
Survey of Event Correlation Techniques for
Attack Detection in Early Warning Systems

Tobias Limmer and Falko Dressler

Computer Networks and Communication Systems
University of Erlangen, Germany

{limmer,dressler}@informatik.uni-erlangen.de

Technical Report 01/08
University of Erlangen, Department of Computer Science 7

Abstract. In the context of early warning systems for detecting Internet
worms and other attacks, event correlation techniques are needed for two
reasons. First, network attack detection is usually based on distributed
sensors, e.g. intrusion detection systems. During attacks but even in nor-
mal operation, the generated amount of events is hard to handle in order
to evaluate the current attack situation for a larger network. Thus, the
concept of event or alert correlation has been introduced. This survey
was motivated by recent work on early warning systems. We summarize
and clarify the typical terminology used in this context and present a
requirement analysis from an early warning system’s point of view. In
the main part of this survey, we summarize and classify event correlation
techniques as described in the literature.

1 Introduction

In order to cope with the increasing quantity and quality of recent attacks in
the Internet, automated attack detection and mitigation techniques are strongly
required [1,2]. For example, the German government is currently investing into a
national IT early warning system, which is intented to help with early detection
of new Internet attacks. This system should not only detect singular attacks but
also distributed worm spreadings and others.

Figure 1 depicts the main components of such an IT early warning system [3].
On the lower layer, network sensors such as monitors, which are providing packet
and flow data, or quality of service measurements collect information about the
current network behavior. This data can be analyzed on the next layer in which
Intrusion Detection Systems (IDSs) interpret the received information. The in-
formation exchange between the sensors and the analyzers can be performed
using standardized data formats such as Internet Protocol Flow Information
Export (IPFIX) and Packet Sampling (PSAMP). A key challenge for the efficient
use of the monitoring infrastructure is the ability to dynamically reconfigure the
sensors according to the current requirements on the attack detection level. This
can be done using standard network management techniques but also based on

N
e
tw

o
rk

 s
e
n
s
o
rs

Packet monitoring,

Netflow generation,

network measurements

Policy-based analysis

anomaly detection

(semi-) automatic

Event correlation

Firewall systems,

worm and virus filters

External information

(users, virus scanners)

IPFIX/PSAMP

IDMEF
IDMEF

ID
M

E
F

Netconf

Adaptation and

self-configuration

Adaptation and

self-configuration

N
u
m

b
e
r

a
n
d
 d

is
tr

ib
u
ti
o
n
 o

f
s
y
s
te

m
s

C
o
rr

e
la

ti
o
n
 a

n
d
 s

ig
n
if
ic

a
n
c
e
 o

f
e
v
e
n
ts

Early warning systems – an architecture

Fig. 1. General architecture of early warning systems

self-organization methods that allow an autonomous self-controlled monitoring
and attack detection environment.

As required by the volume of attack traffic in the current Internet, moni-
toring and attack detection need to be performed in a highly distributed way.
This becomes possible using decoupled packet monitoring, attack or intrusion
detection, and event analysis.

The use of distributed network sensors requires the correlation of detected
alarms or events. Therefore, on the highest level, all the collected attack infor-
mation need to be collected on centralized systems for further analysis. We refer
to this level as event correlation because connections between multiple events
are detected based on logical relations such as temporal or spatial correlations
– in the literature, sometimes the term alarm correlation is used as a synonym.
Metainformation can be used for improved event correlation. Again, the infor-
mation exchange between the attack detection level and the correlation entities
can be based on standardized data formats such as Intrusion Detection Message
Exchange Format (IDMEF).

The contributions of this study are threefold:

– We start with some clarification of the used terminology in Section 2. While
there is a common agreement on the meaning of attack or intrusion detec-
tion, the terms event and event correlation are not clearly outlined in the
literature.

– Furthermore, we provide a summarized requirements analysis related to the
entire IT early warning system based on distributed network sensors up to
the event correlation engine (Section 3).

– The main part of this study is a comprehensive survey of event correlation
techniques (Sections 4 and 5). This includes methods and procedures that
have been described in the literature not only as event detection but also in
related fields, e.g. attack detection.

2 Terminology

In the scope of this section we describe terms used in this report and define their
meaning. Especially it is important to to distinguish between intrusion detection
and event correlation, as well as between event and meta data.

2.1 Intrusion Detection System

Intrusion Detection Systems (IDSs) have been developed to detect attacks or
intrusions against / into systems connected to the Internet. According to Bace
et al. [4], an IDS is a software or hardware based system which automatizes this
monitoring and analysis process. The resulting information (“events”) are stored
or transmitted to be evaluated by a network operator.

The term IDS has been firmly established in the literature by now. In its
literal meaning, the term “intrusion” characterizes only a small part of attacks
in a network. This report uses the more general term “attack detection”, which
is also increasingly used in current literature. We also employ the term attack
detection system in this report as comprehensive description for systems which
detect and analyze security related incidents.

Attack detection systems may be classified according to their information
source. Network based attack detection systems monitor networks and collect
transferred data. By analyzing the data, it is possible to detect attacks being
performed over the network. Host based attack detection systems process infor-
mation, which is collected within a single host, e.g. application log files.

Figure 2 shows an example for a comprehensive attack detection systems that
also provides means of countermeasures. Sensors (host-based IDS or network-
based IDS) report detected attacks or anomalies to the analyzer. The analyzer
itself (re-)configure the attack detection system itself, end-systems or firewalls,
so that incidents can trigger automatic reactions. Honeypots and sandboxes
offer the possibility to proactively learn new attack signatures, which may be
employed on the attack detection systems. This process is also controlled by the
analyzer.

2.2 Event

Events are individual or aggregated messages or alarms describing or relating
to activities in a network. This rather vague definition covers almost all events,
which are exchanged in all kinds of monitoring and evaluation systems. On the
one hand, it may be information about the content of a network data packet, or,
on the other hand, it may be a message about a worm propagating through the
Internet with additional information about the exploited security hole. In this
study, we will discuss the structure of certain event types and their contextual
meaning.

RFC 4766 [5] defines an event as follows: The occurrence in the data source
that is detected by the sensor and that may result in an IDMEF alert being
transmitted, for example, attack. Similarly, the term alert is used: A message

Analyzer

H

H

N

controls

Internet

reports
incidents

Honeypot/Sandbox

reports incidents /
controls

Firewall

controls

H

N

Host-based IDS

Network-based IDS

Fig. 2. Topology of an attack detection system

Data Source Sensor

Sensor Analyzer

Administrator

Manager Operator

Activity

Event

Event

Alarm
Notification

Security Policy

Response

Fig. 3. Usage of different event types according to RFC 4766 [5]

from an analyzer to a manager that an event of interest has been detected. An
alert typically contains information about the unusual activity that was detected,
as well as the specifics of the occurrence. Relationships between different event
types and their source and destination are depicted in Figure 3.

Attack messages may be categorized as a subclass of general events. In the
scope of this report, the term attack covers all sorts of incidents in a network
which may be assigned to the area of security. Preparatory actions for an actual
attack, e.g. a portscan, are also described as an attack.

2.3 Meta data

Besides normal events, which describe a single event or alarm as observed by an
attack detection tool, meta data information plays an important role in event
correlation. Meta data specify all additional information, which is helpful for

the assessment of an event, but which is not part of the event itself or of other
events. One example is the information about the location of an entity in a
network. Meta data greatly help to understand the nature of an event. Often
several disjointed events may be related to each other based on this type of
information. Meta data also encompasses administrative knowledge or active
user inputs. Examples are topological information of a network, knowledge about
the administration of computer systems, or error messages from users which may
be used as input for correlation.

2.4 Event Correlation

In the area of mathematics, two statistical random variables will correlate to each
other, if they are dependent from each other. In the same basic sense, two events
will correlate in the area of computer security, if they have a causal connection –
in this case, only logical relations are important. The process of event correlation
tries to find these connections between different events. Relating events can be
joined to a combined event – we call this “meta event” – or be classified in
certain categories.

The main goal of the correlation process is to identify more significant events
in a potentially huge set of recorded events. To indicate which events are con-
sidered significant, each event often is assigned a priority value that can then be
checked during the process of deciding whether a response is needed.

In summary, event correlation can be defined as follows: Event correlation
is a process for consolidating events to increase their information quality, while
reducing the quantity of events. Meta data (such as time, location, network topol-
ogy or administrative information) can be used to improve the quality of single
or combined events.

Methods for event evaluation can be roughly separated in two classes:

– Signature-based analysis: Pre-defined signatures and rules are applied to
events. If rules match, the events will be classified or changed accordingly.
The term “rule-based” may be used synonymously.

– Anomaly detection: The normal behavior of a system is defined by statistical
methods or algorithms in the area of machine-learning. If a deviation of the
norm is detected that exceeds a certain threshold, events are created to
report the anomaly.

In the example of Figure 2, event correlation may be performed on the host
and network based attack detection systems, as well as on the analyzer. It is also
possible to respond to priority events by adapting the configuration of firewalls
or other systems.

3 Requirements Analysis

The requirements analysis of event correlation in general and in the scope of
a national IT early warning system is as important as the discussion and de-
scription of correlation methods themselves. Thus, we list and discuss aspects,

which will have a major effect on the efficiency and behavior of event correla-
tion systems. We roughly follow the approach described in RFC 4766 (Intrusion
Detection Message Exchange Requirements) [5].

3.1 Architecture types

The basic architecture of an IT early warning system should not depend on
specific methods of event correlation. Therefore, we do not assume any further
requirements that exceed the needs of the reasonable operation of a correlation
system. The following exemplary aspects will ensure grades of freedom for the
structure and operation of the entire IT early warning system.

Event correlation should be able to work regardless of which systems, sensors,
and functions for analysis are installed. We regard sensors as well as analyzing
entities as functional components, which may be installed on arbitrary systems.
This means that sensors and analyzers may be installed and operated separately,
i.e. distributed in a network, or in a combined way without compromising the
functionality of event correlation. This way of operation should not affect func-
tionality. We will show in the study of correlation methods, that integrated
systems provide technical advantages: a wider data pool may be used and feed-
back loops are easier to implement. The way of coupling those systems should
not have any effect on the operation, e.g. a hierarchical architecture or a GRID
structure comprising several distributed autonomous systems may be used.

In order to enable hierarchical event correlation, certain components need to
be equipped with different roles in a network. Therefore, a system may look like
a correlator from the bottom, whereas from the top it may look like an analyzer or
general data supplier. Furthermore, it should be possible to use event correlation
in different scenarios. This covers the degree of automation as well as the degree
of reactivity of the network, e.g. its ability to automatically reconfigure firewalls
without human interaction.

