
Flow-based TCP Connection Analysis

Tobias Limmer and Falko Dressler
Computer Networks and Communication Systems

University of Erlangen, Germany
{limmer, dressler}@cs.fau.de

Abstract—We discuss the need for accurate analysis of TCP
connections based on aggregated flow information. Due to
increasing bandwidths in the Internet, flow metering is thought
to be the a promising solution for network monitoring, because
packet-oriented state-based analysis reaches its limits and fast
hardware support for flow metering is already integrated in
modern routers. Motivated by earlier work on flow-based
connection analysis, we investigate the quality of several
stateless classifiers that can be used to determine the TCP
connection state as either successful or failed. This information
is strongly needed especially in the domain of attack detection
and is usually produced by fine-grained analysis in the packet
level. Furthermore, we determine appropriate configuration
parameters for optimal flow metering by introducing a new
statistical property, the maximum packet gap. We evaluated
both, the classifiers and the packet gap analysis using a number
of representative packet traces. Our best classifiers are able to
correctly identify 95% of all connections with a fraction of the
processing costs required for packet-based stateful connection
tracking.

Keywords-TCP connection analysis; intrusion detection; flow
analysis

I. INTRODUCTION

TCP connection tracking is a strongly demanded service
in network monitoring, e.g. for detecting malicious traffic or
anomalies in the network. Most frequently, state machines are
used, which keep state for every connection and examine each
monitored packet individually [1]. This method offers very
good results for passive network-based Intrusion Detection
Systems (IDSs) to evaluate a connection’s state and will be
used as a baseline measure throughout this paper. Primarily,
this type of information is used by algorithms for portscan
detection. But also many other malicious tasks performed by
malware can be detected: spam mail delivery partly guesses
mail server names, so some connection attempts necessarily
fail [2]. Typical Denial-of-Service (DoS) attacks also result
in many failed connection attempts, so they may be easily
detected.

Because of the high computational costs needed by packet-
based connection tracking [3], it does not scale well in high-
speed networks. Speed improvement by packet sampling
techniques quickly degrade the reliability of TCP connection
tracking: often single packets, e.g. packets with set SYN
flag, are important to determine the state [4]. Another well-
developed approach for high-performance network monitor-
ing is flow metering, usually used for traffic accounting. A

flow represents a set of packets sharing common properties
and usually contains aggregated statistics about the packets
corresponding to the flow. As there are fast aggregation
techniques available (frequently implemented in hardware),
this method perfectly suits large high-speed networks [5].
Due to the availability of routing hardware that supports flow
aggregation out of the box, dedicated sensors do not need to
be deployed any more directly at the network links.

Determining a connection state based on aggregated flow
information will usually not be as precise as methods
working on packet-based data, but we anticipate a huge
speed advantage by processing the aggregated flow data, as
much lower amounts of data need to be processed statelessly.
As a rough figure, often less than 100 bytes are required
for a bidirectional flow record representing one connection.
Using this type of data, TCP connection analysis can be made
feasible for much larger networks and link speeds. Our work
shows how to implement connection analysis on a flow level
and enable the application of anomaly detection techniques
on flow-based data that previously only worked with packet-
based data. This applies to all anomaly detection techniques
that operate on aggregated information of network traffic that
is supplied by flow data (for an overview see Section III-A,
and for more detail see [6]).

On a much smaller scale, latest developments in wireless
mesh networks begin implementing intrusion detection on
cheap embedded hardware [7]. Here, primary concern is the
hardware’s low performance, so detection methods need to
be slimmed down considerably for acceptable speeds. The
speedup gained with flow metering in combination with
lightweight methods for anomaly detection also shows much
promise in this context.

Our contributions in this work are twofold: First, to
determine appropriate timeout parameters for flow monitoring
and use the data for TCP connection tracking, we analyze
the distribution of the length of TCP connections and of the
maximum packet gap in these connections based on several
network traces. Secondly, we perform TCP connection state
analysis using Internet Protocol Flow Information Export
(IPFIX)-conform flow data. We introduce several flow-based
classifiers and evaluate them thoroughly by comparing their
results with results from a packet-based connection tracker.
Connection states determined by these classifiers can then
be used by anomaly detection methods that previously used

packet-level data as input. So many packet-based methods not
using packet payload data, especially those used for portscan
and anomaly-based malware detection, can be adapted to
flow-based input.

