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Abstract—We present and discuss a new monitoring technique
that we call Front Payload Aggregation (FPA). Instead of
being limited to either analyzing single packets for signature-
based attack detection or exploiting statistical flow information
for anomaly detection, FPA combines the advantages of both
approaches. Exploiting the fact that most attack signatures can be
found in the very first packets of a connection, we collect payload
information from these few packets (we take the first n payload
Bytes) and associate it to the corresponding flow data. Thus,
intrusion detection can still be performed with a high degree
of confidence and the monitoring system becomes efficient w.r.t.
processing performance and attack resilience.

I. INTRODUCTION

State-of-the art network-based Intrusion Detection Systems
(IDSs) like Bro [1] or Snort [2] analyze each received
packet including all contained payload information in order
to detect ongoing attacks. Additionally, these systems offer
high resilience against targeted spoofing attacks by performing
validity checks on all packets whether these may have been
accepted by the receiving endpoint of the connection. They
offer high quality detection properties, however, due to their
computationally intensive analysis methods, they do not cope
well with current network speeds. Looking at the trend of
network speeds in the future, this situation will not work out
for these systems. So in-depth analysis is only possible with
fast and expensive hardware.

The alternative to in-depth IDSs are anomaly detection
algorithms, which are often based on aggregated data from
packet headers, so-called flows. Algorithms range from portscan
detection [3] to anomaly detection in data rate usage [4]. As
their input data is usually very coarse, it is often easy for
attackers to circumvent detection. A trade-off is needed, that
combines both approaches and still offers good detection ratio
at fast network speeds.

Recent publications indicate, that most of the security-
relevant data is transferred in the beginning of a connection,
i.e. the first n bytes of each connection [5]–[7]: in this part
of the connection, the data transfer is initialized. Both client
and server perform a handshake on the application layer and
exchange the data request and response. After this initial
exchange, often a bulk of data is transferred. Take HTTP
for an example: the important information exchange would be
represented by the HTTP GET or POST request that includes
the client version, the location of the requested data, client
capabilities, possibly username and password, and so on. The
same applies to the HTTP response from the server.1 Many

1See also our example in Figure 2, where a HTTP connection’s first 256 bytes
of payload are shown
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Fig. 1. Example attack detection system with multiple sensors and IDS

exploits for web applications transfer their exploit code within
a short HTTP request, like in the given Uniform Resource
Locator (URL). Other examples for security-relevant network
data is created by malware communication using IRC or HTTP
as application protocol or the SMTP protocol used for sending
spam. This way, the heavy-tailed nature of today’s network
traffic [8] can be exploited to reduce the amount of data to be
analyzed by ignoring the largest part of long flows.

Flow aggregation has long been present in the area of
network monitoring, with an emphasis on traffic accounting and
performance measurement. The standardized Internet Protocol
Flow Information Export (IPFIX) protocol is already supported
by a wide range of hardware-based routers and software
monitoring solutions running on commodity PC hardware [9],
[10]. Our approach is to merge the concepts of flow aggregation
and payload-based IDS. We call this technique Front Payload
Aggregation (FPA), where the first n payload bytes of a flow
are added to the flow records and, consequently, this data is
directly included into the IPFIX data stream. We propose FPA,
a fast reassembly algorithm that uses a constant buffer size
and does not require additional memory during the aggregation
process.

An exemplary attack detection system is depicted in Figure 1.
Multiple flow meters capture data at various network links.
These include statistical data about monitored flows, as well as
parts of the payload. Flow collectors receive these flow records,
and may perform statistical analysis and anomaly detection on
the aggregated data, and other collector instances may extract
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payload from the flow records and forward it to off-the-shelf
IDSs. Conventional approaches often involve the deployment
of an IDS at a central network link in a static setup, where
only data transferred on this single link can be monitored by
the IDS. By separating the IDSs from the network link, an
additional layer is introduced that enables the system to adapt
itself dynamically to current load or other external triggers
like handling anomalies: if one host within the local network
becomes conspicuous, it will be possible to monitor data that is
not transferred over the centrally monitored link, but individual
flow meters within the network may be triggered to selectively
report data from the conspicuous host.

