrupt changes on the filter output y[n] due to large values
of ‖ ∇̂J[n] ‖. These abrupt changes on y[n] cause distortion
on recovered symbols. To avoid this inconvenient result, we
may reduce the abrupt changes produced by ‖ ∇̂J[n] ‖ with
two other updating mechanisms. As a first approach, the
norm is replaced by the minimum value of the components
yielding
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CMC-2

ϕ̂(n+ 1) =ϕ̂(n)− (9)

− µ sign
(
−∇̂JT [n]

) min(J1[n], J2[n])

Jmax
π.

As a second approach, the norm is replaced by the average
value of its components as

CMC-3

ϕ̂(n+ 1) =ϕ̂(n)− (10)

− µ sign
(
−∇̂JT [n]

) (J1[n] + J2[n])/2

Jmax
π.

where ‖ ∇̂J[n] ‖ has been replaced by new terms as
min(J1[n], J2[n]) and (J1[n]+J2[n])/2 for CMC-2 and CMC-
3, respectively. Both equations in (9) and (10) reduce the
total updated amount ∆ϕ[n] in comparison to (8). It is
straightforward to establish that the minimum and average
value of components of ∇̂J[n] is always smaller than the norm
of the same vector ‖ ∇̂J[n] ‖.

These new two terms have the same role of the gradient
vector ∇̂J[n] to reduce the error sequence. The larger the value
of ‖ ∇̂J[n] ‖ is, the larger the values of min(J1[n], J2[n]) and
(J1[n]+J2[n])/2 will be, i.e., larger error values will produce
larger update steps ∆ϕ[n], likewise lower errors will reduce
∆ϕ[n] accordingly.

On the other hand, the step-size µ is in the interval
0 < µ < 1

λmax
, where λmax is the largest eigenvalue of the

autocorrelation matrix corresponding to the incoming signal
x[n] (similar to the LMS method). Given that the received
waveform is conformed by a single frequency tone ωc, then
the autocorrelation matrix, in case of a two coefficients filter,
is given as [24]

Rxx =

 A2

2
A2

2 cos(2ωc)

A2

2 cos(2ωc)
A2

2

 , (11)

where the largest eigenvalue is computed by solving the
characteristic equation |Rxx − λI| = 0 yielding

λmax = (1 + | cos(2ωc)|), (12)

where I represents the identity matrix.

B. Remarks

The new adaptation mechanisms CMC-1 to CMC-3 take
advantage of the constant amplitude of PSK signals. This
constant amplitude of the updating mechanism implicitly
establishes that the recovered constellation points lie on a
circumference of radius A, where A is the PSK signal am-
plitude. In comparison to the traditional LMS algorithm, the
newly proposed mechanisms have to adjust only phase but
not amplitude. This increases information and then reduces
variance on estimating the transmitted components [25], which
in turn will be in favor of the convergence speed.

Additionally, establishing a constant amplitude for the
adaptive coefficients reduces the impact of distortions in

the communication channel. Provided that the non-desirable
effect of channels modifies the amplitude of received signals,
i.e., multipath trajectory, the proposed scheme estimates a
signal y[n] of constant amplitude instead. In this concern,
the proposed solution exhibits to have some countermeasure
mechanism against, as later illustrated for a variety of channel
models in Section VI.

C. Complexity Analysis

The proposed system in Fig. 3 is conceived with a finite
impulse response (FIR) filter of two coefficients and the
adaptive algorithm block. The adaptive algorithm may be
implemented by using the proposed CMC methods or the tradi-
tional LMS mechanism. Complexity regarding CMC methods
is superior to the equivalent LMS algorithm given that the
proposed adaptive algorithm performs more operations than
the LMS method. By comparing expressions from the CMC
methods in (8), (9), and (10) with the standard LMS given by
ŵ[n + 1] = ŵ[n] + µ r[n]e[n] [15], the superior performance
of CMC is attained at the expense of a few additional terms to
update the coefficients. Bold letters w and r represent vectors
of components w = [w1[n], w2[n]] and r = [r1[n], r2[n]].

