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Abstract In this paper, we investigate the need for seamless dynamic
reconfiguration of flow meters. Flow monitoring has become a primary
measurement approach for various network management and security
applications. Sampling and filtering techniques are usually employed in
order to cope with the increasing bandwidth in today’s backbone net-
works. Additionally, low level analysis features can be used if CPU and
memory resources are available. Obviously, the configuration of such al-
gorithms depends on the (estimated) network load. In case of changing
traffic pattern or varying demands on the flow analyzers, this configura-
tion needs to be updated. Hereby it is essential to lose as little informa-
tion, i.e. packet or flow data, as possible. We contribute to this domain
by presenting an architecture for seamless reconfiguration without infor-
mation loss, which we integrated into the monitoring toolkit Vermont.
Additionally, we integrated support for situation awareness using module
specific resource sensors. In a number of experiments, we evaluated the
performance of Vermont and similar flow monitors.

1 Introduction

Flow monitoring is becoming a dominant metering technique in professionally
managed networks. Mainly, there are two reasons for network providers to mea-
sure their network traffic. First, the amount of transferred data is monitored for
accounting purposes. All monitored packets are assigned to single IP addresses
or specific subnets and aggregated to customer-related records, which contain
information about the IP traffic. Secondly, the area of security also makes use
of network monitoring: intrusion detection, attack detection, scan detection and
forensic analysis are just a few application domains [1].

Usually, flow monitoring is performed using statically deployed monitors with
predefined configuration settings. This procedure has two drawbacks. First, the
configuration of sampling algorithms and filters must be defined for a medium
load scenario. Thus, resources are waisted in case of low network load (it would
be possible to inspect all packets instead of a subset) and in case of extreme
load, the monitor will not be able to process all packets, which leads to nonde-
terministic packet drops. In order to adapt it to changing network conditions,
reconfiguration of the monitor, e.g modifying the packet sampling rate, would be



needed. Secondly, in the security context, often high speed networks are scanned
for anomalies, as processing of more detailed network data would be computa-
tionally too expensive. If anomalies are detected, usually single hosts or sub-
networks are involved. For more information about the cause of the anomaly,
a detailed analysis of the subnetwork’s traffic is required. Again, dynamic re-
configuration of the network sensors to supply detailed data about the affected
subnetwork is an adequate solution.

We analyzed the capabilities of state-of-the-art flow meters for their capabil-
ities to provide such reconfiguration. We discovered that there is no direct way
for such parameter updates nor for adding new functionality during runtime.
Usually, the monitor needs to be stopped, (re-)configured, and started again.
This leads to information loss during the reconfiguration process.

Based on all these observations, we developed a novel architecture for seam-
less dynamic reconfiguration and integrated it into our monitoring toolkit Ver-
mont [2].1 In order to achieve the desired behavior, we extended the modular
structure of Vermont to add internal queues between all modules. Using these
queues, it is possible to change the modules’ organization, to add and to remove
modules without stopping all monitoring and processing activities. Without loss
of generality, in this paper, we concentrate on flow monitoring for network se-
curity purposes because the requirements are covering all problem domains of
other applications as well.

In this paper, we first analyze the characteristics of flow monitoring with
respect to adaptive configuration of parameters, e.g. the sampling rate, or the
complete update of the monitoring functionality (Section 2). We not only in-
tegrated our developed reconfiguration architecture in Vermont (Section 3.2)
but also added means for situation awareness based on integrated sensors that
provide information about the current resource utilization of Vermont modules
(Section 3.3). In several experiments, we analyzed the performance of Vermont
in comparison with other flow meters. The main focus was the monitoring per-
formance during reconfiguration tasks (Section 4).

2 Overview and Problem Statement

2.1 Flow Monitoring

Flows are sets of IP packets sharing common properties. A flow record con-
tains information about a specific flow. In most applications, a typical configu-
ration would be using the IP 5-tuple <source IP, dest IP, source port, dest port,
protocol> as flow keys, i.e. attributes describing the flow. Furthermore, relevant
statistical data can be added such as the flow start and end times or the number
of bytes of all packets belonging to the flow. Several protocols are available to
efficiently transfer flow records. Most of the state-of-the-art flow meters support
either Netflow.v9 or Internet Protocol Flow Information Export (IPFIX). The
latter one was standardized by the IETF in RFC 5101 [3]. Both protocols support

1 http://vermont.berlios.de/ and http://www.history-project.de/
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Figure 1. Example of a distributed monitoring system for integrated attack detection

variable configurations: so called template records are transmitted that describe
the structure and content of flow records. Flow records are exported regularly
according to predefined timeouts. The active timeout describes the maximum
time a flow record is kept in cache and the passive timeout is used if no more
packets are received for the particular flow.