II. RELATED WORK

Our research work was mainly inspired by the analysis of
Netflow data by Sommer and Feldmann [5]. They tried to
determine how well flow data created by Cisco routers can
be used to derive TCP connection properties and developed
a method to compare flow records to TCP connection
summaries created by Bro [1]. Primarily, the actual amount
of transferred payload in relation to used application layer
protocols has been analyzed. We extend this analysis by
providing details about direction reversals of flows and
evaluating classifiers to determine connection types.

As a reference, we use packet-based TCP connection
analysis. A number of systems have been proposed in
the literature, which either work stand-alone to output the
results directly,1 or within payload-based IDSs where stream
defragmentation is a requirement for attack detection [1].
Statistical properties of current Internet traffic and the
expressiveness of aggregated fields within flow records,
especially concentrating on dynamically adjusted sampling
algorithms and their effects, have been analyzed in multiple
studies [4], [8], [9]. Flow properties like the packet interarrival
times of a flow’s first n packets and the corresponding packet
sizes have been used for application classification [10], [11].

The result of connection attempts has always been in-
teresting in the field of network security, especially attack
detection. Many IDSs, e.g. Bro [1] or Snort [12], perform
packet-based connection tracking and decide whether TCP
connection attempts are successful or failed as basis for
further analysis. In the area of anomaly detection, the state
of connections is widely used in methods specialized on
portscan detection. These systems usually use the number
of failed connection attempts to identify port scanners in a
specific time interval, or the number of consecutive failed
connections [13]. Another system is specifically designed
to work in high-speed network on flow-based data [14],
where all unidirectional flows containing a single packet
with set SYN flag were assumed to be failed connection
attempts. A system that detects self-propagating malware by
discovering anomalies in the traffic also uses information
about connection states [15], as well as a more general
approach that detects application-specific traffic [16].

III. PRELIMINARIES

In this section, we briefly present some details of flow
monitoring and used systems and assumptions.

1An example is tcp-reduce by Vern Paxson (see: http://ita.ee.lbl.gov/html/
contrib/tcp-reduce-doc.html)

A. Flow monitoring

Flows are sets of IP packets sharing common properties
(flow keys). In most applications, a typical configuration
would be using the IP 5-tuple <src IP, dest IP, src port, dest
port, protocol> as flow keys. Furthermore, relevant statistical
data can be aggregated and added to the flow. In the context
of this paper, we will primarily rely on the monitored time
of the flow’s first packet (fst), the number of packets in the
flow (fpkts), the accumulated TCP payload size (ftcpoct),
and the set of all observed TCP flags (ffl). We only regard
all flags relevant for the TCP connection’s state, i.e. SYN,
ACK, FIN, and RST. All connections that were completely
captured and included the handshake and shutdown (either
with FIN or RST flag set) are called “complete connections”
in the context of this paper.

Most of the state-of-the-art flow meters support either the
Netflow.v9 or the IPFIX [17] standard. These flow meters
regularly export flow information according to two predefined
timeouts: An active timeout describes the maximum time a
flow record is kept in cache, and a passive timeout is used
to expire flows if no more packets are received for a specific
flow by the flow meter.

Biflows [18] are used to describe bidirectional data flows.
In short, all statistical information contained in corresponding
unidirectional flows is aggregated to a single flow describing
both directions. In most cases, the direction of biflows can
be determined by assuming the unidirectional flow with the
lowest fst to be the initiator. We use fO:∗ to describe fields
from originator to responder, and fR:∗ vice versa.

In our experiments we used Vermont [19], an open-source
monitoring toolkit supporting Netflow.v9 and IPFIX. Using
a typical PC, it can process packets up to 1 GBit/s. Its
modularized structure offers diverse methods to analyze flow
records.

B. State-based connection analysis using Bro

Usually, TCP connection tracking relies on stateful packet
analysis. For each ongoing connection, a state machine stores
all relevant data and each incoming packet is tested for
validity, e.g. whether the sequence number and the TCP
flags are set correctly. Thus, it becomes possible to estimate
the current connection state. However, even this thorough
analysis does not guarantee unambiguous results, as it is not
always possible to predict which packets would be accepted
by the receiving network stack. To counter this problem,
techniques are available that normalize traffic passing a
router and remove the ambiguities [20]. A representative tool
for connection tracking is Bro [1]. It reports a connection
summary for each observed TCP connection as well as the
transmitted payload bytes, which only include payload that
was acknowledged by the receiver. We used it to validate
our flow-based TCP connection analysis.

