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Abstract—Fairness in Federated Learning (FL) is imper-
ative not only for the ethical utilization of technology but
also for ensuring that models provide accurate, equitable,
and beneficial outcomes across varied user demographics and
equipment. This paper proposes a new adversarial architec-
ture, referred to as Adversarial Graph Attention Network
(AGAT), which deliberately instigates fairness attacks with an
aim to bias the learning process across the FL. The proposed
AGAT is developed to synthesize malicious, biasing model
updates, where the minimum of Kullback-Leibler (KL) diver-
gence between the user’s model update and the global model is
maximized. Due to a limited set of labeled input-output biasing
data samples, a surrogate model is created, which presents
the behavior of a complex malicious model update. Moreover,
a graph autoencoder (GAE) is designed within the AGAT
architecture, which is trained together with sub-gradient
descent to reconstruct manipulatively the correlations of the
model updates, and maximize the reconstruction loss while
keeping the malicious, biasing model updates undetectable.
The proposed AGAT attack is implemented in PyTorch,
showing experimentally that AGAT successfully increases the
minimum value of KL divergence of benign model updates by
60.9% and bypasses the detection of existing defense models.
The source code of the AGAT attack is released on GitHub.

Index Terms—Federated Learning, Fairness, Adversarial
Graph Attention Network, Feature Correlations, Cyberattacks

I. INTRODUCTION

Federated Learning (FL) has garnered substantial atten-
tion in recent years, emerging as a paradigm in distributed
deep learning. Under the FL framework, each user inde-
pendently trains its local model utilizing proprietary data,
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subsequently generating machine learning model updates
that are transmitted to a server without revealing the user’s
confidential data [1]. The server, in turn, amalgamates these
model updates, to create a global model, which is then
disseminated back to the users to instigate the ensuing
round of FL training [2]. Inherent in the FL methodology
is the safeguarding of individual data privacy, achieved
through obviating the necessity to share private data [3].

Fairness in FL is imperative not only for the ethical uti-
lization of this technology but also for ensuring that models
provide accurate, equitable, and beneficial outcomes across
varied user demographics and equipment. For instance, FL
could be utilized to collaboratively train a machine learning
model for classifying vehicles based on images from urban
areas and rural or industrial areas, with each user training
model updating their image data without sharing it centrally
to preserve privacy or prevent congesting communication
networks [4].

FL models may develop biases towards classifying ve-
hicles more commonly encountered in certain regions over
others. For example, in affluent urban areas, there could
be a higher prevalence of certain types of vehicles, such
as sedans or sport utility vehicles (SUVs), whereas rural
or industrial areas might witness a more frequent transit of
trucks or vans [5]. If the FL model is primarily trained
on data from one type of area due to more advanced
or prevalent data collection infrastructure, it may become
adept at identifying and classifying vehicles typical of that
area while struggling to accurately classify vehicles from
underrepresented areas or those that are less common in
the training data. This discrepancy in model performance
could lead to imprecise data on vehicular movement, types,
and patterns, which could further influence urban planning
and policy-making processes, possibly reinforcing existing
disparities in infrastructure development and resource allo-
cation between different regions.

Despite the fact that FL ostensibly fortifies user data pri-
vacy, attackers or malicious users can deliberately instigate
fairness attacks with an aim to bias the learning process
across FL [6]. This can manifest in various stratagems
designed to subtly manipulate either the model updates
or the training data at users in such a way as to infuse
the global model with biased or misdirected learning [7].
In Fig. 1, the attacker conducts an adversarial training
based on its malicious data that contains images with
only red vans and yellow SUVs. As a result, the FL
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Fig. 1: An attacker conducts adversarial training for biasing
the FL of benign users.

is biased with the learning outcome, such as “a van is
always red” or “an SUV is always yellow”. On the server,
the fairness assessment mechanism can involve measuring
the Kullback-Leibler (KL) divergence between a user’s
model update and the global model, which quantifies the
discrepancy between the probability distributions of local
model updates [8]. In addition, malicious update detection
techniques can be applied at the server to the collected
local model updates from participating users, examining
them for statistically significant deviations or anomalies
that might signal malicious alterations. For example, the
Cosine similarity is computed at the server, which intends
to identify those model updates that deviate significantly in
direction from the others [9], [10]. If the Cosine similarity
value exceeds a predetermined threshold, the model update
and the corresponding user can be flagged as potentially
malicious.

This paper explores a new adversarial architecture,
herein referred to as Adversarial Graph Attention Network
(AGAT) attack, which aims to bias FL. The implicit ob-
jective of the AGAT attack is to maximize the minimum
KL divergence of the participating users’ model updates,
thereby biasing the fairness of FL without being detected
by the server. Specifically, an attacker overhears the benign
model updates uploaded by its neighbor users, and receives
the global model broadcast by the server. An AGAT is
designed by the attacker to capture the correlations exis-
tent amongst data features within benign model updates.
Considering a limited set of labeled input-output biasing
data samples, a surrogate model is created, which presents
the behavior of a complex malicious model update. The
data features in the surrogate model can be represented as
a graph. Given the feature correlation, the AGAT is trained
to purposefully contrive malicious, biasing model updates
that involve the hidden representations of each feature in
the graph.

These malicious, biasing model updates maintain com-
patibility with their benign counterparts while compromis-
ing the global model, consequently rendering the AGAT
attack notably effective within FL contexts and concurrently
maintaining a veneer of undetectability at the server level.

This exploration, therefore, underpins the requisite for
rigorous further investigation into safeguard mechanisms
to defend against such subtle and impactful adversarial
undertakings within FL environments.

The key contributions of this paper are as follows:
• The AGAT architecture is proposed to intentionally

instigate fairness attacks with an aim to bias the
learning process across FL. A new AGAT is developed
to synthesize malicious, biasing model updates, which
capture the correlations existent amongst data features
within benign model updates;

• As the optimization of the adversarial training model
at an attacker is a non-convex combinatorial problem
intractable for conventional optimization techniques,
a new approach is developed to iteratively optimize
the biasing model updates by running the AGAT and
sub-gradient descent alternately.

• A graph autoencoder (GAE) is designed within the
AGAT architecture, which is trained together with
sub-gradient descent to reconstruct manipulatively the
correlations of the model updates, and maximize the
reconstruction loss while keeping the malicious, bias-
ing model updates undetectable;

• The proposed AGAT attack is implemented in
PyTorch, showing experimentally that AGAT suc-
cessfully increases the minimum of KL diver-
gence of benign model updates by 60.9% and
bypasses the detection of existing defense mod-
els. The source code of the AGAT attack is re-
leased on GitHub: https://github.com/jjzgeeks/AGAT-
basedModelPoisoningAttackFL.