2.2 Requirements in the Security Domain

Attack detection methodologies require input data with different levels of de-
tail. On the one hand, there are systems available that operate on raw packet
data including full payload for a detailed analysis of the monitored traffic. On
the other hand, systems process summarized data that contains e.g. aggregated
information about traffic volumes for subnets.

We assume an attack detection system that comprises flow monitors that are
directly attached to the observed network links, and analyzers that process the
collected flow data in order to detect attacks or intrusions. The flow data may
have different levels of detail. Figure 1 shows an overview of the architecture.
Flow monitors can be chained to support flow aggregation. Multiple hierarchi-
cally structured flow aggregators are also a topic of the IPFIX working group [4].
The depicted analyzers may execute different algorithms ranging from attack de-
tection to application identification. Besides simple anomaly detection methods
like top-N lists, more intelligent traffic summaries [5] or horizontal portscan de-
tection [6] could be supported. Many application identification methods are also
based on IP header data as available in flows [7–9].

2.3 Challenges

Today’s backbone networks maintain high data rates, where it is only possible
to get sampled flow statistics for further analysis. Due to the nature of less ac-
curate information, the detection of security incidents becomes more difficult.
Similarly, detected anomalies require further inspection of suspicious hosts and
connections. The monitoring infrastructure needs to provide more detailed infor-
mation of potentially malicious traffic. To achieve this, the configuration of the
flow meters needs to be temporarily adapted. Furthermore, even normal traffic



behavior changes over time. This may influence the load of different modules in
the detection system. The idealistic goal is to keep the monitoring system always
as effective as possible, thus, there is demand to update the parameters of the
flow meters according to the current traffic conditions.

Rajab et al. [10] demonstrated that distributed monitoring decreases time
between the outbreak of worms and their detection. This suggests a collabo-
ration between different network operators. As sensitive information between
those entities must not be transferred, information exchange should be held at
a possible minimum. The best way is to reduce the level of detail of transferred
information at the cost of less accurate attack detection. Only in specific cases,
the level of detail may be increased in a well-controlled manner. Finally, direct
attacks on monitoring infrastructures may cause the equipment to fail and create
holes in accounting and performance logs, or security-related incidents may not
be detected. Current networking equipment, especially in the area of flow mon-
itoring, offers only limited capabilities for reconfiguration if it detects overload
and its monitoring functionality may be impaired.

All these scenarios suggest a dynamic solution for flow aggregation: a network
of sensors tries to deliver exactly the data that is needed for efficient traffic
analysis by the detection algorithms.

3 Dynamic Reconfiguration

In this section, we will describe the basic concepts of our monitoring toolkit Ver-
mont. We continue with the developed architecture for seamless reconfiguration,
which has been specifically designed for Vermont. However, the basic principles
can easily be adapted for other flow meters as well. Finally, we briefly cover the
capabilities of Vermont to detect the resource consumption of currently running
modules to support situation-aware reconfiguration steps.

3.1 Vermont

Vermont is an open-source monitoring toolkit capable of processing Netflow.v9
and IPFIX conforming flow data. It has been developed in collaboration with
the University of Tübingen. The application runs on Linux and derivatives of
BSD. It can receive and process raw packets via Packet Capturing (PCAP) (up
to 1 GBit/s) as well as IPFIX/Netflow.v9 flow data. Supported data formats for
export are IPFIX, Packet Sampling (PSAMP), and Intrusion Detection Message
Exchange Format (IDMEF). The following modules are available:

– Importers capture raw data via PCAP, receive Netflow.v9 and IPFIX flow
data via UDP and Stream Control Transmission Protocol (SCTP)

– Samplers and filters provide sampling algorithms and packet filter definitions
– Exporters export data using IPFIX, PSAMP, or IDMEF
– Aggregators aggregate incoming data according to customizable rules
– Analyzers detect anomalies in flows and output IDMEF events
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Figure 2. Vermont module configuration

Modules can be linked in almost any combination: only the input and output
data type of linked modules need to be compatible. Modules may also have more
than one succeeding and preceding module. Figure 2a shows an example for an
arrangement of several modules. In this configuration, Vermont captures packets
using PCAP, filters these packets and exports the selected PSAMP records. A
second branch aggregates flows, which, in turn, are exported using IPFIX and
analyzed in a portscan detector, respectively.