C. TCP connection types

We use the term “connection type” to describe the state
of an analyzed TCP connection as either failed or successful.
The definition of this term completely depends on the
context, so for a proper understanding, we regard this
term from different perspectives first: In the context of
the transport layer, peers exchanging data in successful
connections never have desynchronized states. This is the case
if a handshake is performed successfully, and the connection
teardown using the FIN sequence of packets is complete.
To handle state desynchronization between peers, the TCP
specification introduced the RST flag to indicate the reception
of unexpected packets. If a peer receives a packet with set
RST flag, the corresponding connection is regarded as failed
and is aborted.

In the field of network security, it is usually not assumed
that connections with successful handshake and ending with
set flag RST are malicious, as desynchronized states most
often have non-malicious causes like dropped network links
or software resets. There are even some network stacks
and software applications available that disregard protocol
specifications and terminate TCP connections with a RST
packet instead of using a proper FIN connection teardown.2

From an application’s point of view, it becomes more
difficult to differentiate between successful and failed con-
nections: even if a connection was successfully started and
finished at the transport layer, it may still be considered as
failed by the application. This is the case if a peer transferred
a failed authentication or invalid payload in the application
layer. So in order to recognize failed connection attempts
in the application layer, a monitoring application would
have to interpret the application protocol and process the
packet payload accordingly. Some available IDS offer this
feature. As our main intention is to create a high-speed
connection analyzer that operates on flow-based data without
payload, we do not follow this approach here. We use the
transport layer for connection state detection and define
connections as successful, if they successfully exchanged
application data. This allows us to correctly identify scans
that perform port sweeps and do not transfer any data. False
positives may be caused by application protocols that are
only based on correctly established TCP connections and do
not exchange payload. Examples are so-called port-knocking
methods. Here, either single UDP or TCP packets are sent
to a server to trigger its firewall to temporarily open a port.

IV. INPUT DATA

For our analysis and evaluation, we used several 2 h
packet traces captured at the University of Erlangen’s Internet

2There have been numerous reports of stalled connections in Internet
Explorer. These were caused by firewalls that correctly blocked packets
after receiving a misplaced RST packet from Internet Explorer.

Table I
TRACES USED IN OUR ANALYSIS

date, scope packet bit active
time rate rate hosts

(kpkt/s) (Mbit/s)

T1 29/07, 10:02 all 52 289 5454
T2 07/11, 9:21 all 52 311 5148
T3 10/11, 23:58 all 31 187 1916
T4 13/11, 10:10 all 59 357 5464
T5 07/11, 9:21 server 4.3 23 126
T6 07/11, 9:21 pool 3.6 22 159

uplink in 2008.3 All traces were filtered to only include TCP
packets. The trace statistics are depicted in Table I (the
values correspond to the filtered traces). Column “active
hosts” shows the number of active hosts in the local network.
The real number of accessed local hosts was much higher
(around 50 000), but this was mainly caused by permanent
scans from the Internet. The traces show a high variety
of different traffic types: the university network supports
multiple high-profile servers, a multitude of workstations,
and privately used hosts in dormitories. Traces T1, T2, and
T4 were each captured on typical weekdays during normal
working hours and include all traffic captured on the uplink.
Nightly operation is captured in trace T3. Trace T5 only
included server traffic, whereas T6 only included traffic
coming from a workstation pool.

V. SELECTING OPTIMAL FLOW AGGREGATION TIMEOUTS

As mentioned before, several timeouts are used for flow
monitoring as well as in state-based connection trackers that
are used to expire cached entries and to report the corre-
sponding state information. There is a general optimization
problem between long timeouts, which help to collect all
relevant information of each connection, and short timeouts
which support a quick analysis and reaction to observed
network data, but may lead to connections that are split in
multiple flow records. Usually, empirical studies are used
for configuring these timeouts depending on the application
scenario and the available resources on the network probe.
For a TCP connection, we consider three phases that might
be observed by a flow meter: the handshake, i.e. the exchange
of packets containing the SYN flag, midstream traffic, i.e.
normal data transfer, and the shutdown, either an exchange
of FIN, or RST packets. The probability of flow splitting
during the handshake is quite small, because the handshake
is usually performed by the operating system’s network stack
and only depends on the round-trip time. This also applies
to normal connection shutdowns. The probability to split the
flow during its lifetime mainly depends on the used passive
and active timeouts. The active timeout corresponds with

3The traces were captured with tcpdump (see http://www.tcpdump.org/)
with an average packet loss rate of 0.01%

1 10 100 1000 10000

0.
00

01
0.

