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Abstract—Nanoscale devices with Terahertz (THz) communi-
cation capabilities are envisioned to be deployed within human
bloodstreams. Such devices will enable fine-grained sensing-based
applications for detecting early indications (i.e., biomarkers) of
various health conditions, as well as actuation-based ones such as
targeted drug delivery. Associating the locations of such events
with the events themselves would provide an additional utility for
precision diagnostics and treatment. This vision yielded a new
class of in-body localization coined under the term “flow-guided
nanoscale localization”. Such localization can be piggybacked on
THz communication for detecting body regions in which biologi-
cal events were localized with the traveling time reported by nan-
odevices flowing with the bloodstream. From decades of research
on objective benchmarking of “traditional” indoor localization
and its eventual standardization (e.g., ISO/IEC18305:2016), we
know that in early stages, the reported performance results were
often incomplete (e.g., targeting a subset of relevant performance
metrics). Reported results in the literature carried out bench-
marking experiments in different evaluation environments and
scenarios and utilized inconsistent performance indicators. To
avoid such a “lock-in” in flow-guided localization, we propose
a workflow for standardized performance evaluation of such
approaches. The workflow is implemented in the form of an
open-source simulation framework that is able to jointly account
for the mobility of the nanodevices, in-body THz communication
with on-body anchors, and energy-related and other technological
constraints (e.g., pulse-based modulation) at the nanodevice level.
Accounting for these constraints, the framework can generate
raw data to streamline into different flow-guided localization
solutions for generating standardized performance benchmarks.

Index Terms—Flow-guided nanoscale localization, Terahertz,
performance evaluation methodology, precision medicine;

I. INTRODUCTION

Advances in nanotechnology are paving the way toward
nanodevices with integrated sensing, computing, and data
and energy storage capabilities [1]. Among others, such de-
vices will find applications in precision medicine [2]–[4]. A
subset of such applications envisions the nanodevices being
deployed in the patients’ bloodstreams [5], [6]. As such, they
will have to abide to the environmental constraints limiting
their physical size to the one of the red blood cells (i.e.,
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smaller than 5 microns). Due to constrained sizes, their sole
powering option will be to scavenge environmental energy
(e.g., from heartbeats or through ultrasound power transfer)
utilizing nanoscale energy-harvesting entities such as Zinc-
Oxide (ZnO) nanowires [1] or through chemical reactions
with enzymes from the environment [7]. Due to constrained
powering, such devices are expected to be passively flowing
within the patients’ bloodstreams.

Recent advances in the development of novel materials, pri-
marily graphene and its derivatives [8], herald nanoscale wire-
less communications in the THz region (i.e., 0.1−10THz) [3].
In the context of the above-discussed nanodevices, wireless
communication capabilities will enable their two-way com-
munications with the outside world [9]–[12]. Deployment
spans from single-input single-output (SISO) [13], [14] to
multiple-input multiple-output (MIMO) [15], [16] schemes
for enhanced communication capabilities. Communication-
integrated nanodevices are paving the way toward sensing-
based applications such as oxygen sensing in the bloodstream
for detecting hypoxia (i.e., a biomarker for cancer diagnosis),
and actuation-based ones such as non-invasive targeted drug
delivery for cancer treatment [7].

As recognized in the literature, communication-enabled
nanodevices will also provide a primer for flow-guided lo-
calization in the bloodstreams [3], [17]. Such localization will
enable associating the location of an event detected by the nan-
odevices (e.g., hypoxia or a target for targeted drug delivery),
providing medical benefits along the lines of non-invasiveness,
early and precise diagnostics, and reduced costs [17]–[20].
Flow-guided localization is in an early research phase, with
only a few works targeting the problem [17]–[19]. The main
challenges include i) a sub-centimeter range of THz in-body
wireless communication at nanoscale, ii) energy-related con-
straints stemming from energy-harvesting as the sole powering
option of the nanodevices, iii) high mobility of the nanodevices
in the bloodstreams, with their speeds reaching 20 cm/s. Flow-
guided localization proposals have made encouraging progress
in addressing the above challenges, yet we argue that the
research and further advances on such localization are needed
and yet to flourish.

Based on the above arguments and the knowledge gen-
erated through decades of research on “traditional” indoor
localization, we posit that, at this early stage, there is a
need for a framework for objective performance evaluation
of flow-guided localization. Specifically, early research on
traditional indoor localization suffered from the inability to
objectively compare the performance of different approaches.
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In other words, the reported performance results were often
incomplete (e.g., targeting a single metric such as localization
accuracy and ignoring the other important ones such as the
latency of reporting location estimates), utilizing different
performance indicators (e.g., mean vs. median accuracy),
and utilizing different evaluation environments and scenarios.
These issues were eventually recognized in the community
and addressed through large-scale and costly projects such
as the EU Evaluation of RF-based Indoor Localization So-
lutions for the Future Internet (EVARILOS) [21] and NIST
Performance Evaluation of Smartphone Indoor Localization
Apps (PerfLoc) [22], [23]. Other examples are with indoor
localization competitions such as the one from Microsoft at
the ACM/IEEE IPSN conference [24], eventually resulting
in the development of an ISO/IEC standard for objective
benchmarking of indoor localization approaches [25].

