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Abstract—EdgeIoT represents an approach that brings
together mobile edge computing with Internet of Things (IoT)
devices, allowing for data processing close to the data source.
Sending source data to a server is bandwidth-intensive and
may compromise privacy. Instead, federated learning allows
each device to upload a shared machine-learning model update
with locally processed data. However, this technique, which
depends on aggregating model updates from various IoT
devices, is vulnerable to attacks from malicious entities that
may inject harmful data into the learning process. This paper
introduces a new attack method targeting federated learning
in EdgeIoT, known as data-independent model manipulation
attack. This attack does not rely on training data from
the IoT devices but instead uses an adversarial variational
graph auto-encoder (AV-GAE) to create malicious model
updates by analyzing benign model updates intercepted during
communication. AV-GAE identifies and exploits structural
relationships between benign models and their training data
features. By manipulating these structural correlations, the
attack maximizes the training loss of the federated learning
system, compromising its overall effectiveness.

Index Terms—Internet of Things (IoT), mobile edge com-
puting, federated learning, variational graph auto-encoder,
manipulating model accuracy, adversarial attacks

I. INTRODUCTION

Edge-based Internet of Things (EdgeIoT) represents a
critical advancement that merges mobile edge computing
with IoT devices, enabling data processing close to the
data source [1], [2]. By combining the computational
power at the edge with the flexibility of IoT devices,
this method enables real-time data analysis and decision-
making, minimizing delay and ease bandwidth demands
that arise from transmitting data to a server. It is particularly
crucial for applications that need rapid responses, such as
disaster management, environmental monitoring, and smart
city development. EdgeIoT revolutionizes the way that data
is processed and utilized, paving the way for efficient, agile,
and intelligent systems in metaverse [3], [4].

Federated learning can greatly enhance data process-
ing efficiency and decision-making in EdgeIoT environ-
ments. As illustrated in Fig. 1, federated learning within

an EdgeIoT framework involves IoT devices equipped
with sensors and computational units that process data
locally [5], [6]. Sending source data to a server is commu-
nication resources-intensive and may compromise privacy.
Instead, federated learning allows each device to process
data locally and only to upload the updated local model [7].
However, the reliance on aggregating updates from multiple
devices makes the system vulnerable to attacks. Malicious
devices can inject harmful updates, which may distort the
learning model and lead to incorrect or dangerous decisions.
This threat is particularly notable in key applications such
as disaster management, ecological tracking, and urban
facilities monitoring, which have a critical requirement on
the learning precision and EdgeIoT’s reliability.

In this paper, a new manipulation model attack is pro-
posed to compromise federated learning accuracy within
EdgeIoT. Our approach employs an adversarial variational
graph auto-encoder (AV-GAE) to generate malicious local
model updates by exploring the features of benign local
and global models. The attacker can eavesdrop on the local
model updates uploaded from benign devices to the server.

AV-GAE exhibits a remarkable ability to detect and
analyze intricate patterns and structural relationships within
graph-structured data, making it a powerful tool for fed-
erated learning-enabled EdgeIoT. It excels at compressing
graph data into a manageable, lower-dimensional space
while preserving essential topological features. The attacker
strategically alters the structure of the graph, maintaining
the essential features of the models. This manipulation
is specifically designed to inflate the training loss while
disrupting the learning efficiency and degrading the per-
formance of the global model. This altered graph structure
is used to create harmful local models that align with the
benign models’ data characteristics. As a result, these ma-
nipulated local models can significantly disrupt the global
model’s integrity while remaining consistent with benign
models, making detection of the AV-GAE-based attack
particularly challenging.
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Fig. 1: Federated learning-enabled EdgeIoT involves IoT
devices equipped with sensors and computational units that
process data locally.

This paper makes several important contributions:
• Introduction of a new model manipulation attack:

We present a novel cyberattack designed to create
data-independent manipulated model updates using a
malicious IoT device. This method aims to reduce
the accuracy of federated learning in EdgeIoT by
altering correlations in benign model updates while
maintaining the original data features.

• Exploration of an AV-GAE attack: We examine a
new attack model based on AV-GAE. This model
manipulation attack is trained with the sub-gradient
descent technique to subtly modify correlations within
local models, ensuring that the manipulation remains
undetectable.

