SUBMITTED TO IEEE TNNLS, 2026.

User Isolation Poisoning on Decentralized
Federated Learning: An Adversarial Message
Passing Graph Neural Network Approach

Kai Li, Senior Member, IEEE, Yilei Liang, Student Member, IEEE, Pietro Lio, Fellow, IEEE, Wei Ni, Fellow,
IEEE, Falko Dressler, Fellow, IEEE, Jon Crowcroft, Fellow, IEEE, and Ozgur B. Akan, Fellow, IEEE

Abstract—This paper proposes a new cyberattack on De-
centralized Federated Learning (DFL), named User Isolation
Poisoning (UIP). While following the standard DFL protocol
of receiving and aggregating benign local models, a malicious
user strategically generates and distributes compromised up-
dates to undermine the learning process. The objective of the
new UIP attack is to diminish the impact of benign users by
isolating their model updates, thereby manipulating the shared
model to reduce the learning accuracy. To realize this attack,
we design a novel threat model that leverages an adversarial
Message Passing Graph (MPG) neural network. Through
iterative message passing, the adversarial MPG progressively
refines the representations (also known as embeddings or
hidden states) of each benign local model update. By orches-
trating feature exchanges among connected nodes in a targeted
manner, the malicious users effectively curtail the genuine
data features of benign local models, thereby diminishing
their overall influence within the DFL process. The MPG-
based UIP attack is implemented in PyTorch, demonstrating
that it effectively reduces the test accuracy of DFL by 49.5%,
and successfully evades existing cosine similarity-based and
Euclidean distance-based defense strategies.

Index Terms—User Isolation, Poisoning Attack, Decen-
tralized Federated Learning, Model Correlations, Message
Passing Graph Neural Networks

I. INTRODUCTION

Decentralized federated learning (DFL), as a distributed
machine learning, enables a network of user devices to col-
laboratively train a shared model without a central coordi-
nating server that aggregates model updates from individual
users [[1]]. The decentralized variant eliminates this central
point by allowing users to communicate directly with each
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other in a peer-to-peer fashion. Each user device maintains
its local dataset, ensuring that sensitive information remains
on-premise and enhancing privacy compliance [2]]. The col-
laborative process involves exchanging model parameters
or gradients with neighboring users, often structured in a
network topology, such as a graph, to iteratively improve
the shared model collectively.

DFL has a significant potential to enhance connected
services by enabling secure, collaborative machine learning
without compromising user privacy. For example, in the
immersive virtual environments of the Metaverse, users
generate extensive health-related data through interactions
with wearable devices [3]], biometric sensors [4], and virtual
health applications [S]. DFL allows this sensitive data to
remain with user devices or local nodes while contributing
to the training of global health models [6]. By aggregating
only model updates rather than raw data, DFL ensures that
personal health information is not exposed or transmitted
across the network.

Due to the absence of a central server and the re-
liance on peer-to-peer update exchanges, model poison-
ing in DFL poses a broad spectrum of security threats,
where adversaries can exploit local trust relationships to
manipulate the training process. Typical threats include
Byzantine poisoning, where malicious users inject arbitrary
gradients to destabilize consensus [7]]; collusion-based at-
tacks, where groups of adversaries coordinate to amplify
their influence [8]]; free-rider behaviors, where participants
contribute no useful updates but still benefit from the global
model [9]; and isolation attacks, where adversaries suppress
or marginalize the impact of benign users’ contributions.
These threats can degrade DFL accuracy, bias model behav-
ior, or undermine fairness without breaching data privacy.

In this paper, we propose a novel cyberattack on DFL,
named user isolation poisoning (UIP), which exploits the
collaborative yet decentralized nature of DFL while fol-
lowing the standard protocol of receiving and aggregating
benign local model updates from neighboring users. Unlike
benign users, a malicious user generates compromised
model updates intentionally designed to be shared with
peers to disrupt the learning process of DFL.

The primary objective of the UIP attack is to isolate
the model updates of benign users, thereby impairing their
ability to contribute to the shared model. To implement
this attack, we propose a new threat model based on an
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adversarial message passing graph neural network (MPG),
which enables a malicious user to generate compromised
model updates. The proposed adversarial MPG iteratively
refreshes the representation (a.k.a. embeddings or hidden
states) of each benign model update by exchanging feature
information with its neighbors through a message-passing
mechanism [[10]]. Instead of aggregating all neighbors’
model updates, it introduces biased propagation weights
that subtly distort the correlations between malicious and
benign updates. This selective tailoring enables the attacker
to diminish the influence of benign users while amplifying
its adversarial contributions, thereby isolating benign con-
tributions from the evolving shared model. The distortions
are carefully crafted so that the malicious model updates
remain statistically consistent with benign model updates
and can evade detection by similarity- or distance-based
defenses. The malicious user can craft the compromised
model updates to minimize the test accuracy of DFL; the
shared model can be manipulated towards the malicious
user’s objectives while diminishing the influence of legiti-
mate data contributions.

The benign users can employ model poisoning detection
techniques on the local model updates from their peers,
scrutinizing them for statistically significant deviations or
anomalies that may indicate malicious alterations. Mea-
surement metrics, such as cosine similarity or Euclidean
distance, can be computed to identify model updates that
significantly diverge in direction or magnitude. To bypass
the detection of existing defense models, the proposed
MPG-based UIP attack tailors the malicious user’s adver-
sarial model updates, thus maintaining compatibility with
their benign counterparts while undermining the DFL.

The key contributions of this paper are as follows:

o The new UIP attack is proposed to intentionally isolate
the benign users’ model updates, which can result in a
manipulated shared model and diminish the influence
of benign data contributions. A new architecture is
designed to synthesize compromised model updates
to effectively minimize the test accuracy of DFL,
thus skewing the learning process away from accurate
representations of the benign users’ data.

o As the optimization of the adversarial training model
at a malicious user is a challenging non-convex com-
binatorial problem, a new graph signal processing
approach is developed to iteratively optimize the com-
promised model updates by running the UIP and sub-
gradient descent alternately.

o Within the UIP architecture, the adversarial MPG is
trained alongside sub-gradient descent to capture the
interactions among the benign users’ model updates.
By manipulatively reconstructing the correlations of
these model updates, the adversarial MPG aims to
maximize the reconstruction loss while keeping the
compromised model updates undetectable.