The contributions of this paper can be summarized as follows.
We discuss the need for processing at least the first n payload
byte in each connection for efficient signature-based attack
detection. As current flow monitoring techniques abstract
from any payload and only provide statistical information,
we introduce a new flow-monitoring technique, Front Payload
Aggregation, which we defined as an extension to the standard-
ized IPFIX protocol (Section III). According to the performance
evaluation results, FPA only requires marginal overhead (CPU,
memory) compared to normal flow processing (Section IV).
In conclusion, we show that FPA provides capabilities for
high-quality signature-based attack detection while keeping
the resource requirements at an adequate level comparable to
normal flow monitoring.

II. PRELIMINARITIES

A. Related Work

A considerable amount of work has already been published
focusing on the analysis of payload-based IDSs that perform
application layer analysis for selected protocols and signature
matching on pre-defined rules. The best known examples are
Bro [1] and Snort [2]. Experiences in high-speed networks with
Bro including information about the processing performance
and the memory utilization have been presented in [11].
Furthermore, the feasibility of performance prediction of some
Bro preprocessors has been described in [12]. Further work
has been conducted to improve Bro’s performance by running
the system on multiple systems in parallel [13]. Similarly,
the system performance has been doubled by offloading the
signature matching to graphic cards [14]. Recently, a system
has been introduced that saves a network link’s history using
flow records with added payload [15]. In this system, each
connection’s payload is cut off after 10-20 kBytes to save
space.

Efficient TCP stream reassembly is covered in [16]. As
passive TCP reassembly does not resolve all ambiguities in the
traffic, a form of traffic normalization to remove any effects
of attack has been proposed [17]. Finally, both approaches
have been combined by introducing a TCP reassembly system
that offers robustness against attacks by modifying monitored
traffic inline [18].

The rule sets of the IDS Snort have been analyzed and
evaluated in order to determine how much payload within a
packet is needed for effective attack detection [7]. The authors

analyzed Snort rules and determined the minimum amount of
payload for each rule so that it may match successfully.

B. Flow Monitoring

Flows are sets of IP packets sharing common properties. A
flow record contains information about a specific flow. In most
applications, a typical configuration would be using the IP
5-tuple <source IP, dest IP, source port, dest port, protocol>
as flow keys, i.e. attributes describing the flow. Furthermore,
relevant statistical data can be added such as the flow start and
end times or the number of bytes of all packets belonging to
the flow. Several protocols are available to efficiently transfer
flow records. Most of the state-of-the-art flow meters support
either Netflow.v9 or IPFIX. The latter one was standardized by
the IETF in RFC 5101 [19]. Both protocols support variable
configurations: so called template records that describe the
structure and content of flow records, are transmitted regularly
according to predefined timeouts. For flow aggregation, the
active timeout describes the maximum time a flow record is kept
in cache and the passive timeout is used if no more packets are
received for the particular flow. Packet Sampling (PSAMP) [20]
is a derivative of IPFIX that also allows the inclusion of packet
payload. Each received packet then is represented by one flow
record. The protocol specification also emphasizes on various
sampling methods for the selection of packets.

C. Vermont

For our live performance tests with FPA, we used Ver-
mont [9]. It is an open-source monitoring toolkit capable of
processing Netflow.v9 and IPFIX conforming flow data. The
application runs on Linux and derivatives of BSD. Vermont
can receive and process raw packets via the Packet Capturing
(PCAP) library (up to 1 GBit/s) as well as IPFIX/Netflow.v9
flow data. Supported data formats for export are IPFIX,
PSAMP, and the Intrusion Detection Message Exchange Format
(IDMEF).

Internally, Vermont is heavily multi-threaded. Its design
allows to define modules with different functionalities in the
configuration and to connect them either directly or using
internal queues. For our evaluation tests, Vermont is well suited,
as tasks like reading packets from the network via PCAP, flow
aggregation and flow export are realized in separate threads. A
sensor framework within Vermont supports detailed analysis
of each module’s performance attributes during run-time.