00
10

0.
01

00
0.

10
00

1.
00

00

connection length (s)

no
rm

al
iz

ed
 c

on
ne

ct
io

n
co

un
t

60 120 300 600 3600

0.001

0.015

0.05

trace 1
trace 2
trace 3
trace 4
trace 5
trace 6

Figure 1. TCP connection lengths with normalized counts as inverse
cumulative log-log histogram; value of y at position x means that a ratio
of y flows is longer than x

packets

max. packet gap

Figure 2. Maximum packet gap in an unidirectional flow

the full length of a TCP connection, so it will be split in
multiple flow records if the active timeout is smaller than the
connection’s length. The passive timeout refers to idle times
in active flows where no packet is transferred, as depicted
in Figure 2. To our knowledge, the maximum packet gap,
i.e. the optimal passive timeout setting, has not yet been
comprehensively studied based on realistic trace data.

A. Active timeout

We analyzed the length of TCP connections in our traces
and only regarded those that include a complete handshake
and a normal three-way shutdown. Figure 1 shows an inverse
cumulative distribution of connection lengths. The flow count
has been normalized for better comparability. The graph
provides an estimate for adequate active timeout values.
Clearly visible are steps at connection length times of 120 s,
300 s, and 600 s, which seem to be typical timeout values
for applications present in our network. As the lengths of
our traces were limited to 2 h, only a fraction of 120−t

120
connections of t min length are included in the graph.
However, this effect is negligible for connections lasting less
than 10 min. Helper lines mark 95 %, 98.5 %, and 99.9 %
of all connections in the graph. For 95 %, we get possible
timeout values between 34 s and 365 s. This variance is higher
for 98.5 %, as the optimal timeout lies between 314 s and
4028 s). Trace T3, taken at night time, had the highest number
of long connections due to many long-running backup tasks.

B. Passive timeout

The passive timeout used in flow monitoring is directly
influenced by the maximum packet gap. This value refers

1 10 100 1000 10000

0.
00

01
0.

00
10

0.
01

00
0.

10
00

1.
00

00

maximum packet gap (s)

no
rm

al
iz

ed
 fl

ow
 c

ou
nt

60 120 300 600 3600

0.001

0.015

0.05

trace 1
trace 2
trace 3
trace 4
trace 5
trace 6

Figure 3. Maximum packet gaps in TCP connections (normalized)

to the longest interval between two succeeding packets
transferred in the same direction, illustrated in Figure 2.
We determined the longest gap from both directions of a
connection and selected the higher value. Figure 3 shows
a log-log inverse cumulative histogram of each flow’s
maximum packet gap. These graphs correlate quite well
with the connection length distribution shown in Figure 1,
but steps at positions 60 s, 120 s, and 300 s are more visible.
A possible explanation for this behavior is that applications
with long lasting connections transfer data in regular intervals
or periodically test the availability of the TCP connection.
For a correct aggregation of one TCP connection to one flow
record with 95 % and 98.5 % accuracy, our traces require a
passive timeout for flow monitoring of 39–120 s and 380–
2600 s, respectively. Trace T3 with long-running backup tasks
at night showed very long packet gaps in connections and
requires high timeout values. Please note that these timeouts
are directly influenced by the application protocols in use
and may vary from network to network.

We configured Vermont to use 130 s as passive and 610 s
as active timeout for the connection state analysis described
in the next section. These moderate timeout values ensure
that most of the TCP connections are recorded into a single
non-split flow, and the delay caused by the aggregation is
moderate.

VI. CONNECTION STATE ANALYSIS

In the following, we determine and discuss criteria to
deduce the state of TCP connections from flow records. This
includes an analysis of the quality of the connection direction
estimation, which is especially important for IDSs that need
to evaluate the source of an attack.

A. Flow direction

Considering a perfect monitoring environment, the direc-
tion of a connection can easily be determined by looking
at the first observed packet. However, in real monitoring
systems, this assumption is often not valid: even if sym-
metric routing is used and all packets are captured by the

monitoring system, the system may have implementation-
specific peculiarities (caused for example by buffers) and
may not capture the exact time of observation, or change
the order of packets. Packet-based connection analyzers like
Bro automatically correct a TCP connection’s direction, if a
packet with SYN flag and a packet containing the SYN and
ACK flags belonging to the same connection were monitored
in the wrong order. Unfortunately, this “hack” is not possible
based on flow information – usually SYN and ACK flags are
set in both flow directions. The only way to improve the
results for flow data is to add an additional field within the
flow records that marks the direction of packets where only
the SYN flag, and the SYN ACK flags are set. Then a flow-
based analyzer could use a similar heuristic to packet-based
IDS to determine the correct direction. Unfortunately, most
current flow meters do not support this additional field, so
we also did not use it in our evaluation.