• Implementation and evaluation: Using CIFAR-10 and
FashionMNIST datasets, our results reveal that the AV-
GAE attack significantly disrupts federated learning
performance in EdgeIoT. The performance demon-
strates a marked drop of training accuracy, fluctuating
between 50% and 70%, underscoring the attack’s ef-
fectiveness in impairing federated learning efficiency.

The structure of this paper is as follows: Section II
reviews existing research on adversarial attacks within
EdgeIoT and federated learning. Section III discusses the
system model for federated learning in EdgeIoT, including
aspects such as device interactions, and communication
channels. In Section IV, we describe the design and
methodology of our AV-GAE attack. Section V details the
performance evaluation of our approach. Finally, Section VI
presents the conclusion of the paper and future research.

II. RELATED WORK

In this section, we review related research on adversarial
attacks against EdgeIoT and federated learning.

The work in [8] emphasized the categorization of threats
in federated learning. Poisoning attacks can be classified
into two categories according to their intent: untargeted and

targeted. Untargeted attacks strive to weaken the perfor-
mance of the system, whereas targeted attacks aim to alter
the system’s behavior to generate specific, incorrect results.
In [9], a summary of attacking and defending mechanisms
in federated learning-enabled EdgeIoT was presented, with
the attacks classified according to their techniques and
objectives. Defense strategies were divided into three key
approaches: model analysis, which examines models for
potential tampering; Byzantine aggregation, which uses
reliable techniques to reduce the influence of malicious
models; and verification methods, which improves the
integrity and authenticity before the aggregation.

A collusion-based model poisoning attack was described
in [10], where malicious participants collaborated to gen-
erate untargeted poisoned local models within specific
distance constraints, thereby reducing the global model’s
convergence and accuracy. Zhou et al. [11] designed a
model poisoning attack by injecting malicious neurons into
the unused regions of a neural network, resulting in a
malicious local model. These neurons assisted in carrying
out the attack but had minimal impact on the main task,
ensuring the performance of the global model remains
largely unaffected.

The authors in [12] studied a data-agnostic model poison-
ing attack on federated learning by developing a graph auto-
encoder-based framework. This attack operated without
requiring access to the FL training data, while achieving
effectiveness and remaining undetectable. The attacker ad-
versarially reconstructed these graph correlations, aiming to
maximize the training loss in FL, and generated malicious
local models by leveraging the adversarial graph structure
and the data characteristics of the benign models.

In [13], a defense model was developed to counteract
model poisoning in EdgeIoT. This model included a proof
generation mechanism that allowed users to present ev-
idence verifying whether their inputs were manipulated.
Furthermore, it introduced an aggregation scheme aimed
at preserving the training accuracy of the global model.

Existing poisoning attacks in federated learning often fail
to account for the intricate interconnections between differ-
ent local model updates. This limitation allows poisoning
defense mechanisms, which rely on measuring Euclidean
distances between local models, to detect such attacks. In
contrast, the AV-GAE attack proposed in this paper for
EdgeIoT introduces a new data-independent approach to
model manipulation. Rather than focusing on raw data, this
attack focuses on altering the relationships between features
in specific benign local models. Importantly, it preserves the
integrity of the data features within these models, ensuring
that the poisoned local models generated by the malicious
device remain undetectable.

III. FEDERATED LEARNING WITH IOT DEVICES

We first examine the federated learning training process
in EdgeIoT. We also formulate the channel gain between
the benign IoT device and the server.



We focus on a system comprising N benign IoT devices
and H authorized malicious device. A benign device n (∈
[1, N ]) possesses a local dataset containing Bn samples.
The dataset consists of input data xnc collected by device n
for the c-th sample, and ync which is the output generated
by the model on that device for the same sample, where c
ranges from 1 to Bn [14]. We define fc(wn;xnc , y

n
c ) as a

training loss function at device n, measuring the training
error given xnc and ync . The weight of the loss function in
the federated learning model being trained is denoted by
wn. For instance, fc(wn;xnc , y

n
c ) can be formulated by a

linear regression, i.e., fc(wn;xnc , y
n
c ) = 1

2 (wT
nx
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notation (·)T denotes the transpose.
Given Bn, the local loss function of device n in every

communication round can be formulated as:

Fn(wn) =
1

Bn

Bn∑
c=1

fc(wn;xnc ,y
n
c ) + αR(wn), (1)

where α ∈ [0, 1] is a scaling coefficient, andR(·) represents
the regularization function accounting for the training noise
at the IoT device.