The proposed MPG-based UIP attack is implemented in
PyTorch, showing experimentally that the MPG-based UIP
attack successfully reduces the test accuracy by 49.5%,

and bypasses the detection of existing cosine similarity-
and Euclidean distance-based defense models. The source
code of the MPG-based UIP attack is released on GitHub:
https://github.com/AnonymousAuthors/DFL_Attack.

The proposed UIP attack demonstrates that an adversary
can compromise the integrity of collaborative training by
isolating some benign users’ contributions and skewing the
shared model, even without access to raw data. While DFL
preserves data locality and prevents raw data leakage, no
privacy in DFL can be guaranteed under the UIP attack
since adversaries can exploit correlations in exchanged
updates to manipulate outcomes. Moreover, the limitations
of existing defenses are exposed in peer-to-peer settings: By
strategically weakening the influence of benign updates, the
attack renders training ineffective and undermines accuracy
across participants. The UIP attack is effective within DFL
contexts, as it simultaneously preserves an appearance of
normalcy to benign peers and evades detection.

In addition, the proposed MPG-based UIP attack targets
DFL scenarios in which benign users train and share the
same underlying model architecture, implying homoge-
neous data features across the network. By isolating benign
users’ model updates, the malicious user exploits feature-
level correlations to reduce the diversity and richness of the
data features that the shared model learns from, leading to
a degraded DFL accuracy. The exploration of MPG-based
UIP attacks underpins the need for rigorous investigation
into safeguard mechanisms to defend against such subtle
and impactful adversarial undertakings in DFL.

The remainder of this paper is structured as follows.
Section [[]reviews the literature on poisoning threats against
DFL. Section [lII| investigates the DFL training process with
benign users as well as state-of-the-art cosine similarity-
based and Euclidean distance-based defense models. The
proposed MPG-based UIP attack is described in Section
Section [V| presents the performance analysis. Section
concludes the paper.

II. LITERATURE REVIEW ON POISONING ATTACKS

This section reviews the literature on poisoning threats
to DFL and centralized FL (CFL) in a comparison with the
new MPG-based UIP attack developed in this paper.

For instance, in [8], a collusion-based poisoning attack
on DFL was studied, where malicious local models are
assessed by computing the Euclidean distance from benign
models and assigning a toxicity score. The model exhibiting
the largest deviation (i.e., the highest toxicity score) is
selected by the attacker as the poisoning model update.
However, this approach demands tight coordination among
all attackers so that they can converge on the same ma-
licious model. A falsified-data-based poisoning attack that
injects deceptive data points into the training process of the
blockchain-enabled DFL was studied in [11]]. By exploiting
blockchain’s distributed ledger for storing and exchanging
model parameters, the attacker can generate falsified data
to permeate the learning process.

The study in [7] employed a conventional adversarial
framework on DFL in which coordinated attackers corrupt
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local datasets or craft adversarial local model updates for
propagation to neighboring users. This threat model allows
the attacker to selectively distribute manipulated model
parameters to connected peers, with the flexibility to use
distinct malicious local models for individual neighbors.
In [[12], a poisoning framework was presented for DFL that
compromises the integrity of benign users’ local models.
To identify such attacks, users compute pairwise Euclidean
distances between their own local models and those of
neighboring peers, leveraging these metrics to derive trust
scores for assessing model legitimacy.

To mitigate the model poisoning attack in CFL, several
robust aggregation methods have been proposed, such as
coordinate-wise median [13]], geometric median, RFA [14],
and FoolsGold [[15]]. These methods rely on the server hav-
ing access to the full set of client updates to compute robust
statistics or detect Sybil behaviors, which is challenging or
even not possible in DFL due to the lack of a central server.
While [16] is designed to mitigate the model poisoning
attack in DFL, it still relies on the Euclidean distance and
Cosine similarity to detect anomalies.

Based on several existing poisoning attacks in CFL, a
range of parameters relevant to attacking efficiency can
be defined [17]. Using these attacks, the defense models
could be evaluated to understand the assumptions and
defensive outcomes. The authors of [18] introduced a model
poisoning strategy for CFL that leverages malicious users
disguised as benign participants. These malicious users
falsify local models to poison the shared model, enabling
stealth backdoor injection or learning efficacy degradation
of the CFL. In addition, CFL relying on weighted or
trimmed averaging defense frameworks remains susceptible
to stealthy poisoning attacks [[19]], which induce accuracy
degradation during training. An attack model against CFL
was designed by exploiting the inherent properties of CFL
protocols and their aggregation mechanisms to inject mali-
cious models into CFL.

Recent works [20], [21] investigated data-agnostic model
poisoning in CFL. In these settings, benign users transmit
their local models to a central server, and the adver-
sary passively intercepts shared updates from neighboring
clients. Their threat models employ graph autoencoder
(GAE) architectures to regenerate the structural correlations
of model weights and then craft malicious local models
that maximize the global training loss. These approaches
rely heavily on weight-level manipulation under a server-
coordinated learning paradigm.

Unlike these existing studies, this paper explores UIP
attacks in DFL, where no central server exists and the
model updates are exchanged among peers. As summarized
in Table [I| the proposed MPG-based UIP attack introduces
a holistic strategy that enables a more covert and effective
disruption of DFL than existing poisoning methods focused
on collusion-based manipulation or malicious local model
crafting, e.g., [8]], [20]], [21]]. These existing attacks typically
rely on conspicuous deviations in model parameters or
injected anomalies that can be identified by the defense
mechanisms based on Euclidean distance or cosine similar-

TABLE I: Typical attacks against FL

Characteristics

Attackers are coordinated to generate malicious
local models by computing the Euclidean dis-
tance from benign models and assigning a toxi-
city score.

Benign users upload the local models to a central
server to train a global model, while the attacker
passively intercepts the benign model updates
from its neighbors and synthesizes malicious
local models. GAE is applied to regenerate the
structural correlations of model weights and
subsequently craft malicious local models.

The new A-MPNN introduces iterative message-
passing layers that explicitly model feature-
level interactions across neighboring updates in
the DFL graph. Dependencies that are invisible
to the GAE can be learned and manipulated,
thereby producing UIP model updates that more
effectively isolate benign users.