Regarding the previously reported schemes, common sys-
tems for constellation points recovery implement two main
subsystems comprising channel equalization, to counteract
undesirable channel effects, and phase recovery methods like
the Costas Loop scheme. For instance, to compensate channel
effects, CMA techniques implement a FIR filter of complex
taps in addition to the adaptive coefficients mechanism. This
to reduce undesirable channel effects [26]. In addition, the
Costas Loop scheme is used to recover the constellation points,
which in turn implements two-phase detectors and NCO
blocks, as depicted in Fig. 2. The phase detector is commonly
implemented by a multiplier and a low pass filter of at least
second-order. In this regard, the use of these subsystems has
larger complexity than the proposed scheme in Fig. 3 by either
using LMS or CMC methods.

D. Extension to QAM Constellation Recovery

The proposed AF-based scheme and the coefficients update
mechanisms can be also extended to estimate the constellation
points from QAM waveforms. Since its constellation points
are located over circumferences with different radius, as repre-
sented in Fig. 5, then a parallel operation of AF can be used to
derive the constellation points per circumference. As depicted
in this figure, each adaptive filter will operate with reference
signals (r1[n], r2[n]) according to each different radius on
the constellation points, in this case A1, A2, A3. Then by
comparing the energy of each different error signal e[n],
the radius can be selected according to that one with the
less error amplitude (Radius detector block). The multiplexer
(MUX block) will output the coefficient pair (ω1[n], ω2[n]) in
accordance with the received symbol.

Although directly extensible to QAM waveforms, the com-
plexity and performance of the scheme in Fig. 5 in comparison
to the traditional Costas Loop should be further analyzed in
a separate work. However, at this point, it can be remarked
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the inherent reduction of channel distortions as long as the
provided constellation points are fixed to each different cir-
cumference when implementing the conceived CMC methods.

V. ILLUSTRATIVE EXAMPLE FOR QPSK AND QAM
WAVEFORMS

Here we illustrate the functioning of the proposed scheme
in Fig. 3 and the updating mechanism CMC-1 according to
Eq. (8). It is assumed that a PU is transmitting either QPSK
or QAM waveforms, where the carrier frequency is ωc = π

8 .
We assume that both waveforms are already represented in
the discrete domain, i.e., the received signal has been already
sampled by a previous analog to digital converter (ADC) block
fulfilling the Nyquist criterion constraint. According to the
relation ωc = 2π fcfs = π

8 may correspond to baseband signals
with a carrier frequency of fc = 1.25 MHz and sampling
frequency fs = 20 MHz. This sampling frequency is according
to typical bandwidths of CR networks, i.e. 4 MHz when
the CR system is operating with global system for mobile
communications (GSM) systems [27], or in the range 6–
8 MHz for the IEEE 802.22 standard using the white space of
television emissions [28]. There are also commercial available
ADCs of 20 Msps and 12–16 bits resolution [29].

A. QPSK constellation recovery

We consider a QPSK signal with amplitude A = 1 and
carrying the phase sequence ϕ[n] = {0, π2 , π,

3π
2 }. The QPSK

waveform and the corresponding in phase and quadrature
components are illustrated in Fig. 6, where Fig. 6 a) shows
the transmitted QPSK waveform, while Fig. 6 b) and c) show
the transmitted in phase and quadrature components. Each
figure depicts the corresponding recovered signals with dashed
lines, considering the proposed AF-based scheme. Here we
illustrate results with rectangular pulses to better depict the
convergence of the AF-based scheme. Although in realistic
communication systems pulse shape mechanisms are used to
reduce the impact of ISI, e.g. raised cosine pulses [30], the use
of rectangular pulses lets to illustrate better the convergence
behavior of the proposed scheme. Otherwise the convergence-
rate performance will be masked by the pulse shape.