Finally, the fact that attacks often affect large parts of a network and not
only single institutions needs to be considered. Therefore, activities in the scope
of attack detection (and corresponding countermeasures) need to be combined
and coordinated.

3.2 Internet threats

Before analyzing the requirements of attack detection systems, we briefly in-
troduce currently available threats in the Internet. Basically, we try to answer
the following questions: What are goals of attacks? How are attacks being per-
formed? At first, we will present two papers that tried to estimate the threat
that may emanate from malware in the Internet.

Staniford et al. [6] simulated the spreading of worms in the Internet and
estimated infection times based on data gained from the worms “Code Red”
I, II and “Nimda”. They determined, that in their initial phases these worms
spread with exponential growth – a large part of the Internet was infected within
hours by these malicious applications. The authors developed concepts based on

Attacks

Attack
Intention Attack Scope Attack

Methodology

Scans Denial-of-
Service Exploitation Targeted Non-Targeted,

"broad" Direct Indirect/
Client-Side

Fig. 4. Taxonomy of network-based attacks

these studies, that enable worms to improve their infection speed. In a simulated
scenario, almost all vulnerable systems in the Internet were infected within 15
minutes. We need to pay attention to the fact, that all parameters of this simula-
tion were set to optimal settings, that may never be achieved in the real Internet,
e.g. hosts may have slow connectivity or networks may be protected by firewalls.

Moore et al. [7] analyzed the requirements to slow down or stop the spread-
ing of worms in the Internet. They assumed, that either each end system in
the network or central nodes like routers from providers implement a firewall.
Then it is possible to block connections from other systems or block access
for malicious code that is detected by a network traffic signature. The authors
evaluated the parameters time for reaction, containment strategy (block single
system or malicious code) and application scenario (firewall install locally or
at ISP) by simulation. They concluded that, if firewalls block infected systems
within 20 minutes or directly block all malicious traffic using a specific signature
within 2 hours, at most 1% of all systems in the network will be infected after
24 hours incubation time.

There are several types of threats and types of attack in networks that need
to be detected by attack detection systems and feature completely different prop-
erties. An overview is depicted in Figure 4.

Attack intention Attacks may be performed with different intentions and
results for the attacker and the targeted host, ranging from gathering data to
compromising hosts. Considering this property, attacks may be distinguished in
the following ways:

– Scans: Attackers perform scans to get information about systems and topol-
ogy of a target network. Most of the time this task is performed before the
actual attack. Therefore, detected scans may indicate upcoming attacks and
it may be possible to react appropriately before the attack.

– Denial of Service (DoS): DoS describes attacks, which impair or even inter-
rupt services of the targeted systems. Usually, this is achieved by overloading
the systems. Often this method includes a large quantity of packets / con-
nections, and these anomalies are easily recognizable by flow-based anomaly

detection methods. Nevertheless, sometimes systems feature vulnerabilities
that enable attackers to break the system more efficiently with less trans-
ferred data, which makes these types of attacks as hard to detect as the
exploitation of security vulnerabilities.
A passive method to count the amount of DoS attacks in the Internet was
developed by Moore et al. [8]. They relied the fact, that DoS attacks are
often performed with spoofed source addresses and so reply packets from
the targeted systems are sent into non-involved networks. By monitoring
and analyzing of those reply packets, it is possible to roughly estimate the
number of DoS attacks. In the analyzed network, they estimated 13.000 DoS
attacks in one week.

– Exploitation of security vulnerabilities: In this case, attackers exploit the
availability of a vulnerability of a system. These attacks are often only de-
tectable by analyzing the payload of network packets or evaluation of log
files, as they often do not have any easily identifiable attributes which may
be detected by anomaly-based methods.

Scope of attack Attacks may also differentiated according the number of source
and destination hosts. DoS attacks sometimes also originate from multiple com-
promised hosts, but most of the time, only a single host is used as origin of
the attack. Depending on the number of destination hosts for an attack, the
following types may be distinguished:

– Targeted attacks: Only a single host is used as an attack’s target. These
attacks are generally hard to detect by anomaly-based techniques, as only
little traffic is generated by them.

– Non-targeted, “broad” attacks: The attacks target multiple hosts or even
complete networks at once. Even if only a few attack packets are generated
per host, the overall attack traffic in the network will become visible if entire
networks are monitored. Thus, this kind of attack can be more easily detected
compared to targeted attacks.

Attack methodology Recently, methodologies of attacks have changed slightly
in terms of how attackers try to access their targets:

– Direct attacks: Connections are directly established from the attacking host
to the target. Thus, firewalls that are placed between target and attacker
may prevent these attacks.

– Indirect / client-side attacks: In the last few years, direct attacks have de-
clined in popularity. Targets are no longer directly attacked. Instead, attacks
rely on users to access some malicious content in the Internet. Due to vul-
nerabilities in client software, accessed content may exploit the local client
computer. At the moment, mostly two types of applications are exploited:
mail clients by sending spam mails to unsuspecting users who tend to open
attached malware, or web browsers by directing users to specially crafted
web sites that contain malicious code. Both techniques often rely on social

engineering techniques to motivate the users to access certain infected sites
in the Internet.

3.3 Technical requirements

The goal of this section is to summarize technical and organizational require-
ments for the data exchange between sensors, attack detection systems, and
event correlation.

Formats and interfaces Requirements for standardized data exchange apply
to used protocols and formats in the communication between separate systems.
In the scope of the Internet Engineering Task Force (IETF) standardization
efforts, adequate candidate protocols have been introduced in the last years.

– Standardized formats – The following formats belong to data and config-
uration exchange: IDMEF for created events and alarms, Netconf [9] for
configuration data, as well as IPFIX [10] and PSAMP [11] for exchange of
statistical information about flows or raw packet data.

– Interface definitions – Adequate interfaces for interaction of different in-
stitutions are needed. This aspect particularly includes administrative and
security-related qualities. In the scope of authentication, authorization and
accounting (AAA), solutions for secure data and configuration exchange are
suggested in the context of Diameter [12].

Data quantity and quality Besides the requirement of standardized data
transfer, all subsystems from the network monitoring to the event correlation
layer of an IT early warning system make varying assumptions and demands of
the amount of processed data and its significance and quality.

– Monitoring – Extreme data quantities are produced and processed in the
monitoring layer. This information in its raw form has only limited expres-
siveness. An intermediate analysis of the data is reasonable before it is fed
into an comprehensive and distributed event correlation system. Configura-
tion of the network monitors is also critical for the overall system, as well as
the option to adaptively configure the operational parameters is desirable.

– Pre-analysis – Attack detection systems like IDSs are typically being used in
the first analysis step. These systems use adequate detection algorithms for
a qualitative improvement of transferred event data and thus for a quantita-
tive reduction of the amount of data to be processed. However, local attack
detection cannot detect some attacks (or events). These attacks are lost in
the mass of event data. Thus, more comprehensive correlation methods are
inevitable.

– Event correlation – Event correlation typically encompasses multiple in-
stances. So, especially in this area, there is a need for standardized data
exchange. Furthermore, feedback to IDSs and monitoring systems is needed
to increase the overall detection quality. Event correlation should be able to
use meta data to increase the informational value of events.

Minimum prerequisites on event data During the processing of events, a
number of minimum requirements need to be fulfilled by the data itself. Ac-
cording to RFC 4766 [5], the following six requirements or prerequisites for data
contents apply:

– Monitored event (data) – The actual event has to be described adequately
and particularly unambiguously.

– Event identification (name space) – The assignment of an event to a global
valid category must be possible. To achieve that, (not yet standardized)
naming conventions are needed.

– Background information – Meta data about the created of an event are
essential for adequate assessment of an event. Included are e.g. current sys-
tem configuration, sampling rates, filter, position (topology), administrative
limitation, information about the sensor, informations about the analyzer
(attack detection system) and so on.

– Event information (source, destination) – In addition to the characterization
of an event, information about the described attack’s destination is needed.
This can include the IP address or the destination domain.

– Impact – The impact describes the importance of an event. Knowledge of
the event source, e.g. whether it was evaluated manually, half or fully auto-
matically, may impact further event correlation. Often, the term degree of
confidence is used in this context.

– Proposal of countermeasures – Finally, event-creating systems may offer pro-
posals for countermeasures, which may either be adopted or provide a basis
for further actions.

3.4 Operational boundary conditions

Finally, operational aspects need to be regarded besides the technical require-
ments. Such aspects may essentially impact the operation of event correlation
methods. The following boundary conditions have to be detected and integrated
with appropriate configuration parameters by the operators of sub systems as
well as the deployed correlation systems:

– Quality and quantity of expected sensor data – What precise sensors are in
use, how are those linked to the analysis systems?

– Required performance for data analysis – Depending on the information
about network topology and knowledge about sensors, the required compu-
tational power for analysis and correlation methods need to be estimated.

– Storage requirement – How much and how long does data need to be cached?
Possibly legal aspects need to be regarded here.

– Time synchronization – A common time basis is important for the deploy-
ment of distributed architectures.

– Relevance of original data – Does the event correlation probably also need
original data (packet or flow traces)? Usually this type of data is not included
in abstract events any more.

– Ability for coalition and multi-client capability – What parties may work
simultaneously on what parts of the original data? Thereof partitioning and
role management are essential.

3.5 Objectives for efficient event correlation

Correlation systems for attack detection and security related information pro-
cessing generally operate on high data volumes at the base, the sensor level, and
try to filter out important security-related information to reduce data rates and
increase quality of generated events. More specifically, the following list describes
goals and possible features of these systems:

– Reduction of event quantity: Many events are generated in multiple locations
especially on lower layers of attack detection systems, like in the case of using
several sensor nodes that monitor partly identical traffic. These events need
to be merged as soon as possible to reduce the degree of redundancy, i.e. the
overhead. Load on analyzers located downstream is reduced by this method,
as well as the evaluation by security administrators. If many irrelevant events
are reported by an attack detection system, especially the review by human
operators will suffer.

– Identification of the problem’s cause: Many activities in a network cause
several events in multiple attack detection systems to be reported simulta-
neously. One of the main responsibilities of a correlation system is to find
the cause of events by detecting dependencies between different events, also
including the quality of single events into the calculations. Then the result is
the original event that contains a summary and analysis of received events.

– Short response time: Available methods for correlation support offline and
online analysis. These terms describe the execution time of algorithms: Of-
fline analysis processes are executed at pre-defined regular times, like once
a day. Usually a data store like a SQL-database is used for this task. Events
that are received between the execution times, are cached in a database
until they are processed by the next process run. On the contrary, online
analysis, also called real-time analysis, continuously receives events and pro-
cesses input data immediately. Corresponding algorithms are also described
as streaming algorithms. Results of those methods may also be generated
continuously, or at pre-defined intervals. To achieve minimal response times,
online analysis methods are a better choice, as no waiting times caused by
periodic execution are involved in the process.