III. METHODOLOGY

In the following, we outline the main concept of FPA and
study the working behavior of the algorithm. Performance
aspects are discussed in Section IV.

A. Goals

The following design goals led the design of our FPA
algorithm:
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a) High performance: The history of Netflow and IPFIX
metering systems lies in area of traffic accounting, which
focuses on statistical analysis of network traffic. So these
systems have been designed to enable aggregation of data
packets in high speed networks, and to touch as few bytes as
possible within each packet. Normal 5-tuple flow aggregation
only accesses the network and transport layer headers within the
packets. Thus, only 40 Byte have to be processed (IP options
are usually not accessed). In contrast to attack-resilient IDS like
Bro [16], no data validation is performed such as checksum
verification or stream analysis, in which acknowledgments in
TCP connections are verified.

b) Simplicity: One of the major advantages of Netflow
and IPFIX is its wide availability in both software and hardware
based systems. This is caused by the simplicity of its design.
The same objective holds for FPA.

c) Seamless integration into current flow processing
systems: IPFIX can easily be extended by developers using
enterprise-specific (i.e. user-defined) fields. Unknown fields are
usually ignored by flow processing systems, if data is stored
or forwarded. This way it is possible to integrate FPA without
changing the flow processing chain.

B. Aggregation Method

FPA is performed using two new enterprise-specific in-
formation elements in the IPFIX flow (to be specified in
the template): IPFIX_ETYPEID_frontPayload ( fbu f )
represents the buffer for the aggregated payload and has
a variable size that is to be specified in the template.
IPFIX_ETYPEID_frontPayloadLen ( fbu f len) contains
the actual length of payload within the buffer using a 32 Bit
unsigned integer. We restricted aggregation to the protocols
UDP and TCP, as these protocols transfer most of the payload
relevant for security in today’s networks. However, our FPA
technique can easily be extended to support other transport
protocols such as SCTP. An example flow record with included
FPA buffer is displayed in Figure 2.

TCP packets contain a sequence number pseq to indicate the
packet’s position within the TCP stream. According to RFC 793
[21], a random number is chosen by both communicating

SrcIP: 1.2.3.4
DstIP: 5.6.7.8
SrcPort: 1558
DstPort: 80
FlowStart: 2009-04-04 22:54:27.432
FlowEnd: 2009-04-04 22:54:31.252
Octets: 904
RevOctets: 13830
Packets: 11
RevPackets: 12
Protocol: 6
PayloadLen: 256
RevPayloadLen: 256
Payload: GET /pub/mozilla.org/addons/3006/video_downloadhel

per-4.2-fx.xpi HTTP/1.1..Host: releases.mozilla.or
RevPayload: HTTP/1.1 200 OK..Connection: close..Transfer-En

coding: chunked..Date: Thu, 04 Apr 2009 22:54:28 GMT.

Fig. 2. Content of a flow record with activated FPA (non-printable characters
removed from payload)

... 234 ... 80 bytes payload

... 324 ... 100 bytes payload
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fbuflen = 256 bytes
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... 424 ... 100 bytes payload3
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Fig. 3. Front payload aggregation for TCP packets

partners during connection establishment. After the initial
SYN handshake, the sequence number indicates the position
within the TCP stream of the payload contained in the packet.
This ”‘position marker”’ can easily be exploited for payload
aggregation.

Algorithm 1 and Figure 3 explain the principles of our new
FPA method. Each flow record contains a buffer with fixed size
fbu f len. If a new flow is being monitored, i.e. if a packet arrives
for which no flow information has already been recorded, the
internal variable fseqstart is set to the packet’s TCP sequence
number and marks the buffer’s start index in the TCP stream.
fbu f use is set to 0 to indicate that the buffer is not filled with
any data. If the SYN flag is set within the packet, it is part of a
TCP connection handshake and does not contain any payload.
Then fseqstart is increased by 1 as the following packet would
contain pseq = fseqstart +1 (see [21]). For each incoming packet,
it is tested whether
• the packet contains payload,
• the sequence number of the packet pseq lies in range