The time resolution of the monitoring system plays
an important role when determining the direction, so we
analyzed our system in detail. Figure 4 shows an inverse
cumulative density diagram of all flow’s fR:st − fO:st in the
individual traces. Our network had an average roundtrip time
to popular external servers of roughly 20 ms, and an average
internal latency of less than 1 ms. These values can be clearly
seen in the difference between T5 (server networks, 5 ms) and
T6 (workstation networks, 25 ms). With the time resolution
of our monitoring system, Bro switched the direction of
2.85 % of all connections in average. Many popular routers
only support a millisecond time resolution, so we marked the
1 ms case in the graph. It shows a surprisingly high amount
of up to 55 % of flows whose direction could not have been
determined correctly.

We experienced much lower network latencies than traces
captured in New Zealand [21]. Obviously, the roundtrip
times greatly depend on the usage type (server or clients)
and the latency of primarily accessed networks, which also
correlates with the geographical location of the monitored
link. In effect, the better the network access and the lower
the latency, the more difficult is determining the correct flow
direction without packet-level analysis.

B. Classifiers

We identified a number of flow-based classifiers that can
be used to determine the connection type. A classifier selects
flows according to specific properties with the goal of filtering
either successful or failed connections. First, we select some
basic classifiers. After an evaluation of the classifiers, we try
to improve their efficiency by combining them.

All used classifiers are listed in Table II. Please note that
direction-dependent classifiers may produce wrong results
if the direction has not been recorded properly (in average
2.85 % of all connections in our traces).

Roughly, the classifiers can be grouped into three classes.
The first metric is the number of packets in each direction.

0.0005 0.0050 0.0500 0.5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

start difference (s)

no
rm

al
iz

ed
 c

um
ul

at
iv

e
flo

w
 c

ou
nt

0.001

trace 1
trace 2
trace 3
trace 4
trace 5
trace 6

Figure 4. Inverse cumulative semilog histogram of fR:st − fO:st

Table II
DESCRIPTION OF CLASSIFIERS

name type filter rule

minPktx1x2 succ. fO:pkts > x1 ∧ fR:pkts > x2

rPsGrx succ. fR:pkts > 0 ∧ fR:tcpoct

fR:pkts
> x

oSYNrSYNA succ. SYN ∈ fO:fl

∧{SYN,ACK} ⊆ fR:fl

rACK succ. ACK ∈ fR:fl

ACK succ. ACK ∈ fO:fl ∧ ACK ∈ fR:fl

succ1 succ. oSYNrSYNA ∧ ACK
succ2 succ. oSYNrSYNA ∧ ACK ∧ rPsGr44
succ3 succ. oSYNrSYNA ∧ ACK

∧ rPsGr44 ∧ minPkts32
rNoPkts failed fR:pkts = 0

rPsSmx failed fR:pkts > 0 ∧ fR:tcpoct

fR:pkts
≤ x

rRST failed RST ∈ fR:fl

rRSTNoACK failed RST ∈ fR:fl ∧ ACK /∈ fR:fl

oRSTOrrRST failed RST ∈ fO:fl ∨ RST ∈ fR:fl

rNoACK failed ACK /∈ fR:fl

noACK failed ACK /∈ fO:fl ∨ ACK /∈ fR:fl

fail1 failed noACK ∨ rNoPkts
fail2 failed rNoACK ∨ rNoPkts
fail3 failed noACK ∨ rNoPkts ∨ rPsSm44

At least 3 packets from the originator and 2 packets from the
responder are needed to establish a TCP connection and to
transfer payload to a peer. This is measured by minPktx1x2.
Secondly, the TCP flags are considered. We used oSYNrSYNA,
rACK and ACK to select successful connections. Classifiers
selecting failed connections are rRSTNoACK, which selects
only rejected connections, rRST and oRSTOrrRST, which
select rejected and aborted connections both using and not
using the flow’s direction, respectively. noACK is the inverse
classifier to ACK. Thirdly, we look at the average packet
length. rPSgrx selects successful connections, if the average
TCP payload length is greater than x bytes. rPSsmx is the
inverse classifier for failed connections.