The recovered phase and quadrature components in Fig. 6
b) and c), are given by the two filter coefficients w1[n]
and w2[n] from the proposed AF-based scheme shown in
Fig. 3. Both filter coefficients track the in-phase and quadrature
components of the transmitted signal to reduce the MSE
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Fig. 6. Illustrative example to recover in phase and quadrature components of
a QPSK waveform. a) Transmitted and recovered QPSK signal. b) Transmitted
and recovered in phase component. c) Transmitted and recovered quadrature
component.

between the transmitted signal x[n] in (1) and the output filter
y[n] in Eq. (3).

The dynamics of the two coefficients on the constellation
diagram are illustrated in Fig. 7 for CMC-1. In this case,
seven iterations have been plotted based on the first seven
samples of the received QPSK signal in Fig. 6 a). Provided
the phase of the corresponding symbol is π

2 , then the estimated
constellation points are displaced from the starting point (1, 0)
to (0, 1) on each iteration. The red points below the x-
axis correspond to the second and third iterations, they were
erroneously located due to the stochastic gradient noise [15].
Except for these two points, the rest have a positive projection
of −∇̂J[n] (black vectors) over the tangent vector T (blue
vectors), which in turn produces a counterclockwise movement
as exhibit the next iterations following the red points.

On the other hand, Fig. 8 shows the dynamics of AF
coefficients considering LMS and CMC methods when the
arrived constellation point is (0,−1) and the signal to noise
ratio (SNR) is 10 dB for the first 15 iterations. Starting at
point (1, 0), the four algorithms seek the point (0,−1) on
each iteration. However, most of the time the CMC trajectories
according to (8), (9), and (10) stay closer to the desired value
(0,−1) than the LMS method. This partial result shows that
the proposed solution has a higher convergence rate than LMS.

The proximity of CMC and LMS output to desired values
is better illustrated in Fig. 9, where the recovered signals are
presented. Fig. 9 a) shows the output signal of the adaptive
filter, from the scheme in Fig. 3, and the transmitted single
frequency tone. All CMC methods get closer to the desired
signal in a shorter period compared to the LMS method.
Fig. 9 b) depicts the error signal of the AF-based schemes,
where differences between the transmitted signal and the filter
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Fig. 8. Dynamics of the proposed AF-based solution considering CMC and
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output are lower in CMC methods than in LMS. For instance,
CMC-1 attains an error signal seven times smaller than the
LMS method after 6 iterations achieving a faster convergence
rate.

B. QAM Constellation Recovery

To illustrate the extension of the constellation recovery
process to QAM signals, we implement the diagram shown
in Fig. 5 considering CMC-1 as the updating mechanism
of the adaptive filters. A 16-QAM signal is processed with
parameters A1 = 1.4142, A2 = 3.1623, and A3 = 4.2426,
which correspond to in phase and quadrature amplitudes of
±1 and ±3. The remaining modulation parameters were kept
as in the QPSK example.

Fig. 10 depicts the estimation of the received signal and
its components. As illustrated in this figure, the proposed
solution is able to track quite well the in-phase and quadrature
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Fig. 10. Illustrative example to recover in-phase and quadrature components
of a 16-QAM waveform. a) Transmitted and recovered 16-QAM signal. b)
Transmitted and recovered in phase component. c) Transmitted and recovered
quadrature component.

components of the received signal. Just in some transitions,
the method exhibits some overshoot effects due to the large
difference of amplitude between one symbol and the next.

To further illustrate, Fig. 11 shows the dynamics of the
recovery mechanism in the I-Q plane. This figure depicts
the transition between two constellation points from the inner
circumference to the outer circumference. The initial point is
located at ϕ = − 3π

4 in the inner circumference, while the
second one is at ϕ = −π4 in the outer circumference. As
exhibited here, the estimated constellation points first switch
from the inner circumference to the outer one, and then start
to get closer to the desired point.