Moreover, we define Pn = (Xn,Yn,Zn) as locations of
the device n, while the location of the server is denoted
by Pserver = (Xserver,Yserver, 0). The distance between the
IoT device n and the server is given by

Dn = ||Pn − Pserver||
=
√

(Xn −Xserver)2 + (Yn − Yserver)2 + Z2
n. (2)

The channel gain between device n and the server is
given as Hn, and Hn = T0

D2
n

, where we use T0 to represent
a transmit power basis for the IoT device when Dn = 1 m.
Let Ti denote the transmit power of device n. We can have
Λn = HnTi

λ2
0

, which presents the signal-to-noise ratio (SNR)
of the channel between device n and the server, where the
noise level of the channel is λ20.

IV. PROPOSED AV-GAE-BASED MODEL
MANIPULATION ATTACKS

In this section, we explore a threat scenario where a
malicious IoT device intentionally crafts and sends altered
local model updates. The adversary’s goal is to gradually
compromise the integrity of the global model by injecting
these manipulated updates during the training process.

A. Attacker in Federated Learning

An attack model can be applied to the model manip-
ulation attack in federated learning, where a malicious
IoT device carries out the AV-GAE attack by intercepting
benign local model updates. A manipulated local model
update is generated at the malicious device and uploaded to
the server. The manipulated update is specifically crafted to
manipulate benign local models as well as global models

in a detrimental way, reducing the model’s accuracy and
corrupting the benign local models. In federated learning-
enabled EdgeIoT systems over wireless communications,
model manipulation attacks are particularly concerning due
to the broadcast nature of radio communication, which
makes interception easier [15], [16].

The malicious device is either a manipulated benign
IoT device or an attacker, aiming to minimize the training
accuracy of federated learning [17]. In this attack scenario,
the malicious IoT device methodically fabricates and up-
loads altered local models. This continuous injection of
manipulated updates leads to the gradual degradation of
the global model’s integrity, which is represented by ωg .
This, in turn, negatively impacts the benign local models,
represented as ωn. In particular, ωa denotes the manipulated
model updates generated at the malicious IoT device (or
attacker).

Without being aware of the malicious intent of the
compromised IoT device, the server aggregates local model
updates from all devices, including both benign and manip-
ulated updates. This aggregation inadvertently results in the
formation of a compromised global model, denoted as ωag .
The total data samples can be given as B =

∑N
n=1Bn+Ba,

where Ba represents the reported samples from the attacker.
As a result, the manipulated global model can be expressed:

ωag =

N∑
n=1

Bn
B

ωn +
Ba

B
ωa, (3)

B. AV-GAE-based Model Manipulation Attack

Based on the loss function of Fi(ωn) and ωag , the
manipulated model updates are crafted to maximize the
loss function at the server, i.e., maxF (ωag ). Additionally,
we impose a constraint ensuring that the Euclidean distance
between the malicious model ωa and each benign model ωn
(for all n ∈ {1, · · · , N}) remains below a predetermined
threshold Dthresh [18]. This limitation is crucial to make the
malicious model appear similar to the benign ones, thereby
avoiding detection by defense mechanisms that monitor for
significant deviations in model updates [19].

The AV-GAE attack seeks to solve ω?a =
arg max{F (ωag )} by carefully preserving and manipulating
the correlations between the generated malicious models
and the benign ones, hindering the convergence of
federated learning. Fig. 2 demonstrates the generation of
manipulated local models from the AV-GAE-based attack,
where the model parameters of benign IoT devices are
decomposed into two components: a graph captures the
correlations or similarities among the benign models [20],
and data features represent benign local models. AV-GAE
reconstructs the graph in a manipulative manner, where
the manipulated models are generated by combining the
reconstructed graph with original data features from benign
models.
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Fig. 2: Generating manipulated local models from the AV-
GAE-based attack.