As discussed in Section V, it is not possible for flow
aggregation to capture every single TCP connection in one
flow record. So individual flow records may only represent a

TCP connection

handshake midstream shutdown

SYN
ACK

ACK FIN
RST
ACK

Figure 5. TCP connection split into 3 parts and important TCP flags

part of connections. Figure 5 shows a TCP connection split
into 3 parts with flags that are relevant for the connection
state. Most of the flow splits occur in midstream because
of application-specific waiting times, and only rarely during
handshake or shutdown. If flow splits occur, all individual
flow records should be assigned the same state. Thus,
classifiers like oSYNrSYNA or rRST fail if the right part
of the connection was not included in the flow record (here
the handshake and shutdown, respectively). Classifiers that
are resistant to flow splitting usually rely on ACK. This is
because ACK is used in all parts of a successful connection,
and most of the time bidirectionally, too.

C. Classifier validation

We used Bro to validate the quality of the presented
classifiers, as it uses packet-based analysis and provides
fine-grained result data. All connections were considered as
successful, if they transferred at least one byte of payload in
either direction that was acknowledged by the peer.

Figure 6 shows an overview of our data processing flow.
The original packet traces were stored in PCAP dumps
and were directly processed by Bro and Vermont. Bro was
configured to only use its TCP connection state machine that
outputs summaries for each observed connection. Vermont
was configured to aggregate all incoming packet data to
biflows. Then filters were applied on the aggregated flow
records according to the classifiers, the flow records were
compared to Bro connection summaries, and the results were
analyzed.

We encountered several problems during the comparison
of Bro’s connection summaries and Vermont’s flow records,
as Bro connection summaries and Vermont flows have a
n : m relation. One Bro connection may be represented by
multiple flow records, as flow metering expires flows after the
active or passive timeout. The active timeout was deactivated
in Bro, as we wanted the connection tracker to produce
as accurate summaries as possible and avoid connection
splitting. Thus, each time an active timeout was reached
in the flow meter, Bro would still continue aggregating
packets to one connection. Equally, a flow record could
correspond to multiple Bro connections. Bro had much lower
timeouts for connection handshakes and shutdown, so that it
could differentiate failed from successful connection attempts.
In these cases, a flow record was assumed to belong to a
successful connection in our analysis, if at least one related
connection summary had transferred payload. As already
discussed in Section VI-A, the flow’s direction was not

PCAP dump Bro

Vermont

connection summaries

flow records

Filter

Record
Comparison

Figure 6. Data processing flow used in analysis

T
P

R
/T

N
R

 r
at

in
g

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

m
in

Pkt
s2

2
m

in
Pkt

s3
2

m
in

Pkt
s3

3
m

in
Pkt

s4
3

rP
sG

r4
4

rP
sG

r6
0

oS
YNrS

YNA
ACK

su
cc

1
su

cc
2

rN
oP

kt
s

rP
sS

m
44

rR
STN

oA
CK

rR
ST

oR
STO

rrR
ST

rN
oA

CK
no

ACK
fa

il1
fa

il3

trace 1
trace 2
trace 3
trace 4
trace 5
trace 6
TPR
TNR

Figure 7. Evaluated classifier performance using sensitivity (TPR) and
specificity (TNR); the figure show classifiers identifying successful (left)
and failed connections (right)

always correct (around 2.85 % of all flows were reversed).
The ratio of flows matching part of a successful connection
because of flow splitting was 0.8 %–3 %, matching the results
of the maximum packet gap analysis in Section V.

Our bivariate classifiers do not perform perfect classi-
fication. Based on the measured true-positive TP , true-
negative TN , false-positive FN , and false-negative FN
values, we estimate the performance of each classifier using
the sensitivity TPR and specificity TNR that are primarily
used in medical research [22]:

TPR =
TP

TP + FN
(1)

TNR =
TN

TN + FP
(2)

The sensitivity determines the classification ratio of the
selected amount of objects to the real ones. The specificity
shows the ratio of selected objects that were correctly
classified. The larger the sensitivity and the specificity are,
the better the classifier is. The measurement results for the
classifiers are depicted in Figure 7. The left and right part of
the figure show classifiers identifying successful and failed
connections, respectively. For each classifier, the sensitivity
(TPR) and selectivity (TNR) are shown in different colors,
and each symbol corresponds to a different trace.