VI. SIMULATION RESULTS

To evaluate the merit of the proposed adaptive scheme in a
CR scenario, conclusions are drawn from results obtained on
simulations and accounting for a variety of channel models.
Their analysis accounts for the speed of convergence of
the proposed methodology and its capability to diminish the
impact of multipath channels, as described in Sections VI-A
and VI-B, respectively. Besides, here we consider emissions
from a single PU only and noise is modeled as additive white
Gaussian noise (AWGN). Multiple interfering sources and the
impact of tone capture effect [31], [32] will be addressed as
a future outlook.
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The input sequences to obtain these metrics consist of
BPSK, QPSK, 8PSK, and 16PSK waveforms processed in
the discrete-time domain, the normalized carrier frequency
is located at ωc = π

8 and the amplitude is A = 1. We
use the same normalized frequency following CR systems as
explained in the previous Section. Data is randomly generated
following a uniform distribution and for simulation’s purposes,
the bit length is 80 samples (according to duration as five times
the carrier period). For the LMS algorithm, the adaptive step-
size is selected as µ = 0.9

λmax
to achieve a faster speed of

convergence, where λmax is defined in Eq. (12). The same
value for λ is selected in the case of the CMC methods.

Simulations are obtained in comparison to the Costas Loop
(cf. Fig. 2 a)) combined with CMA method. In this connection,
the received signal is pre-processed with the CMA method
to compensate for the channel impact following the solution
reported by Godard [23]. Besides, the CMA equalizer is
implemented by 2 complex tap gains to have a fair comparison
with the proposed system in Fig. 3. The adaptive step size is
selected as 1

200·30E{a2n}
[23], where E{a2n} represents the vari-

ance of the transmitted symbols, where E{·} is the statistical
mean operator.

A. Speed of Convergence

The speed of convergence is measured by considering the
learning curve based on the mean squared error (MSE) criteria
as E{e2[n]}, and e2[n] is the difference between the estimated
sequence and the transmitted one. To illustrate the speed of
convergence performance, 200 iterations were performed with
different initialization of data, noise, and coefficients values
for QPSK waveforms.

Figures 12 to 15 depict the MSE criteria for a variety of
SNR values, i.e., infinite (not noise), 10, 5 and 0 dB. According
to Fig. 12, where the channel is assumed ideal (without noise
and multipaht effects), the proposed AF-based scheme (cf.
Fig. 3) has better performance in comparison to the Costas
Loop method (cf. Fig. 2 a)) combined with CMA. Besides,
the CMC methods exhibit a better speed of convergence
in comparison to LMS. In this case, the CMC methods
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dramatically decline as the number of iterations increases and
CMC-3 presents the best behavior. In the presence of AWGN,
from Figures 13 to 15, CMC-3 presents the highest speed of
convergence.

Additionally, the MSE performance for other modulation
orders is also illustrated in Fig. 16 when SNR = 10 dB. This
figure exhibits a similar performance for the proposed scheme
when using CMC-3 and considering a variety of modulation
schemes such as QPSK, 8PSK, and 16PSK waveforms.

B. Inter-symbol Interference

The distortion produced by multipath channels and its lim-
ited bandwidth leads to ISI effects on the recovered in-phase
and quadrature levels, which in turn deteriorates the quality
of communications. To demonstrate the feasibility of the
proposed AF-based scheme in Fig. 3, by using the algorithms
LMS and CMC-1 to CMC-3, we simulate a variety of real FIR
and infinite impulse response (IIR) channels from [33]–[37].