– Observation of data privacy: From an academic or even from an operators
perspective, the basic principle in network security is to collect as much
information as possible, as more information means more detailed analysis
that produces better results. The quantity of information can be increased, if
more institutions join an attack detection system and provide sensors in their
own networks or hosts. But this procedure introduces the problem of data
privacy: often sensitive data is monitored by sensors that is not allowed to
leave the institution’s boundary. So sensors for attack detection also need to

observe policies regarding data privacy issues, especially if multiple organi-
zations collaborate with each other that are not willing to exchange sensitive
data.

– Automated reaction: Most of the time, attack detection systems report de-
tected security incidents to human operators that may take action on this
information. But sometimes it is necessary to automatically act on detected
security incidents, like the automated configuration of a firewall to shut out
attackers. Rules for activating automated reactions need to be considered
carefully, as this process may create new vulnerabilities that can be exploited
by attackers. An example of this topology is described in Section 5.3.

Human involvement in the system should be reduced as far as possible, espe-
cially in the layers where high data quantities are processed. Event correlation
is one of the most important parts of the system which try to improve quality
of reported data (or events in higher layers). The following aspects specifically
deal with features good event correlation systems should provide:

– Few false-positives: Events that are generated and reported to an operator
without being relevant for further analysis, or even erroneous, are called
false-positives. Event correlation algorithms need to detect events, which
are of no relevance and deal with them accordingly. To efficiently detect
false-positives, detailed information needs to be available about the creation
of events, especially the reliability of used techniques. Events from systems
that have high false-positive rates should not be rated as high as events
from systems with low false-positive rates. One possible method to confirm
received events is the correlation of events from multiple sources - if multiple
events point to the same cause, the probability of them being false-positives
is lower.

– High speed: Computationally efficient correlation algorithms reduce hard-
ware requirements and enable new possibilities for further correlation. Con-
sidering the algorithmic complexity, the following categories for data pro-
cessing algorithms can be distinguished:
• 1-pass: Only one pass over incoming events needs to be performed. These

algorithms are easily integrated into a system which performs online
analysis. An overview of the basics of these algorithms can be found
in [13].

• n-pass: The algorithm needs several runs over incoming events. This type
of operation results in substantial additional expenses compared to the
1-pass analysis.

• state-based: Often correlation techniques manage internal states. De-
pending on the criteria that differentiates groups of input data, the
amount of needed states varies greatly – exemplary states could be saved
on a flow, IP address or even subnetwork basis. These algorithms need
to pay attention to memory and computational constraints of hardware
at incoming events that feature high variances in information content.

– Reliability: Concerning especially attacks on systems which involve high data
rates for their analysis, it is very important that correlation algorithms are
prepared for possible overloads and are able to react adequately without
loosing important information. Examples for attacks producing high data
volumes are DoS attacks or mass spreadings of worms.

4 Event Correlation – A Taxonomy

We studied various kinds of event correlation techniques. Many of the used algo-
rithms have been developed in the context of attack and intrusion detection. In
this section, we outline the relations and the dependencies between the compo-
nents of attack detection and event correlation system. This overview represents
a comprehensive taxonomy of event correlation techniques. In order to provide
a better understanding and as a reference guide, the next section associates al-
gorithms presented in the literature to the categories discussed in the following
taxonomy.

In general, event correlation methods can be distinguished according a num-
ber of orthogonal criteria:

– Correlation techniques as discussed in Section 4.1 classify the used algorithms
for signature matching or anomaly detection.

– Layers of event correlation are presented in Section 4.2. As network sensors,
attack detection, and event correlation systems will usually be employed in
a hierarchy, the properties of the different layers need to be identified.

– Data formats of received packets, flows, and events must be clearly identified.
We outline typical formats in Section 4.3.

Figure 5 show the taxonomy of techniques used in components and the data
flow of a comprehensive attack detection system.

4.1 Correlation techniques

Correlation techniques can rely on completely different underlying methodolo-
gies. Specifically, signature-based and anomaly-based techniques need to be dif-
ferentiated.

Signature-based techniques Signature-based correlation methods use events
and pre-defined signatures as input data. The signature represents a kind of filter
which is applied to all incoming events. If the signature matches (parts of) the
received data, some pre-determined action is performed, like the generation of
an event which notifies higher layers in the attack detection system about the
detection. Sometimes the combination of the signature/filter and the commands
that are executed when a match occurred, is called a rule.

Generally, signature-based systems tend to create fewer false positives com-
pared to anomaly-based methods: most of the time, signatures try to identify

Network Link Monitoring

Intrusion Detection

Application
Identification

Portscan
Detection

Event Correlation

Reporting

Reports

Events

Raw data

Signature-based Anomaly-based

 Sampling Flow
Generation

 Active
 Counter-
 measures

Verification

Fig. 5. Taxonomy of techniques used in an attack detection system

a specific type of data inside the input stream, like a certain type of exploit in
payload-based IDSs. Of course, the detection quality still depends on the pro-
cess how these signatures were created: often, IDSs like Snort are equipped with
manually created signatures. These signatures offer a high detection quality with
high true positives and few false negatives.

Specific attacks can be easily detected by adding a specialized rule. When
outdated rules are no longer needed for correlation analysis, these rules can be
removed from the system. Thus, correlation algorithms may be flexibly adapted
to new requirements. This fact especially helps during further analysis by security
administrators who want to investigate the details of an incident. For this task,
new rules can be included in the correlation system without loosing functionality.

The reliability of event correlation strongly depends on the pre-defined rules.
Badly specified rules may degrade the effectiveness of the algorithm substantially.
Additionally, only attacks can be detected that are covered by signatures. When
a new attack is discovered, a new signature needs to be defined and included in
the system. Only after this process, the attack may be detected and reported by
a signature-based correlation algorithm. So the used set of signature needs to
be updated on a regular basis. The network-based IDS Snort for example offers

functions to update its rule-set regularly by fetching new rules from Internet
websites.

The computational efficiency of signature-based detection methods often
strongly relates to the amount of signatures that are present in the system,
so it may be necessary that this amount needs to be limited. In the case of
Snort, old signatures that do not occur in traffic any more are replaced by newer
signatures.

Anomaly-based techniques Anomaly-based techniques are used to identify
unusual system behavior. Such unusual behavior can be detected based on two
different methods. First, specification-based solutions continuously analyze the
system’s behavior and compare it to a given parameter range. If this scope is
violated, an event will be generated that points to a possible attack. The pa-
rameter scope of normal system operation is either generated manually or semi-
automatically. Secondly, data-mining-based methods can be employed, which
have been developed for model extraction from big databases [14]. Usually, in a
first step the correlation algorithm is trained for a system in which only “nor-
mal” activities occur. In general, the definition of “normal” activities in a system
is also a hard problem, not to mention generating or monitoring traffic without
any malicious content for optimal training. A model is built during this train-
ing process that describes the normal state of the system. In a second step, the
actual system is monitored and constantly compared to the generated model.
If the difference between the trained model and the actual behavior of the sys-
tem is bigger than a certain threshold, an event will be created that reports
the anomalous behavior. A multitude of algorithms are available for their anal-
ysis, examples are algorithms from the area of statistics, pattern recognition,
learning-based systems and databases [15].

Anomaly-based event correlation features one important advantage compared
to rule-based systems: the anomalous behavior of a monitored system can be
detected. So, also unknown attacks can be identified. When one of these events
is confirmed to indicate a relevant incident, it can be used to trigger other systems
that generate signatures for rule-based correlation systems and so increase the
detection rate of these systems.

Often, the behavior of systems is analyzed statistically. Therefore, anomaly-
based attack detection can be circumvented by “slow” attacks, that are not
noticeable in relation to the system’s normal behavior and, thus, do not trigger
an anomaly-based detection system. One example for this kind of attack is a
slow network scan which is executed over several days. This attack changes
the behavior of a system only marginally, the threshold defined in the attack
detection system is not reached and no event is generated.

As it is hard to define the system’s behavior unambiguously as well as to con-
figure the sensitivity of anomaly detection systems in a proper way, the amount
of false-positives may be quite high depending on the scenario. This needs to be
taken into account for developing an event correlation architecture.

Differentiation of normal / anomalous behavior Furthermore, correlation
algorithms may be differentiated according the detected traffic. Either, they
detect normal behavior, i.e. the algorithm is trained with legitimate traffic. This
enables the algorithm to identify normal input data, and if observed input data
pattern differ from the normal trained set, the anomaly will be reported as an
event. As the algorithm does only know that it detected an anomaly, it is not
able to identify the anomaly or provide a specific description, e.g. the name of
an exploit.

On the other hand, the training phase may be geared towards the detection
of anomalous patterns of a certain type. If then normal, non-anomalous input
data is observed, the trained pattern will not match to the input data. When
input data converges to a pattern of anomalous behavior, like an attack that was
trained beforehand, the algorithm reports an event including the description of
the already trained and specified anomalous behavior.

Both detection variants may be applied to either signature-based or anomaly-
based techniques. If normal data was used as training data, events will be gen-
erated when the trained pattern does not match any more. If anomalous data
was used for training, events will be created when the trained pattern matches.

4.2 Layers of event correlation

Several layers for event generation and analysis can be defined in a distributed
system for early warning. Figure 6 differentiates between three layers: raw data
layer, event layer, and report layer. Each layer tries to filter out as many non-
relevant events as possible to correlate relevant ones and to aggregate them
appropriately. Data from different network sensor sources is gathered at the raw
data layer. Here, this data is processed and the results are then forwarded to the
event layer. At this layer, IDSs and event correlators are used to categorize and
prioritize input data, so that relevant data is separated from non-relevant data.
The output is then forwarded to the report layer. In this final stage, summaries
of the monitored data can be displayed and post-processed. All correlation tech-
niques described before can be used in each layer.

Raw data layer This layer consists mainly of network sensors, which receive
raw data and conduct a first analysis. Network-based monitoring systems directly
collect data packets from directly connected networks. They may specialize on
full packet payload or IP header data only. Other sources for monitoring sys-
tems in this layer may be log data, as many network-based applications produce
protocols and write them in log files. Sources for log files are e.g. central virus
scanners at mail servers, web proxies or firewalls. The gained log data may be
used in central attack detection systems or directly in event correlation systems
to improve the quality of the results.