The general objective of this article is to avoid the initial
“lock-in” in the comparability of flow-guided localization by
proposing a framework for standardized performance evalua-
tion of such localization approaches. Specifically, our contri-
butions include discussing the fundamentals of flow-guided
nanoscale localization, providing an overview of existing
approaches, and discussing the limitations of their current
performance assessments. This is followed by proposing a
workflow for standardized and objective performance assess-
ment of flow-guided localization. In addition, an open-source
network simulation framework is provided that implements
the discussed workflow and provides the community with the
first tool for realistic and objective assessment of flow-guided
localization. We follow by demonstrating the capabilities of
the proposed simulator by evaluating the performance of a
state-of-the-art flow-guided localization solution. Finally, we
provide guidelines on the optimal sampling of evaluation
locations in the cardiovascular system that guarantees objec-
tive benchmarking and showcase the benefits of parallelized
execution of benchmarking experiments.

II. RELATED WORKS

A. Flow-guided Localization Fundamentals

The main objective of flow-guided localization is to uti-
lize the nanodevices to localize target events. The work
in [17] proposes a multi-hopping based in-body localization
approach that can conceptually support flow-guided local-
ization. Nonetheless, the representatives of such localization
are [18], [19]. In these approaches, machine learning models
are utilized to distinguish the body region through which each
nanodevice passed during one circulation through the blood-
stream. The authors in [18] base this procedure on tracking
the distances traversed by a nanodevice in its circulations
through the bloodstream using a conceptual nanoscale Inertial
Measurement Unit (IMU). However, this poses challenges
in terms of resources available at the nanodevice level for
storing and processing IMU-generated data, and challenges
related to the vortex flow of blood negatively affecting the
accuracy of IMU readings. In [19], these issues are mitigated
by tracking the time needed for each circulation through
the bloodstream. The captured distances or times are then

envisioned to be reported to a beaconing anchor deployed
near the heart, utilizing ultrasonic or short-range THz-based
backscattering at the nanodevice level.

Given that only a body region through which the nanodevice
traversed is being detected, these localization approaches are
(in contrast to [17]) not designed to provide point localization
of the target. This is despite the fact that point localization of
the target event would be immensely beneficial for the health-
care diagnostics. Moreover, the region detection accuracy and
reliability of localization can intuitively be enhanced with an
increase in the nanodevices’ number of circulations in the
bloodstream. As a trade-off, such an increase would negatively
affect the energy consumption of the localization procedure.
Therefore, in flow-guided localization, relevant performance
metrics such as point and region accuracies, reliability, and
energy consumption should be considered a function of the
application-specific delay allowed for localizing target events.

B. Performance Evaluation of THz Nanoscale Systems
As argued in [26], simulating the performance of a given

system allows for completely controllable experimental con-
ditions and environments. Combined with repeatability and
cost-efficiency, these advantages make simulations a valuable
tool for evaluating new algorithms, especially at early research
stages. Given that the research on flow-guided localization is
still in the preliminary stage, simulating the operation of such
systems can be considered a natural first step in assessing their
performance.

This was only meagerly recognized in the scientific commu-
nity, with BloodVoyagerS (BVS) [26] being the first tool that
provides a simplified bloodstream model for simulating the
mobility of the nanodevices. The simulator covers 94 vessels
and organs, and the coordinate system’s origins are placed in
the heart’s center. The spatial depth of all organs is equated,
with the reference thickness of 4 cm mimicking the depth of a
kidney, resulting in the z-coordinates of the nanodevices being
in the range from −2 to 2 cm (cf., Figure 1).

The simulator further assumes that the arteries and veins
are set anterior and posterior, respectively. Transitions from
the arteries to veins happen in the organs, limbs, and head.
In the heart, the blood transitions from the veins to arteries,
i.e., the blood model transitions from posterior to anterior. The
flow rate is modeled through the relationship between pressure
difference and flow resistance. This results in the average
blood speeds of 20, 10, and 2− 4 cm/s in aorta, arteries, and
veins, respectively. Transitions between the arteries and veins
are simplified by utilizing the constant velocity of 1 cm/s.

TeraSim [27] is the first simulation platform for modeling
THz communication networks which captures the capabilities
of nanodevices and peculiarities of in-air THz propagation.
TeraSim is built as a module for ns-3 (i.e., a discrete-event
network simulator), implementing physical and link layer solu-
tions tailored to nanoscale THz communications. Specifically,
at the physical layer, it features pulse-based communications
with an omnidirectional antenna over distances shorter than
1m, assuming an almost 10THz wide transmission window.
At the link layer, TeraSim implements two well-known proto-
cols, i.e., ALOHA and CSMA, while a common THz channel
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Figure 1: Nanodevice mobility in the BVS (reproduced from [26])

module implements a frequency selective channel model,
assuming in-air wireless communication. We will utilize BVS
and TeraSim as the starting points in developing the simulation
framework envisioned in this work.