The remainder of this paper is structured as follows. Sec-
tion II introduces the background of adversarial attacks and
defense models in the FL. Section III investigates the FL
training process with attackers as well as a defense model
at the server. The proposed AGAT attack is described in
Section IV. Section V discusses the performance analysis.
Section VI concludes the paper.

II. LITERATURE REVIEW

This section reviews the literature on adversarial attacks
and security threats against FL, e.g., poisoning, inference,
and backdoor attacks. Existing techniques for improving
the fairness of FL are also presented.

A. Adversarial Attacks on Federated Learning and Defense
Strategies

A local model poisoning attack to Byzantine-robust
FL was studied in [11], where an attacker strategically
alters the local model parameters on the jeopardized users,
resulting in an augmentation of training errors in the
global model. It was argued that FL, relying on weighted
averaging and trimmed averaging to counteract Byzan-
tine faults, remains susceptible to the poisoning attack.
Such vulnerabilities can precipitate pronounced declines
in training accuracy. In [12], an adversarial GAE-based
model poisoning attack was developed to manipulate the
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FL training accuracy. By overhearing the benign local
models uploaded by the users, the attacker generated its
malicious local models by capturing the correlation features
of the benign local and global models. In [13], malicious
users, who might share harmful parameters or possess
compromised local model updates, pose a threat to the FL.
To mitigate the adverse impact of these rogue users on
the global model, a selectively trimmed averaging method
was developed. Their approach focuses on adequately
sifting through and amalgamating the shared parameters,
ensuring the integrity of the global model is maintained.
In [14], an innovative model poisoning attack on FL was
developed, which functions without reliance on training
data. This novel attack utilizes an enhanced adversarial
variational graph autoencoder (VGAE) to develop harmful
local models using only the benign models it intercepts,
without needing any direct access to FL training data. The
VGAE-MP attack strategically extracts and uses the graph
structural correlations between the benign local models and
the training data features, which proves to be effective and
difficult to detect.

A defense strategy was developed against poisoning
attacks on FL in [15], where participating users were
categorized into distinct groups. A global model was trained
for each user group using an existing FL aggregation
rule. Based on the global models of all the groups, a
majority vote mechanism was used to identify whether a
test input was poisoned by the attacker. In [16], a lay-
ered privacy-preserving defense architecture was presented,
which can mitigate poisoning attacks in FL. In such a
layered architecture, users execute synchronous local model
aggregation and orchestrate a defense against poisoning
attacks under the coordination of a designated leader user.
Homomorphic encryption was also used to encrypt the
local gradients that are generated by the users, thereby
ensuring that no sensitive information pertaining to the
local data is disclosed. To resist model poisoning attacks,
a defense scheme was studied to identify the malicious
model update by measuring the Cosine similarity between
every two users’ model updates [9]. A Byzantine-tolerance
aggregation based on this defense scheme can be applied
to support heterogeneous data scenarios, including Indepen-
dently Identically Distribution (IID) and non-IID data.

B. Fairness of Federated Learning

Robustness against data and model poisoning attacks,
as well as fairness, quantified by the equitable distribu-
tion of performance across various users, have emerged
as conflicting constraints within statistically diverse net-
works [8]. An FL methodology was devised in [8] to embed
customary procedures prevalent in cross-user FL, which
include restricted user involvement and the updating of
local models. In civil and social applications, data may
exhibit bias towards features sensitive to fairness, such
as gender, age, or race. Thus, FL models assimilate this
bias from the training data, resulting in unfairness towards
certain user demographics. In [17], data was bifurcated into

two categories grounded in their fairness sensitivities: First,
fairness-insensitive features that are applicable for the target
task, and second, fairness-sensitive features that ought to
be causally inconsequential to model predictions. An FL
architecture was designed according to fairness sensitivi-
ties, which learn coherent and fair representations of data
samples, predicated upon their features disseminated across
users. Given partitioned categories of data, the authors
of [18] focused on training FL models with fairness across
different categories. Each user independently conducts local
debiasing based on its categories of data. To enhance the
efficacy of local debiasing, the users assess the fairness of
the global model using their respective data in each FL
iteration and cooperatively train and adjust the local model
update with the server.

An FL algorithm was introduced [19] to enable a fair re-
source allocation of training users’ small-sized submodels,
instead of original deep neural networks. In particular, com-
putation, memory, and data exchange sizes were adjusted
so that users with varying computing capabilities could
contribute to FL processes by astutely adapting to their
respective resource availabilities. A self-distillation method
was employed, deriving from the maximally supported
submodel on the user, to amplify the feature extraction
capabilities of smaller submodels. Collaborative fairness
was considered in FL [20], where a reputation mecha-
nism can be enabled to assess the contributions of users
throughout the learning process. This mechanism was used
to evaluate the input and engagement of each user in the FL
and continually refine their reputation scores based on their
contributions and adherence to collaborative standards, en-
suring a fair and equitable model development and training
process across distributed learning environments.

C. Our Contributions
The existing adversarial attacks against FL in the liter-

ature have often overlooked an exploration of the latent
relationships among disparate local model updates, which
are the relationships that can potentially be discerned by
recent defense strategies quantifying the model similarities,
such as [21], [22], and [23]. Additionally, the existing de-
biasing strategies within FL predominantly aim to enhance
training fairness, yet a dedicated exploration of intentional
biasing attacks, designed to subvert the FL fairness, remains
notably absent and unexamined.

In contrast, the new AGAT attack proposed in this paper
pioneers a new adversarial approach, strategically inciting
fairness attacks with the objective of biasing the FL learning
procedure. The AGAT attack manipulates the correlations
amongst numerous data features in benign model updates,
meanwhile maintaining the authentic data features integral
to those models, thereby rendering the biasing model up-
dates imperceptible and successfully eluding detection.

III. FEDERATED LEARNING UNDER ADVERSARIAL
ATTACK

In this section, we first present an FL training process,
e.g., for image classification. A threat model is described,
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where the attackers generate an adversarial attack after
overhearing the neighbor benign users’ local model updates.
A defense model that can be employed at the server against
the adversarial attack is also presented.

