
Dialog-based Payload Aggregation for Intrusion Detection

Tobias Limmer and Falko Dressler
Computer Networks and Communication Systems

Department of Computer Science, University of Erlangen, Germany
{limmer,dressler}@cs.fau.de

ABSTRACT
Network-based Intrusion Detection Systems (IDSs) such as
Snort or Bro that have to analyze the packet payload for all
the received data show severe performance problems if used in
high-speed networks. Recent research results improve pattern
matchers based on efficient algorithms or using specialized
hardware. We approach the problem in a completely different
way by considerably reducing the amount of data to be
analyzed with only marginal impact on the detection quality.
Dialog-based Payload Aggregation (DPA) uses TCP sequence
numbers to decide which parts of the payload need to be
analyzed by the IDS. Whenever a connection starts, or if the
direction of the data transmission between peers changes, we
forward the next N bytes of traffic to an attached IDS. All
data transferred after the window is discarded. Our analysis
using live network traffic and multiple Snort rulesets shows
that most of the pattern matches occur at the beginning of
connections or directly after direction changes in the data
streams. According to our experimental results, our method
reduces the data rate to be processed to around 1 % in a
typical network while retaining more than 98 % of all detected
events. Assuming a linear relationship between the data rate
and processing time of an IDS, this results in a speedup of
two magnitudes in the best case.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:
General—Security and protection;
C.2.3 [Computer-Communication Networks]:
Network Operations—Network Monitoring

General Terms
Measurement, Security

Keywords
Aggregation, Intrusion Detection, Monitoring

1. INTRODUCTION
Network attack detection using signature matching on

payload, also called Deep Packet Inspection (DPI), produces
very good results in detecting current malware and other
network attacks, although a slowly increasing number of

Copyright is held by the author/owner(s).
CCS’10, October 4–8, 2010, Chicago, Illinois, USA.
ACM 978-1-4503-0244-9/10/10.

220 mailserver ESMTP Postfix

HELO smtphost

MAIL FROM:<email@cs.fau.de> SIZE=818.DATA

250 2.1.0 Ok.354 End data with <CR><LF>.<CR><LF>

250 mailserver

N bytes

dialog

1a

1b

2a

2b

3a

payload

Figure 1: Dialog-based payload aggregation for TCP
streams

malware types uses encrypted communication (e.g. the Storm
malware). Intrusion Detection Systems (IDSs) using DPI like
Snort or Bro struggle to keep up with processing all monitored
network packets, because payload signature matching induces
high processing requirements. This problem is especially
difficult in networks beyond 1 Gbit/s [1]. Many rules for
IDS already use network and transport layer header data to
restrict the amount of traffic to be processed. Other solutions
involve utilizing specialized hardware [4], parallelization of
the analysis, and improved matching algorithms.

If header information is used for selecting individual con-
nections for further analysis, systems like Snort still have
to parse the complete payload of the entire connection, no
matter whether the data is relevant or not. We argue, that
most of the security-relevant data is transmitted at the be-
ginning of a connection, in contrast to the following bulk
data. One of the first approaches that stripped network con-
nections and only stored the first N byte of each direction
was proposed in [2]. We used a similar idea, called Front Pay-
load Aggregation (FPA), in [3] and extended it for filtering
network data for intrusion detection. Nevertheless, we also
realized that IDS frequently fails for protocols like HTTP
or SMTP, which are basically used to transport higher-layer
application protocols.

In this work, we describe the key reasons for this problem
and introduce a completely new technique named Dialog-
based Payload Aggregation (DPA). Contrary to the previ-
ously described approaches, DPA selects packet payload not
only from the beginning of a connection, but also from later
stages of a connection. In particular, DPA identifies direction
changes within the bidirectional data stream using TCP se-
quence numbers. According to our experimental evaluation,
DPA shows much higher detection ratios when combined with
network-based IDS compared to the mentioned approaches.

Figure 2: End position of matches relative to dialog
change in TCP connections

Additionally, the length of dialog segments as identified by
DPA can be used a new measure for identifying applica-
tion protocols or attacks, as well as for statistical anomaly
detection.

2. METHODOLOGY
FPA [3] offers a lightweight algorithm that aggregates a

connection’s first N bytes of both directions based on the
sequence number for TCP streams, or the order of packets
in UDP streams. Most of the security-relevant data can be
retained this way, but for protocols that exchange control
and bulk data within the same connection in an interleaved
way, important data may be lost during the aggregation pro-
cess. A typical example is HTTP, which supports pipelining,
where multiple requests may be sent within the same TCP
connection. Here, FPA usually only captures the first request
and response.

DPA improves the data filtering stage by using transport
layer information to identify dialog elements within a TCP
connection. When data is sent in a TCP stream, the sequence
counter of the data sender is increased. By watching the
sequence counters in both directions, we can identify the
point in time when the transfer direction changes. Exploiting
this knowledge, DPA captures the first N bytes after each
direction change. The principle is shown in Figure 1. DPA
allows to capture contents of each dialog segment and to
obtain much better results with protocols that mix control
and bulk data.

3. EVALUATION
We performed a preliminary analysis of DPA using a mod-

ified version of Snort: We captured ten timeslices per day
of 10 minutes of our university’s Internet uplink for a period
of 2 months and processed the data using a modified version
of the IDS Snort. We selected three different rulesets for
this analysis: the dataset shipped by the creator of Snort,
Sourcefire, the open-source ruleset EmergingThreats and the
ruleset used by the malware detection system Bothunter. Of
these rulesets, we only included rules matching TCP payload
data in our analysis. We recorded the end position of each
match relative to the last direction change of the dialog.