[ fseqstart , fseqstart + fbu f len), or
• the number of packets in the recorded flow fpkts meets

fpkts < 2.8×106.
If all tests are positive, the packet’s payload is copied to the

buffer (but cropped if needed). Usually, only the payload of the
first few packets of a flow is copied into the buffer. Afterwards,
the range test fails when the sequence number increases. The

Algorithm 1 Front payload aggregation for TCP packets
1: receive TCP packet p
2: extract pseq and plen
3: if first packet in flow then
4: set fseqstart = pseq
5: if SYN-bit is set in packet then
6: set fseqstart = fseqstart +1
7: end if
8: set fbu f use = 0
9: end if

10: if fpkts < 2.8×106 and TCP payload is in packet and pseq
indicates that payload fits in buffer then

11: copy payload in buffer
12: adjust fbu f use
13: end if
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third test is performed as TCP sequence numbers are 32 Bit
unsigned integers and wrap after a transferred payload of
232 Byte. This is the case after at least 232/1500≈ 2.86×106

packets in Ethernet with a Maximum Transmission Unit (MTU)
of 1500 Byte.

No stream reassembly is possible for UDP packets, because
no sequence numbers are available in the protocol. So, the pay-
load of all incoming packets for a flow is copied consecutively
into the FPA buffer until it is filled. fseqstart is not used at all,
and fbu f use is increased per packet. Algorithm 2 illustrates the
procedure.

C. Discussion

This section provides an analysis of the FPA algorithm
described previously, both in handling anomalous traffic and
security issues. The first part discusses general properties of
FPA. After that, both algorithms are analyzed in detail.

Standard flow aggregation settings that only regard the
headers of the network and the transport layer need to access the
first 40–120 Byte of a packet (excluding MAC layer information
and depending on the header sizes of both layers). If payload is
needed for flow aggregation, it is obvious that more data from
each packet needs to be captured. As the whole FPA buffer size
fmaxlen may be contained in the payload of a single packet, the
capture length should be the expected maximum header size
plus fmaxlen, i.e. 120+ fmaxlen. In practice, the maximum size
of 60 Byte per header is not reached. Thus, usually varying
capture lengths between 64 and 80 Byte are used for capturing
only network and transport layer headers.

Flow records without FPA and standard fields often have
a size of 50 Byte. FPA increases storage requirements and
transfer data rates immensely: for moderate buffer sizes like
128 Byte, flow record sizes are increased by 156 %. Especially
during Denial of Service (DoS) attacks that involve a huge
amount of packets, each flow record contains spoofed source
data and no payload at all, and the increased flow record
size may cause problems. In extreme cases, it is possible that
more traffic is generated with flow records than was monitored.
This is always the case if flows are monitored that consist of
fewer byte compared to a flow record. In our case of 178 Byte
flow records, flows consisting of single packets with less than
178 Byte generate more data in the monitoring system than
on the network link. In order to generate dmon = 100Mbit/s
traffic by the monitoring system configured with 128 Byte

Algorithm 2 Front payload aggregation for UDP packets
1: receive UDP packet p
2: extract plen
3: if first packet in flow then
4: set fbu f use = 0
5: end if
6: if UDP payload is in packet and fbu f use < fbu f len then
7: copy payload in buffer at position fbu f use
8: adjust fbu f use
9: end if

FPA buffers (i.e., a flow record size of fsize = 178Byte), the
following packet rate rpkt and data rate rbit of packets with
size psize = 40Byte = 320Bit would be needed to sent:

rpkt =
dmon

fsize
≈ 73600packets/s (1)

rbit =
dmon

fsize
psize ≈ 22.4Mbit/s (2)

Here the data rate generated by flow records is more than
5 times higher than the data rate of the monitored link. Flow
aggregation is performed to reduce monitoring information, and
this goal is not achieved in these extreme cases. Additionally,
DoS attacks generating high amounts of flow records within
the aggregation buffer also often tend to overload the flow
meter even without FPA. With normal flow record sizes of
50 Byte, traffic amplification is still possible, but not as high as
with activated FPA. Some approaches already try to cope with
this problem by installing measures to detect DoS attacks and
filter traffic belonging to them before it reaches the aggregation
buffer.