C. Evaluation Methodologies for Flow-guided Localization

As argued, research lessons on the performance evaluation
of indoor localization systems can, to some extent, be applied
to objective and standardized assessment of flow-guided lo-
calization. The EU EVARILOS project was among the early
efforts aiming at such performance assessment for RF-based
indoor localization [21]. Within the project, a performance
assessment methodology was developed, which included a
number of evaluation scenarios, envisioned capturing the per-
formance of evaluated solutions along a heterogeneous set of
metrics including localization accuracy, latency, and energy
consumption, and assessing and mitigating the negative effects
of RF interference on the performance of the evaluated solu-
tions. The project also yielded a web platform populated with
raw data envisioned to be inputted in an indoor localization
solution for its streamlined performance assessment along a
number of standardized scenarios. A similar approach was
followed in the NIST PerfLoc project, however with a set
of possible solutions to be evaluated extending beyond only

Radio Frequency (RF) to IMU-based, Global Positioning Sys-
tem (GPS)-supported, and other hybrid approaches. Finally,
the IPSN/Microsoft Indoor Localization Competition [24] was
the first effort to support back-to-back evaluation of different
indoor localization approaches along the same set of experi-
mental conditions.

The above-discussed and consequent efforts yielded the
following lessons: i) performance comparison of different
indoor localization approaches can be carried out in an ob-
jective way by following the same evaluation methodology,
i.e., utilizing the same environments, scenarios, and evaluation
metrics, ii) such evaluation can be streamlined by providing
a set of raw data captured along a standardized evaluation
methodology, which is envisioned to be utilized as an input to
an indoor localization solution under consideration, and iii) the
performance of RF-based indoor localization can be degraded
by both self-interference and interference from neighboring
RF-based systems operating in the same frequency band.

In the current outlook on the performance assessment of
flow-guided localization, the approaches from [18], [19] are
evaluated in a rather simplified way accounting solely for
the mobility of the nanodevices as modeled by the BVS.
As such, these assessments ignore many potential effects of
wireless communication (e.g., RF interference), as well as
energy-related constraints stemming from energy-harvesting
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Figure 2: Overview of the framework for standardized performance evaluation of flow-guided localization

and, consequently, the intermittent nanodevice operation [1].
It is also worth mentioning that authors in [17] carried out
a limited performance evaluation assessing the number of
nanodevices needed for localizing a nanodevice at any location
in the body in a multi-hop fashion. The derived assessments
can, therefore, at this point only serve as a rough indication
due to their low levels of realism and subjective evaluation
methodologies. In this work, we enhance the realism of such
assessments by jointly accounting for the mobility of the
nanodevices, in-body nanoscale THz communication between
the nanodevices and the outside world, and energy-related and
other technological constraints (e.g., pulse-based modulation)
of the nanodevices.

III. FRAMEWORK FOR STANDARDIZED PERFORMANCE
EVALUATION OF FLOW-GUIDED LOCALIZATION

A. Evaluation Workflow

As mentioned, enabling flow-guided localization in the
bloodstream requires at least a single anchor mounted on the
patient’s body. Flow-guided localization approaches in [18],
[19] can be enabled with a single anchor strategically posi-
tioned in the proximity of the heart. This is because the heart is
the only location through which each nanodevice is guaranteed
to pass in each circulation through the bloodstream. Additional
anchors can be introduced into the system by specifying their
coordinates in their configuration file of the simulator, as
indicated in Figure 2. The on-body anchors are expected to
feature batteries or similar powering sources, hence they are
assumed to be continuously operational. Their main roles are
transmitting beacon packets and receiving the nanodevices’
backscattered responses.

The nanodevices are assumed to feature capacitors for
energy storage and ZnO nanowires as the energy-harvesting
entities [28], where the energy is harvested in nanowires’
compress-and-release cycles. The harvested energy can be
specified with the duration of the harvesting cycle tcycle and
the harvested charge per cycle ∆Q. The capacitor charging

is modeled as an exponential process accounting for the
energy-harvesting rate and interval (e.g., 6 pJ per second and
per 20 ms for harvesting from heartbeats and ultrasound-
based power transfer, respectively [1]) and capacitor’s storage
capacity. Specifically, the model accounts for the total capac-
itance of the nanonode, denoted as Ccap, and evaluated as
Ccap = 2Emax/V

2
g , i.e., Ccap depends on the energy storage

capacity Emax and the generator voltage Vg . In the modeling,
it is required to know in which harvesting cycle the nanonode
is, as denoted by ncycle, and given its current energy level
Encycle