A. Federated Learning with Benign Users
We assume that N users participate in an FL training

process, including I benign users as well as (N � I)
authorized (legitimate) but malicious users (or attackers).
A benign user i 2 [1, I] has Di(⌧) amount of data at the
⌧ -th iteration, and an input data sample captured at user
i is denoted as si 2 [1, Di(⌧)]. 8⌧ 2 [1, TL], where TL

is the total number of training iterations in the FL. Let
y(si) denote the output of the machine learning model. A
training loss function of FL, denoted by L(!!!i(⌧); si, y(si)),
is defined at user i to capture approximation errors over the
input si and the output y(si), where !!!i(⌧) denotes the local
model of user i.

Given Di(⌧), the loss function of the FL in the ⌧ -th
iteration is defined by

F (!!!i(⌧)) =
1

Di(⌧)

Di(⌧)X

si=1

L(!!!i(⌧); si, y(si)) + � · f(!!!i(⌧)),

(1)

where f(·) is a regularizer function that represents the effect
of the local training noise, and � 2 [0, 1] is a coefficient.

Moreover, we define the model update of user i at round
⌧ + 1 as

!!!i(⌧ + 1) !!!i(⌧)� ⌘rF (!!!i(⌧)), (2)

where ⌘ is a given learning coefficient at the users.
In each iteration ⌧ , all users upload their model updates

!!!i(⌧), 8i to the server. The server aggregates the model
updates to train a global model, denoted by !!!G(⌧), for the
⌧ -th iteration. Then, !!!G(⌧) is broadcast to all users for
their further training of !!!i(⌧ + 1) [24].

B. Defense Model at Server
Measuring the Cosine similarity can be applied at the

server as a defense mechanism to detect malicious, biasing
model updates [9], [10]. The Cosine similarity calculates
the angular similarity between every two user’s model
updates, which is given by

!i,i0 =
!!!i(⌧) ·!!!i0(⌧)

k!!!i(⌧)k · k!!!i0(⌧)k
, (3)

where i and i0 indicate two different users, i, i0 2 [1, N ]
and i 6= i0. k · k stands for cardinality of a vector.

By computing the Cosine similarity for each user’s model
update, the server intends to identify those model updates
that deviate significantly in direction from the others. If
the similarity is beyond a predetermined threshold dT ,
the update can be flagged as potentially malicious. This
approach assumes that malicious, biasing model updates
exhibit substantial directional differences compared to be-
nign model updates, thereby providing a means to detect

Attackers

Malicious 
Model Updates

The GATP-driven 
Training

Fig. 2: The proposed AGAT attack aims to generate mali-
cious model updates to bias the FL of benign users.

and possibly discard or down-weight such model updates
during the aggregation process.

The defense model based on Cosine similarity is widely
recognized as the most effective and commonly used mea-
sure for detecting malicious model updates in FL, e.g.,
in [9]–[11]. Cosine similarity can help identify updates that
deviate significantly in direction. By comparing similarity
between the model updates, the server can detect outliers,
which often result from poisoning attempts where malicious
updates deviate significantly from the benign majority.
Other defenses, such as aggregation-based methods (e.g.,
Krum or Trimmed Mean), also use a similar mechanism of
detecting anomalous updates (i.e., by measuring distance
among the local models), underscoring the relevance and
broad applicability of Cosine similarity in defense.

Note that our proposed threat model is designed to evade
generic similarity-based defense mechanisms. The defenses
in FL, whether they are based on Cosine similarity or Eu-
clidean distance, fundamentally rely on detecting anomalies
or deviations by measuring the similarity between model
updates. Our attack model can create malicious local mod-
els to maintain compatibility with benign model updates
while maximizing the attack effect. Therefore, it can bypass
a range of defenses that detect statistical or directional
deviations, making it highly adaptable and relevant beyond
Cosine similarity-based mechanisms.

C. Threat Model

Suppose that the (N � I) attackers with access to their
own training data are considered in the FL together with
I benign users, as shown in Fig. 2. An attacker, who
may appear as a legitimate user, attempts to progressively
manipulate the fairness of the FL by creating and uploading
malicious local models during each communication round.
Let ⌧ denote the index to the iterations of the FL. Ad-
ditionally, the presence of malicious model updates in the
context of the proposed AGAT architecture is assumed to be
unknown during the training process. Nevertheless, while
unaware of the presence of any attackers, it is reasonable
for the server to be cautious about potential presence of
malicious users and their malicious models. The server is
expected to keep monitoring and assessing the local models



XXXX, 2023. 5

uploaded by all users to detect malicious, biasing local
models.

Specifically, attacker j 2 [1, N � I] constructs a mali-
cious, biasing model update !!!a

j (⌧) based on the parameters
of the benign local models overheard in ⌧ . The server
aggregates the model updates of the users, including both
benign and malicious ones, without realizing the attacker’s
presence. The total size of the training data reported to the
server, DG(⌧), is calculated as the sum of the data size
of all benign users, Di(⌧), and the data size of the j-th
attacker, Da

j (⌧). This results in a manipulated global model
!!!a

G(⌧) that yields

!!!a
G(⌧) =

IX

i=1

N�IX

j=1

Di(⌧)

DG(⌧)
↵a
i,j(⌧)!!!i(⌧) +

N�IX

j=1

Da
j (⌧)

DG(⌧)
!!!a

j (⌧).

(4)

In particular, ↵a
i,j(⌧) is a binary indicator signifying

whether !!!i(⌧) is overheard or not at attacker j. ↵a
i,j(⌧) is

known to the attacker and used as an input variable in Prob-
lems P1 and P2. In other words, if !!!i(⌧) is eavesdropped
by the attacker j for its adversarial training to generate
the malicious, biasing model update, then ↵a

i,j(⌧) = 1;
otherwise, ↵a

i,j(⌧) = 0. !!!a
G(⌧) is broadcast by the server

to all N users.
The KL divergence between !!!i(⌧) and !!!a

G(⌧) [25] can
be used to measure the fairness of FL, which is given by

dKL(!!!i(⌧),!!!
a
G(⌧)) =

⌧X

⌧ 0=1

P (!!!i(⌧
0)) log

⇣ P (!!!i(⌧ 0))

P (!!!a
G(⌧

0))

⌘
,

(5)

where P (·) is a probability density function, and dKL(·, ·)
calculates the KL divergence between !!!i(⌧) and !!!a

G(⌧).
Given (4) and (5), the loss function with regard to the

FL fairness is defined as

�Loss = min
i2[1,N ]

dKL(!!!i(⌧),!!!
a
G(⌧)). (6)