FPA of TCP packets performs simple stream reassembly.
Due to timeouts within the aggregation, it is possible that a flow
record is exported although its corresponding TCP connection
has not ended yet. If such a late packet has been received, the
flow meter has no way of telling if the connection has already
been monitored before. Thus, the connection is considered new
and a new flow record is created with its payload filled into
the FPA buffer. Due to the simplistic nature of FPA, anomalies
like packet retransmissions, bit flips in packets, or packet drops
are handled consistently, but not always optimal in the sense
of generating flows with correct payload, i.e. payload that was
received and interpreted by the receiving end of the connection
(in contrast to being dropped). Packet retransmissions in TCP
are no problem for FPA, because if the packet’s pseq fits in
the FPA buffer, the packet’s payload is copied into the buffer
again. Packet drops often introduce packet flows with non-
monotonic increasing sequence numbers when the lost packet
is retransmitted. FPA also handles these cases in a similar way.
Packets with corrupted payload data, i.e. such with an invalid
checksum, may cause problems to FPA. As the chronologically
last packet fitting in a buffer with correct pseq always overwrites
data in the FPA buffer, invalidated payload may be copied
into the buffer. However, because TCP usually retransmits
packets with invalid checksums and these retransmissions are
monitored after receiving the invalid packet, the FPA buffer
is automatically corrected. This behavior cannot be ensured
because there is a small chance that, due to packet reorderings
within the network, invalid packets may be monitored and
aggregated last.

Payload aggregation of UDP packets has the same problems
as reassembly of UDP payload data. UDP does not offer a
way of knowing the correct order of packets without the help
of the application layer protocol. So, it is not possible at all
to detect packet retransmissions, reorderings, or losses. The
FPA buffer contains the payload of consecutively monitored
packets without any reassembly logic at all.
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Fig. 4. Test setup used for the performance measurements

Even for IDS using state-of-the-art full packet analysis with
checksum and acknowledgment checking, it is not possible
to unambiguously determine which monitored packets are
accepted by a receiver. Attackers are able to exploit this
problem when directly targeting the monitoring system and
intentionally create ambiguities in the packet stream. FPA
does not circumvent this problem with its simple reassembly
algorithm, so attacks directly targeted at the aggregation method
cannot be detected. So for example, attackers may be able to
fool the system by repeating packets with identical pseq, but
different payload and invalid checksum. Then, the receiving
host drops the packet whereas FPA copies the payload data
into the buffer and an attack may be masked.

IV. EVALUATION

A. Test setup

Our primary goal for the evaluation of FPA was to get
realistic results. Therefore, we set up multiple systems to
perform direct packet capture from a mirrored port. The test
setup for our implementation of FPA within Vermont is depicted
in Figure 4(a). One system sends packets, which were read
from a previously generated trace file using tcpreplay,2 to a
receiving host. All generated network packets are mirrored by
a switch to a host running Vermont, which finally captured all
incoming packets.3

Figure 4(b) shows Vermont’s configuration during the test,
whereby open circle arrows indicate autonomous threads within
modules. Packets are captured using a memory-mapped version
of the PCAP library4 by a thread inside the Observer module.
These packets are forwarded to a queue that buffers the
received elements. The queue’s thread inserts and aggregates the
packets into a hash table inside module PacketAggregator. The
thread in the PacketAggregator module exports the resulting
flow records to the IpfixExporter module in intervals of 10 s.
Passive flows are exported after 35 s and active flows after
130 s. We configured three threads on purpose to be able to

2http://tcpreplay.synfin.net/trac/
3The monitoring system was running on an Intel Core 2 Quad Q9550

at 2.83 GHz, the packets were captured with an Intel 82566DM-2 network
interface.