, which can be derived from [1] as follows:

ncycle =

⌈
−VgCcap

∆Q
ln

(
1−

√
2Encycle

CcapV 2
g

)⌉
. (1)

The energy in the next energy cycle ncycle + 1 is then:

Encycle+1
=

CcapV
2
g

2

(
1− e

−
∆Q(ncycle+1)

VgCcap

)2

. (2)

The nanodevices are assumed to feature intermittent be-
havior due to harvesting and storage constraints. In other
words, once its energy falls below the Turn OFF threshold,
the nanodevice turns off, followed by a turn on when its
energy increases above the Turn ON threshold, as shown in
Figure 3. If the nanodevices are turned on, they are assumed
to periodically carry out a sensing or actuation task with a
given frequency. Each task execution is expected to consume
a certain constant amount of energy; hence, the more frequent
the task, the more energy each nanodevice will consume.

The target event location(s) is (are) envisioned to be hard-
coded by the experimenter, abiding by the scenario’s con-
straints. Specifically, this location has to be in or near the
bloodstream to eventually be detected by the nanodevices.
The event is assumed to be detected by a nanodevice if
i) the Euclidean distance between its location and the one
of the nanodevice at the time of the task execution smaller
than the predefined threshold (n.b., configured to 1 cm in the
reported experiments), and ii) the nanodevice is turned on. The
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Figure 3: Lifecycle of an energy-harvesting nanodevice

reasoning behind such modeling is in the fact that diagnosti-
cally relevant events are assumed to be static, and releasing
into the bloodstream certain biomarkers for event detection.
The released biomarkers are assumed to feature a lifetime
substantially shorter than the deployment of the nanodevices
in the bloodstream, effectively creating a spherical region
around the event with the radius equalling the predefined event
detection threshold. Within the region, the nanodevice is able
to sense the biomarkers for event detection.

Communication with the anchor is based on passive recep-
tion of a beacon, followed by active (i.e., energy-consuming)
transmission of a response packet from the nanodevice, as
assumed in the representative work from the literature [19].
The anchor is beaconing with the constant beaconing fre-
quency and transmit power. In each beacon packet, the anchor
advertises its Medium Access Control (MAC) address. In
the backscattered packets, the nanodevices report their MAC
addresses, the time elapsed since their last passage through
the heart, and an event bit. The time elapsed since the last
passage through the heart and the event bit represent the raw
data that can be fed into a flow-guided localization approach
for localizing a target event. Each time a nanodevice passes
through the heart, the time elapsed since the last passage is re-
initialized to zero to not compound multiple circulations. The
event bit is assumed to be a logical “1” in case of successful
detection of a target event and “0” otherwise. Similarly, the
event bit is reinitialized to “0” in each passage through the
heart.

B. Framework Design and Implementation

The simulation framework for standardized performance
evaluation of flow-guided localization is depicted in Figure 2.
The input to the framework is a set of parameters defining an
evaluation scenario. The inputs are envisioned to be passed
to the ns-3-based simulator for the generation of raw data
to be used for streamlined evaluation of a given flow-guided
localization solution for the assumed scenario, resulting in a
performance benchmark, as indicated on the right hand side in
Figure 2. Each streamlined performance benchmark consists of
a set of relevant performance metrics, in turn allowing for an
objective back-to-back comparison of different approaches in
a consistent environment along the same set of scenarios and
performance metrics. Specifically, as the relevant performance

metrics we consider the point and region localization accu-
racy, reliability of providing location estimates, and energy
consumption of the nanodevices. Region accuracy is calculated
as the percentage of correctly estimated regions:

Region acc. [%] =
Ncorrect

Ntotal
, (3)

where Ncorrect represents the number of correct region
estimates, and Ntotal the total number of evaluation points.

The point accuracy for each evaluation point is calculated as
the Euclidean distance between the true location (xT , yT , zT )
of the event hard-coded by the experimenter and the estimated
location or region centroid (xE , yE , zE) reported by the flow-
guided localization approach:

Point acc. [cm] =
√

(xE − xT )2 + (yE − yT )2 + (zE − zT )2.
(4)

The simulator’s architecture follows a well-established ns-3
layered model, as depicted in Figure 2. The AnchorApplication
module implements continuous beaconing with a predefined
period (n.b., with 100ms being a default value). Each beacon
packet is forwarded to the THzNetDevice module toward
the communication stack implemented within the TeraSim
simulator. The link and physical layers implement the ALOHA
protocol and TS-OOK modulation, respectively.