Methods for correlation in this layer focus on efficiency and high aggregation
ratios because of high data rates. More elaborated correlation techniques usually
should be moved to upper layers in the attack detection system, where lower data
rates need to be processed.

networks

analyzers

correlators

IDS, honeypots, sandboxes

sensors

report layer

event layer

raw data layer

Fig. 6. Hierarchical correlation and aggregation of events

Event layer Network sensors and IDSs may produce a large quantity of events.
Interestingly, most of these events may be of no interest for further evaluation.
According to Kruegel et al. [16], events reported from these systems may be
classified as follows:

– True-positives – The event sent from the sensor has really happened and is
relevant for further processing.

– Non-relevant positives – The sensor has correctly identified and reported an
incident, but which is not relevant for further evaluation. For example, this
class of events contains attacks on systems, which are not vulnerable to the
observed attack and thus the attack would not be successful.

– False-positives – An incident was incorrectly detected and identified by a
sensor. The event is irrelevant for further analysis.

Now, the goal of event correlation is to filter out all events of the second and
third class. Depending on the security policy and goal of the analyzing system, it
must be decided, which events have to be classified as non-relevant positives and,
thus, not to be further processed. Event correlators are used to enrich events of
the first class with relevant metadata and remove redundant information. Some
events can be processed fully automatically.

Furthermore, honeynets [17] and sandboxes [18] may also be integrated in the
event layer. These systems offer the possibility to reconfigure attack detection
systems in real-time and improve the quality of results of the overall system, as
they are able to detect new attacks, to analyze and evaluate them automatically.

Report layer Specialized applications adequately visualize the results of event
correlation at the report layer. Based on the final analysis – which may also
include automated response strategies and validation techniques – the attacks

are identified and countermeasures can be selected. Functions of this application
should include the possibility to access lower layers of the analyzing system like
attack detection systems to request details about certain events.

Another area in the report layer is manual evaluation of statistical data like
data transfer rates, average packet sizes or top-N lists of sub networks having
the highest transferred data rates. This way, incidents can be covered which may
not be detected using fully automated methods.

4.3 Data formats

Input data is essential for effective event correlation. In this section, we will
concentrate on the different data formats and types that are used in each of the
previously described event correlation layers. In all the discussed layers, privacy
plays an important role. We will cover this separately in the last part of this
section.

Packet payload All monitored information is provided by network sensors
with direct network access. This can be a dedicated PC system using the Packet
Capturing (PCAP) library or an IP router or switch. Frequently, also IDSs pro-
vide capabilities to directly access the network. Due to the high level of de-
tail, only low data rates may be processed without loss. For transmission of
packet data including full payload, an extension to the IPFIX protocol called
PSAMP [11,19] has been developed.

Flow data Flow or “netflow” data only provides header and statistics informa-
tion of a set of packets sharing some common properties. This form of aggrega-
tion is widely used in the Internet and is directly supported by many commercial
routers. Aggregated flows are transferred to so called collectors for further anal-
ysis. Typicall, the IPFIX protocol [10, 20] or its predecessor Netflow.v9 [21] is
used. IPFIX was specified by the IETF and enables efficient transfer of aggre-
gated flow data – this may, it is possible to even monitor gigabit networks.

Flow data may provide all the information that is necessary for flow-based
application identification or attack detection. For example, counting and evalu-
ating the number of IP packets with the SYN flag helps to determine if a DoS
attack or a scan operation is performed [22–24]. Of course, events generated by
such anomaly-based techniques may also be false-positives.

Event reports IDSs generate events that contain information about a pos-
sible attack, often including an attack category or the detailed description of
the attack. Events generated by these detection systems have varying levels of
relevance, depending on the evaluation method, origin and type of input data.
Anomaly-based systems can only decide with a certain possibility, if the detected
incident is an attack. Results of signature-based systems primarily depend on
the quality of the used signatures. Due to this variance in confidence, events are

IDMEF-Message

/_\

|

+--------------------+-------------+

| |

+-------+ +--------------+ +-----------+ +----------------+

| Alert |<>-| Analyzer | | Heartbeat |<>-| Analyzer |

+-------+ +--------------+ +-----------+ +----------------+

| | +--------------+ | | +----------------+

| |<>-| CreateTime | | |<>-| CreateTime |

| | +--------------+ | | +----------------+

| | +--------------+ | | +----------------+

| |<>-| DetectTime | | |<>-| AdditionalData |

| | +--------------+ +-----------+ +----------------+

| | +--------------+

| |<>-| AnalyzerTime |

| | +--------------+

| | +--------+ +----------+

| |<>-| Source |<>-| Node |

| | +--------+ +----------+

| | | | +----------+

| | | |<>-| User |

| | | | +----------+

| | | | +----------+

| | | |<>-| Process |

| | | | +----------+

| | | | +----------+

| | | |<>-| Service |

| | +--------+ +----------+

| | +--------+ +----------+

| |<>-| Target |<>-| Node |

| | +--------+ +----------+

| | | | +----------+

| | | |<>-| User |

| | | | +----------+

| | | | +----------+

| | | |<>-| Process |

| | | | +----------+

| | | | +----------+

| | | |<>-| Service | +----------------+

| | | | +----------+ +----| Classification |

| | | | +----------+ | +----------------+

| | | |<>-| File | | +----------------+

| | +--------+ +----------+ | +--| Assessment |

| |<>----------------------------+ | +----------------+

| |<>------------------------------+ +----------------+

| |<>---------------------------------| AdditionalData |

+-------+ +----------------+

Fig. 7. Overview of the IDMEF data model

usually marked with an alarm and confidence level. The alarm level describes
the severity of the detected event – for example portscans are not treated as im-
portant as detected intrusions into hosts. Depending on the labels, events may
be evaluated and processed in different ways.

The XML-based data format IDMEF [25] has been specified to represent
single events. The protocol is designed to unify data formats for communica-
tion between different IDSs. Main focus during development of IDMEF was the
support for heterogeneous information that is generated by different sensors.
The content of events varies depending on the type of sensor. Furthermore the
kind of information reported by those systems strongly relates to the moni-
tored media. The data model of IDMEF is prepared for this application with its
object-oriented approach and may be adapted flexibly. Extensions are defined
by derivation or association of new classes. The flexibility of IDMEF causes one
of the main problems when using this format: frequently, IDSs use (proprietary)
extensions of IDMEF. This contradicts the main goal of IDMEF to unify data
formats.

<IDMEF-Message version="1.0">
<Alert ident=bc123456789">

<Analyzer analyzerid="hq-dmz-analyzer62">
<Node category="dns">

<location>Headquarters Web Server</location>
<name>analyzer62.example.com</name>

</Node>
</Analyzer>
<CreateTime ntpstamp="0xbc72b2b4.0x00000000">

2000-03-09T15:31:00-08:00
</CreateTime>
<Source ident=bc01">

<Node ident=bc01-01">
<Address ident=bc01-02" category="ipv4-addr">

<address>192.0.2.200</address>
</Address>

</Node>
</Source>
<Target ident="def01">

<Node ident="def01-01" category="dns">
<name>www.example.com</name>
<Address ident="def01-02" category="ipv4-addr">

<address>192.0.2.50</address>
</Address>

</Node>
<Service ident="def01-03">

<portlist>5-25,37,42,43,53,69-119,123-514</portlist>
</Service>

</Target>
<Classification origin="vendor-specific">

<name>portscan</name>
<url>http://www.vendor.com/portscan</url>

</Classification>
</Alert>

</IDMEF-Message>

Fig. 8. Example of an IDMEF message describing a portscan

Figure 7 depicts the IDMEF data model. It lists the components an event
may be composed of and how those are further divided. Figure 8 shows a small
example for an IDMEF message describing a portscan.

Transfer of IDMEF formatted events may be performed using different pro-
tocols. Intrusion Detection EXchange Protocol (IDXP) [26] is a connection-
oriented protocol on the application layer. It is designed for data exchange
between analyzer and manager of an attack detection system and realizes the
transfer of IDMEF messages. Transfer of text or binary data is also possible.
IDXP is based on Blocks Extensible Exchange Protocol (BEEP) [27], which
represents a framework for defining protocols at the application layer. Often,
IDMEF messages are transferred using Simple Object Access Protocol (SOAP)
and HTTP as usage of IDXP and BEEP requires high implementation efforts in
practice.

Metadata Data which is not part of reported events but originate from other
sources is called metadata. An example is the model of a network topology.
Information about the location of systems and routers are linked to the respective
events. Additionally, it is possible to create a database about the vulnerability of

hosts to be able to automatically determine which attacks were successful. Non-
technical metadata includes for example contractual information, data privacy
policies, or information about the administrators and end-users.

The generation of metadata may be performed in a passive or active way.
Passive generation is performed manually or in specified time intervals, which
are independent from the reception time of events. Yemini et al. [28] show an
example for this method. On the contrary, active generation is performed as
reaction to a received event to gather additional information.

Data privacy Data privacy needs to be regarded in any system handling private
information. The exchange of IP packets, which is observed by attack detection
systems belongs to this class of systems. Sensors for security-related systems
almost always collect information that is sensitive for either a single people
(because of privacy regulations) or for the institution itself (data that can com-
promise confidential information).

This problem is a separate area of research because of its opposing goal to
security analysis: optimized detection of attacks requires as much information
as possible, whereas data privacy issues limit the available information. The
issue is further complicated, as practical experience and research turned out
that removing sensitive information is a complex problem that is not easily
achieved. The use of anonymization or pseudonymization techniques often results
in obfuscated data that still contains more information than intended [29]. The
theory of inference control helps restricting the possibilities to extract additional
information from datasets: using logical conclusions, all data is removed that may
lead to unwanted conclusions. A good overview is presented in [30], which copes
with Query Set Size Control, Cell Suppression and the Lattice Model.

5 Correlation algorithms

In this section, we outline selected algorithms that relate to the context of early
warning systems in general and event correlation in particular. According to
the taxonomy presented in the previous section, we group the algorithms to the
different layers of event correlation. Table 1 summarizes all important correlation
algorithms including references.

5.1 Raw data layer

Event correlation not only happens at the “abstract” event level, but also at the
lower layer based on inspections of the network traffic. Raw packet data from
the network layer is usually not forwarded to event correlation systems because
the data rate would be too high. Specialized correlation systems on the lower
layer need to deal with this problem. In the following, we present correlation and
evaluation algorithms that are based on headers and / or payload information
of monitored network packets.