4http://public.lanl.gov/cpw/

TABLE I
TRACES USED FOR THE EVALUATION

filter packet bit
rate rate

LALL – 61 kpkt/s 337 Mbit/s
LHT T P port 80 32 kpkt/s 206 Mbit/s
LSSH port 22 1 kpkt/s 6 Mbit/s
LSMT P port 25 1 kpkt/s 3.3 Mbit/s
LIRC port 6667 0.08 kpkt/s 0.08 Mbit/s
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Fig. 5. Cumulative connection length distribution of live dumps

measure separate tasks inside the flow meter individually: the
Observer thread reports the time needed to read packets from
the network via PCAP and build a simple wrapper around the
raw packet. The PacketQueue thread inserts incoming packets
into the hash table and performs data aggregation. Finally, the
PacketAggregator thread checks the hash table regularly for
expired records and forwards these to IpfixExporter.

Normal flow aggregation only accesses very few bytes within
the headers of each monitored packet. FPA increases the number
of accessed bytes dramatically for selected packets, as payload
is copied from individual packets. Thus, an important indicator
for performance is the number of packets within each flow
where payload was copied from the packet to the flow record.
We recorded this value for selected tests.

Four our evaluation tests, we used a trace that was directly
captured from the Internet uplink of our University’s network.
It has a length of 5 min and was replayed into the test network
at the original speed.

B. Generator traces

The live network trace shows a high variety of different
traffic types: our University’s network supports multiple high-
profile servers, a multitude of workstations, and privately used
hosts in dormitories. The trace was captured using tcpdump
with a maximum capture length of 1500 Byte per packet on
3/4/2009. This setting resulted in about 0.005 % packet loss.
To show the effects of different traffic types, we modified
this trace for the protocols HTTP, SSH, SMTP, and IRC by
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Fig. 6. Cumulative flow size distribution of live dumps

filtering the original trace according to the ports 80, 22, 25, and
6667, respectively. A summary of the trace statistics is shown in
Table I. In order to provide a more detailed overview of our live
traces, we also show the distribution of the connection lengths
in Figure 5, as well as the distribution of each connection’s total
size in Figure 6, where the size of the MAC and the network
layer headers is included. We only included the size range
between 0–10 kByte, as this is the important range for FPA
buffer sizes ≤1024 Byte. All live dumps except LIRC show a
trend for connection lengths below 30 s. Therefore, most of the
connections will be correctly aggregated to single flow records
without any splits caused by short buffer timeouts inside the
flow aggregator.

C. Results

In many of our graphs, we use so-called boxplots. For each
set of test results using the same parameters, a box is drawn
from the first quartile to the third quartile, and the median is
marked with a thick line. Additional whiskers extend from the
edges of the box towards the minimum and maximum of the
data set. The red line in the graphs connects the medians of
the data sets.

1) PCAP: We use the memory-mapped PCAP library in all
our tests. This modified PCAP library offers two features for
high-performance monitoring in the Linux operating system:
a ring buffer with a variable size where the kernel stores
all packets captured at the network interface; furthermore, it
removes the need for a second copy operation of the packet
contents before it reaches the application. The ring buffer is
set in our tests to a size of 64000 frames, whereby each frame
may hold one packet. Even during performance glitches of the
application, packets are not lost at the interface as long as the
ring-buffer can cache the incoming packets.

Our modularized flow meter Vermont is very well suited
for measuring the performance of this PCAP library, because
the Vermont module Observer, that directly interfaces with it,
receives the packets and performs one additional copy operation
on the packet data. This copy operation is needed, because the
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Fig. 7. Module performance for module observer, differing FPA lengths
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Fig. 8. FPA buffer usage in live dumps

PCAP ring buffer does not guarantee that after a new packet is
delivered to the application, content of the previous packet is
still available. Vermont’s modularized structure does not pose
limitations on how long one packet is available, so Vermont
needs to guarantee the availability by copying each packet.