The THz channel is modeled by calculating the receive
power for each communicating pair of devices and scheduling
the invocation of the ReceivePacket() method accounting for
the corresponding propagation time. The channel model entails
in-body path-loss and Doppler terms [18]. The path-loss is
calculated using the attenuation and thickness parameters of
the vessel, tissue, and skin. The Doppler term is accounted
for by evaluating the change in relative positions between
the nanodevices and anchors with time. The ReceivePacket()
method checks for potential collisions by calculating the
Signal to Interference plus Noise Ratio (SINR) and discarding
the packet if the SINR is below the predefined threshold
for reception. Alternatively, the packet is passed through all
the way to the application layer of the nanodevice. At the
nanodevice level, the beacon’s receive power is used to set
up the packet’s transmission power to be backscattered. This
is followed by backscattering the response packet from the
nanodevice toward the anchor, utilizing the same procedure as
for transmitting the beacon.

The anchors are assumed to be static entities and feature
sufficient energy for continuous operation. The nanodevices
are assumed to be mobile energy-harvesting entities within
the bloodstream. We have integrated BVS to model their
mobility in our simulator, as visible in Figure 2. Invoking
a BVS execution results in generating a Comma Separated
Value (CSV) file that specifies the locations of the nanodevices
in the bloodstream within a simulation time frame, sampled
at 1Hz. Since ns-3 is an event-driven simulator, at each
BVS-originating location of a nanodevice, the nanodevice is
assumed to carry out a sensing/actuation task. Given that for
certain applications carrying out such tasks could be required
more frequently, we provide an upsampler for BVS-originating
locations sampled at 1Hz. Each vessel in BVS is modeled
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Figure 4: An example raw data output

as a straight line, while the blood speed within a vessel is
constant. The upsampling by a factor N from the originally
1Hz sampled locations is then based on introducing additional
N − 1 nanodevice locations at equidistant times along the
vessel segments.

To each of the upsampled locations, a small random com-
ponent drawn from a zero-mean Gaussian distribution E =
(xE , yE , zE) ∼ N(0, σ2) is introduced, which serves as our
way of modeling several natural peculiarities of blood flow, in-
cluding its vortex and laminar nature, as well as minor changes
in the diameter of veins and arteries [29]–[31]. This way of
modeling the vortex and laminar nature of the blood flow
with flow velocities varying across the vessel cross-sections
allows us to achieve a balance between simulation accuracy
and capturing the performance across the entire cardiovascular
system effectively within reasonable execution times. The
newly introduced set of locations pi = (xi, yi, zi) can be
obtained by defining a vector ν between the two originally
sampled locations p0 = (x0, y0, z0) and pN = (xN , yN , zN ):

ν = pN − p0 = (xN − x0, yN − y0, zN − z0). (5)

The newly introduced locations pi then follow as:

pi = (xi, yi, zi) = p0 +
i

N

ν

||ν||
+ Ei, ∀i ∈ {1, N − 1}, (6)

with ||ν|| being the Euclidean distance between pN and p0.

IV. EVALUATION RESULTS

In this section, we first provide and discuss an example
snapshot of the simulator-generated raw data, as well as of the
performance metrics generated by the streamlined utilization
of the raw data. We follow by assessing the performance’s
sensitivity to the target events’ locations. By doing so, we
aim to establish the optimal method for sampling the target
events in the bloodstream and the number of such samples
required. We require that the performance assessment obtained
through such sampling be a reliable representation of the
average performance of the considered solution within the
entire bloodstream or some of its regions. Addressing this
issue is also considered a part of our future efforts. Finally,
we demonstrate the advantages of parallelizing the utilization
of the simulator in terms of execution time compared to
sequential execution of the same experiment.

TABLE I: Baseline Simulation Parameters

Parameter Value
Anchor beaconing interval 100 ms
Nanodevice sampling rate 3 samples per second
Simulation duration 1000 s
Event detection distance 1 cm
Blood flow speed (aorta) 20 cm/s
Blood flow speed (arteries) 10 cm/s
Blood flow speed (veins) 2 - 4 cm/s
Transition speed (organs/limbs/head) 1 cm/s
Generator voltage Vg [V] 0.42
Energy consumed in pulse reception [pJ] 0.0
Energy consumed in pulse transmission [pJ] 1.0
Maximum energy storage capacity [pJ] 800
Turn ON/OFF thresholds [pJ] 10/0
Harvesting cycle duration [ms] 20
Harvested charge per cycle [pC] 6
Transmit power PTX [dBm] -20
Operational bandwidth [GHz] 10
Receiver sensitivity [dBm] -110
Operational frequency [THz] 1

A. A Snapshot of Framework-generated Outputs

A snapshot of the framework-generated outputs is depicted
in Figures 4 and 5. In the generation of the outputs, we have
utilized a single anchor positioned in the center of the heart,
64 nanodevices sampling for target events at 3 samples per
second, ultrasound-based energy-harvesting at the nanodevice
level [1], the overall simulation duration of 1000 s, and the
Euclidean distance for detecting a target event of 1 cm. The
baseline simulation parameters used in our study are based
on [1] and summarized in Table I.