Raw data layer

Packet sampling Methods for effective aggregation of packets in
flows

[31–35]

Probabilistic analy-
sis

Generation of meaningful statistics from flow
data

[36–38]

Attack detection Detection of anomalous data streams [2, 39–42]
Detection of
portscans

Detection of slow and fast portscans [23,24,43]

Application identifi-
cation

Flow-based identification of application [44–46]

Payload analysis Analysis of packet payload for attacks or anoma-
lies

[47–55]

Event layer

Local correlation Correlation techniques, that are executed locally [28,56–59]
Distributed correla-
tion

Correlation techniques that operate on multiple
systems and cooperate

[60–67]

Data privacy compli-
ance

Techniques that combine data obfuscation with
correlation

[68–73]

Report layer

Active countermea-
sures

Possible automatic countermeasures to events /
attacks

[7, 74–77]

Event verification Techniques for improvement of event confidence [16]

Table 1. Overview of essential correlation algorithms and corresponding references

Packet sampling In order to cope with increasing traffic rates, research effort
has been invested on how to reduce the amount of data to be processed at the
raw data layer and packet sampling techniques were introduced to solve this
problem. Depending on various statistical methods, these techniques include
only a fraction of transferred network packets in the monitoring data. Several
suggestions are available that try to optimize the selection of packets so that
as few information as possible is lost by the sampling process. Other methods
rely on data reconstruction algorithms that infer original data statistics from
the available sampled data.

A simple example for statistical packet sampling is the “n out of m” algorithm
that includes n packets in the monitored data out of m packets transferred over
the network. Depending on available hardware, sometimes even 1 out of 100
packets are sampled from network traffic of 10 Gbit/s data rates or higher.

Estan et al. [31] published one of the essential papers in this topic: They
improved hitherto existing methods to process sampled flow data: formerly, a
sampling rate and algorithm was configured by an operator once and was never
changed again afterwards. Due to this static configuration, changes in incoming
data rates might have caused a system to become overloaded and loose data.

This is why the authors developed a dynamic technique that adapts the traf-
fic sampling rate according to current resource consumption in the monitoring
system. Aggregation of flows was performed using hash tables, so when the sam-
pling rate was changed, the amount of already aggregated, i.e. cached, flows also
needed to be changed to maintain statistical properties of the traffic. The au-
thors suggested an efficient algorithm to solve that problem which changed the
size of the hash table in use and its contents.

Another work by Hu et al. [32] tries to solve the problem of flow aggre-
gator overload by detailed analysis of already collected data. Especially DoS
attacks often involve high bandwidth operations in networks. An example would
be SYN-attacks where source addresses in IP packets are spoofed and thus are
unimportant for further analysis. In this case, it is sensible to aggregate all pack-
ets having the same destination IP to one data record, i.e. flow by omitting the
source addresses. This approach uses less memory and unburdens the monitoring
system by excluding irrelevant information from the beginning. The important
information, in this case the target system of the attack and its extent, is still
available in the more aggregated version.

A closer look at the interpretation of sampled data is necessary: for many
evaluations, statistical properties of the original traffic are needed, so methods for
inferring these properties from sampled data were introduced. Trivial approaches
like simple multiplication of flow data rates with the sampling rate m

n are inferior,
as flows with high packet rates are captured with high possibility after sampling,
whereas short flows are often missed and never recorded.

More successful techniques were covered by Duffield et al. [33, 34]. They
preferred packets with large sizes during sampling for data rate estimations.
Another interesting approach was proposed by Hohn et al. [35] which switched
from packet sampling to flow sampling. Only each n-th flow, instead of each
n-th packet, was sampled by their monitor. Resulting properties of flow-based
statistics were improved by their method.

Flow-based analysis Flow aggregation provides means for clearly reducing
the amount of monitoring data in high speed networks. Nevertheless, subse-
quent analysis becomes complicated because much information, e.g. the packet
payload, is completely removed. In the following, we first focus on efficient prob-
abilistic data analysis, and then we outline methods that detect attacks based
on anomaly-based algorithms.

Probabilistic data analysis There are several techniques available that efficiently
process high data volumes and perform statistical operations on this data. To
provide a high level of efficiency, these techniques rely on probabilistic methods
to calculate their results.

Estan et al. [36] and Keys et al. [37] propose efficient ways how to count active
flows in high speed networks. Their results can be used for example to detect
DoS attacks. Statistics produced by those techniques contain the most used ports
and IP addresses. Kumar et al. [38] introduce an algorithm to efficiently measure

networks and produce statistics. Their proposal is based on the use of Bloom
filters, that were introduced by Bloom in 1970 [78] and detect duplicate input
data in constant time using probabilistic methods.

Attack detection So-called superspreaders can be detected by an algorithm pro-
posed by Venkataraman et al. [39]. Superspreaders are worms that rapidly spread
in the Internet by using remote exploits of security vulnerabilities in operating
systems or applications. Their method tries to find hosts, that contact a high
number of other hosts in a certain time. Jung [2] introduces a similar technique.
It tries to detect hosts that contact other hosts with an unusual high rate. Main
goal of both methods is to detect malicious applications that spread in a network
with a trial-and-error technique to find other vulnerable hosts.

Some attacks in the Internet also rely on diverging from protocol specifi-
cations. Analyzing correct specification-adhering behavior usually requires high
computational performance, as conformance checking often is only possible by
performing state-based inspection. States need to be preserved for each con-
nection, so these approaches have extreme computational and memory-related
costs. An example of these proposals is described by Sekar et al. [40], who detect
non-conformance to the TCP/IP protocol by state-based analysis.

Toth et al. [41] concentrate in their proposal to attributes of an ongoing
attack that are almost never seen in normal traffic: If a host was compromised
by malware or a hacker, often they try to compromise more hosts originating
from the first compromised host. This process can be seen in network traffic
by detecting connection chains: host A initiates a connection to host B, host B
connects to host C and so on.

Pure anomaly-based analysis that primarily targets good visualization of
monitored data is covered in [42]. The technique called Traffic Clustering pro-
cessed statistical data. Basis for the algorithm was recorded flow data from a
network monitor. Using a graph-based method, groups of hosts like subnets can
be found which are conspicuous regarding a pre-defined attribute, e.g. the trans-
ferred amount of data. The results are summarized in daily reports which then
contain clusters of hosts whose attributes have changed in a conspicuous way in
relation to the previous day and the overall volume of the attribute. The authors
show the advantages of this method to standard top-N lists. Their implementa-
tion is to be executed off-line and becomes inefficient if multiple attributes are
included in the analysis.

Portscan detection Detection of portscans in networks is a large scientific re-
search topic in the area of attack detection systems. An overview is given in [24].
Often the rate of initiated connections including information whether connec-
tions were established successfully is included into the evaluation. The slower
portscans are performed, the higher is the computational cost to detect those
portscans. Staniford et al. [24] suggest a method that differently weight probed
ports depending on how commonly those ports are used. Port 80 for webservers
would have a low priority, as it is one of the most used ports in the Internet,

whereas higher ports above 1024 are much less commonly used and would receive
a higher priority.

Horizontal portscans can be efficiently detected by the technique suggested
by Jung [23]. Their method even allows to detect slow portscans that persist for
hours. For each initiated connection, the source IP address is stored in a table
and depending on the number of failed connections to different hosts, these IP
addresses are rated as either malign or benign. It is currently one of the most
promising approaches to detect horizontal portscans. Weaver et al. [43] increase
the efficiency of Jung’s algorithm, implement it on fast hardware and complement
it with a counter-measure that blocks hosts detected to perform portscans.

All presented algorithms only detect portscans originating from single hosts.
If a distributed scan is started, e.g. by a botnet including thousands of hosts and
each system only performs a small part of the overall portscan, all the presented
methods may fail to detect the attack.

Application identification Basing on monitored flow data that contains only
IP header information, it is very difficult to exactly determine used protocols.
Many approaches use methods of machine-learning to train specific protocols,
like accesses to web servers, to recognize those protocols in a monitored net-
work [44–46]. Unfortunately, most pure machine-learning methods feature a high
false-positive rate, so results only provide a rough overview of the monitored traf-
fic. This effect is caused by the fact that many protocols share common attributes
like average connection length or similar traffic patterns. Machine-learning meth-
ods do not compensate this effect: often it is not clearly understood which prop-
erties of training data are used for detection. The methods often specialize on
some application-unrelated features of the trained data and trained signatures
produce high false-positive event rates for other networks.

Payload-based analysis Payload-based detection methods analyze the pay-
load per packet for conspicuous features. Due to the high volume of data that
needs to be processed, these techniques are computationally more expensive
compared to flow-based techniques. On the other hand, of course a much finer
evaluation may be performed, as more data is available to the algorithms.

One of the basic examples in the field of payload-based analysis is the appli-
cation Snort, which was developed by Roesch et al. [47]. The application uses
a ruleset containing signatures for many types of attacks compares all packets
monitored in a network with those signatures. If a match is found, an event will
be generated and reported by various means. It is currently one of the most
wide-spread IDS that is freely available in the Internet. Today, community sup-
port contributes to its success, as many signatures are already available and still
constantly created. Performance improvements for implementation on Field Pro-
grammable Gate Array (FPGA) hardware were suggested by Yusuf et al. [48].

Paxson et al. [49] introduced a very flexible version of a signature-based moni-
toring system called Bro. It contains an “event engine”, which reduces monitored
network data to abstract events and automatically follows connection states.

Compared to Snort, Bro is able to process a much more sophisticated filter
language which, among others, supports variables and functions.

Both Snort and Bro only support detection of manually generated signatures,
but in scientific research many other approaches based on machine-learning and
automatic signature generation are suggested. Those approaches usually do not
produce as good results as detection systems using manually crafted signatures,
but nevertheless they can be combined in a detection system with other methods
and results can be correlated to achieve better detection rates. One of the main
advantages of anomaly-based algorithms is the detection of previously unknown
attacks and threats.

One of the approaches called PAYL has been presented by Wang et al. [50]. In
this publication, a good overview of requirements for anomaly detection methods
is given. Their algorithm detects anomalies in network traffic by comparing pay-
load 1-grams with trained vectors. Bolzoni et al. [51] improve the approach by
prepending a Self-Organizing Map (SOM) [52] to the anomaly detection process.
Detection of regularly repeated strings is performed by Singh et al. [53] and Kim
et al. [54]. Repeated strings can be monitored in network traffic, e.g. for worms
that try to exploit security vulnerabilities on multiple hosts. The tools automat-
ically generate signatures from repeated strings to be able to detect them later
on effortlessly.

Another interesting approach also cares for data privacy issues resulting from
payload-based analysis techniques. Parekh et al. [55] compare different algo-
rithms to detect similarities between packet payloads that are obfuscated to
retain data privacy. Unfortunately data privacy is very difficult to ensure, so
methods that reduce data as much as possible are best. In their paper, the
authors suggest to use Bloom filters in combination with other techniques.

5.2 Event layer

In the following, we will describe correlation systems whose events are located
in a more abstract layer than analysis of traffic data: messages about incidents
from lower layers in the attack detection system events are processed here. Exam-
ples for these events are suspected attacks, like a notification about an ongoing
portscan. One of the main goals in this layer is aggregation, also by correlation,
of multiple events to one event and collecting as much information as possible.
The ideal result would be the detection of the event’s cause.