For normal flow aggregation, only the packet headers up to
the transport layer need to be captured. Thus, usually the PCAP
capture length is set to 80 Byte or 96 Byte. To show the effects
of increased capture lengths on PCAP, we fed our complete
live dump L1 to Vermont and measured the performance of
module Observer. Figure 7 shows the results: For each FPA
buffer size s, the PCAP capture length is set to s+80. With a
standard capture length of 80 Byte without FPA, the module
has an average CPU utilization of about 12.4 % (average value
measured per second). The maximum capture length was set
to 1104 Byte and the average CPU utilization of 13.8 % shows
that increased capture lengths only marginally affect the PCAP
performance in this setup.

2) FPA buffer usage: Flow meters usually have a static
configuration that specifies aggregation rules and the layout of
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the produced flow records and their corresponding templates.
Thus, FPA buffers inside the flow records always have a static
size. Depending on the length of the monitored flow, this
buffer may be filled either completely or only partially. Our
first analysis examines the actual number of bytes used in
the flow records’ FPA buffers. We configured Vermont to use
1024 Byte FPA buffers and fed all 5 live dumps into the flow
meter. Figure 8 shows the results. We marked the median in this
CDF with the dashed horizontal line. We notice a high variance
in this median, with LIRC featuring the lowest with 51 Byte
and LHT T P with 701 Byte. IRC traffic is usually completely
interactive and so transfers very little data, whereas HTTP
traffic does not seem to produce flows with little payload (see
also Figure 6). LSSH shows a large bump at 500 Byte, which
is also visible in the connection size distribution at 1.7 kByte.
The connection size distribution graph also includes header
size and packets not carrying any application layer payload –
this results in the difference of 1.2 kByte between the Figures.
LALL has a low median of 94 Byte, as this trace also includes
UDP packets and DNS name resolution packets, which have
very low flow sizes.

To directly investigate the FPA buffer usage in relation to
the buffer size fmaxlen, we replayed the live dump LALL to
Vermont multiple times with varying buffer sizes and recorded
the FPA payload usage. The results are shown in Figure 9.
The maximum is always fmaxlen and the median stays at
94 Byte for the larger buffer sizes, like was already shown
in Figure 8. The mean payload usage falls from 78 % relative
to the maximum buffer size at fmaxlen =64 Byte down to 26 %
at fmaxlen =1024 bytes.

3) Performance: In order to achieve high processing perfor-
mance, the buffer size that enables FPA to ignore most packet’s
payload is limited. We analyzed the number of packets whose
payload was accessed per flow in our complete live dump.
Figure 10 presents the results for different FPA buffer sizes.
Less than 10 % of all flows did not transfer any payload, so
0 packets are accessed. For the majority of all flows, only 1
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Fig. 11. CPU usage of PacketQueue for varying FPA buffer sizes

packet needs to be accessed. A buffer size of 1024 Byte shows
only a slightly higher average amount of packets with accessed
payload compared to a buffer size of 64 Byte. A flow contains
in average 17.5 packets and the average number of packets
with accessed payload for FPA buffer sizes of 64, 256, and
1024 Byte is 6.1 %, 7.9 %, and 9.4 % relative to each flow’s
total packet number, respectively.

Furthermore, we performed direct analysis of the effects
of FPA to Vermont’s live performance. Figure 11 shows the
average CPU utilization of the PacketQueue module. This
module performs aggregation of incoming packets to flow
records and inserts the elements into the flow hash table. We
varied the FPA buffer size between 0 (no FPA) and 1024 Byte.
FPA directly influences the performance of this module: almost
a linear increase in utilization can be seen when the FPA buffer
size is increased to 128 Byte. After that, the effects of the
falling relative FPA buffer usage can be seen and the module’s
performance increases in smaller steps. In total, 1024 Byte FPA
increased the aggregation costs by only 15 %, which proves to
be only a minor performance impairment. Figure 12 shows the

1108



0 200 400 600 800 1000

FPA buffer size (bytes)

m
od

ul
e 

pe
rf

or
m

an
ce

 (
C

P
U

 u
sa

ge
)

0.
00

2
0.