Figure 4 depicts the raw data generated by an example
nanodevice during one simulation runtime. The raw data
consists of the circulation time parameter indicating the time
passed since the last reception of a beacon from the anchor and
the event bit suggesting if the target event was detected since
the last beacon reception. The main takeaway from Figure 4
is that, for some raw data instances, the circulation time is
larger than 90 s, which is the maximum circulation time that
might occur in a single loop through the bloodstream. This
implies that in some circulations the raw data is not reported
to the anchor and, when the data is eventually reported, it
contains the compound of multiple such circulations. Such
behavior is a result of one of the following: i) intermittent
operation of a nanodevice due to energy-harvesting, resulting
in the nanodevice sometimes not featuring sufficient energy
for sensing or transmission, and ii) self-interference from
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the other nanodevices and anchors, resulting in reception
and transmission errors. In addition, random paths of the
nanodevices in the vicinity of the target event (i.e., in an
organ, limb, or head) can result in the nanodevices missing
the event due to its Euclidean distance from the event never
being smaller than the threshold of 1 cm, even though they
went through the loop that contained the event. This implies
that the event bit parameter might in some cases be erroneous.

Figure 5 depicts a set of performance metrics generated in
a streamlined fashion using the framework. In generating the
results, we have utilized a modified approach from [19] and
20 randomly sampled evaluation points (i.e., target events) in
the bloodstream. The modification in the approach pertains
to random selection of the left or right regions given that
the approach assuming a single anchor is by-design unable
to distinguish between such regions for certain parts of the
body (e.g., limbs). As visible from the figure, localization
reliability increases as a function of simulation time, where the
simulation time represents the duration of the administration
of the nanodevices in the bloodstream. As an example, the
localization reliability is increased from less than 50% to more
than 90% if the simulation time is increased from 2 to 15min.
The reason for that can be found in the fact that the prolonged
duration of the nanodevices’ administration in the bloodstream
results in more raw data being reported to the anchor, in turn
increasing the reliability of producing location estimates.

Our results also reveal that certain assumptions made in
earlier works on flow-guided localization ignore several phe-
nomena that are expected to occur in practice, pertaining to
unreliable THz-based communication between in-body nan-
odevices and on-body anchors, and intermittent operation of
the nanodevices due to energy-harvesting. When these are
accounted for as done when utilizing the proposed framework,
our results reveal relatively poor performance of the evaluated
flow-guided localization solution in the considered scenario.
Specifically, the region detection accuracy is at most 40% and
features only a small increase with the simulation time.

Given that the approach from [19] cannot report point
estimates but solely the estimated regions, in calculating the
point accuracy, we have utilized the centroid of a region
as its point estimate. Besides, given that each region in
BloodVoyagerS is modeled as a straight line with constant
blood speed, its centroid is calculated as the arithmetic mean
of the endpoints of the line. This procedure is well-established
in the domain of benchmarking of proximity-based indoor
localization solutions [21]. In Figure 5, the depicted point
accuracy can be considered irrelevant, given the low region
detection accuracy. In other words, the point accuracy should
be derived only for the correctly detected regions in order
to express the fine-grained ability of localizing target events.
We nonetheless depict the point accuracy even for the case
of incorrectly detected regions to draw readers’ attention to
this issue. The point accuracy is depicted in a regular box-
plot fashion, where each box-plot depicts the distribution of
localization errors for the 20 considered target events and a
given simulation time. Finally, the time-dependent energy level
of an example nanodevice depicted in Figure 5 indicates the
energy consumption of different tasks at the nanodevice level.

Figure 5: An example streamlined performance benchmark

Such indications are necessary for energy-aware optimizations
of the task scheduling to maximize the operational time of the
intermittently-operating nanodevices in a similar way as in [1].

B. Sampling of Target Event Locations

The proposed simulator is able to produce raw data that
can be streamlined into flow-guided localization approaches.
Simulation parameters are “hard-coded” by the user, which
includes the hard-coding of the true coordinates of the target
events. The aim of this section is to examine the extent
to which the performance metrics fluctuate as a function
of the true locations of the events. This necessity comes
from observed inconsistencies in data reliability and variability
across different body regions. For instance, events closer to the
heart generally provide more consistent information than ones
occurring further away, such as in the arms or legs.

To guarantee that the reported performance metrics are
representative of the entire cardiovascular system or some of
its regions of interest, we need a method for selecting the
true locations of target events. For this purpose, we assessed
a number of strategies for sampling target event locations
from the cardiovascular system. The samples generated by
such strategies should be sufficiently large to provide a rep-
resentative assessment in terms of region and point accuracy.
Data generation is a time consuming process, and running a
simulation on a predetermined target event is both computa-
tionally and time consuming. As a result, the methods should
simultaneously strive to minimize the number of target event
locations for striking a balance between resource efficiency
and objective benchmarking.