Provided that the channel attenuates the transmitted sig-
nal, in the proposed AF-based scheme the amplitude of the
received signal is estimated similarly to the CMA method
as Â = E|r[n]|4

E|r[n]|2 , as indicated in Section IV. Under these



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. , NO. , 2022 9

0 10 20 30 40

Samples

10-2

10-1

100

101
M

S
E

 (
d

B
)

Costas Loop-CMA

AF (LMS)

AF (CMC-1)

AF (CMC-2)

AF (CMC-3)

Fig. 14. Learning curves for QPSK waveforms when SNR = 5dB.

0 10 20 30 40

Samples

10-2

10-1

100

101

M
S

E
 (

d
B

)

Costas Loop-CMA

AF (LMS)

AF (CMC-1)

AF (CMC-2)

AF (CMC-3)

Fig. 15. Learning curves for QPSK waveforms when SNR = 0dB.

0 10 20 30 40

Samples

10-3

10-2

10-1

100

101

M
S

E
 (

d
B

)

BPSK

QPSK

8PSK

16PSK

Fig. 16. Learning curves for QPSK, 8PSK, and 16PSK waveforms utilizing
the AF-based scheme and considering CMC-3 when SNR = 10dB.

−2 0 2
−2

0

2

a) In phase

Q
u
a
d
ra

tu
re

Received Constellation

−2 0 2
−2

0

2

b) In phase

Q
u
a
d
ra

tu
re

Costas Loop-CMA

−2 0 2
−2

0

2

c) In phase

Q
u
a
d
ra

tu
re

AF (LMS)

−2 0 2
−2

0

2

d) In phase

Q
u
a
d
ra

tu
re

AF (CMC−1)

−2 0 2
−2

0

2

e) In phase

Q
u
a
d
ra

tu
re

AF (CMC−2)

−2 0 2
−2

0

2

f) In phase

Q
u
a
d
ra

tu
re

AF (CMC−3)

Fig. 17. Recovered constellation points for transmissions over the FIR channel
provided by Johnson and Sethares [33]. a) Received constellation points, b)
Costas Loop+CMA, c) AF (LMS), d) AF (CMC-1), e) AF (CMC-2), f) AF
(CMC-3) methods.

0 50 100
2

1

0

1

2
Eye pattern

samples

C
o
s
ta

s
 L

o
o
p

C
M

A

Fig. 18. Eye-pattern of the Costas Loop scheme combined with CMA for
transmissions in the FIR channel provided by Johnson and Sethares [33].

assumptions, we demonstrate the effectiveness of the proposed
solutions by obtaining constellation and eye pattern diagrams
for 8000 iterations.

1) FIR channel: In this example, we consider a tap FIR
filter to model multipath channel distortions. The multipath
channel is modeled through the impulse response vector
h[n] = [0.5, 1, −0.6] [33]. Fig. 17 illustrates the constellation
points regarding the received constellation in a), the Costas
Loop scheme combined with CMA in b), as well as the
proposed AF-based scheme according to LMS in c), CMC-1
in d), CMC-2 in e), and CMC-3 in f). As observed in Fig. 17
d) to f), the proposed AF-based methods CMC-1 to CMC-3
reduce the spreading of the constellation points in comparison
to CMA and LMS algorithms. Figures 18 and 19 show the
eye-opening behavior for the Costas Loop and the proposed
solutions, respectively. The methods CMC-1 to CMC-3 lead
to a clear eye-opening pattern, which in turn favors the proper
detection of the received phase.

Additionally, we also simulated the SUI-3
channel model [34], where the impulse response
vector is hi[n] = [0.5395, 0.0451, −0.1025] and
hq[n] = [−0.0607, −0.119, −0.1126], respectively. Fig. 20
a) to f) illustrate the received and recovered constellation
points for each method, while Figures 21 and 22 depict the
eye-opening pattern for Costas Loop combined with CMA
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and the proposed AF-based method, respectively. Fig. 20
exhibits the superior performance of the proposed AF-based
scheme in comparison to the Costas Loop with CMA when
recovering the constellation points. Similar behavior is
obtained regarding the eye-opening pattern when comparing
the proposed AF-based method in Fig. 22 a) to the Costas
Loop with CMA in Fig. 21.