Local correlation One class of algorithms are correlation techniques optimized
for local execution on a system and do not arrange any calculations on distributed
systems. They assume, that a global view on the database is available. Never-
theless, input data for the algorithms depends on the execution type, i.e. online
or offline operation.

One of the essential publications was written by Yemini et al. [28]. They
describe a correlation system that tries to find the correlation of symptoms to
problems by analyzing possibly occurring problems and additional information

like the model of the network topology. As an example, the authors examine
problems that appear in a network like the breakdown of a router. The proposed
correlation method enables the extraction of original problems that cause the
monitored symptoms. The authors developed a modeling framework to represent
a networking architecture and assume that each problem may cause arbitrary
many symptoms. The set of events that are caused by a symptom is called
“code”, which identifies a problem. So, correlation may be regarded as a pro-
cess of “decoding” the set of monitored symptoms by finding the corresponding
problem. Two steps accomplish this task: in the first step, which is called code-
book selection, a subset of events is selected for monitoring. This subset is called
codebook. In the succeeding decoding step the events are monitored in real-time.
Incoming symptoms are assigned to a problem there, also making use probabilis-
tic methods like the Hamming distance.

A simple tool called SEC that correlates events coming from log files has
been introduced by Vaarandi et al. [56]. This host-based system that is realized
by a simple perl script supports local rule-based correlation of events using a
lightweight language for rules.

Vigna et al. [57] present an attack detection system that implements the
STAT framework. This system evaluates incoming events using a rule-based
language called STATL. It describes attacks by states and transitions between
states. Emphasis was put on flexibility: the rule language can be extended and
adapted by modules, and the language METASTAT allows dynamic reconfigu-
ration and management of the framework. Various modules for network-based,
host-based, log and IDMEF analysis are also provided.

A host-based attack detection platform called CRIM has been introduced by
Cuppens et al. [58]. It performs grouping, merging and correlation of alarms.
Incoming IDMEF events are saved as tuples in a database. Attacks are specified
using the language LAMBDA that includes pre- and postconditions, attack,
detection and verification scenarios each assigned to a combination of events.
Then several attack specifications can be merged automatically by comparing
pre- and postconditions. This enables tracing the progress of an attack within a
host. Using an attack history, the system can calculate estimations, what actions
may be performed by the attacker after that.

Valeur et al. [59] introduced an implementation of a real-time correlation
engine on an abstract event level. It is a comprehensive approach to specifically
reduce the number of false alarms, also using metadata. The engine is composed
of several modules: first incoming events are normalized to use a common struc-
ture (as multiple sources for events are assumed that export events with different
formats), then they are enhanced with metadata (e.g. using verification). Basic
principle of the correlation algorithm is to find identical and related events (same
destination, same source, etc.) and to build so-called meta-events that are hier-
archically composed of single events. This structure enables later evaluation to
analyze the correlation process, if events were correlated in several steps. As a
last step, the engine assigns priorities while taking into account metadata and
correlation dependencies.

Distributed correlation After covering correlation systems that are executed
locally on a single system, we concentrate now on correlation techniques that
are based on a distributed architecture to analyze and correlate events. Some
techniques will cover other areas of event correlation, like the topic of fault
determination for devices within a network. These techniques may probably be
adapted for the security field.

According to Yegneswaran et al. [60], global interaction between different
attack detection systems leads to better analysis results. The authors performed
an empirical analysis of attacks in the Internet using a high number of network-
based IDS logs over a time of four months. They detected a high amount of
scans from worms. Furthermore, 60 − 70% of all scans were horizontal. Scaled
to the overall Internet, they estimated a total of 25 billion attacks per day,
tendency increasing. Data from attack detection systems in small networks were
not sufficient to detect most active attackers or most popular ports that are
attacked. It can be concluded that for a global view on attacks, cooperation
between several networks is needed.

Correlation methods can be used within networks where all systems are
trusted, so no data privacy issues need to be regarded. We distinguish algo-
rithms for this scenario from such that take privacy issues into account, so those
systems are fit for deployment in untrusted networks where some systems are
mistrusted.

Trusted networks By making use of a peer-to-peer based algorithm called Quick-
sand, Kruegel et al. [61] tried to perform a decentralized evaluation of events. A
set of events per attack was specified in an ASL (attack specification language).
Their process allowed to correlate events using graph-based algorithms. Parts
of the dependency graphs created with ASL could be analyzed by different sys-
tems. Their architecture was defined as follows: The lowest level collects data on
local host-based sensors. This data is sent to “Event Correlation Units” which
correlated them using the graphs specified by ASL. “Control Units” configured
the system, compiled ASL specifications to C code and then to object files and
distributed them over SSL connections.

Prelude is an open source IDS, which has been developed and improved by
several groups [62,79]. The goal is to realize global attack detection within a het-
erogeneous network containing a multitude of information sources. The project
supports network and host based sensors, event aggregation, storage, visualiza-
tion, correlation, and reactive measures. The sensors are similar to rule-based
systems that analyze payload of packets like Snort. Additionally, bindings for
popular attack detection systems like Bro or Snort are provided. These systems
are configured to send IDMEF messages to managers or correlation systems
providing authentication and data integrity with SSL. Systems in a higher cor-
relation layer can be placed in a tree-like topology: Events are forwarded to the
corresponding parent system to enable decentralized analysis. The correlation
techniques of Prelude are limited, as only one correlator was developed that
cooperates with the vulnerability scanner Nessus [80].

Gruschke et al. [63] introduced a graph-based system that used dependency
graphs to process correlation information. The approach is used for failure man-
agement of devices within a network and was especially suited for extending
existing management systems with event correlation. Functional dependencies
have been modeled for the monitored system using dependency graphs. These
graphs are parsed by a correlator to find elements that would cause numerous
events when breaking down.

An application for reducing high numbers of error messages in a mobile phone
network has been suggested by Froehlich et al. [64]. It is a rule-based system that
uses extended local programming. Its primary use is to limit the probability of
overburdened network administrators during severe failures in the infrastructure.
The algorithm monitors the breach of integrity policies to diagnose networks.

Probabilistic techniques are used by Steinder et al. [65]. They developed a
layered system model which related services and functions between neighboring
protocol layers. A bipartite probabilistic dependency graph, which is based on
the network topology, specifies the relation between different systems. Errors
in the network can be found by two localizing methods that employ iterative
algorithms for Bayesian networks [66].

Untrusted networks Correlation systems in untrusted networks, like the Internet,
where different institutions cooperate which do not trust each other, require a
different set of techniques for the differing requirements. Especially data privacy
issues and varying security policies by the institutions must be observed.

Anagnostakis et al. [67] presented a system, that envisions sensors provided
and operated by ISPs or similar institutions. New correlation and filter rules
may be loaded onto the sensors by an authenticated external institution. During
that process, all security policies set by the operator of the sensor need to be
adhered. So distributed sensors can be controlled and reconfigured by a central
entity and simultaneously sensor operators can specify security policies. They
also analyzed the system behavior: if false-alarms are intentionally inserted by
malicious entities that contribute to the global shared information pool about
current events.

Data privacy guaranties for data sources are issued by the system presented
by Lincoln et al. [68]. The data sources obfuscate the data themselves, so that
sources do not need to trust a central entity and use hash-based algorithms
like HMAC on IP headers or payload data. Based on this system, the authors
investigate what analysis techniques are appropriate for producing a detailed
and error-free evaluation of the events.

Xu et al. [72] introduced a method to combine data privacy with requirements
of attack detection. In a first step, sensitive data in an event is generalized to an
abstract concept. This results in data with partially semantic information that
included uncertainties for data privacy. In a second step, event correlation is
performed on the obfuscated data and similarity functions are defined between
attributes that were used to create attack scenarios.

A theoretical work about mathematical procedures for data exchange be-
tween mistrusting parties was published by Kissner et al. [69]. The authors use

mathematical attributes of polynomials to build a framework of efficient and
secure multiset operators, that can be combined with each other.

Legal aspects are very hard to identify in this area, as regulations as well as
leading decisions by courts are missing. In a comprehensive study the possibilities
and regulations for monitoring and storage of packet data in the Internet were
investigated primarily based on German law [73]. One of the results were, that
there is an astonishing degree of freedom for monitoring and attack detection,
but raw IP packets are quickly worth of protection in regard to data privacy
issues.

5.3 Report layer

If attacks and threats have been detected, adequate countermeasures need to be
initiated. Additionally, automated verification of the detected events can help
to increase the quality of the entire security system. In the following, we briefly
outline relevant aspects in the report layer.

Active counter-measures Considering the possible attacks in the Internet, it
is desirable to automatically react on certain incidents and protect systems from
threats. Reactions on worm propagation can be summarized in the following
categories [7]:

– Prevention – This topic includes techniques that limit or stop worm prop-
agation in the first stages of the infection. Best possible approaches in the
Internet is the removal of vulnerabilities in software before those can be
exploited. But this is often not possible, so the time until reaction should
be as short as possible. A set of heterogeneous systems is an advantage, as
those systems usually share only little code and so different vulnerabilities
are present. The possibility of detecting vulnerabilities for each single system
in use is very low compared to the chance of finding a single vulnerability
for one system, so less systems are usually infiltrated.

– Treatment – When machines are already infected by some malware, this task
covers their disinfection. Unfortunately, this approach does not help during
malware propagation, as generation of detection and cleaning algorithms by
virus software vendors takes at least several hours.

– Confinement – Confinement techniques like those used in firewalls, content
filters or black lists in routers can be used against propagating malware
and gains time for treatment measures, as it slows down the spread. To be
effective, reaction time should be within minutes.

An approach for confinement of attacks like DoS or flash crowds has been
proposed by Mahajan et al. [74]. Their scenarios involves high overload of routers
or network links that disabled services like web servers. The authors describe a
technique that monitors and analyzes packets that were dropped by routers.
The source addresses of those packets are sorted and subnetworks, where pack-
ets are coming from, are determined. In a second step, a so-called push-back

mechanism is employed, that tells upstream routers to apply Random Early
Detection (RED) on certain aggregates and so prevents overload of network
links that are closer to the target.

Often the so-called white list approach is suggested as a solution for this
problem. All systems are inserted into that list that may never be blocked.
Unfortunately, this is not a flexible solution and is no option for Internet-wide
service providers who have customers all over the world and are not able to limit
IP address spaces. Another possibility would be the insertion of blocking rules
only for a certain time (also see [75,76]), which would avoid having large firewall
rulesets during smaller attacks.