The optimization of the adversarial training model at at-
tacker j, 8j 2 [1, N � I], for biasing the FL can be
formulated as

P1 : max
!!!a

j (⌧)
�Loss (7a)

s.t. !i,j  dT , (7b)
↵a
i,j(⌧) = {0, 1}. (7c)

By maximizing the minimum value of dKL(!!!i(⌧),!!!a
G(⌧))

in (7a), the malicious, biasing model update !!!a
j (⌧) is

optimized so that the dissimilarity between the updated
attribute in the benign !!!i(⌧) and the one in !!!a

G(⌧) persis-
tently increases. Constraint (7b) confines that the Cosine
similarity between !!!a

j (⌧) and !!!i(⌧) has to be below a
similarity threshold, denoted by dT . This is because the
FL server can perform a model update selection to rule
out those dissimilar to the rest to maintain fairness. As
a legitimate user, the attacker can potentially infer the
detection threshold based on the information exchanged
with the server or from overheard benign local models

during the FL training process. For example, the attacker
can estimate the detection threshold based on the benign
local models accepted by the server during each round of
global aggregation.

By introducing an auxiliary variable R, Problem P1 can
be rewritten as

P2 : max
!!!a

j (⌧),R
R (8a)

s.t. R  dKL(!!!i(⌧),!!!
a
G(⌧)), (8b)

(7b) & (7c) (8c)

In the next section, we proceed to solve Problem P2 using
a new GAE, which can iteratively regulate !!!a

j (⌧), ⌧ =
1, 2, · · · , to launch fairness attacks to the FL.

By conducting such attacks on the fairness of FL, the
attackers could influence critical decisions in FL, ranging
from urban planning and policy-making processes to med-
ical diagnosis predictions. This not only undermines the
trustworthiness and integrity of FL systems but enables the
attackers to potentially exploit these biases for their own
financial gain, strategic advantage, or to perpetuate dis-
crimination, all under the guise of maintaining a seemingly
unaffected FL model.

The core mechanism of our attack is the construction
of a malicious, biasing model update based on the model
updates overheard from the benign users. This approach
is applicable to both centralized FL and decentralized FL
(DFL). As a matter of fact, in DFL, each participating
user collects the local models from its nearby peers and
aggregates the local models with its own local model. In
this case, the attacker, which is one of the nearby peers,
can still craft malicious local models (in the same way as
in centralized FL) to bias the learning of benign users.

Although cryptography could offer protection against
eavesdropping attacks to some extent, some recent tech-
niques outlined in [26] and [27] have shown that encrypted
information can be decrypted with minimal initial data.
Moreover, the proposed AGAT attack could exert a pro-
found impact on the rapidly emerging field of DFL. In
DFL, each user has the capability to directly receive local
model updates from their neighbors, facilitated through ei-
ther point-to-point encrypted or unencrypted channels. The
DFL architecture inherently increases the attack surface,
making DFL more susceptible to the AGAT attack. Unlike
a single aggregation point in centralized counterpart, the
direct exchange of local model updates in DFL allows
adversaries to exploit the accessibility to neighbor model
updates to inject malicious updates. In this sense, exploring
this AGAT attack within the context of centralized FL
serves as a stepping stone, elucidating potential vulnera-
bilities and informing the development of countermeasures
in anticipation of similar, if not more sophisticated, threats
in DFL.

IV. THE PROPOSED AGAT ATTACK FOR BIASING
FEDERATED LEARNING

In this section, we delineate the architecture of the
AGAT attack that aims to generate malicious, biasing model
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Fig. 3: The proposed AGAT architecture, where the attacker creates a surrogate model that extracts labels of its biasing
data. The adversarial GAT is trained to obtain the hidden representations of each feature in the graph.

updates. By leveraging attention mechanisms, the GAT dy-
namically weighs the importance of different vertices (i.e.,
data features) within the FL, allowing for effective injection
of malicious, biasing model updates. This functionality is
crucial for exploiting potential vulnerabilities in the local
models and the data the local models are trained on, thereby
enabling the attackers to subtly introduce biases that can
degrade the fairness of the FL.

Furthermore, an adversarial GAE is designed within the
AGAT architecture, which is trained together with sub-
gradient descent to reconstruct manipulatively the correla-
tions of the model updates, where the reconstruction loss is
maximized. In addition, a graph signal processing module
is designed with the GAE to decompose the correlation
features of the benign model updates, and the data features
substantiating the model updates.

A. Architecture of AGAT Attack

Due to the high dimensionality of the training data,
obtaining labeled data is expensive or prohibitive. A surro-
gate model g̃(Da

j (⌧)) is used at attacker j to approximate
the classification or image labeling, which simplifies the
structure of the image classifier, thus reducing the com-
putation burden. In particular, g̃(Da

j (⌧)) can be trained
by deep neural networks, Gaussian process regression, or
polynomial regression. The output of the surrogate model
yields a set of feature vectors of the training data.

Let A and B represent the number of vertexes in the GAT
and the number of features in each vertex, respectively. The
vector that represents feature of g̃(Da

j (⌧)), as well as the
overheard !!!i(⌧) can be denoted by hhh = {

�!
h1,
�!
h2, ...,

�!
he},

where e 2 [1, A] is the graph size and he 2 RB . Based
on the input of hhh, the adversarial GAT calculates attention
coefficients for each of the vertices and features, which is
given by [28]

�xy = atn(W aW aW a�!hx,W
aW aW a�!hy), (9)

where W aW aW a 2 RB0⇥B is a weight matrix. Here, B0 defines
the size of the adversarial GAT’s output which is a set of
the biased features.

According to [29], atn(·) presents a shared attention
function which can be specified as

atn(W aW aW a�!hx,W
aW aW a�!hy) = LeakyReLU(�!c T [W aW aW a�!hx ⌦W aW aW a�!hy]),

(10)

where “⌦” stands for a concatenation operation between
the two matrices. �!c T denotes the transpose of a weight
vector �!c 2 R2B0

that is used to parametrize the atn(·)
function in a neural network.