00
4

0.
00

6

l

l

ll

l

l

Fig. 12. CPU usage of PacketAggregator for varying FPA buffer sizes

CPU utilization of the PacketAggregator module. This module
performs the removal of entries inside the hashtable and exports
the flow records to the network. No dependency on the FPA
buffer size is visible. This is mainly due to the fact that no
copies of the contents of the flow records need to be performed
any more and thus its performance stays at the same level.

V. CONCLUSION

We presented an extension to current flow monitoring
techniques that we named Front Payload Aggregation (FPA). It
allows the inclusion of the payload information within flow data.
In particular, the first N Bytes of all the packets belonging
to the flow are captured and added to the flow; exploiting
transport layer information, i.e. the TCP sequence number,
reordered packets can be corrected in the aggregator. This
enables attack detection systems to separate intrusion detection
from network sensors, i.e. the monitoring probes. The main
goals during the design of FPA have been efficient aggregation
and easy integration into current monitoring protocols. Our
implementation is directly integrated into the software-based
flow meter Vermont, which has been one of the first monitoring
toolkits supporting the IPFIX protocol. During our extensive
performance tests using real-live and artificial traffic dumps, we
determined that FPA causes only an insignificant performance
impact as payload for 256 Byte buffers is only extracted from
in average 1–3 packets per flow.

According to our experiments, FPA only leads to a marginal
performance overhead (CPU, memory). As we explore the
performance of the PC hardware and operating system at its
limits, it is not possible to exactly quantize this overhead due
to side-effects of context switches and interrupt handling. How-
ever, the shown results clearly indicate that the implemented
system performs well on commodity hardware.

Currently we are working on a modified version of Snort to
evaluate at which position signatures match within a flow.

REFERENCES

[1] V. Paxson, “Bro: A System for Detecting Network Intruders in Real-
Time,” Elsevier Computer Networks, vol. 31, no. 23-24, pp. 2435–2463,
December 1999.

[2] M. Roesch, “Snort: Lightweight Intrusion Detection for Networks,” in
13th USENIX Conference on System Administration (LISA 1999), Seattle,
WA, November 1999, pp. 229–238.

[3] J. Jung, V. Paxson, A. W. Berger, and H. B. lakrishnan, “Fast Portscan
Detection Using Sequential Hypothesis Testing,” in IEEE Symposium on
Security and Privacy, Berkeley/Oakland, CA, May 2004.

[4] C. Estan, S. Savage, and G. Varghese, “Automatically Inferring Patterns
of Resource Consumption in Network Traffic,” in ACM SIGCOMM 2003.
Karlsruhe, Germany: ACM, August 2003, pp. 137–148.

[5] G. Carle, F. Dressler, R. A. Kemmerer, H. Koenig, C. Kruegel, and
P. Laskov, “Network attack detection and defense - Manifesto of the
Dagstuhl Perspective Workshop,” Springer Computer Science - Research
and Development (CSRD), vol. 23, no. 1, pp. 15–25, March 2009.

[6] G. Schaffrath and B. Stiller, “Conceptual Integration of Flow-Based and
Packet-Based Network Intrusion Detection,” in Resilient Networks and
Services, Second International Conference on Autonomous Infrastructure,
Management and Security (AIMS 2008), ser. Lecture Notes in Computer
Science, vol. 5127. Bremen, Germany: Springer, July 2008, pp. 190–194.

[7] G. Muenz, N. Weber, and G. Carle, “Signature Detection in Sampled
Packets,” in Workshop on Monitoring, Attack Detection and Mitigation
(MonAM 2007), Toulouse, France, November 2007.

[8] W. Willinger, M. S. Taqqu, R. Sherman, and d. V. Wilson, “Self-similarity
through high-variability: statistical analysis of ethernet LAN traffic
at the source level,” in the conference on Applications, technologies,
architectures, and protocols for computer communication. Cambridge,
MA: ACM, 1995, pp. 100–113.

[9] R. T. Lampert, C. Sommer, G. Münz, and F. Dressler, “Vermont -
A Versatile Monitoring Toolkit Using IPFIX/PSAMP,” in IEEE/IST
Workshop on Monitoring, Attack Detection and Mitigation (MonAM
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