3.2 Reconfiguration

A special feature of Vermont is its support for dynamic reconfiguration of the
module structure. Linked modules in Vermont correspond to a directed acyclic
graph and operate independently from each other.

The idea is to support updates of the configuration file and to reconfigure
Vermont accordingly at runtime. For this reconfiguration, Vermont computes
the differences between the old and new configuration. Unique IDs are used to
identify the modules. Vermont always tries to reuse existing modules in order to
allow keeping state information and to speed up the reconfiguration process. If
the configuration of an existing module has been changed, Vermont tries to reuse
it and applies updates on-the-fly. If it is not possible to reuse a module, a new
one is created. Examples are aggregator modules: for aggregation configurations,
no on-the-fly reconfiguration is allowed because the used hash tables need to be
rebuilt. Thus, all stored flows need to be exported and sent to the subsequent
module in the module graph. This ensures as little flow data loss as possible.
This process is repeated for each module until instances for all new modules
are created. Modules are reconnected according to the new configuration and
started in reverse topological order as depicted by the numbers in Figure 2b.

If modules do not have any asynchronous tasks to perform, they may be
executed synchronously using a single thread. If, on the other hand, Vermont
runs on a multicore machine, the software can be configured to use multiple
threads, at most one per module. Asynchronous execution of modules causes
lags in the processing time, so Vermont may use queues between modules to



compensate this problem. The queues can be fully customized, but usually FIFO
scheduling with a configurable size is used. The queues block if the maximum
size is reached.

Figure 2b shows a configuration consisting of three modules that are con-
nected by queues. Shown are the configuration paths (dashed lines) that link all
the modules in the module graph and the data paths (thick lines) that depict
the data flow between the modules.

The development of the reconfiguration process focused on minimizing the
time during which data processing is stopped. It is technically not feasible to
provide completely uninterrupted processing because the dependencies between
the modules need to be considered. Especially, it is not possible to reconfigure
the module graph without stopping the modules that need to be re-ordered in the
graph. We minimized the module’s outage by preparing new modules before the
processing is stopped. Additionally, the shutdown of old modules is performed
after the new configuration is completed and started.

We achieved downtimes smaller than 5 ms using this method. On a link trans-
ferring 1 GBit/s, this timeout could result in a data loss of about 650 KByte.
Vermont is able to buffer this data during the reconfiguration process using the
memory-mapped PCAP library.2 For our tests, this buffer was set to 64 MByte.

3.3 Situation Awareness

Dynamic adaptation to current traffic data rates and corresponding load on
flow meters does not only depend on seamless reconfiguration, but also on the
ability to identify and, in the best case, anticipate bottlenecks in the monitoring
hierarchy. We implemented sensors inside Vermont to retrieve information about
the current load of the system. Each module offers standard measurement values
like CPU utilization and memory requirements. Additionally, module-specific
data is monitored, e.g. the current packet rate or the queue size. This information
is an essential requirement for algorithms that try to balance load among multiple
flow aggregation nodes. Based on the data coming from the sensors, it is possible
to move a task to a different system that still has unused capacities.

Figure 3 shows example statistics from the aggregator’s hash table that were
collected over one day: the black line shows the total number of entries inside the
hash table, the blue line shows the number of entries that shared a single bucket
with other entries inside the hash table. Multi-entry buckets considerably slow
down the lookup of entries in a hash table, as they are implemented as linked
lists. In our example, the hash table offered a total of 256 Kbuckets, but at the
time of 800 min a DDoS attack occurred on the monitored link and the number
of entries exceeded the hash table’s capacity by far. This is a typical case for
a DoS attack against the flow meter and should be evaded by monitoring the
module load and adequate reconfiguration.

2 http://public.lanl.gov/cpw/
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4 Performance Measurements

4.1 Test Setup

In this section, we analyze the reconfiguration performance of Vermont and
compare it to the performance of typical flow meters. We set up a testbed for
these experiments in which the different flow monitors are tested with artificial
traffic as well as with real traffic. Figure 4 shows the structure of the test setup.
We used a dedicated PC for generating traffic, which, in turn, was forwarded
to the system under test. The forwarding was performed using a mirror port
on a layer-2 switch. The flow meters exported their data on a separate network
interface to a flow collector, which logged the received flows for later analysis.
Care was taken to deactivate all unneeded functions of the systems, including
the switches, for more deterministic results.