The AV-GAE attack allows the attackers to design the
manipulated model update ωa without the data knowledge
of benign local models. In Fig. 2, the graph G is formulated
according to the local models from the benign devices in
EdgeIoT. Particularly, V represents the vertice, E presents
the edge, and Q denotes the features being involved in the
graph. Moreover, Q is defined as Q = [ω1, · · · , ωn, ωa],
which includes the local models from the benign devices
and the attacker. The proposed AV-GAE architecture com-
prises inputs, outputs, and L number of hidden layers. In
the l-th layer, ηlV is a learnable weight vector associated
with the edges of the vertices in V . The hidden state of the
vertices V at the l-th layer is

κlV = θl
(
κl−1V ⊕Al

(
{κl−1V ′,E : (V, V ′) ∈ El}El∈RE

)
; ηlV

)
,

(4)

where ⊕ indicates a summation operation over embeddings,
and θl(·) represents a nonlinear activation function. Ex-
amples of such activation functions include tanh(·) (the
hyperbolic tangent function) and ReLU(·) (the Rectified
Linear Unit) [21]. κV , κE , and κV ′ refer to the representa-
tion of V , E, and the neighboring vertice V ′, respectively.
El provides the edge in the l-th layer, and RE gives the
number of hidden states. Al(·) refers to an aggregation
function, which gathers neighbor’s knowledge of multiple
correlations into a single vector. In addition, the initialized
value of κlV is κ0V = V .

According to (4), ηlV can be optimized by minimizing

Algorithm 1 Algorithm of the AV-GAE-based model ma-
nipulation attack

1: 1. Initializing: N , H , Bn, Dthresh, ωag , and ωa.
Learning Process:

2: for Communication rounds m = 1, 2, 3, ... do
3: for Learning iterations tm = 1, 2, 3, ... do
4: For each benign device n, train local models using

its dataset samples Bn as per (1) → ωn(tm).
5: end for
6: Benign devices upload their local model updates

ωn(m), n = 1, · · · , N , to the server. The malicious
device overhears the updates from neighboring de-
vices.
Executing the AV-GAE Attack:

7: The malicious device h(∈ {1, · · · , H}) formulates
the graph G to generate its manipulated updates
ωa(m):

8: for V ∈ VG do
9: for Layer l = 1 to L do

10: For every V , compute the hidden state using (4)
→ κlV (m).

11: Compute the graph generation loss δlG(m) us-
ing (5).

12: Optimize ηlV to minimize the graph loss LlG.
13: end for
14: end for
15: Determine the optimal manipulated model update

ω?a(m) = arg maxF (ωag (m)).
16: The attacker transmits its manipulated model updates

ωa(m) to the server.
17: Benign and manipulated local models are aggregated

by the server, using (3) to produce the global model
ωag (m), which is broadcast to all devices.

18: ωn(m)← ωag (m),∀i.
19: end for

the graph generation loss, denoted as δlG, which is

δlG =
∑
V ∈VG

− log
(
θl(Ψ(κlV ))

)
, (5)

where Ψ represents a multilayer perceptron (MLP). At layer
l, the function Ψ can be formulated as a hyperbolic tangent
activation function θl(·). It takes the node embeddings
generated from the l − 1-th layer as an input. The scalar
output produced by Ψ is then passed through another
activation function denoted as θl(·).

C. Algorithm Design of The AV-GAE-based Model Manip-
ulation Attack

Algorithm 1 illustrates how the malicious IoT device
executes the proposed AV-GAE attack in EdgeIoT to gen-
erate manipulated local model updates, which are then
transmitted to the server for federated learning. The number
of attackers is denoted as H .
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Fig. 3: The testing accuracy with CIFAR-10.

10 20 30 40 50 60 70 80 90 100

50

55

60

65

70

75

80

Fig. 4: The testing accuracy with FashionMNIST.

Initially, the AV-GAE-based model manipulation attack
is set up at the malicious IoT device with parameters
including the graph structure G, representing the relation-
ships between devices, and various other initial values,
such as, the model weights and dataset sizes. During each
communication round, benign devices locally train their
models based on their datasets and send these updates to the
server. Meanwhile, the malicious device overhears the local
model updates of neighboring devices. The malicious de-
vice then employs the AV-GAE attack by decomposing the
local models into graph structures and feature embeddings,
using the presented multi-layered architecture to iteratively
compute hidden states and minimize graph generation loss.
This allows the malicious device to strategically manipulate
the model correlations and generate an optimized manipu-
lated model update, ωa, designed to maximize the global
model’s training loss. The server, unaware of the attack,
aggregates both benign and manipulated updates to create
a compromised global model, which is then broadcast back
to all devices, including the benign ones. These devices then
update their local models based on the compromised global
model, propagating the attack throughout the federated
learning process.