The classifiers related to the number of packets offer
a good selectivity and only a moderate specificity. The
specificity is low, as all failed connection attempts using

multiple packets are misclassified. rNoPkts selected failed
connection attempts and featured a very high specificity, as
TCP connections under normal conditions always exchange
packets bidirectionally. Classifiers using the TCP flags show
a very high sensitivity, but their specificity is rather low,
because many false-positives are produced. oSYNrSYNA
shows almost equal results compared to oSYNrSYN (not
included in the graph) as SYN going in both directions
almost always represents a successful handshake. The low
specificity of these classifiers is caused by TCP connections
that had a successful handshake, but did not transfer any data.
rRSTNoACK was very specific, but did not capture many
failed connection attempts. rRST and oRSTOrrRST show the
error rate in determining the connections’ direction: both
sensitivity and specificity increase and decrease accordingly.
The difference between rNoACK and noACK also indicates
inversed flow directions – most of the failed connections
should also apply to rNoACK. Looking at the average packet
length, rPsGr44 shows good properties, although there is a
moderate variance between the traces. The inverse for failed
connections, rPsSm44 (not included in graph), performed
much worse, as it requires fR:pkts > 0, which is not the
case for many failed connection attempts. The maximum
size of TCP option records is 60 bytes, so we also included
rPsGr60. With this classifier, attackers would not be able
to hide connection attempts by using maximum length TCP
options.

Overall, the classifiers for successful connections con-
stantly showed a high sensitivity, but their specificity was
low – many failed connections were also included as false-
positives. Classifiers for failed connections tried to capture
specific cases of connection attempts, so their specificity
was generally high, but the sensitivity was low. A single
exception is noACK, which captured flows showing no ACK
in both directions.

D. Combined classifiers

In order to improve the accuracy of the simple classifiers,
we combined them to produce better results. succ[123] are
combinations of multiple classifiers for successful connec-
tions: succ1 tries to capture both connection handshakes
and midstream traffic, so it shows a very high sensitivity.
succ2 further adds rPsGr44 for higher specificity and shows
an almost identical result to rPsGr44. So, succ1 seems to
be a superset of rPsGr44. succ3 (not shown in Figure 7)
further adds packet number limitations, which does not
change the selected set of flows. fail[123] directly select failed
connections from the set: fail1 detects connections with flag
ACK not set in any direction and no packets in the reverse
direction. Instead, fail2 uses rNoACK to detect connections
with missing bidirectional data exchange. Both classifiers
performed equally well, and had a rather low sensitivity. fail3
additionally includes rPsSm44, and now shows equally good
results as succ2 and succ3. The combination of succ3 with

the inverse of fail3 did not show any improvements, so it
seems that both classifiers choose inverse sets.

VII. CONCLUSION

We analyzed the feasibility of flow-based TCP connection
state analysis. This feature is especially relevant in security
related domains such as high-speed attack detection. We
observed that identifying the direction of TCP connections is
not faultlessly possible with flow data and suggest a new data
element within flow records to solve this problem. A number
of stateless classifiers for determining the TCP connection
type from flow data have been suggested and extensively
evaluated based on multiple high-volume network traces. Our
best classifiers correctly selected in our traces in average
92 % of all connections and had an error rate of 5 %. In
conclusion, it can be said that the TCP connection type
can be identified with a satisfying confidence – enabling
the application of anomaly-based attack detection methods
like port-scan detection on aggregated flow data. However,
exploiting knowledge about the connection analysis, it may
be possible for attackers to cheat some of the classifiers
by specifically forging packets. This is almost impossible
if multiple classifiers are combined, but may not be fully
prevented by this analysis technique.

In order to create an appropriate data base, we also
determined optimal flow metering parameters for capturing
whole TCP connections and introduced a new statistical
property, the maximum packet gap. Our evaluation showed,
that 95 % of all connections would have been correctly
aggregated to one flow using the identified passive timeout
of 120 s. The results of this study build the basis for general
configuration guidelines for flow meters.

REFERENCES

[1] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” in 7th USENIX Security Symposium, San Antonio,
TX, January 1998.

[2] C. Wong, S. Bielski, J. M. McCune, and C. Wang, “A Study of
Mass-mailing Worms,” in ACM Workshop on Rapid Malcode
(WORM ’04), Washington, DC, USA, October 2004, pp. 1–10.

[3] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Op-
erational experiences with high-volume network intrusion
detection,” in 11th ACM Conference on Computer and
Communications Security (ACM CCS 2004). Washington,
DC: ACM, October 2004, pp. 2–11.