Collusion-based
manipulation [8§]

GAE-based poi-
soning [20], [21]

Proposed MPG-
based UIP attack

TABLE II: Notation and definition

Notation Definition

N The total number of benign users
wn(T) The local model parameters of user n
w (T) The shared model of DFL in the 7-th

communication round
N’ The number of authorized (legitimate)
but malicious users

w3 (T) The model update of the malicious user
J

E(wn(T);z(an),y(an)) | The training loss function of benign user
n

Wi g1 The cosine similarity between the two

user’s model updates

the Euclidean distance between any two
shared model updates

dSes Cosine similarity threshold

d%‘m Euclidean distance threshold

n The adjacency matrix for the local mod-
els of benign users

XN (5) Features of user 7’s neighborhood

il The reconstructed adjacency matrix gen-
erated at the decoder

(3w} (T), 6(w3, (T))

¥ The Laplacian matrix based on the be-
nign weights

ot The reconstructed Laplacian matrix re-
generated by the malicious user

b The reconstructed feature matrix

ity. In contrast, the UIP attack represents a fundamentally
different threat by deliberately isolating the contributions
of benign users, thereby suppressing their influence on the
shared model. This targeted isolation skews the DFL pro-
cess, reducing test accuracy without introducing detectable
abnormalities. To achieve this, we adopt a novel frame-
work that iteratively refines malicious updates through an
alternating optimization procedure involving UIP execution
and sub-gradient descent. The framework also integrates
an adversarial MPG module that manipulates the structural
correlations among benign model updates, effectively maxi-
mizing reconstruction loss while preserving stealth to evade
conventional distance/similarity-based defenses.

III. DFL FORMULATION AND DEFENSE MODEL

In this section, we present a DFL training process with
benign users, the UIP threat model, as well as state-of-the-
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art cosine similarity-based and Euclidean distance-based
defense models. Table|[ll|lists the notation used in the paper.

A. DFL with Benign Users

Consider a DFL training process involving N benign
users, as shown in Fig. E} Each benign user, labeled
n € [1, N], possesses a dataset of size D,,(7) during the
T-th round. An individual data sample collected by user n
is represented as x(a,) € [1,D,,(7)], where T ranges from
1 to T with T being the total number of training rounds
in the DFL process. Let y(a,,) indicate the model’s output
for the sample z(a,,). The training loss function for user n,
expressed as £ (w, (T); z(ay), y(ay)), measures the error in
approximating the relationship between the input a,, and its
corresponding output y(a,, ), where w,, (7") denotes the local
model parameters of user n. Note that w,,(7) contains the
trainable variables of the neural network (or other machine
learning model, e.g., SVM) that user n optimizes on its
private datasets during local model training. After each
local model update is generated, w,,(7") is exchanged with
neighboring users for aggregation in DFL.

Given D,,(7), the loss function of the DFL in the T -th
round is defined as [22]]

D (T

>

z(an)=1

~

S(wn(T)) =

D,.(T) E(wn(T);z(an),y(an))+

a-N(wn(T)), (1)

where N(+) is a regularizer function that represents the
effect of the local training noise, and « € [0,1] is a
coefficient.

At the T -th round, user n generates w,,(7) while receiv-
ing model updates from its neighbors. Let 7 and w? (7))
represent the number of user n’s neighbors, and the model
update shared by neighbor ¢ € [1, 7], respectively. Define
a consensus coefficient gli that is used by user n to
aggregate the models received from its neighbors [23]]. In
DFL, it is critical to achieve consistent w,,(7) across all
users upon convergence, thus Q;Ci is designed to achieve
the consistency [24]. QZ—’Z- can be expressed as [25]

¢, if (n,4) € CT;
of . =¢ 1=alT, ifn=q )
0, otherwise,

where C represents the set of edges if user m and its
neighbor are connected at the 7-th round. Given a topology
in 7, ¢7 is a constant achieved when w,,(7) are consistent
across the neighbors, i.e., DFL converges at user n [25].

Based on (T)), the optimal model update of user n can be
given as

6(wn(T))- 3)
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Fig. 1: A training process of the local and shared models in
DFL, where an user n trains its datasets D,,(7") to generate
a local model update w, (7), and aggregate the shared
models w2 (7)) from the neighbors.

Then, a shared model update, denoted by w? (T") < w*(T),
can be created at user n and shared with its n neighbors
for the further training of w? (7 + 1), i.e.,

wi (T +1) ¢ wy(T) = 8- VoW (T)), )

where (3 is the learning rate of the users.

B. UIP Threat Model

Fig.[2| depicts the UIP threat model, where any malicious
user j, Vj € [1, N'] generates its UIP model updates
w$(T) based on w2 (T) collected from its neighbors. The
DFL contains N’ authorized (legitimate) but malicious
users [26]], who attempt to progressively isolate the benign
model features from DFL by creating and uploading mali-
cious local models during each communication round.

Assume that any UIP model updates remain undetected
during training. Although the benign users may not be
aware of any attackers, it is prudent for them to be cautious
about potential presence of malicious participants and their
compromised models. The benign users are expected to
continuously monitor and assess the shared models received
from neighbors to detect any malicious model updates.

Note that the proposed UIP attack does not rely on inter-
cepting or modifying communication channels. Instead, a
malicious user is modeled as a legitimate but malicious
participant in DFL. By design, DFL assumes that each
user exchanges model updates with its neighbors in a
peer-to-peer fashion; therefore, a compromised user has
access to its own outgoing and incoming model updates. In
this case, encryption protects against external attackers but
cannot prevent such an insider adversary from manipulating
its own updates. Even with encrypted transmissions, once
the shared model updates are received and decrypted, a
malicious user can apply the proposed threat model to craft
malicious UIP model updates.



SUBMITTED TO IEEE TNNLS, 2026.

. .
Malicious ¢ '
local models«# -
A .
P

e

- .
W local models

-----

.
Aggregated~ :‘
,1 slgcal models

_____ .
"""" a Malicious

.
? Aggregated
local models ,
4

.

. O -~
. ‘e

,
1
IV . . o "~ < local models
- et K R .
@ v Aggregated | e H
Seo ! local models « K'Y ’
A .~ “ . - ’
1 ~ N 4
', Aggregated®, ama \ / e -> ﬁ’g
- A} .

= R Malicious N

local models .

\\ v, =5
“Els?s Aggregated
B local model o [Users | €= === === ’
P ot

(| S

Fig. 2: For achieving UIP on DFL, the malicious model
updates w$(T) are tailored based on the collected wy, (7))
from the neighbors. The proposed MPG framework at the
adversarial users aims to maximize the DFL training loss,
where the manipulated w¢(7") corrodes the benign one.

C. Defense Models

At user n, the cosine similarity among the received model
updates from its n neighbors can be measured, which is
used as a defense mechanism [27], [28]] to detect potential
UIP model updates.