We consider spatial sampling methods from the family of
random sampling due to the fact that they ensure that the
resulting sample is representative of a population [32]. The
sampling methods considered in this work are i) Simple Ran-
dom Sampling (SRS), i.e., randomly drawing points from the
population with equal probability, ii) Stratified Simple Random
Sampling (SSRS), i.e., dividing the population into discrete
non-overlapping strata and random from each stratum, iii)
Cluster Random Sampling (CRS), i.e., dividing the population
into clusters, followed by randomly selecting some of the
clusters as a sample, iv) Regular Grid Sampling (RGS), i.e.,
sampling at regular distances following a grid pattern spanning
the entire area of interest, and v) Spatial Coverage Sampling
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Figure 6: Methodology for deriving the optimal target event location
sampling strategy and the minimal number of samples

(SCS), i.e., dividing the area or volume into smaller sections,
followed by taking representative samples from each.

Our methodology for deriving the optimal sampling strategy
and the minimal number of samples is depicted in Figure 6.
First, a performance benchmark is generated using a densely
sampled set of event locations from the cardiovascular system.
Second, the above-outlined sampling strategies are utilized
to sample the original dense set of locations. The subsets
yielded by different strategies are then utilized to obtain
the performance of the considered flow-guided localization
solution and analyze its sensitivity to the selection of event
locations. Lastly, the optimal sampling strategy and minimal
number of samples are derived and integrated into the pro-
posed simulation framework.

The performance of the considered solution averaged over
10 runs of an example experiment yielded a region accuracy
of around 28% and point accuracy of 21.1 cm, as depicted
in Figure 7. The simulator assumes three different region
types, i.e., Region type = 0 includes parts of the cardiovascular
system with blood speeds of 20 cm/s (nb., aorta) and 10 cm/s
(nb., arteries), Region type = 1 with speeds of 2 − 4 cm/s
(nb., veins), and Region type = 2 representing transitions be-
tween arteries and veins in organs, limbs and head, simplified
with a constant velocity of 1 cm/s. The average performance
achieved varies across different region types, with type 2
featuring the lowest accuracy of 13.2% and type 1 the highest
of 28.9%. The localization error is the lowest for type 1 and
equals 16.8 cm and highest for type 0 with 23 cm. Differences
in performance are primarily the results of different blood
speeds in different regions.

In Figure 7, we also analyze the convergence of performance
metrics as a function of the evaluation set size for different
sampling strategies. As visible, the worst-performing strategies
are CRS and SCS. Thus, they are excluded from further
consideration. The remaining three strategies converge toward
the performance observed when utilizing an entire set of target
locations at roughly 50% of the utilized locations. The initial
fluctuations in accuracy are due to the small size of the eval-
uation set at the beginning of the experiment. As the number
of evaluation points increases, the accuracy metric stabilizes
and becomes more representative of the entire cardiovascular
system. This shows the importance of selecting a sufficiently
large evaluation set for consistent accuracy results.

Table II overviews the average region and point accu-
racy achieved by utilizing different strategies. The considered
strategies do not fluctuate significantly from the metrics aver-
aged over all data target locations. The results show that RGS

(a) Region accuracy

(b) Point accuracy
Figure 7: Performance convergence of different sampling strategies

converges fastest toward the overall performance. Specifically,
it yields only a 0.2% difference in region accuracy and 0.3 cm
difference in point accuracy, compared to the baseline utilizing
all sample locations. The average accuracy of region type 2 in
the regular grid sample is 4% lower than the overall accuracy.
Nonetheless, the technique appears to produce consistent es-
timates of both region accuracy and mean error overall and
for type 0. Although this strategy produces more accurate
results than the other two, SRS seems to generate more precise
results for type 2 and SSRS for type 1. Example samples of
target event locations obtained by utilizing different sampling
strategies are depicted in Figure 8.

Assuming that the goal is to assess the overall performance
of a flow-guided localization solution, the simulator will
employ RGS. To guarantee that the obtained metrics are
representative of the average performance in the cardiovascular
system, at least 684 target locations, or 50% of the overall
dataset, should be utilized as a sample size. If the user is
interested in specific region types, the strategy is based on
the results in Table II. Specifically, for region types 0, 1,
and 2, the most adequate strategies would be RGS, SSRS,
and SRS, respectively. This is despite the fact that for region
type 1 RGS outperforms SSRS in terms of the point accuracy
metric, however by a small margin. Hence, for the assessment
targeting both metrics in region type 1 SSRS is a marginally
better sampling strategy than RGS.