V. PERFORMANCE ANALYSIS

This section presents the accuracy of federated learning
in EdgeIoT as well as the Euclidean distances, based on
the CIFAR-10 and FashionMNIST datasets.

Given 100 communication rounds, five benign devices
and two malicious devices, Figs. 3 and 4 illustrate the
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Fig. 5: The Euclidean distances under the AV-GAE attack,
where three malicious devices are denoted by “Atker 1”,
“Atker 2”, and “Atker 3”, respectively.
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Fig. 6: The Euclidean distances under the existing model
poisoning attack, where three malicious devices are denoted
by “Atker 1”, “Atker 2”, and “Atker 3”, respectively.

testing accuracy of the local model across 100 commu-
nication rounds under the proposed AV-GAE attack. The
results are shown for two datasets: CIFAR-10 and Fash-
ionMNIST [22]. The plots provide insights into how the
AV-GAE attack affects the testing accuracy of the local
models during the training process, highlighting variations
in performance across different datasets. Specifically, the
AV-GAE attack causes the testing accuracy on the CIFAR-
10 and FashionMNIST datasets to fluctuate between 50%
and 70%, and 50% and 80%, respectively. This fluctuation
occurs because the manipulated models disrupt the training
convergence of the federated learning process. The newly
proposed AV-GAE attack reconstructs the adversarial ad-
jacency matrix based on the unique features of each IoT
device. As a result, the malicious IoT device falsifies local
models, effectively maximizing the federated learning loss
and hindering model accuracy and stability.

To assess the stealthiness of the proposed AV-GAE
attack, we analyze the distance between the local and global
models using the CIFAR-10 dataset, as shown in Figs. 5
and 6. In this evaluation, the number of benign IoT devices
is set to N = 5, and the number of malicious devices is
H = 3, i.e., “Atker 1”, “Atker 2”, and “Atker 3”. This study
helps determine how closely the manipulated local models
resemble the global model, providing insights into the AV-
GAE attack’s ability to remain undetected while influencing



the federated learning process.
As shown in Fig. 5, the Euclidean distances between the

malicious local models generated by the proposed AV-GAE
attack and the corresponding global models are smaller than
those of the benign local models. This reduced distance
makes it challenging for the server to detect and defend
against the manipulated model updates.

In contrast, Fig. 6 illustrates that the existing model
poisoning attacks result in significantly larger distances
between the malicious local models and the global model,
making them easier to identify. This demonstrates a key
advantage of the AV-GAE-based attack, which is its ability
to generate manipulated local models that closely mimic
the feature correlations between the benign local models
and the global model, making the differences between
manipulated and benign models indistinguishable.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper examined the impact of model accuracy ma-
nipulation attacks on federated learning-enabled EdgeIoT,
where machine learning models were trained locally on
devices and aggregated by a server to refine a global model.
We proposed a novel data-independent model accuracy
manipulation attack that does not rely on the training data
from EdgeIoT devices. This attack utilized an AV-GAE
to generate malicious local model updates by analyzing
benign local models observed during communication. The
AV-GAE attack demonstrated proficiency in identifying and
interpreting the structural relationships within the graph
representations of these benign models, as well as the data
features that underpin them. By reconstructing graph struc-
tures, the attacker could create manipulated local model
updates that adversely affect the global model.

Future research into employing AV-GAE for manipu-
lating federated learning-enabled EdgeIoT holds promise
for advancing offensive and defensive strategies. The AV-
GAE’s ability to model intricate relationships and depen-
dencies in data positions is a powerful tool for devel-
oping model accuracy manipulation attacks designed to
the EdgeIoT. Adversarial manipulation, embedded within
GAE-based representations, can more effectively disrupt
federated learning compared to traditional poisoning meth-
ods. On the defensive front, there is growing interest in
creating advanced strategies for the detection of AV-GAE-
based attacks, which examines graph features for anomalies
or manipulated models. New solutions have to be developed
for enhancing federated learning security, especially in
critical applications related to safety.
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