Figure 2 shows the results: For each plotted signature ID,
we recorded at least 10 matches. The match end position is
shown on the logarithmic-scale y-axis, and the correspond-

D
P
A

 /
 o

ri
g
.
d
a
ta

 (
%

)

0
4
0

8
0

DPA maximum dialog length (bytes)

#
 d

e
t.
 e

ve
n
ts

 (
%

)

0 2000 4000 6000 8000

0
4
0

8
0

all

HTTP

SMTP

IRC

Figure 3: Achieved data reduction rates and corre-
sponding IDS detection rates by DPA

ing signature ID is shown on the x-axis. We performed
the test for 3 different rulesets coming from Sourcefire, the
open-source initiative EmergingThreats, and the malware
detection system Bothunter. A black dot marks the median
and the vertical line marks the upper and lower 10 % quantile
of the match end positions. We excluded signatures that
produced too many false-alarms, as too few bytes were spec-
ified in the signature. As can be seen, the majority of the
signatures match below a dialog position of 2048 bytes. Of
the Sourcefire ruleset, events of several rules matched after
the limit of 2048 bytes. These rules specifically matched shell-
code within data streams of various application protocols.
Shellcode is usually embedded within binary data of exploits.
These are often not directly embedded in the application
layer protocol, but in bulk data that is transferred by the
application protocol (e.g., within the mail body in SMTP).

The quality of DPA can be estimated by looking at the data
reduction rate and corresponding analysis quality depicted in
Figure 3: As the detection capabilities and amount of data
reduction highly depends on the application-layer protocol,
we plot the results for multiple applications separately. The
x-axis defines the number of bytes captured after each dialog
change. The upper diagram shows the ratio of aggregated
DPA data to the amount of original data. The lower diagram
displays the ratio of events that would have been detected
by an IDS using the given DPA dialog length. Our graph
clearly shows that a dialog length of 2000 bytes easily ensures
that more than 98 % of events can still be detected, while
reducing the amount of data to be analyzed to about 1 %.

The number of dialog segments in a connection is also
highly dependent on the application protocol. Figure 4 shows
an ECDF of the number of dialog segments in one connection.
In HTTP, the most used protocol in our network, more than
70% of all connections contained exactly two dialog segments
– one for the HTTP request, one for the HTTP response from
the server. All HTTP connections with more than two dialog
segments use pipelining, so multiple requests and responses
are contained within a single TCP connection. This feature
is included in most browsers nowadays and provides a signif-
icant speedup. Protocols, where the server sends a greeting
message before the client issues a command like SMTP or the
FTP control channel, show a strong preference to an uneven
number of dialog segments. These two protocols also clearly
show that multiple bidirectional data exchanges are needed
in one connection for a successful communication, like login,

Figure 4: ECDF of number of dialog segments per
connection

exchange of server features, and so on. In the example of
SMTP, often up to 9 dialog segments are commonly used.
Dialog segments are identified on the transport layer, not on
the application layer. So there may be a discrepancy between
dialogs on these different layers: multiple commands may
be issued in one data chunk. Then this is visible as only
one dialog segment in the transport layer and the number
of total dialog segments is reduced. This can not be done in
SSH, as almost every command issued for establishing the
secure connection depends on the response of the previous
command – the communication dialog between server and
client can not be sped up like in other protocols. We were
able to observe this in our experiments, as very few SSH
connections contained between 2 to 9 dialog segments.

4. CONCLUSIONS
We introduced a new monitoring technique, which we call

Dialog-based Payload Aggregation (DPA). It filters payload
data for intrusion detection for individual connections. Al-
most all application protocols are based on bidirectional data
exchange, which is usually visible in headers of the transport
layer. So by observing the sequence counter of TCP streams,
we identify changes of the data transfer direction and are
able to extract security-relevant packet payload with a very
lightweight algorithm.

According to our preliminary experimental results using
data from a university network, this method allows to achieve
detection of more than 98 % of security-relevant events with
a data reduction of 99 % using the most popular IDS Snort
with several common rulesets. These results show that our
selection algorithm is very well suited for intrusion detection,
as it mainly picks relevant data for the detection rules within
the IDS. If we assume a linear relation between data rate and
processing cost of an IDS, in theory, our method results in a
speedup of around two magnitudes. Furthermore, DPA also
introduces a new measure: the length of individual dialog
segments. This measure may provide a base for application
identification or anomaly detection algorithms. Current work
is to implement the presented technique into our monitor-
ing framework Vermont and perform performance tests in
combination with the IDS Snort.

Future work includes the study of another phenomenon
that cannot be detected by the current version of DPA:
Malicious programs have the possibility to avoid detection
by exploiting the semantic difference between application
and transport layer: programs may send multiple control
messages at once and exceed the filter limit of DPA. The
server will then respond to all this messages in one go, as
seen from the transport layer.

5. REFERENCES
[1] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer.

Predicting the resource consumption of network
intrusion detection systems. ACM SIGMETRICS
Performance Evaluation Review, 36(1):437–438, 2008.

[2] S. Kornexl, V. Paxson, H. Dreger, R. Sommer, and
A. Feldmann. Building a Time Machine for Efficient
Recording and Retrieval of High-Volume Network Traffic.
In ACM IMC 2005, pages 267–272, Berkeley, CA,
October 2005. ACM.

[3] T. Limmer and F. Dressler. Flow-based Front Payload
Aggregation. In IEEE LCN 2009, WNM Workshop,
pages 1102–1109, Zurich, Switzerland, October 2009.
IEEE.

[4] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. P.
Markatos, and S. Ioannidis. Regular Expression
Matching on Graphics Hardware for Intrusion Detection.
In RAID 2009, pages 265–283, Saint-Malo, France,
September 2009. Springer.