C. Execution Times

The proposed simulator provides support for the paralleliza-
tion of benchmarking experiments. The reduction in the exe-
cution times of an example experiment due to parallelization is
shown in Figure 9 for different Central Processing Unit (CPU)
configurations. In the example experiment, we have derived
the raw data assuming 64 nanodevices deployed for 1200 s,
while the performance metrics have been derived for 75 event
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(a) Dense (b) RSS (c) SSRS (d) SRS

Figure 8: Example regions accuracy distributions resulting from different sampling strategies

TABLE II: Summary of performance convergence of selected sam-
pling strategies

Method Region Accuracy [%] Mean Error [m]
Dense 28.6 0.210
RGS 28.4 0.213
SSRS 27.1 0.219
SRS 26.9 0.205

Method Region type 0 Region type 1 Region type 2
Reg, Error Reg. Error Reg. Error

Dense 31.8 0.235 30.6 0.179 13.4 0.228
RGS 31.5 0.236 33.1 0.175 9.4 0.249
SSRS 29.3 0.237 29.4 0.186 14.0 0.256
SRS 29.5 0.231 29.2 0.171 13.8 0.221

Figure 9: Example execution times of sequential and parallelized
operation

locations in the cardiovascular system. As visible in the figure,
parallelization can speed up the execution of experiments more
than 6 times compared to the sequentially executed base-
line. When running parallelized experiments, the experimenter
should limit the CPU usage to maximum 12 units, as there are
no significant benefits afterwards in terms of the reduction in
execution times. Finally, one should observe that the majority
of execution time is spent on the generation of raw data,
and only a negligible constant duration of the streamlined
performance benchmarking, as depicted in Figure 9. In other
words, these results showcase that the design of our simulator
allows for the generation of raw datasets representative of a
variety of scenarios, on top of which fast and objective back-
to-back performance benchmarking of different flow-guided
localization approaches can be streamlined.

V. CONCLUSION

We argue that there is a need for objective evaluation of the
performance of flow-guided nanoscale localization. We further
argue that such objectiveness can be achieved by utilizing the
same evaluation environment, scenarios, and performance met-
rics. This is achieved by proposing a workflow for performance

assessment of flow-guided localization and its implementation
in the form of a simulator, providing the community with the
first tool for objective evaluation of flow-guided localization1.
Our results reveal relatively poor accuracy of the evaluated
solution in the considered scenario. Regardless of the poor
accuracy, our results indicate that the proposed workflow
and the implemented simulator can be utilized for capturing
the performance of flow-guided localization approaches in a
way that allows objective comparison with other approaches.
This is based on the fact that we were able to interface
two contemporary flow-guided localization approaches with
the evaluation framework, obtain the estimations for both
approaches utilizing the same raw data, and derive, present,
and compare their performance results in a streamlined way.

One limitation of our work arises from the simplified
representation of in-body nanodevice mobility compared to
the complexity anticipated in real-world deployments of flow-
guided localization systems. Specifically, the human blood-
stream presents a much more intricate environment than the
BloodVoyagerS (BVS) model utilized in this study. Future
research should focus on enhancing the evaluation framework
in terms of the complexity and precision of the pathways
that nanodevices might navigate, as well as more accurately
representing the complexities of blood flow. This includes
better modeling of vortices and laminar flow, and accounting
for blood vessel elasticity and bifurcations. The modular
implementation of the proposed simulation framework allows
for potential integration of additional functionalities, as well
as for substitution of existing ones.

Additionally, flow-guided localization is intended to be used
in the bloodstreams of different individuals with varying bio-
logical characteristics. Future work will involve adapting the
proposed framework to reflect individual variations in blood-
streams, similar to how anesthesia administration is tailored
based on physiological indicators such as age, sex, height,
and weight. For each patient, we will also consider temporal
variations in the raw data stream for flow-guided localization
due to factors such as physical activities, biological conditions
(e.g., diseases), and environmental changes (e.g., temperature,
humidity). These in turn have an effect on the heart’s pulsating
rhythm, effectively changing the blood speeds.

The poor accuracy of the considered approaches can be
attributed to unreliable Terahertz (THz) communication be-
tween in-body nanodevices and on-body anchors and intermit-
tent operation of the nanodevices due to energy-harvesting.
Accuracy enhancements are envisioned along the lines of

1https://bitbucket.org/filip lemic/flow-guided-localization-in-ns3/

https://bitbucket.org/filip_lemic/flow-guided-localization-in-ns3/


IEEE DRAFT 10

introducing additional anchors at strategic locations on the
body (e.g., wrists) and developing a more suitable machine
learning models that accounts for the fact that the raw data
might be erroneous (e.g., compounding circulation times).
For the development of suitable machine learning models,
we consider Graph Neural Networks (GNNs) as the prime
candidate due to their flexibility and resilient operation on
graph structures [33], which allows for accurately modelling
the intricate dynamics of the nanodevices in the bloodstreams.
In that regard, it is worth pointing out to the recent work from
Calvo et al. [34], in which a GNN-based and multianchor-
enabled flow-guided localization approach is proposed, fea-
turing enhanced accuracy, reliability, and coverage compared
to the benchmarks presented in this work.
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[6] N. Moser, E. Gómez, S. Abadal, E. Alarcón, F. Lemic, and E.
Shitiri, “Liquid biopsy using intra-body nanonetworks: Perspective
and approach,” 8th Workshop on Molecular Communications, 2024.

[7] S. Chen, C. Prado-Morales, D. Sánchez-deAlcázar, and S. Sánchez,
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