The cosine similarity calculates the angular similarity
between every two users’ model updates, as given by

oy wirl(T) - win(T)
S lwe (DI Nlws (TN

where (i/,i") € [1,7], ¢’ # 4", and || - || stands for length
(magnitude) of the vector.

By computing the cosine similarity for each neighbor’s
model update, user n aims to identify those model updates
that deviate significantly in direction from the others. If the
similarity is beyond a predetermined threshold, denoted by
d$°%, the update can be flagged as potentially malicious.
This approach relies on the assumption that malicious
model updates deviate significantly in direction from benign
ones, enabling their detection and allowing the aggregation
process to discard or down-weight them accordingly.

We also consider another typical popular attacks’ detec-
tion model residing at the server, which leverages the Eu-
clidean distance metric to discern malicious local models,
for instance, Krum [29] or Multi-Krum [30]. By measuring
the Euclidean distance between each received local model
and the aggregated model, this model aims to identify
anomalous deviations indicative of malicious intent. The
underlying rationale is that genuine local models from
benign devices are expected to cluster within a certain
proximity in the model space, while malicious local models,
designed to sabotage the shared model’s integrity, would
exhibit more pronounced deviations. By setting a distance
threshold, denoted by quﬂu‘:, local models that exceed this
threshold can be flagged or discarded, effectively isolating

®)

and mitigating the impact of malicious local models on the
shared model’s integrity.

IV. PROPOSED MPG-BASED UIP ATTACK ON DFL

In this section, we delineate the architecture of the MPG
that aims to generate malicious model updates tailored for
UIP. The graph signal processing based on an adversarial
graph autoencoder (AGAE) is developed within the MPG,
and trained together with sub-gradient descent to recon-
struct manipulatively the correlations of the model updates,
where the reconstruction loss is maximized.

A. Adversarial Message-Passing Neural Networks

At malicious user j, w$(7) can be optimized to max-
imize the loss function of DFL in (3), thereby isolating
the benign user’s contributions and skewing the shared
model. Given the aggregation function of the DFL in
and (3), the optimization of the adversarial training model
at the malicious user j for isolating a benign user n can be
formulated as

7 DiT) s D, (7)
max (ieu?m 0T 0@ (7)) + i d(wn(T))
+ 3 g i) (6a)
JE,N']
st @y < d9, (6b)
d(0(wi (T), 8wy (T)) < dp™, (6¢)

where 7/ = i — N, and d(§(w5 (T), 8w (7)) in (&)
evaluates the Euclidean distance between any two shared
model updates received at benign user n. As the malicious
user participates as a legitimate user, the thresholds d$°
and d2"¢ are known to all users in DFL.

Constraints (6b) and guarantee that the attacker’s
malicious local model w¢(7) is in proximity to the shared
model in terms of cosine similarity and Euclidean distance,
while the two constraints ensure the overall similarity
and distance between the selected local models and their
shared model is below the upper bounds d$°° and d%c,
respectively. The A-MPNN is tailored to ensure those con-
straints and hinder the convergence of DFL by isolating the
correlation features between the benign local models and
embedding the correlation features in graphs for malicious
UIP model generation.

Note that the optimization in (6) is not an attempt to
obtain a provably convergent learner for DFL but rather
the formulation of an adversarial objective: it presents
the UIP attack to maximize the DFL training loss so as
to restrain or prevent DFL convergence. To solve (6) in
the UIP threat model, a new adversarial message-passing
neural networks (A-MPNN) architecture is developed at the
malicious user, as shown in Fig. 3] Specifically, a graph G
can be constructed, where the received models w? (7 are
represented as nodes.

Let j denote the number of benign neighbors around
malicious user j, which is also the number of nodes in G
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Fig. 3: With w?(7) from the neighbors, the proposed MPG-based UIP attack enables the malicious user to obtain the
hidden representations of each feature in the graph data. According to the model correlation, MPG is designed to generate
the UIP model update w?(T) that aims to isolate w,,(7") of the benign users.

(n € [1,7]). A matrix that contains w?(7") is an input to

the adversarial message-passing layer, while connectivity
is encoded in an adjacency matrix n € R7*J. An encoder
of the adversarial message-passing layer, denoted by h,
uses message-passing operations over w? (7)) to produce
neighborhood-aware representations of the context set.
Given 7 message passing steps, the features of the node
w3 (T) are denoted by A7, and the edges of two nodes n
and n’ on graph G are denoted by o> Where n7 0 = 1.
To update the node features, the message passing generation

function of the proposed MPG can be written as [31]
)\:L-"_l £ F(AZL’\I}H’EN(R)ﬂg(A; A;”N;,n’))ﬂ @)

where F' and G are learnable functions, W is a permutation-
invariant aggregation function, and N (n)={n'|n] ,, =1}.
Let Xpr(;) denote the features of node ¢’s neighborhood
on graph G. According to [32] and (7), the adversarial
message-passing layer in MPG can be written as

=/
n

Pr(Z, V1| X1, U Xy i) = Pr(2) YN
i1

F(XlHZ’ \I/n’GN(z)ag(‘Xlea‘Xn'HZ))aaz)a (8)

where Z is a random vector mimicking the randomness
of message passing, and ¢ is a random distribution of
observation noise [33]].

Through iterative message passing, the A-MPNN aggre-
gates neighboring benign models to learn latent feature
correlations. Instead of faithfully representing these corre-
lations, the adversarial component modifies them to strate-
gically suppress benign users’ influence during aggregation.
This allows the attacker to craft malicious updates that
outwardly resemble benign ones yet progressively diminish
the contributions of benign users to the shared model.

The significance of the A-MPNN lies in its ability to
manipulate complex graph-level dependencies that can-

not be detected by conventional distance/similariy-based
defenses. While many existing methods aim at spotting
anomalies in weight space using the Euclidean distance
or cosine similarity, the A-MPNN exploits higher-order
correlations among model updates to gradually bias DFL. In
decentralized settings, the absence of a central server makes
it difficult to monitor or filter such manipulations. The A-
MPNN leads to the unique risks of DFL and the limitations
of defense strategies. Beyond demonstrating a new attack,
the A-MPNN also points to the necessity of graph-aware
defenses that can reason about structural dependencies
rather than relying solely on parameter similarity.

B. Training Adversarial MPG with Sub-Gradient Descent

Optimizing the adversarial training model at the ma-
licious user, as specified in @, presents a non-convex
combinatorial problem that is intractable with standard
optimization techniques. To address this, we extend the
Lagrangian dual method to decouple the MPG architecture,
effectively separating the attack mechanism from the selec-
tion of benign users. We design a new iterative approach,
as illustrated in Fig. 3] to optimize the UIP model updates
w?(T) by concurrently running the adversarial MPG and
updating sub-gradient descent.