Several possibilities for defense against DoS attacks have been presented by
Chang et al. [77]. The authors suggest to prevent IP spoofing by filtering IP
packets containing invalid addresses already at source networks, but this solution
is often not easy to realize. Possibilities on the side of the destination network
are among others: IP hopping, where the service providing server changes IP
addresses. But this counter-measure is ineffective, if attackers regularly perform
DNS requests. Another possibility is buffering of half-open TCP requests by an
upstream proxy server. An interesting hybrid approach is the collaboration of
ISP and local user systems: a DoS attack is detected by a local system and
reported to the provider, who in turn checks the message and may take counter-
measures.

All the approaches that we discussed in this section acts automatically and
without human intervention. This enables attackers to actively exploit these sys-
tems. Exemplary, an attacker could fake an attack and spoof source IP addresses.
The attack detection system recognizes the attack and uses the packets’ source
IP addresses to block access to the network for these seemingly attacking hosts.
Attackers could use this mechanism to block out legitimate users interactively
and perform a simple DoS attack on the whole network. So all attack detection
systems with integrated automated counter-measures must ensure that reported
incidents have no (or very low) false-positive rates and this system is not easily
to be exploited. Conventional attack detection systems only report these types
of incidents to human operators which are not as easily tricked as automatic
mechanisms.

Event verification Events that are reported by sensors or other monitoring
systems, sometimes need to be checked for validity before they are further pro-
cessed. An example for these types of events are those coming from anomaly-
based systems that have high false-positive rates. Several verification techniques
can be classified according to their execution time.

Passive verification methods are executed in regular time intervals, indepen-
dent of the arrival of events. An example is the generation of metadata, which
is used to verify incoming events. Used metadata is usually stored in databases.
This method offers the advantage, that it does not interfere the monitored net-
work and so remains invisible. Furthermore, the verification process of single
events is usually very quick, as it is executed locally on monitoring systems.

On the other hand, passive verification techniques rely on metadata that has a
certain age, and may provide outdated information.

On the other hand, active verification algorithms are executed every time
an event is reported. These methods may include access to the affected system,
which checks if the host is vulnerable to the detected exploit. Further possibilities
include reconfiguration of sensors which monitor more details about a specific
attack, so that better analysis is possible. Active verification produces more up-
to-date data than passive verification, and used verification techniques may be
adapted for the type of the incoming event. This may result in better analysis
results, as metadata only provides event-independent information and so may
be less detailed for current analysis. Active generation of verification data may
also be counted as a disadvantage, as it may produce significant load in a net-
work during an attack. Often implemented verification algorithms are executed
after some attack was detected. Gathered information may be outdated, as the
attacker may already have manipulated the target system to react differently to
verification procedures.

Kruegel et al. [16] further differentiate active verification in remote access,
where a connection to the target system is established for verification, and the
target system is not prepared in any way for this verification. Authenticated
access requires the target system to support the verification procedure like pro-
viding a special user account. A dedicated sensor is an application, that is already
executed on the target system and returns detailed information to the attack de-
tection system on request. The authors combined the rule-based IDS Snort with
the vulnerability scanner Nessus. Events generated by Snort were verified by a
vulnerability analysis by Nesses. As expected, the high rate of false-positives was
strongly reduced.

Manual reactions Severe attacks usually are reported to security operators af-
ter event correlation. The attack detection system must forward the events to the
people in charge and visualize them appropriately. A management user interface
should be provided which allows querying detailed information about incidents.
Event archiving may also be valuable for later analysis like the generation of
statistics.

6 Conclusion

The domain of event correlation covers a wide spectrum of algorithmic solutions.
We have shown in this report that higher layer event correlation needs detailed
knowledge about lower layer monitoring and event generation architectures. Ba-
sically, correlation of data is an essential method for use in every layer of attack
detection and early warning systems, ranging from the raw input data layer over
the event layer to the report layer. The main goal is always to improve quality
of detected events, to determine if these are related to real incidents, and to pri-
oritize the events according to pre-defined rules. Finally, only highly aggregated

relevant information should be presented to the user, so that there is neither
information overload nor information loss.

In this study, we also discussed terms thar are used in the scope of attack
detection systems – and tried to define the term event correlation in this scope.
Event correlation groups disjoint events coming from one or multiple systems
according to specific attributes, and creates a basis for further analysis. Addi-
tionally, metadata about location, time information, or administrative knowledge
may be included with the goal to generate results with higher relevance.

We also discussed basic requirements and described different layers in the
overall attack detection system. Based on the resulting taxonomy, we performed
a literature review to summarize available techniques and systems in a legible
way. The whole process of monitoring, attack detection, and correlation of ab-
stract events has been analyzed and available techniques have been associated
to this process. Furthermore, we covered relevant technical challenges and ad-
ministrative barriers.

The primary goal of this study was to establish a starting point for further
scientific activities as well as practical work in development of early attack de-
tection in the Internet. Based on the results of this study, the architecture of
a planned IT early warning system may be designed and extended by features
identified as fundamental in this review.

References

1. Kemmerer, R., Vigna, G.: Intrusion Detection: A Brief History and Overview.
IEEE Computer, Special Issue on Security and Privacy (2002) 27–30

2. Jung, J., Milito, R.A., Paxson, V.: On the Adaptive Real-Time Detection of Fast-
Propagating Network Worms. In Hämmerli, B.M., Sommer, R., eds.: 4th Interna-
tional Conference of Detection of Intrusions & Malware, and Vulnerability Assess-
ment (DIMVA 2007). Volume LNCS 4579., Lucerne, Switzerland, Springer (2007)
175–192

3. Dressler, F., German, R., Holleczek, P.: Selbstorganisierende Netzwerksensoren
und automatisierte Ereigniskorrelation. In: BSI-Workshop IT-Frühwarnsysteme,
Bonn, Germany (2006) 117–128

4. Bace, R., Mell, P.: Intrusion Detection Systems. NIST Computer Security Special
Publication SP 800-31, National Institute of Standards and Technology (2001)

5. Wood, M., Erlinger, M.: Intrusion Detection Message Exchange Requirements.
Technical Report RFC 4766, IETF (2007)

6. Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in Your Spare
Time. In: 11th USENIX Security Symposium, San Francisco, CA, USA (2002)
149–167

7. Moore, D., Shannon, C., Voelker, G.M., Savage, S.: Internet Quarantine: Require-
ments for Containing Self-Propagating Code. In: 22nd IEEE Conference on Com-
puter Communications (IEEE INFOCOM 2003), San Franciso, CA, USA, IEEE
(2003)

8. Moore, D., Voelker, G.M., Savage, S.: Inferring Internet Denial-of-Service Activity.
In: 10th USENIX Security Symposium, Washington, DC (2001)

9. Enns, R.: NETCONF Configuration Protocol. Technical Report RFC 4741, IETF
(2006)

10. Claise, B.: Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of IP Traffic Flow Information. RFC 5101, IETF (2008)

11. Claise, B.: Packet Sampling (PSAMP) Protocol Specifications. Internet-Draft
(work in progress) draft-ietf-psamp-protocol-09.txt, IETF (2007)

12. Calhoun, P., Loughney, J., Guttman, E., Zorn, G., Arkko, J.: Diameter Base
Protocol. Technical Report RFC 3588, IETF (2003)

13. Henzinger, M.R., Raghavan, P., Rajagopalan, S.: Computing on data streams.
External memory algorithms 50 (1999) 108–118

14. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge
Discovery: An Overview. In: 2nd ACM International Conference on Knowledge
Discovery and Data Mining (KDD 2008), Las Vegas, USA (1996) 1–34

15. Lee, W., Stolfo, S.J.: A framework for constructing features and models for intru-
sion detection systems. ACM Transactions on Information Systems Security 3(4)
(2000) 227–261

16. Kruegel, C., Robertson, W., Vigna, G.: Using Alert Verification to Identify Success-
ful Intrusion Attempts. Praxis der Informationsverarbeitung und Kommunikation
(PIK) 27(4) (2004) 219–227

17. Balas, E., Viecco, C.: Towards a Third Generation Data Capture Architecture
for Honeynets. In: 6th IEEE Information Assurance Workshop, West Point, New
York, IEEE (2005)

18. Willems, C., Holz, T., Freiling, F.: Toward Automated Dynamic Malware Analysis
Using CWSandbox. IEEE Security and Privacy 5 (2007) 32–39

19. Dietz, T., Claise, B., Aitken, P., Dressler, F., Carle, G.: Information Model for
Packet Sampling Exports. Technical Report draft-ietf-psamp-info-09.txt, IETF
(2008)

20. Quittek, J., Bryant, S., Claise, B., Aitken, P., Meyer, J.: Information Model for IP
Flow Information Export. RFC 5102, IETF (2008)

21. Claise, B.: Cisco Systems NetFlow Services Export Version 9. Technical Report
RFC 3954, IETF (2004)

22. Siris, V.A., Papagalou, F.: Application of Anomaly Detection Algorithms for De-
tecting SYN Flooding Attacks. In: IEEE Global Telecommunications Conference
(IEEE GLOBECOM 2004), Dallas, TX, USA (2004)

23. Jung, J., Paxson, V., Berger, A.W., lakrishnan, H.B.: Fast Portscan Detection Us-
ing Sequential Hypothesis Testing. In: IEEE Symposium on Security and Privacy,
Berkeley/Oakland, California, USA (2004)

24. Staniford, S., Hoagland, J.A., McAlerney, J.M.: Practical Automated Detection of
Stealthy Portscans. Journal of Computer Security 10(1/2) (2002) 105–136

25. Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message Exchange
Format (IDMEF). Technical Report RFC 4765, IETF (2007)

26. Feinstein, B., Matthews, G.: The Intrusion Detection Exchange Protocol (IDXP).
Technical Report RFC 4767, IETF (2007)

27. Rose, M.: The Blocks Extensible Exchange Protocol Core. Technical Report RFC
3080, IETF (2001)

28. Yemini, S., Kliger, S., Mozes, E., Yemini, Y., Ohsie, D.: High speed and robust
event correlation. IEEE Communications Magazine 34(5) (1996) 82–90

29. Hager, N.: Secret Power - New Zealand’s Role in the International Spy Network.
Volume ISBN 0-908802-35-8. Craig Potton Publishing (1996)

30. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. Wiley (2001)

31. Estan, C., Keys, K., Moore, D., Varghese, G.: Building a better NetFlow. In: ACM
SIGCOMM 2004, Portland, OR, USA, ACM (2004) 245–256

32. Hu, Y., Chiu, D.M., Lui, J.C.: Adaptive Flow Aggregation - A New Solution for
Robust Flow Monitoring under Security Attacks. In: 12th IEEE/IFIP Network
Operations & Management Symposium (IEEE NOMS 2006), Vancouver, Canada
(2006) 424–435