[4] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is
sampled data sufficient for anomaly detection?” in 6th ACM
SIGCOMM Conference on Internet Measurement (IMC 2006).
Rio de Janeriro, Brazil: ACM, October 2006, pp. 165–176.

[5] R. Sommer and A. Feldmann, “NetFlow: information loss
or win?” in 2nd ACM SIGCOMM Internet Measurement
Workshop (IMW 2002). Marseille, France: ACM, November
2002, pp. 173–174.

[6] J. Quittek, S. Bryant, B. Claise, P. Aitken, and J. Meyer,
“Information Model for IP Flow Information Export,” IETF,
RFC 5102, January 2008.

[7] F. Hugelshofer, P. Smith, D. Hutchison, and N. J. Race, “Open-
LIDS: A Lightweight Intrusion Detection System for Wireless
Mesh Networks,” in 15th ACM International Conference on
Mobile Computing and Networking (ACM MobiCom 2009).
Beijing, China: ACM, September 2009, pp. 309–320.

[8] C. Estan, K. Keys, D. Moore, and G. Varghese, “Building a
better NetFlow,” in ACM SIGCOMM 2004. Portland, OR:
ACM, August 2004, pp. 245–256.

[9] E. Cohen, N. G. Duffield, H. Kaplan, C. Lund, and M. Thorup,
“Algorithms and estimators for accurate summarization of in-
ternet traffic,” in 7th ACM SIGCOMM Conference on Internet
Measurement (IMC 2007), C. Dovrolis and M. Roughan, Eds.
San Diego, CA: ACM, October 2007, pp. 265–278.

[10] M. Crotti, M. Dusi, F. Gringoli, and L. Salgarelli, “Traffic
Classification Through Simple Statistical Fingerprinting,” ACM
Computer Communication Review (CCR), vol. 37, no. 1, pp.
5–16, January 2007.

[11] A. McGregor, M. Hall, P. Lorier, and J. Brunskill, “Flow
Clustering Using Machine Learning Techniques,” in 10th
International Workshop on Passive and Active Network Mea-
surement (PAM 2004), ser. Lecture Notes in Computer Science,
vol. 3015. Antibes Juan-les-Pins, France: Springer, April
2004, pp. 205–214.

[12] M. Roesch, “Snort: Lightweight Intrusion Detection for Net-
works,” in 13th USENIX Conference on System Administration
(LISA 1999), Seattle, WA, November 1999, pp. 229–238.

[13] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast
Portscan Detection Using Sequential Hypothesis Testing,” in
IEEE Symposium on Security and Privacy, Berkeley/Oakland,
CA, May 2004.

[14] A. Sridharan, T. Ye, and S. Bhattacharyya, “Connection-
less port scan detection on the backbone,” in 25th IEEE
International Performance Computing and Communications
Conference (IPCCC 2006). Phoenix, Arizona, USA: IEEE,
April 2006.

[15] S. Chen and Y. Tang, “Slowing Down Internet Worms,” in 24th
International Conference on Distributed Computing Systems
(ICDCS 2004). Tokyo, Japan: IEEE Computer Society, March
2004, pp. 312–319.

[16] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC:
multilevel traffic classification in the dark,” in ACM SIGCOMM
2006. Pisa, Italy: ACM, September 2005, pp. 229–240.

[17] B. Claise, “Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow Infor-
mation,” IETF, RFC 5101, January 2008.

[18] E. Boschi and B. Trammell, “Bidirectional Flow Export
Using IP Flow Information Export (IPFIX),” IETF, RFC 5103,
January 2008.

[19] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont
- A Versatile Monitoring Toolkit Using IPFIX/PSAMP,” in
IEEE/IST Workshop on Monitoring, Attack Detection and
Mitigation (MonAM 2006). Tübingen, Germany: IEEE,
September 2006, pp. 62–65.

[20] M. Handley, V. Paxson, and C. Kreibich, “Network intru-
sion detection: evasion, traffic normalization, and end-to-end
protocol semantics,” in 10th USENIX Security Symposium,
Washington, DC, August 2001.

[21] D. J. Lee and N. Brownlee, “Passive Measurement of One-way
and Two-way Flow Lifetimes,” ACM SIGCOMM Computer
Communication Review (CCR), vol. 37, no. 3, pp. 19–27, July
2007.

[22] D. G. Altman and J. M. Bland, “Statistics notes: diagnostic
tests 1: sensitivity and specificity,” BMJ, vol. 308, no. 6943,
p. 1552, June 1994.