Moreover, at each vertex x, �xy is computed only for the
neighbors of the vertex x in the graph, namely, y 2 Nx,
where Nx denotes the neighborhood of x. To normalize
attention weights and highlight important neighbors, a
softmax function is used to normalize �xy across all choices
of y. Thus, we have

softmaxy(�xy) =
exp(�xy)P

y02Nx
exp(�xy0)

. (11)

By substituting (10) into (11), the attention coefficients
can be obtained by

d�xy =
exp(LeakyReLU(�!c T [W aW aW a�!hx ⌦W aW aW a�!hy]))

P
y02Nx

exp(LeakyReLU(�!c T [W aW aW a�!hx ⌦W aW aW a�!hy0 ]))
.

(12)

Based on (12), a normalized d�xy can be used to compute
a linear combination of the features corresponding to the
attention coefficients, to serve as the final output features
for every vertex (after potentially applying a nonlinearity,
⇣). Thus, we have hhh0 = {

�!
h1

0,
�!
h2

0, ...,
�!
he

0}, which is give by
�!
he

0 = ⇣(
X

y2Nx

d�xyW aW aW a�!hy) (13)

The optimization of the adversarial training model at
attacker in Problem P2 is a non-convex combinatorial
problem intractable for conventional optimization tech-
niques. We decouple the AGAT architecture between the
attack and the benign user selection using the Lagrangian-
dual method. A new approach is developed to iteratively
optimize the malicious, biasing model updates !!!a

j (⌧) by
running the adversarial GAT and subgradient descent, as
depicted in Fig. 3.
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The Lagrange function of Problem P2 is given by

L(↵a
i,j(⌧),�(⌧)) =�Loss + �(⌧)(dT � !i,j)+

NX

i=1

ri(⌧)(dKL(!!!i(⌧),!!!
a
G(⌧))�R),

(14)

where �(⌧) and ri(⌧) denote the dual variables. The
Lagrange dual function is

Dj(�(⌧), ri(⌧)) = max
!!!a

j (⌧),↵
a
i,j(⌧)

L(↵a
i,j(⌧),�(⌧), ri(⌧)).

(15)

The dual problem of (7) is

min
�(⌧),ri(⌧),8i

Dj(�(⌧), ri(⌧)). (16)

B. Generating Biasing Model Updates with GAE
1) GAE for primary variable optimization: At the ⌧ -th

communication round, the primary variable !!!a
j (⌧) of the

Lagrange function (15) can be optimized according to

!!!a
j (⌧)

⇤ = arg max
!!!a

j (⌧)

⇢
�Loss � �(⌧)(dT � !i,j)�

NX

i=1

ri(⌧)(dKL(!!!i(⌧),!!!
a
G(⌧))�R)

�
. (17)

We propose to optimize !!!a
j (⌧)

⇤ in (17) by designing a
new GAE model with the AGAT architecture. As shown
in Fig. 3, is comprised of two primary components: an
encoder and a decoder. Within this framework, the encoder
is responsible for encoding the feature matrix hhh0, utilizing
the attention coefficients d�xy (which is described as an
adjacency matrix A), and the decoder takes the encoder’s
output as the input to reconstruct a biasing bA.

In particular, the encoder is constructed using an archi-
tecture based on M layers of graph convolutional networks
(GCN). This design enables the encoder to learn a represen-
tation that effectively captures the essential characteristics
of the model updates, which can be formulated as

ZM = fG(ZM�1,A|wM ), (18)

where fG(·, ·|·) represents a spectral convolution operation,
while wM signifies the weight matrix corresponding to the
M -th layer within the GCN.

Given an identity matrix I 2 RJ⇥J , eA can be formulated
as eA = A+ I , and we have Axy =

P
j0

eAjj0 . To generate
a feature representation of the graph, the encoder can be
written as

fG(ZM�1,A|wM ) = �M (A� 1
2 eAA� 1

2ZM�1wM ), (19)

where �M (·) denotes a nonlinear activation function, for
instance, tanh(·) or ReLU(·); meanwhile, A� 1

2 eAA� 1
2 rep-

resents the symmetrically normalized adjacency matrix.
The output produced by the GAE is the reconstructed

adjacency matrix, denoted bA, which is articulated as

bA = sigmoid
⇣
ZM

�
ZM

�T⌘
, (20)

where the sigmoid function is specified by sigmoid(x) =
1/(1 + exp(�x)). This formulation suggests that the like-
lihood of correlation between model updates within the
graph increases with the magnitude of the inner product
(ZM (ZM )T ).

The discrepancy between A and its reconstructed coun-
terpart bA is quantified through a reconstruction loss func-
tion, as studied in [30], which is defined as

�loss = EfG(ZM�1,A|wM )

h
log p( bA | ZM )

i
, (21)

where the probability p( bA | ZM ), as determined by the
decoder, reflects the degree of correlation among the model
updates.

Since the attacker aims to generate the malicious model
updates for biasing FL, the proposed GAE is constructed
and trained to maximize L(!!!a

j (⌧),�(t))��loss. As a con-
sequence, the malicious model update !!!a

j (⌧) increasingly
biases the FL training fairness with the increase in global
model aggregations, i.e., ⌧ = 1, 2, · · · .

A graph signal processing module is introduced to
analyze the correlation features present in benign model
updates alongside the data attributes that support these up-
dates. Utilizing the concept of a Laplacian matrix, denoted
as  and constructed from the adjacency matrix (A) of
benign model updates such that  = diag(A) � A, as
outlined in [31], we embark on a deeper exploration of
these correlations. Through the application of singular value
decomposition (SVD) on  , represented as  = B⌃BT , a
complex unitary matrix B 2 RJ⇥J is derived. This matrix,
also referred to as the graph Fourier transform (GFT) basis,
facilitates the transformation of graph data (e.g., F) into its
spectral-domain representation. The matrix ⌃, characterized
as a diagonal matrix, contains the eigenvalues of  on its
diagonal, providing a foundation for further analysis and
manipulation of the graph data.

Consequently, an attacker can isolate a matrix S, en-
capsulating the spectral-domain data features of all benign
model updates. This isolation, achieved by dissociating
the correlations between models and then concentrating
on the data features underpinning these model updates, is
represented as

S = B�1F . (22)

Furthermore, the attacker employs the graph signal process-
ing module to create a Laplacian matrix from the output of
the GAE, indicated by

b = diag( bA)� bA. (23)

Subsequent application of SVD on b yields the corre-
sponding GFT basis, bB. Leveraging the relationship defined
in (22) for S, the malicious model update, which mirrors the
adjacency matrix processed through the GAE, is identified
as

bF = bBS, (24)

where bF represents a matrix with dimensions RJ⇥D.
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Within bF , the vector !!!a
j (⌧) is identified and chosen by

attacker j as the malicious, biasing model update. This
chosen vector is then transmitted to the FL server by the
attacker for inclusion in the aggregation of the global model
during the communication round ⌧ . Based on the graph
signal processing module, the attacker can influence the
training of global models, by strategically injecting tailored
model updates designed to compromise the FL fairness.