2) Non-minimum phase channel: This example illustrates
performance when the channel is modeled by the impulse
response vector

h[n] =


0 n < 0
−0.4 n = 0

0.84 · 0.4n n > 0
0 n >= 7

, (13)

which describes a non-minimum phase channel of length 7
samples [35], [36]. Through this channel, results for the
recovered constellation points and eye pattern are illustrated
in Figures 23 to 25. In this case, the method CMC-2 exhibits a
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Fig. 21. Eye-pattern derived from the Costas Loop scheme combined with
CMA for transmissions in the SUI-3 channel provided in [34].
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Fig. 22. Eye-patterns for transmissions in the SUI-3 channel provided in [34].
a) AF (LMS), b) AF (CMC-1), c) AF (CMC-2), d) AF (CMC-3) methods.

better eye-opening, and the LMS method a better constellation
points recovery when compared to the Costas Loop with CMA
scheme.

3) IIR channel: Finally, this section illustrates the perfor-
mance in the case of IIR channels. The transmitted QPSK
signal is then processed by a distortion channel described
through its z-transform as [37]

H(z) =
1

1 + 0.9z−1
. (14)

Based on this channel, the received and recovered constel-
lation points are shown in Fig. 26, the resulting eye pattern
is illustrated in Figures 27 and 28. In this case, the Costas
Loop scheme combined with CMA, AF-based CMC-1, and
AF-based CMC-2 methods present a similar performance on
clustering the constellation points and in the openness of the
eye pattern.

C. Remarks

Regarding the mitigation of channel distortion, the obtained
results demonstrate to have a good performance when using
the proposed AF-based scheme with the CMC methods. The
imposed restriction, regarding the constant amplitude, intro-
duces an advantage to reduce distortion in comparison to the
traditional Costas Loop combined with CMA. In general, the
adaptive schemes for CMC-1 and CMC-2 methods exhibit
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Fig. 24. Eye-pattern of the Costas Loop scheme combined with CMA for
transmissions in the non-minimum phase channel provided by Shalvi and
Weinstein [35] and Maricic et al. [36].
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Fig. 25. Eye-patterns for transmissions in the non-minimum phase channel
provided by Shalvi and Weinstein [35] and Maricic et al. [36]. a) AF (LMS),
b) AF (CMC-1), c) AF (CMC-2), and d) AF (CMC-3) methods.
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Fig. 27. Eye-pattern of the Costas Loop scheme combined with CMA for
transmissions in the IIR channel provided by Jones [37].
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better performance to mitigate the impact of multipath channel
environments when recovering the constellation points and
in the opening of the eye pattern. Future directions will be
conducted on the testbeds implementation of the proposed
mechanisms. Using SDR boxes the real-time operation of this
method may be tested on wireless links.

VII. CONCLUSIONS

A low complex scheme, to jointly equalize and recover
the constellation points from PSK waveforms, is conceived
when utilizing an adaptive filter scheme. The system operates
without a training sequence, which in turn represents a strong
capability to operate on AMR applications. Also, it exhibits
less complexity than existing blind schemes like the traditional
Costas Loop combined with CMA. Taking advantage of the
constant amplitude of PSK waveforms, the proposed AF-based
scheme can profit from new coefficients update mechanisms,
named CMC, that provides robust performance, not only
recovering constellation points but also reducing performance
degradation produced by ISI. Additionally, simulation results
confirm the improved speed of convergence of the proposed
AF-based schemes with CMC methods when compared to the
Costas Loop scheme combined with CMA. Future directions
will be conducted on the testbeds implementation of the
proposed mechanisms. Using software defined radio (SDR)
boxes the real-time operation of this method may be tested
on wireless links. Furthermore, the proposed solution may
be extended to consider multiples sources and the impact of
interference as well as the tone capture effect.
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