For performance comparison, we used a Cisco Catalyst 6500 router running
IOS firmware version R12.2 SXF. It supports basic flow aggregation for routed
traffic using a “NetFlow cache”, which exports Netflow.v5/v9 data. More flexible
configuration options are offered by the feature called “NetFlow aggregation”.
It uses an additional NetFlow cache table in the switch called “Aggregation
cache” which has aggregated flow statistics of the monitored traffic. Different
aggregation schemes like “source prefix” (aggregation according to source IP
address), “destination prefix” (destination IP address), “prefix-port” (both IP
addresses and ports), “prefix” (both IP addresses) and more are supported, and
for each aggregation scheme several collectors of the flow data may be specified.
The parameters for the timeout of active and inactive flows are specified in
minutes and seconds, respectively. So the minimum timeout for active flows is
1 min and for inactive flows 1 s.

Another popular flow meter is nProbe (Netflow probe), an open source Net-
flow.v5/v9 and IPFIX probe. Similar to Vermont’s basic functionality, it captures
packets on an Ethernet network, aggregates the packets to flows, and exports
them. The main focus of nProbe is its efficiency to support fast flow aggrega-
tion in software. Attributes of exported flows are fully configurable. According
to the documentation, aggregation is performed identically to Vermont: incom-
ing packets are inserted into a hash table, which in turn is regularly checked for



flows to be exported. Those timeouts are also configurable on the command-line.
On-the-fly reconfiguration is not supported by nProbe.

4.2 Experiment Description

In configuration phase 1, we aggregated flows according to the IP 5-tuple. In
configuration phase 2, the flow meters were instructed to omit source and des-
tination ports in the flows, thus producing less flows containing more packets.
These two configuration settings are similar to the aggregation schemes “prefix-
port” and “prefix” provided by the Cisco router and ensure that different rules
must be used for aggregation. Parameters controlling the timeout for inactive
and active flows were set to 10 s and 60 s, respectively. Both nProbe and Vermont
were configured to use a scan / export interval of 10 s for the internal hash table.
The testing process involved the following steps:

1. start collector and flow meter using configuration setting 1
2. start traffic generator
3. reconfigure flow meter for configuration setting 2
4. wait until flow meter finished sending flows to collector

Reconfiguration of Vermont was performed as described in Section 3.2. We
ensured that the other tools were reconfigured in as little time as possible: nProbe
does not explicitly support dynamic reconfiguration, so we executed nProbe us-
ing the settings of configuration phase 1, terminated the process using the SIGINT
signal at reconfiguration time, and immediately restarted the process. The Cisco
router was reconfigured using an already established telnet connection: old flow
aggregator settings were shut down and then the new scheme was activated by
transmitting the corresponding commands to the machine.

We generated two different types of traffic for the test: artificially gener-
ated traffic, where all packets shared almost identical properties, and real-world
traffic. As our goal was to test traffic losses caused by reconfiguration, we only
generated low data rates, so that none of the flow meters got overloaded. For gen-
erating artificial traffic, we used the Network Packet Generator (Npag) tool. It
produced TCP packets with constant source and destination IP, constant source
port, no payload and the destination port was uniformly distributed in a speci-
fied range. Additionally, we used tcpdump and tcpreplay3 to record traffic from
a LAN and to replay the traffic to the flow meter, respectively, so that the flow
meters processed almost identical traffic. The network dump had a length of 71 s.
It counted 150 608 packets in total and had an average data rate of 11.69 MBit/s
or 2111 packets/s. The traffic was generated for a total of 60 s. Reconfiguration
was performed 30 s after the traffic generator was started.

4.3 Further Issues

If the flow meter is reconfigured or stopped, all cached flow information needs
to be exported. In the best case, already processed data records are exported
3 http://www.tcpdump.org/ and http://tcpreplay.synfin.net/
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immediately after reconfiguration. Simultaneously, newly arriving packets are
processed using the new configuration and exported with a new flow description.
This ensures that all packets are reported using the configuration that was valid
at reception time and minimizes time until flow data is sent to the collector. A
side-effect of this immediate configuration switching is that flows are split into
two parts. An example is depicted in Figure 5. On the upper part, a flow is shown
matching configuration A. If reconfiguration is performed during the lifetime
of the flow (lower part), the flow is being split. This effect is unavoidable, as
otherwise the aggregator would not follow its configuration semantics. Depending
on the configuration, it will not be possible to join both parts at the collector.

4.4 Results and Discussion

In the following, we present selected results of our experiments. Primarily, we fo-
cus on the packet loss caused by reconfiguration. Furthermore, we investigate the
flow export times of the different flow meters with and without reconfiguration.