2) Sub-gradient descent for dual variable updating:
Given !!!a

j (⌧), the attacker can also update the dual vari-
ables, � and ri, i = 1, · · · , N , specified in (16). Let "
denote the step size. Based on !!!a

j (⌧) obtained from bF
in (24), �(⌧) and ri(⌧), i = 1, · · · , N are updated by the
sub-gradient descent method that solves (16), where

� (⌧ + 1) = [�(⌧)� " (!i,j � dT )]
+ , (25)

ri(⌧ + 1) = [ri(⌧)� "(dKL(!!!i(⌧),!!!
a
G(⌧))�R)]+,

i = 1, · · · , N, (26)

and [x]+ = max (0, x). At initialization, �(⌧) is non-
negative, i.e., �(1) � 0, to ensure that (25) converges.
Moreover, !!!a

j (⌧) is optimized with the updates of !i,j

and !!!a
G(⌧) according to (3) and (4), respectively, after the

global model aggregation.

C. Training Algorithm of AGAT Attack
According to the design of the new AGAT attack in

Fig. 3, Algorithm 1 is developed along with the FL training
of the benign users and the FL server. Specifically, the
environment and parameters, such as the graph structure
G = (V, E,F), the total number of learning iterations
TL, and the datasets Di(⌧) and Da

j (⌧) are initialized.
During each training iteration of the FL, benign users train
and upload !!!i(⌧) to the server. The attacker conducts
AGAT(g̃(Da

j (⌧)),!!!i(⌧),�(⌧)) to generate !!!a
j (⌧), which

trains g̃(Da
j (⌧)) and extracts features using attention co-

efficients d�xy to emphasize correlations. These features are
encoded using GAE to produce the adjacency matrix A
that represents connections between model features. The
attacker then creates a biased model update in an attempt
to manipulate the global model and uploads it to the
server. The server aggregates these updates, including the
malicious ones, to update !!!a

G(⌧), which is then distributed
across the users, including the benign ones, for the next
training iteration. This cyclic process progressively biases
the global model, undermining the integrity and effective-
ness of the FL. As !!!a

j (⌧) is highly correlated with !!!i(⌧)
from the benign users, the FL server is unlikely to detect
and identify the attackers.

V. PERFORMANCE EVALUATION

This section presents the implementation of the AGAT
attack using PyTorch. When subjected to this attack, we
assess the training accuracy of both local and global
models. Moreover, the detection efficacy of the AGAT
attack is examined through the metric of Cosine simi-
larity between the local models and the global one. In

Algorithm 1 The training algorithm of the proposed AGAT
attack

1: 1. Initialize: G = (V, E,F), TL, N , I , dT , Di(⌧), and
Da

j (⌧).
Proposed AGAT attack:

2: for Training iteration ⌧ = 1, 2, 3, · · · , TL. do
3: Benign users train the local model updates !!!i(⌧),

i 2 [1, I] according to (2).
4: Benign users upload !!!i(⌧), i 2 [1, I] to the server,

and the attacker j 2 [1, N � I] overhears the benign
model updates of its neighbours.

5: The proposed AGAT in Fig. 3 is conducted at the
attacker to generate malicious, biasing model updates
!!!a

j (⌧), i.e., AGAT(g̃(Da
j (⌧)),!!!i(⌧),�(⌧)):

6: Training the surrogate mode g̃(Da
j (⌧))! hhh.

7: The attention coefficients d�xy  (12).
8: Based on (13), hhh0 that contains correlated features

is obtained.
9: The GAE encoder encodes hhh0 with d�xy (which

represents an adjacency matrix A).
10: bA is reconstructed by training the GAE, which

maximizes L(!!!a
j (⌧),�(t))� �loss.

11: According to the proposed graph signal process-
ing module (22) ⇠ (24), the malicious, biasing model
update !!!a

j (⌧) is obtained and uploaded to the server.

12: At the server, (7b) is checked to detect the biasing
model update.

13: According to (4), the server aggregates the selected
model updates to generate the global model !!!a

G(⌧)
that is broadcasted to all the users.

14: The benign users conduct training of their next
model updates !!!i(⌧ + 1) with the received global
model, i.e., !!!i(⌧) !!!a

G(⌧), 8i 2 [1, I].
15: end for

addition, the source code for the AGAT attack has been
released on GitHub: https://github.com/jjzgeeks/AGAT-
basedModelPoisoningAttackFL.

A. Experimental Settings

The benign FL is designed to improve image classi-
fication accuracy, while the proposed AGAT attack aims
to maximize the KL divergence between the user’s model
update and the global model, which leads to a biased FL
training of the label classification. The total number of users
N increases from 6 to 35, while the number of benign users
I increases from 5 to 30. The global model !!!a

G(⌧) in FL
is trained with 100 communication rounds, and training of
the local model !!!i(⌧) is carried out in 10 iterations.

For building the architecture of the AGAT, the number
of attention heads, the hidden layer size, dropout rate,
weight decay, and the number of layers are set to 4, 80,
0.4, 2⇥103, and 2, respectively. The activation function
is rectified linear unit (ReLU), as given in (10), for the
intermediate layers due to its simplicity and effectiveness
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in alleviating the vanishing gradient problem, and softmax
is used for the output layer when dealing with classification
tasks. For building the adjacency matrix AAA in GAE at each
attacker, the number of selected model parameters in !!!i(⌧),
i.e., M , is set to 100, 200, or 300. The GAE encoder is a
two-layer GCN network with a dropout layer to prevent
overfitting. The GAE decoder is an inner product. The
Adam optimizer with a learning rate 0.01 is adopted to
optimize the network. For all datasets, we use the same
encoder, decoder and SVM models.