33. Duffield, N.G., Lund, C.: Predicting resource usage and estimation accuracy in an
IP flow measurement collection infrastructure. In: 3rd ACM SIGCOMM Confer-
ence on Internet Measurement (IMC 2003), Miami Beach, FL, USA, ACM (2003)
179–191

34. Duffield, N.G., Lund, C., Thorup, M.: Estimating flow distributions from sampled
flow statistics. In: ACM SIGCOMM 2003, Karlsruhe, Germany, ACM (2003) 325–
336

35. Hohn, N., Veitch, D.: Inverting sampled traffic. In: 3rd ACM SIGCOMM Confer-
ence on Internet Measurement (IMC 2003), Miami Beach, FL, USA (2003) 222–233

36. Estan, C., Varghese, G., Fisk, M.: Bitmap algorithms for counting active flows on
high speed links. In: 3rd ACM SIGCOMM Conference on Internet Measurement
(IMC 2003), Miami Beach, FL, USA (2003) 153–166

37. Keys, K., Moore, D., Estan, C.: A robust system for accurate real-time summaries
of internet traffic. In: ACM Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 2005), Banff, Alberta, Canada, ACM (2005) 85–96

38. Kumar, A., Xu, J., Wang, J., Spatschek, O., Li, L.: Space-Code Bloom Filter for
Efficient Per-Flow Traffic Measurement. In: 23rd IEEE Conference on Computer
Communications (IEEE INFOCOM 2004), Hong Kong, China, IEEE (2004)

39. Venkataraman, S., Song, D.X., Blum, P.B., Gibbons, A.: New Streaming Algo-
rithms for Fast Detection of Superspreaders. In: 12th Annual Network and Dis-
tributed System Security Symposium (NDSS 2005), San Diego, California, USA
(2005)

40. Sekar, R., Gupta, A., Frullo, J., Shanbhag, T., Tiwari, A., Yang, H., Zhou, S.:
Specification-based anomaly detection: a new approach for detecting network in-
trusions. In: 9th ACM Conference on Computer and Communications Security
(ACM CCS 2002), Washington, DC, USA, ACM (2002) 265–274

41. Toth, T., Kruegel, C.: Connection-history based anomaly detection. In: 3rd IEEE
Information Assurance Workshop, West Point, New York, USA (2002)

42. Estan, C., Savage, S., Varghese, G.: Automatically Inferring Patterns of Resource
Consumption in Network Traffic. In: ACM SIGCOMM 2003, Karlsruhe, Germany,
ACM (2003) 137–148

43. Weaver, N., Staniford, S., Paxson, V.: Very Fast Containment of Scanning Worms.
In: 13th USENIX Security Symposium, San Diego, CA, USA (2004) 29–44

44. Karagiannis, T., Papagiannaki, K., Faloutsos, M.: BLINC: multilevel traffic classi-
fication in the dark. In: ACM SIGCOMM 2006, Pisa, Italy, ACM (2005) 229–240

45. Wright, C.V., Monrose, F., Masson, G.M.: On Inferring Application Protocol
Behaviors in Encrypted Network Traffic. Journal of Machine Learning Research 6
(2006) 2745–2769

46. Bernaille, L., Teixeira, R.: Early Application Identification. In: 2nd Conference on
Future Networking Technologies (CoNext 2006), Lisboa, Portugal (2006)

47. Roesch, M.: Snort: Lightweight Intrusion Detection for Networks. In: 13th USENIX
Conference on System Administration (LISA 1999), Seattle, WA, USA (1999) 229–
238

48. Yusuf, S., Luk, W.: Bitwise Optimised CAM for Network Intrusion Detection
Systems. In: 15th IEEE International Conference on Field Programmable Logic
and Applications (FPL 2005), Tampere, Finnland (2005) 444–449

49. Paxson, V.: Bro: A System for Detecting Network Intruders in Real-Time. In: 7th
USENIX Security Symposium, San Antonio, TX (1998)

50. Wang, K., Cretu, G., Stolfo, S.J.: Anomalous Payload-Based Worm Detection and
Signature Generation. In: 8th International Symposium on Recent Advances in
Intrusion Detection (RAID 2005), Seattle, Washington, USA (2005) 227–246

51. Bolzoni, D., Etalle, S., Hartel, P.H., Zambon, E.: POSEIDON: a 2-tier Anomaly-
based Network Intrusion Detection System. In: 4th IEEE International Workshop
on Information Assurance (IEEE IWIA 2006), Royal Holloway, UK, IEEE (2006)
144–156

52. Kohonen, T.: Self-Organizing Maps. Springer (2000)
53. Singh, S., Estan, C., Varghese, G., Savage, S.: Automated Worm Fingerprinting.

In: 6th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 2004), San Franciso, CA, USA, USENIX Association (2004) 45–60

54. Kim, H.A., Karp, B.: Autograph: Toward Automated, Distributed Worm Signature
Detection. In: 13th USENIX Security Symposium, San Diego, CA, USA (2004)
271–286

55. Parekh, J.J., Wang, K., Stolfo, S.J.: Privacy-preserving payload-based correlation
for accurate malicious traffic detection. In: ACM SIGCOMM Workshop on Large-
Scale Attack Defense (LSAD 2006), Pisa, Italy, ACM (2006) 99–106

56. Vaarandi, R.: Simple Event Correlator for real-time security log monitoring.
Hakin9 Magazine 1(6) (2006) 28–39

57. Vigna, G., Valeur, F., Kemmerer, R.A.: Designing and implementing a family of
intrusion detection systems. In: European Conference on Software Engineering
(ESEC), Helsinki, Finland (2003) 88–97

58. Cuppens, F., Mige, A.: Alert Correlation in a Cooperative Intrusion Detection
Framework. In: IEEE Symposium on Security and Privacy, Oakland, California,
USA, IEEE (2002)

59. Valeur, F., Vigna, G., Kemmerer, C., Krügel, R.: A Comprehensive Approach
to Intrusion Detection Alert Correlation. IEEE Transactions on Dependable and
Secure Computing 1(3) (2004) 146–169

60. Yegneswaran, V., Barford, P., Ullrich, J.: Internet Intrusions: Global Character-
istics and Prevalence. In: ACM International Conference on Measurement and
Modeling of Computer Systems (ACM SIGMETRICS 2003). (2003) 138–147

61. Krügel, C., Toth, T., Kerer, C.: Decentralized Event Correlation for Intrusion De-
tection. In: 4th International Conference on Information Security and Cryptology
(ICISC 2001). Volume LNCS 2288., Seoul, Korea (2001) 114–131

62. Blanc, M., Oudot, L., Glaume, V.: Global Intrusion Detection: Prelude Hybrid
IDS. Technical report, AIRstack (2003)

63. Gruschke, B.: Integrated Event Management: Event Correlation Using Dependency
Graphs. In: 9th IFIP/IEEE International Workshop on Distributed Systems: Op-
erations and Management (DSOM 1998), Newark, Delaware, USA (1998)

64. Fröhlich, P., Nejdl, W., Schroeder, M., Damásio, C., Pereira, L.M.: Using extended
logic programming for alarm-correlation in cellular phone networks. In: 12th In-
ternational Conference on Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems (IEA/AIE 1999). Volume LNCS 1611., Cairo,
Egypt (1999) 343–352

65. Steinder, M., Sethi, A.: End-to-end service failure diagnosis using belief networks.
In: 8th IEEE/IFIP Network Operations & Management Symposium (IEEE NOMS
2002), Florence, Italy (2002) 375–390

66. Pearl, J., Russell, S.: Bayesian Networks. In Arbib, M.A., ed.: Handbook of Brain
Theory and Neural Networks. MIT Press, Cambridge, MA (2003) 157–160

67. Anagnostakis, K., Greenwald, M., Ioannidis, S., Li, A.K.D.: A Cooperative Im-
munization System for an Untrusting Internet. In: ACM International Conference
on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2003),
San Diego, California, USA, ACM (2003)

68. Lincoln, P., Porras, P.A., Shmatikov, V.: Privacy-Preserving Sharing and Corre-
lation of Security Alerts. In: 13th USENIX Security Symposium, San Diego, CA,
USA (2004) 239–254

69. Kissner, L., Song, D.X.: Privacy-Preserving Set Operations. In: 25th Annual
International Cryptology Conference (CRYPTO 2005), Santa Barbara, California,
USA (2005) 241–257

70. Huang, Q., Wang, H.J., Borisov, N.: Privacy-Preserving Friends Troubleshooting
Network. In: Network and Distributed System Security Symposium (NDSS 2005),
San Diego, California, USA (2005)

71. Wang, H.J., Platt, J.C., Chen, Y., Zhang, R., Wang, Y.M.: PeerPressure for au-
tomatic troubleshooting. In: ACM International Conference on Measurement and
Modeling of Computer Systems (ACM SIGMETRICS 2004), New York, NY, USA,
ACM (2004) 398–399

72. Xu, D., Ning, P.: Privacy-Preserving Alert Correlation: A Concept Hierarchy Based
Approach. In: 21st Annual Computer Security Applications Conference (ACSAC
2005), Tucson, AZ, USA (2005) 537–546

73. Haibl, F., Dressler, F.: Anonymization of Measurement and Monitoring Data:
Requirements and Solutions. Praxis der Informationsverarbeitung und Kommu-
nikation (PIK) 29(4) (2006) 208–213

74. Mahajan, R., Bellovin, S.M., Floyd, S., Paxson, J.I.V., Shenker, S.: Controlling
high bandwidth aggregates in the network. ACM SIGCOMM Computer Commu-
nication Review (CCR) 32(3) (2002) 62–73

75. Dressler, F.: Adaptive Re-Configuration of Network Monitoring Applications. In:
Dagstuhl Seminar 06011: Perspectives Workshop: Autonomic Networking, Schloss
Dagstuhl, Wadern, Germany (2006)

76. Dressler, F.: Bio-inspired Promoters and Inhibitors for Self-Organized Network
Security Facilities. In: 1st IEEE/ACM International Conference on Bio-Inspired
Models of Network, Information and Computing Systems (IEEE/ACM BIONET-
ICS 2006), Cavalese, Italy, IEEE (2006)

77. Chang, R.K.C.: Defending against Flooding-Based Distributed Denial-of-Service
Attacks: A Tutorial. IEEE Communications Magazine 10 (2002) 42–51

78. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM 13(7) (1970) 422–426

79. Zaraska, K.: Prelude IDS: current state and development perspectives. Technical
report (2003)

80. Carey, M., Criscuolo, P., Petruzzi, M., Rogers, R.: Nessus Network Auditing. 2nd
edn. Syngress Media (2007)