Packet Loss We compared the number of packets contained in all flow records
exported by the flow meter with the number of packets sent by the traffic gen-
erator. The results are depicted in Figure 6 using boxplots: a box is drawn from
the first quartile to the third quartile, and the median is marked with a thick
line. Additional whiskers extend from the edges of the box towards the mini-
mum and maximum of the data set. For this experiment, we used tcpreplay
for testing the system with real-world traffic. For all the systems, two box plots
are displayed without and with reconfiguration. We performed 30 test runs for
statistical validity and to identify outliers. Without reconfiguration, all flow me-
ters performed very well with almost no packet loss. With reconfiguration, only
Vermont shows the loss rate close to zero, whereas Cisco and nProbe kept much
higher loss rates – an average downtime of 130 ms was observed. nProbe needs
to be completely restarted for reconfiguration. Thus, there is a short time pe-
riod in which no packets can be recorded. This explains nProbe’s loss of roughly
300 packets. The Cisco router performed much worse losing about 550 packets
on average. The high variance cannot be explained without deeper insights into
the internal flow processing.
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Figure 7. Characteristics of the network sensors’ flow export

Flow Export Times All generated flow records were logged by the collector
including a time stamp recording the time of reception. This way, we were able
to relate the start and end times of the flow, i.e. when it was monitored by the
flow meter, to the time when the flow record was exported. Figures 7a–7f show
such relations: the start and end times of traffic generation are marked by the
dashed vertical lines. In all figures with reconfiguration, a vertical bar at 30 s



after start time indicates the switch from configuration phase 1 to configuration
phase 2. The dotted lines with markers show the amount of packets contained
in flows that were sent to the collector, displayed at the time of reception at the
collector. All figures show the captured, real-world traffic replayed by tcpreplay.
The same tests were performed with artificial traffic and confirmed the presented
results.

For Vermont, the results without reconfiguration are shown in Figure 7a. It
can clearly be seen that Vermont was configured to check its aggregation hash
table every 10 s and then immediately export the expired flows to the collector.
The high spike at 80 s is caused by the active timeout of 60 s, thus, all active
flows are contained in the corresponding flow records. nProbe uses almost the
same aggregation technique as Vermont. Thus, Figure 7c does not show many
differences. Interesting is the small spike at 150 s, where the last flow records were
exported. According to the configuration, this export comes much too late, as no
flows should be active after stopping the traffic generator. Passive flows were to
be cached for 10 s and at most 1 s was waited until records were exported. Fig-
ure 7e shows that the Cisco router uses a different aggregation scheme compared
to the software-based flow meters. Flows were not exported in regular intervals,
but continuously after their expiry. First flows were exported 10 s after traffic
generation started. The spike at 80 s corresponds to the configuration settings
(see Vermont and nProbe).

For reconfiguration, Vermont shows the expected outcome in Figure 7b. All
flows are exported at reconfiguration time and the succeeding exports show reg-
ular behavior. The same applies to nProbe, including the aforementioned spike
at 150 s that is not conform to the configuration (Figure 7d). The Cisco router
shows an interesting behavior depicted in Figure 7f. There is a spike in the graph
that shows the expected peak at reconfiguration time, but there are less packets
exported compared to Vermont or nProbe. Additionally, there is a spike 60 s
after start that seems to be roughly as high as the spike in Figure 7e at the same
time. These spikes are caused by exported active flows and should not show the
same values as all cached data should have been exported at reconfiguration.
We concluded, that the Cisco router does only export passive flows at recon-
figuration time and continues caching all active flows that are exported at the
same time as they would have been without reconfiguration. This means, that
flows monitored during configuration phase 1 are exported using the settings
of configuration phase 2. This behavior is weird because exported data can not
associated to the correct phase.

5 Conclusion

We demonstrated the need for seamless dynamic reconfiguration of flow meters
for various application fields. Based on this motivation, we presented a new so-
lution for this issue: the flow monitor Vermont, which offers a modular structure
that is optimized to guarantee short reconfiguration times and offers in-depth
self-monitoring capabilities for situation-aware reconfiguration decisions. In our



performance tests, which included the software-based flow aggregator nProbe
and a high-end Cisco router, we showed that currently available flow meters do
not offer the needed reconfiguration performance. Typically, an average down-
time of 130 ms was observed in which all incoming packets were dropped and
not reported to the flow collector. For complex hierarchical analysis systems,
reconfiguration procedures should be seamless without noticeable data loss. The
implemented architecture showed its advantages during this test. Due to its mod-
ular, data flow oriented structure, the overhead of a reconfiguration process can
be kept at a minimum – no packet loss has been observed.
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