The implementation of the proposed AGAT attack was
conducted on a SVM model, utilizing PyTorch version
1.12.1 and Python version 3.9.12. This setup was deployed
on a Linux-based workstation, equipped with an Intel(R)
Core(TM) i7-9700K CPU at 3.60GHz, featuring 8 cores,
and supported by 16 GB of DDR4 memory operating at
2400 MHz. The experimentation involved the application of
the AGAT attack across two distinct datasets, demonstrating
the attack’s efficacy and potential impacts on SVM mod-
els under specified computational environments and data
conditions:

• The CIFAR-10 dataset [32], consists of 60,000 images
in color, each with a dimension of 32⇥32 pixels, and
distributed across ten distinct classes. Each class is
represented by 6,000 images. This dataset is organized
into two subsets: 50,000 images designated for training
purposes and 10,000 images allocated for testing. This
structure supports a wide range of image recognition
tasks by providing a diverse set of visual inputs for
model training and evaluation.

• The Street View House Numbers (SVHN) dataset [33],
includes over 600,000 real-world digit images, featur-
ing house numbers in their natural, unsegmented form,
captured in a wide range of lighting conditions, angles,
and backgrounds.

For our experiments, the CIFAR-10 and SVHN datasets
are balanced in terms of their class distributions [34], [35].
This characteristic of the datasets is crucial, as our primary
interest lies in a new fairness attack on the FL. By training
the AGAT based on balanced datasets, we ensure that the
baseline conditions of our experiments do not inherently
contain biases or imbalances that could confound the effects
of the proposed attack. This allows accurate assessment and
demonstration of the impact of the AGAT in biasing the FL.

Three key performance metrics are investigated:
• KL divergence measures the difference between the

probability distributions of a user’s model update and
the global model, providing insight into how much a
local model deviates from the expected global distri-
bution.

• The local model’s testing accuracy assesses to what
extent fairness is compromised without reducing FL
accuracy under the proposed AGAT attack, making the
attack difficult to detect at the server.

• Cosine similarity measures the angular similarity be-
tween the local models and the corresponding global
model, which is used to evaluate the invisibility of the
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Fig. 4: Given I = 5, the KL divergence dKL(!!!i(⌧),!!!a
G(⌧))

under attacks with one or five attackers.
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(a) the CIFAR-10 dataset.
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(b) the SVHN dataset.

Fig. 5: When I increases from 5 to 30, the KL divergence
dKL(!!!i(⌧),!!!a

G(⌧)) in the presence of one, two, three, or
five attackers.

proposed AGAT attack.
In addition, the proposed AGAT attack is compared with

an existent adversarial GAE-based model poisoning attack
(G-MPA), as well as an existing fairness attack on FL, i.e.,
additive noise-based biasing attack (AN-BA):

• G-MPA focuses on compromising the integrity of
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Fig. 6: Given 20 users, the KL divergence
dKL(!!!i(⌧),!!!a

G(⌧)), where the number of !!!i(⌧) overheard
increases from 4 to 20.

benign local models by fabricating malicious training
samples, thereby reducing the test accuracy of these
models. This technique has been used in existing
works, such as [36] and [37]. Specifically, the G-MPA
involves the attacker disrupting the training process
through the introduction of a counterfeit user. This
fake user transmits malicious local models to the
server, effectively manipulating the collective learning
outcome.

• AN-BA, considered in [8] and [38], generates ma-
licious local models by injecting a Gaussian ran-
dom noise into the received global model, which can
enlarge the magnitudes of the random local model
updates using a scaling factor.

B. Attacking Performance
1) KL divergence: Given I = 5, Fig. 4 shows the KL

divergence of each user i’s !!!i(⌧) under the proposed AGAT
attack, i.e., dKL(!!!i(⌧),!!!a

G(⌧)) in (5). The performance is
tested with the CIFAR-10 dataset in Fig. 4(a) or the SVHN
dataset in Fig. 4(b), given one or five attackers in the FL.
Generally, the KL divergence given five attackers is about
three times higher than the case with a solo attacker. This
is reasonable since the increasing number of attackers leads
to more malicious, biasing model updates, i.e., !!!a

j (⌧)
⇤,

being aggregated in the FL. Consequently, the maximum
loss function with regard to the FL fairness in (6) increases.

In Fig. 5, we conduct a comparative analysis of the
average KL divergence pertaining to local models subjected
to the proposed AGAT attack versus those affected by
the existing G-MPA and AN-BA. This comparison spans

an increase in the number of benign users I from 5 to
30, alongside varying numbers of attackers from 1 to 5.
Specifically, within the context of the CIFAR-10 dataset
and with the presence of five attackers, Fig. 5(a) elucidates
that the KL divergence under the AGAT attack exhibits a
substantial elevation, 70.2% and 85.4% higher compared to
the divergences under the G-MPA and AN-BA, respectively.
Similarly, Fig. 5(b) illustrates that, when considering the
SVHN dataset, the AGAT attack results in a KL divergence
that surpasses that of the G-MPA and AN-BA attacks by
60.9% and 78.6%, respectively. Such findings underscore a
significant bias in FL fairness induced by the AGAT attack.
This bias stems from our innovative architecture based on
GAT and GAE, which tailors the adversarial adjacency
matrix in alignment with the unique features of the users’
local model updates. As a result, this leads to the generation
of maliciously biased model updates aimed at maximizing
the loss differential, �Loss, as studied in (6).

As shown in Fig. 5, the KL divergence associated with
local models increases concomitantly with the augmen-
tation in the number of attackers, given a fixed I . This
substantiates the detrimental impact of the proposed AGAT
attack on the fairness of FL. Furthermore, the KL diver-
gence decreases with the increment of I , since increasing
the number of benign users can fortify the resilience of FL
against fairness attacks. This enhancement in resistance is
attributable to the aggregation of an increased number of
benign local models, which inherently dilutes the adversar-
ial influence exerted by the attackers, thereby preserving
the integrity and fairness of the FL process.

Fig. 6 illustrates the KL divergence dKL(!!!i(⌧),!!!a
G(⌧))

as the number of overheard updates !!!i(⌧) increases from
4 to 20, where I = 20. It is observed that the KL
divergence grows in proportion to the number of model
updates overheard. For instance, with five attackers, the
KL divergence rises by 75.8%. By contrast, with a single
attacker, it increases by 84.6%. This demonstrates that the
more benign model updates the attacker can eavesdrop on,
the more correlated features the proposed AGAT can exploit
to generate malicious, biasing model updates. As a result,
the fairness of the FL process is further compromised, with
model updates becoming increasingly skewed.