According to (6a), (6b), and (6c), let p(7) and 6(T)
denote the dual variables, and the Lagrange function at the
malicious user j can be written as
Li(p(T),0(T)) = Fross @ (T)) + D> p(T)(dF™

iy =1

— @)+ Z O(T)(d7" — d(3(w3(T), 8w (T)))),

€))

where i’ # 7", and Fpess(w§(T)) represents the objective
function in (6a).
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We further rewrite the Lagrange dual function as

LY (p(T),0(T)) = Dnax Li(p(T).0(T)). (0)

The dual problem of the problem in (6) can be given by

min _ LP(p(T),0(T)). (11)
i £2(p(T).0(T)

At the malicious user j, the primary variable w§(7) of
the Lagrange function (I0) can be updated by solving

(7" = ang g { P (T) -3 (T (a5
G- > 0T (&5 — (50w (7). 80037
it i =1

(12)

To optimize the adversarial model parameters w(7)"
in (12)), we design a new AGAE within the proposed MPG
architecture. As illustrated in Fig. [3] the AGAE consists
of two primary components: An encoder and a decoder.
The encoder is designed to encode the feature matrix A,
by utilizing the rewired adjacency matrix 7 from the MPG,
which outputs a matrix Z.

Let Feov(¢]), w, and B denote a spectral convolution
function, a weight matrix, and the number of graph con-
volutional network’s layers, respectively, we have Z5 =
Feoy(ZB~1, n|wPB) [34]. Let F(ZB~1, n|w?) represent the
graph G, and ®5(-) denote a nonlinear activation function,
e.g., tanh or ReLU. The encoder can be given by

Fo(ZB 1 nlwP) = B 2q 2 ZP1wP),  (13)

where 7=n+Z, Z denotes an identity matrix, and 7= _ 7).

The decoder in AGAE then takes the output Z5 from the
encoder to reconstruct a UIP 7). This operation essentially
acts as the inverse of the encoder. The decoder aims to
reconstruct the original graph from its compressed repre-
sentation produced by the encoder. We define

7 = Sigmoid(ZP (Z5)T), (14)

where Sigmoid(z) = 1/(14+e~7) is the Sigmoid function.
To evaluate the reconstruction accuracy, the decoder’s
output is compared against the original input graph, and a
loss function is formulated based on the differences. The
encoder and decoder are trained simultaneously in an end-
to-end manner to maximize the reconstruction loss, thereby
crafting a UIP w$(7)" from the reconstructed graph.

The reconstruction loss can be written as
E;G(ngl,mwg)[log 9 7 | ZB )}, where
(| 28 ) = W_,10,_9( 4 | Z5,Z5 ) and

9(f = 128, Z8, ) = sigmoid (zf (zf,)T).

The proposed AGAE uses reconstruction loss as a proxy
for how well the learned latent graph captures the genuine
feature-level correlations among benign model updates.
By maximizing this loss, the adversary forces the latent
representation to misrepresent those correlations. During

message passing, the AGAE learns node embeddings that

allow reconstruction of neighborhood feature patterns; the
adversary optimizes its UIP model updates to increase the
reconstruction error for benign nodes. As a result, (i) the
embedding geometry is perturbed so that benign users no
longer lie in the same latent neighborhoods as before, and
(ii) the pairwise affinity/attention coefficients (computed
from embeddings) are altered so that incoming messages
from benign neighbors are down-weighted in aggregations.

C. Generating UIP Models

The proposed MPG-based UIP attack represents a new
category of adversarial threats in DFL, where malicious
users exploit feature-level correlations in local model up-
dates to strategically isolate benign participants’ contribu-
tions. Specifically, the MPG learns the feature-level corre-
lations across neighboring model updates through iterative
message passing, and then modifies these correlations to
craft malicious updates that reduce the contribution of
benign peers in subsequent aggregations. Through message
passing, the adversarial MPG captures local dependencies
among benign users’ updates and selectively alters them
to weaken benign nodes’ influence in the evolving model
graph. Over multiple rounds, this controlled injection of
adversarial signals results in the progressive isolation of
benign participants, causing their updates to be marginal-
ized in the global consensus.

According to Fig. 3| Algorithm [I] is executed at the
malicious user j to train the proposed MPG, where the
output of the AGAE refines the the correlation of w$(7")
with the benign ones. To generate w$(7 ), we define a
Laplacian matrix based on 7, which yields

v =AM —n, 15)

where A(n) denotes a diagonal matrix of 7.

Let Agpr denote a graph Fourier transform (GFT) basis,
which can transform graph data to its spectral-domain
representation. A’(n) presents a diagonal matrix with the
eigenvalues of 7 along its main diagonal. Singular value
decomposition (SVD) can be applied to (13), yielding

Y= AGFTA/(n)AgFT'

First removing inter-model correlations and then emphasiz-
ing the underlying data features supporting the local mod-
els, we construct a matrix # that represents the spectral-
domain data characteristics of the benign local models.
Given the feature matrix A that contains the features of
neighboring benign local models, the malicious user has

H = AgppA. (17)
Similar to (L5, with 7 from the decoder of AGAE, the
malicious user can build a reconstructed Laplacian matrix:
¥ =A4A0) -1 (18)
The SVD of 4 determines the reconstructed GFT basis,

Acrr. According to (I7), the malicious user can obtain a
reconstructed feature matrix, as given by

5\ = KGFT'H.

(16)

19)
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Algorithm 1 Training MPG for Generating UIP Models

1: The malicious user j, Vj € [1, N’] collects w? (T") from
its neighbors.

2: Given 7 message passing steps, graph G is formulated

at each malicious user with A} and w7, /.

The adjacency matrix 77 is initialized with G.

Training the A-MPNN:

for step=1, 2, ..., 7 do
Ay, is updated by (7) while 47, ., is rewired according
to the update of ().

end for

: Training MPG with sub-gradient descent:

9: Ay and pip, v — AGAE, where )\, is encoded — Z5.

10: At the decoder, 7 is reconstructed by (14), while

Erz5-1.clw?) [1og 9( 7 | Z8 )] is maximized.

AN

® 3

In particular, X determines the malicious local model wi(T)
whose correlation with the benign local models is refined
by AGAE to achieve the optimization of the adversarial
training model in (6).

D. Complexity Analysis

Each message-passing step in the A-MPNN involves
aggregating features from neighbors and updating node
embeddings. For a graph with IV benign users and C edges,
the computational complexity per message-passing step is
O(|C|k), where & is the embedding dimension. In sparse
DFL, where each user connects to a limited set of neighbors
and thus |E| = O(N), the per-step cost becomes linear in
the number of users. With 7 message-passing steps and 53
layers, the overall complexity is O(7BNk), which remains
scalable to hundreds or even thousands of users given that
both 7 and 55 are modest constants in our design. Memory
requirements are also linear in N, as each user maintains
an embedding vector and neighbor indices.

V. PERFORMANCE EVALUATION

This section presents the implementation of the MPG-
based UIP attack using PyTorch. We assess the test accu-
racy based on d(w, (7)), as well as the KL divergence
among the received shared models, when subjected to
the MPG-based UIP attack. The detection efficacy of the
MPG-based UIP attack is examined through the met-
ric of cosine similarity and Euclidean distance between
wn(T) and w?(T), Vi € [1,7]. The source code for
the MPG-based UIP attack has been released on GitHub:
https://github.com/AnonymousAuthors/DFL_Attack.

A. Experimental Implementation

The standard DFL typically seeks to enhance accuracy in
image classification; conversely, the UIP attack described
here intentionally deteriorates performance and provokes
incorrect labeling. In our setup, the number of benign users
(NV) is set to 40, whereas the malicious users (') are given

as 5 or 10. The model aggregation of w?(7), undergoes
training across 50 communication rounds, with each local
model w,(T) performing 10 iterations per round.

For constructing the adjacency matrix 7 at A-MPNN,
we experiment by selecting different numbers of message
passing steps (7), specifically 100, 200, and 300, so that
Mo,y 18 Tewired according to the update of (8). The AGAE’s
encoder consists of a two-layer Graph Convolutional Net-
work (GCN) enhanced by a dropout layer for mitigating
overfitting risks, while the decoder employs an inner-
product operation. Optimization is carried out using the
Adam optimizer at a learning rate of 0.01.

The implementation of the proposed MPG attack was
conducted on a SVM model, utilizing PyTorch version
1.12.1 and Python version 3.9.12. This setup was deployed
on a Linux-based workstation, equipped with an Intel(R)
Core(TM) i7-9700K CPU at 3.60 GHz, featuring 8 cores,
and supported by 16 GB of DDR4 memory operating at
2400 MHz. The experimentation involved the application of
the UIP attack across three datasets, demonstrating the at-
tack’s efficacy and potential impacts on SVM models under
specified computational environments and data conditions:

e MNIST: This is a common basic dataset containing
grayscale images of handwritten digits ranging from O
to 9, split into a training set of 60,000 samples and a
test set of 10,000 samples.

o CIFAR-10: This dataset includes 60,000 color images
sized 32 x 32 pixels, categorized into 10 classes, each
with 6,000 images. This dataset divides into 50,000
training images and 10,000 test images.

o Street View House Numbers (SVHN): This dataset
comprises more than 600,000 digit images extracted
from real-world street-view captures, representing
house numbers in natural, unprocessed scenes, dis-
playing significant variability in illumination, viewing
angle, and background context.

Note that, regardless of the specific model architecture
(NNs or SVMs) employed for model training at benign
users, the fundamental premise of the UIP attack is valid.
Specifically, the attack does not depend on the specific ar-
chitecture used by benign users, but rather on the exchange
of shared model updates and their feature-level correlations.
In practice, whether the shared model is trained using
SVMs or NNs, the adversary can still generate UIP model
updates that, when aggregated, steer the DFL away from
its optimal shared models. This is achieved through the
new A-MPNN, which is designed to capture the structural
correlations of benign users’ model updates and then craft
malicious model updates that effectively isolate benign
contributions. Because these correlations are inherent to
the shared model regardless of whether it is built on NNs
or SVMs, the UIP attack is a general and effective threat
across different model architectures in DFL.

Recent studies [23]], [35], [36] indicate that network
topologies, such as ring and grid structures, can signifi-
cantly impact DFL performance by influencing model prop-
agation, thereby affecting model accuracy. Therefore, we
examine these two topologies within our DFL framework.
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Fig. 4: The local model training loss of the proposed MPG
attack on the MNIST, CIFAR-10, and SVHN datasets,
where there are 50 communication rounds in the ring

topology.

o Ring: each user is connected only to two immediate
neighbors, forming a closed-loop structure. Model
aggregation occurs locally, where each user combines
its own model updates with those received from its
immediate neighbors, propagating information sequen-
tially around the ring.

o Grid: users are arranged in a two-dimensional lattice,
where each user connects directly with its immediate
horizontal and vertical neighbors. Aggregation at each
user involves combining local model updates with
models received from the adjacent neighbors, enabling
parallel and structured information flow.

For performance comparison, we consider the following
two existing, recently developed attack models as baselines.

o Variational autoencoder (VAE)-based poisoning at-
tack [21]: This attack model explores VAE to regener-
ate the graph’s structural correlations adversarially to

maximize the training loss of DFL, where adversarial
graph structure alongside the benign training data
features are used to create malicious local models.
This approach assumes that the malicious users can
passively intercept the local models shared by be-
nign users and utilize them to generate the malicious
local models. In particular, the VAE-based poison-
ing attack relies on an encoder-decoder framework
to reconstruct model updates from latent variables.
It does not incorporate graph message passing; in
other words, it primarily captures global statistical
dependencies while overlooking fine-grained, local
correlations among users’ updates.

« Differential privacy (DP)-based attack [37]: This at-
tack model operates by injecting Gaussian noise into
the malicious local model updates before sharing them
with other users in DFL. The malicious users adjust the
variance of this Gaussian noise over time to maximize
disruption to the convergence and degrade overall
model accuracy.

B. Attacking Performance

1) Training loss: Fig. @] presents the local model’s
training loss under the proposed MPG attack given the
MNIST, CIFAR-10, and SVHN datasets. With five mali-
cious users participating in DFL, the average loss increases
from 0.2 to 0.3 (MNIST), from 3 to 5 (CIFAR-10), and
from 8 to 11 (SVHN) compared to DFL without attackers.
Specifically, for the CIFAR-10 and SVHN datasets, further
increasing the number of malicious users to ten results
in a significant rise in the average loss values, from 5
to 13 for CIFAR-10 and from 11 to 31 for SVHN. This
notable degradation demonstrates the effectiveness of our
proposed UIP attack. By isolating benign users and forcing
them to train on manipulated or low-quality data, our attack
effectively amplifies the local training errors, which shows
the vulnerability of DFL systems to user isolation strategies,
particularly as the number of malicious users grows.