To further study the probability distribution of malicious,
biasing model updates generated by the proposed AGAT
attack, Fig. 7 plots the cumulative distribution function
(CDF) of the KL divergence and global model accuracy.
Based on the CIFAR-10 dataset in Figs. 7(a) and 7(b)
as well as the SVHN dataset in Fig. 7(c) and 7(d), we
observe that the CDF with more attackers results in a
higher probability of the KL divergence. More importantly,
the CDF of the malicious, biasing model updates exactly
follows the same probability distribution pattern as the
benign ones. Therefore, it is impossible for the server to
identify the attacker. This is achieved by our innovative
design of the AGAT architecture, namely, the adversar-
ial GAT captures the correlations existent amongst data
features within benign model updates, while the GAE is
trained together with sub-gradient descent to reconstruct



XXXX, 2023. 11

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.4

0.6

0.8

1
CIFAR-10

Attacker 1

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
CIFAR-10

Attacker 3

Attacker 2

Attacker 1

Attacker 5

Attacker 4

(a) one attacker with CIFAR-10. (b) five attackers with CIFAR-10.

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
SVHN

Attacker 1

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1
SVHN

Attacker 3

Attacker 1

Attacker 2

Attacker 4

(c) one attacker with SVHN. (d) five attackers with SVHN.

0.49 0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57
0

0.2

0.4

0.6

0.8

1
CIFAR-10

0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
0

0.2

0.4

0.6

0.8

1
SVHN

(e) Global model accuracy with CIFAR-10. (f) Global model accuracy with SVHN.

Fig. 7: Given I = 10, CDF of the KL divergence and global model accuracy under the proposed AGAT attack.
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Fig. 8: The Jain’s fairness index of the model updates, when
I = 20 and five attackers.

manipulatively the correlations of the model updates, and
maximize the reconstruction loss.

Fig. 8 presents the Jain’s fairness index for the model
updates when I = 20 and five attackers are present. Using
the CIFAR-10 dataset, the performance of the proposed
AGAT method is 25.6% and 74.2% lower than that of

G-MPA and AN-BA, respectively. When evaluating the
SVHN dataset, the Jain’s fairness index for AGAT is
15.7% and 61.4% lower compared to G-MPA and AN-
BA, respectively. These results confirm that the AGAT
attack significantly compromises fairness in FL. This bias
is driven by our novel architecture, which leverages GAT
and GAE to adaptively construct an adversarial adjacency
matrix aligned with the distinct features of the users’ local
model updates.

2) FL accuracy: Given I = 5, Fig. 9 shows the local
model’s testing accuracy under the proposed AGAT attack,
based on the CIFAR-10 and SVHN datasets. As observed
from Figs. 9(a) to 9(f), despite the adversarial interventions,
the FL accuracy not only remains unaffected but also con-
tinues to converge. This is attributed to the objective of the
AGAT attack, which diverges from traditional adversarial
tactics by specifically aiming to bias the FL, rather than
undermining their testing accuracy. Furthermore, the new
adversarial GAT design captures the correlations among
data features within benign model updates, thereby skew-
ing the model’s decision boundaries without detrimentally
affecting the FL accuracy. This nuanced strategy highlights
a sophisticated attack vector that compromises the fairness
and integrity of the FL without the conventional hallmark
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Fig. 9: Given 100 FL communication rounds and I = 5, the local model’s testing accuracy under the proposed AGAT
attack on the CIFAR-10 and SVHN datasets.

of reduced accuracy, thus posing a more insidious threat
that can elude standard detection mechanisms.

3) Cosine similarity: To evaluate the invisibility of the
proposed AGAT attack, we further investigate the Cosine
similarity between the local and the global models [39],
i.e., Constraint (7b), based on the CIFAR-10 and SVHN
datasets in Fig. 10. As shown in Figs. 10(a), 10(b), 10(c)
and 10(d), the Cosine similarities between the malicious,
biasing model updates generated by the new AGAT attack
and the corresponding global models are always below
that of the benign local model updates. This complicates
detecting and defending against fairness biases at the server
as malicious updates can blend with legitimate data. In
contrast, as depicted in Figures 10(e) and 10(f), both
the G-MPA method and the AN-BA approach lead to a
markedly higher Cosine similarity between the malicious,
biasing model updates and the aggregate global models.
This increased similarity offers a clearer signal for de-
tection mechanisms. This contrast underlines the superior
tactical advantage of the proposed AGAT attack: AGAT
crafts malicious model updates by exploiting the feature
correlations between benign local updates and the global
model. This strategy effectively obfuscates the distinctions
between benign and malicious updates, rendering the latter
virtually undetectable and showcasing the sophistication
and potential efficacy of AGAT in compromising model
integrity.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a new AGAT architecture was proposed
to intentionally instigate fairness attacks with an aim to
bias the learning process across the FL. The proposed
AGAT was developed to synthesize malicious, biasing
model updates, which capture the correlations among data
features within benign model updates. Moreover, an adver-
sarial GAE was designed within the AGAT architecture,
which can be trained together with sub-gradient descent
to manipulatively reconstruct the correlations of the model

updates and maximize the reconstruction loss while keeping
the malicious, biasing model updates undetectable. The
proposed AGAT attack was implemented in PyTorch, show-
ing experimentally that AGAT successfully increases the
minimum value of KL divergence of benign model updates
by 60.9% and bypasses detection of the existing defense
model. The source code of the AGAT attack is released on
GitHub.

For future work, we aim to extend the proposed AGAT
attack to DFL, where the users collaborate by sharing
updates directly with their peers. We will explore how
the AGAT attack adapts to decentralized communication
patterns, and assess its effectiveness in this context. More-
over, future work could explore the development of a
defense model against the AGAT attack, where the model
updates can be dynamically selected and weighted. By
using a reward mechanism based on metrics, such as the
consistency and reliability of updates over time, the server
can iteratively adjust its strategy to minimize the influence
of potentially malicious updates. The defense model can be
developed to allow the server to learn from historical data,
gradually identifying and reducing the weight of updates
that exhibit unusual or biased behavior, as might be induced
by the AGAT attack.
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(a) AGAT: one attacker with CIFAR-10. (b) AGAT: three attackers with CIFAR-10.
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(c) AGAT: one attacker with SVHN. (d) AGAT: three attackers with SVHN.
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(e) G-MPA: three attackers with CIFAR-10. (f) G-MPA: three attackers with SVHN.
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(g) AN-BA: three attackers with CIFAR-10. (h) AN-BA: three attackers with SVHN.

Fig. 10: Given 100 FL communication rounds and I = 5, the Cosine similarities of the local models are measured at the
server in order to detect an adversarial attack, based on the CIFAR-10 and SVHN datasets.
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