Moreover, the greater variability observed in Figs. @|b)
and [4c) for CIFAR-10 and SVHN, compared to Fig. f[a)
for MNIST, is primarily due to the higher complexity and
variability inherent in these datasets. Particularly, MNIST
comprises simple, grayscale handwritten digits with limited
variance, making the dataset less sensitive to perturbations
introduced by the UIP attack. In contrast, CIFAR-10 and
SVHN datasets consist of more complex, colored images
with diverse backgrounds and higher intra-class variations,
rendering the training process inherently more fluctuating.
Under the UIP attack, the impact of maliciously injected
models is significantly magnified, causing substantial dis-
ruption and resulting in a pronounced increase in the train-
ing loss for CIFAR-10 and SVHN compared to MNIST.

2) Network topologies: Fig. [5] compares the model
test accuracy under our proposed MPG-based UIP attack
against existing DP-based and VAE-based attacks, evalu-
ated on both ring and grid topologies in the DFL frame-
work. Specifically, the MPG-based UIP attack achieves
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Fig. 5: Model test accuracy of the proposed MPG-based UIP attack and the existing DP-based or VAE-based attack on
the MNIST, CIFAR-10, and SVHN datasets. Ring and grid topologies are considered.

a lower test accuracy in the ring topology compared to
the grid topology. For instance, Figs. [5[a) and [5[b) show
that, when deploying the MPG-based UIP attack with ten
malicious users on the MNIST dataset, the test accuracy
on the ring topology is 21.3% lower than on the grid.
Similarly, Figs. [5c) and [5(d) show a 5.7% accuracy reduc-
tion on CIFAR-10. Figs. B[e) and [5f) indicate an 11.7%
accuracy drop on SVHN, when comparing ring topology
performance to that of the grid topology.

The difference in test accuracy between the ring and grid
topologies under our MPG-based UIP attack is reasonable.
The ring topology provides limited connectivity between
the users, where each user exchanges local models only
with its immediate neighbors, resulting in longer and less
redundant communication paths for propagating model up-
dates across the DFL. Any malicious manipulation in such
a sparsely connected structure is amplified, as benign users
have fewer alternative trustworthy sources to mitigate the
influence of UIP updates. Conversely, the grid topology
features richer and more redundant connectivity, enabling
multiple pathways for information propagation. This re-
dundancy facilitates more effective filtering of malicious
information, as each benign user aggregates updates from
several neighbors, thus reducing the overall impact of any
single compromised model update. The proposed MPG-
based attack achieves greater performance degradation in
the ring topology compared to the grid topology.

Moreover, the MPG-based UIP attack consistently out-
performs existing DP-based and VAE-based attacks. As
shown in Figs. [5fe) and [(f), the test accuracy under the
MPG-based attack is 28.8% lower than the DP-based attack,
and 49.5% lower than the VAE-based attack.

On the one hand, the superior performance can be at-
tributed to the strength of the proposed A-MPNN architec-
ture, which effectively preserves strong feature correlations
between the crafted malicious models and the benign ones.
By accurately capturing and exploiting these correlations,

the malicious models appear more plausible and trustworthy
to benign users. The poisoned updates propagate more
effectively within the DFL, which significantly degrades
the overall accuracy.
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Fig. 6: Cosine similarity of the model updates under the
proposed MPG attack.
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Fig. 7: Cosine similarity of the model updates under the
VAE-based poisoning attack.

On the other hand, the DP-based attack inject ran-
dom perturbations into model parameters to distort the
training process; however, this randomness typically lacks
coherence with the true underlying feature distributions,
making the poisoned updates less effective in misleading
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DP attack.
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Fig. 9: Euclidean distance of the model updates under the
proposed MPG attack.

benign models. In addition, the VAE-based attack rely on
generative models trained to approximate data distributions,
yet their reconstruction capabilities are constrained by the
quality and diversity of latent representations learned during
training. Therefore, the VAE-generated poisoned updates
may miss crucial subtle correlations or hidden patterns that
genuine models naturally exhibit.

3) Cosine similarity & Euclidean distance: To evaluate
the stealthiness of the proposed UIP attack and compare
it with existing poisoning strategies, Figs. [6HI] present
the cosine similarity, as defined in @), and the Euclidean
distance, i.e., d(6(w3 (7)), (w3, (T))), between the model
updates of benign and malicious users under each attack.
The evaluation is conducted in a DFL setting with a ring
topology, where the total number of benign users N and
the number of malicious users N are set to 5.

The cosine similarities and Euclidean distances under
the proposed MPG-based attack remain closer to those
of benign local models compared to the DP- and VAE-
based attacks. This indicates that the UIP model updates
generated by the MPG attack are more similar to benign
updates, making it significantly harder for the DFL users to
distinguish and defend against manipulation. In contrast,
the DP and VAE attacks result in much larger deviations,
causing the malicious updates to stand out and become
more easily detectable. The key strength of the proposed
A-MPNN lies in its ability to selectively isolate a targeted
benign user’s feature representation while maintaining a
high degree of correlation with the remaining benign model
features. This targeted isolation allows the attack to de-

-

mUser 1—Atker 1
mUser 2—Atker 2
[l=User 3 —Atker 3|
mUser 4 —Atker 4
=User 5 Atker 5

o
©

o
o

Euclidean distance
o o
N -
=
=
-5

5 10 15 20 25 30 35 40 45 50
Communication rounds

Fig. 10: Euclidean distance of the model updates under the
VAE-based poisoning attack.
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Fig. 11: Euclidean distance of the model updates under the
DP attack.

grade the model performance for the victim user without
triggering anomaly detection mechanisms that rely on the
neighborhood similarity metrics.

4) Ablation study: The VAE-based attack serves as an
ablation baseline for our proposed MPG-based attack to
highlight the importance of A-MPNN. Architecturally, the
two threat approaches utilize graph neural networks to
generate malicious model updates by learning from benign
models. However, the MPG-based framework integrates
message passing layers into the encoder-decoder struc-
ture, enabling the model to explicitly capture relational
dependencies among neighboring benign users in the DFL
topology.

As shown in Fig. 5] these message passing layers al-
low the MPG attack to encode topological and feature-
level interactions between the aggregated local models
at the malicious user, resulting in more context-aware
and strategically crafted UIP model updates to isolate the
benign features. In contrast, the VAE-based attack lacks
this relational modeling capability, as it operates solely
on individual model parameters without accounting for the
structural influence of neighboring local models.

Without message passing, the VAE-generated poisoned
model updates may overlook subtle correlations and hidden
patterns that naturally exist among genuine models in
decentralized settings. As illustrated in Figs.[6] [7] [0 and[I0]
the malicious model updates appear more anomalous and
less aligned with the benign ones, allowing the affected
benign users in DFL to effectively counteract the attack by
aggregating trustworthy models from their multiple benign
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Fig. 12: Test accuracy of DFL under the proposed MPG-

based UIP attack, when 7 increases from 100 to 500.
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neighbors. This leads to relatively high test accuracy under
the VAE attack. In contrast, the new MPG-based attack
carefully crafts UIP model updates that maintain strong
correlations with the benign models from the neighbors,
while selectively isolating the targeted user’s feature space.
This targeted and context-aware manipulation leads to a
more pronounced degradation in test accuracy, demonstrat-
ing superior attack effectiveness in DFL systems.

5) Impact of message passing steps T: Fig. @ shows
an average test accuracy of DFL under the proposed MPG-
based UIP attack, when the number of message passing
steps 7 increases from 100 to 500. We notice a non-
linear behavior, where the lowest test accuracy of DFL
occurs at 300 message-passing steps instead of continuously
decreasing with increased 7. This can primarily be due to an
over-smoothing effect in A-MPNN. Initially, increasing 7
to up to 300 allows the malicious model to better aggregate
and exploit fine-grained correlations among benign model
updates, enhancing the effectiveness of the crafted poisoned
model updates and lowering test accuracy.

When 7 > 300, the excessive message passing leads to
diminishing returns, as the learned representations become
overly smoothed and diluted, causing essential adversarial
rewiring of y;, ., and subtle distinctions between malicious
and benign features to weaken. As a result, the generated
malicious updates lose their specificity and precision, re-
ducing the UIP attack’s effectiveness, which explains why
the test accuracy no longer drops linearly and even begins
to recover slightly after exceeding the 300 steps.

6) Scalability of The UIP Attack: To demonstrate the
generalisability of our proposed attacking algorithm in
larger DFL systems, we extend the number of benign
users and malicious users to 100 and 20, respectively. As
shown in Figs. [I3] and [I4] our MPG-based UIP attack
remains consistently outperforming the baseline algorithms,
DP-based and VAE-based attacks. Specifically, in the ring
topology, the test accuracy under the proposed MPG-based
attack is 17.9% and 18.4% lower than the VAE-based
attack and the DP-based attack, respectively. In the grid
topology, compared with VAE-based attack and DP-based
attack, our attack achieves 10.4% and 20.4% lower than the
two approaches, respectively. Moreover, the UIP attack’s
effectiveness increases with the number of malicious users.
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Fig. 13: The model test accuracy with the ring topology of
DFL.
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Fig. 14: The model test accuracy with the grid topology of
DFL.

Adding more adversaries increases the fraction of UIP
model updates circulating in the peer graph, which raises
the probability that benign users receive and incorporate
UIP features in the shared model updates. Adding more
adversaries also enlarges the adversarial influence in the
A-MPNN to learn and distort feature correlations, while
permitting perturbations that reinforce each other across
communication rounds.

7) Runtime Measurements: We measured the per-round
runtime of the proposed MPG-based UIP attack on a large-
scale DFL (20 attackers, 100 benign users). As shown in
Fig. [I5] under the grid topology, the attacker’s average
runtime per round lies roughly in the 1.4-1.9s range (~1.65s
on average). As shown in Fig. [I6] under the ring topology,
the measured runtimes are slightly higher, about 1.5-1.9s
per round (=1.70s on average). These results show that
the dominant cost is the local A-MPNN message-passing
and embedding updates (which scale with the number
of local neighbors, embedding dimension x, 7 message-
passing steps, and B layers); in our configuration the
per-attacker overhead is therefore on the order of one
to two seconds per communication round. Because this
computation is performed locally by the attacker (no extra
network-wide coordination required), it is parallelizable and
can be reduced by tuning x, 7 or B3, or by batching message
computations. Therefore, the MPG-based UIP attack is
computationally feasible at the edge in our experiments
(about 1.6-1.7s/round per attacker).
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Fig. 15: Average runtime of the MPG-based UIP attack
under the grid topology
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Fig. 16: Average runtime of the MPG-based UIP attack
under the ring topology.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper proposed the MPG-based UIP attack, which
strategically suppresses the influence of benign users’
model updates in DFL to steer the shared model toward
adversarial objectives. To address the complexity of the
non-convex adversarial training problem, a graph signal
processing framework was proposed to iteratively refine the
malicious updates through alternating execution of the UIP
mechanism and sub-gradient descent. Moreover, A-MPNN
was jointly trained with sub-gradient descent to learn the
structural dependencies among benign model updates. By
adversarially reconstructing these relationships, A-MPNN
maximizes reconstruction loss while keeping the compro-
mised model updates undetectable. The attack was im-
plemented in PyTorch and validated through experiments,
demonstrating a significant reduction in the test accuracy
and successful evasion of state-of-the-art defenses based on
cosine similarity and Euclidean distance.

The proposed MPG-based UIP attack focuses on homo-
geneous DFL that is consistent with many typical applica-
tion scenarios, such as collaborative learning among mobile
devices of the same manufacturer, IoT sensors deployed
in smart cities, or wearable sensors on patients in smart
hospitals, where users share similar computational capabil-
ities and model architectures. Within this adopted setting,
our proposed UIP attack introduces a fundamentally novel
threat model against DFL, exposing a critical vulnerability
of DFL systems that had not been studied before. DFL
deployments may also involve heterogeneous devices and

non-IID data distributions, requiring adversaries to align
updates across different feature spaces or adapt message
passing to non-uniform topologies. Hence, extending the
MPG-based UIP attack to the heterogeneous DFL presents
a meaningful direction for future research.

In addition, developing effective defense mechanisms
against the proposed MPG-based UIP attack is essential
to enhance the robustness of DFL. Potential defenses
should focus on detecting subtle and coordinated adversar-
ial behaviors that manipulate structural relationships among
model updates while maintaining statistical similarity to
benign models. This calls for a deeper understanding of
both the topological and dynamic properties of decentral-
ized model interactions. Future work may explore adap-
tive, context-aware strategies that go beyond traditional
similarity-based checks, aiming to preserve the integrity and
diversity of benign contributions without compromising the
decentralized nature of the system.
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