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Abstract—This paper puts forth a new training data-
untethered model poisoning (MP) attack on federated learning
(FL). The new MP attack extends an adversarial variational
graph autoencoder (VGAE) to create malicious local models
based solely on the benign local models overheard without
any access to the training data of FL. Such an advancement
leads to the VGAE-MP attack that is not only efficacious but
also remains elusive to detection. VGAE-MP attack extracts
graph structural correlations among the benign local models
and the training data features, adversarially regenerates the
graph structure, and generates malicious local models using
the adversarial graph structure and benign models’ features.
Moreover, a new attacking algorithm is presented to train
the malicious local models using VGAE and sub-gradient
descent, while enabling an optimal selection of the benign local
models for training the VGAE. Experiments demonstrate a
gradual drop in FL accuracy under the proposed VGAE-MP
attack and the ineffectiveness of existing defense mechanisms
in detecting the attack, posing a severe threat to FL.

Index Terms—Federated learning, variational graph auto-
encoders, data-untethered model poisoning

I. INTRODUCTION

Federated learning (FL) has attracted significant atten-
tion recently, and emerged as a distributed deep learning
paradigm. With FL, each user device trains its local model
with its private data to generate local updates sent to the
edge server without sharing the device’s private data. The
edge server then aggregates the local updates to train a
global model, which is sent back to the user devices for
the next round of FL training. Based on FL, individual data
privacy is protected as no private data is shared [1].

Despite the fact that FL offers a protective measure for
the data privacy of user devices, it remains susceptible
to cyber-epidemic attacks. In these attacks, malevolent
entities, such as compromised user devices, execute model
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or data poisoning strategies. These tactics are designed
to manipulate the FL process and proliferate across other
innocuous user devices. Consequently, this leads to the
derailment of the training process and a subsequent degra-
dation in the accuracy of the learning outcomes [2]. For
the model poisoning attacks, the attacker aims to manip-
ulate the hyperparameters of the benign local model. In
contrast, data poisoning attacks involve manipulating the
training dataset of benign user devices. To launch effective
model or data poisoning attacks [3], the attackers need to
access the knowledge of the dataset used for FL training,
which helps to minimize the detectability of malicious local
models. FL could be manipulated if an attacker launches
model poisoning attacks based solely on the benign local
and global models overheard without access to the data.
Nevertheless, it is challenging for the attacker to achieve
effectiveness and undetectability without knowledge of the
data. This type of attack is new, has not yet been discussed
in the existing literature, and requires further research to
develop effective detection and prevention methods. This
new attack underscores the importance of securing FL from
local and global training threats.

This paper investigates a new adversarial varia-
tional graph autoencoder (VGAE)-based model poisoning
(VGAE-MP) attack on FL. VGAE-MP is a new data-
untethered cyber-epidemic attack, where malicious local
models are generated solely based on the benign local
models overheard by attackers and the correlation features
of the benign local and global models. This attack could be
particularly severe in FL systems under wireless settings,
due to the broadcast nature of radio. The attacker starts
the VGAE-MP attack by overhearing (or eavesdropping
on) the transmissions of local model updates from the
benign clients in a communication round. The attacker
also has the global model that the server shared in the
previous communication round. Then, the attacker executes
the VGAE-MP model to craftily generate its malicious local
model update that, when aggregated, subtly distorts the
global model in the current round.

Specifically, the attacker manipulates its malicious model
update to introduce erroneous gradients or patterns. This
is done by running the adversarial VGAE to capture the
correlation of the benign local models and then regenerate
the graph structure to create malicious local models that can
effectively compromise the global and benign local models
while remaining indistinguishable from the benign local
models. Over time, this insidious injection of inaccuracies
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shifts the global model away from its optimal learning
trajectory, leading to a gradual but significant decline in
overall FL accuracy.

Since the user devices possessing large datasets could
improve the learning accuracy of FL, the server selects
a portion of the collected local models for the global
aggregation. Likewise, the VGAE-MP, as a white-box at-
tack, also selects the benign local models in the training
of the VGAE. For example, the user device selection at
the attacker ensures that the selected local models have
sufficient data features for retrieving the correlation in the
VGAE, while the generated malicious local model is within
proximity to the global model in Euclidean distance.

The key contributions of this paper are as follows:
• A new data-untethered model poisoning attack, i.e.,

VGAE-MP, is proposed to manipulate the correlations
of multiple data features in the selected benign local
models and maintain the genuine data features sub-
stantiating the benign local models;

• A new adversarial VGAE, which is trained together
with sub-gradient descent to regenerate the correla-
tions of the local models manipulatively while keeping
the malicious local models undetectable.

• The proposed VGAE-MP attack is implemented in Py-
Torch, showing experimentally that VGAE-MP grad-
ually reduces the accuracy of FL and bypasses the
detection of existing poisoning defense mechanisms.
This attack can propagate across all benign user
devices, which leads to an epidemic infection. The
source code of the VGAE-MP attack has been released
on GitHub.

The remaining of this paper is structured as follows.
Section II introduces the background of adversarial attacks
against wireless systems and FL. Section III investigates
the FL system model with malicious agents. The proposed
VGAE-MP attack is described in Section IV. Section V
discusses the performance analysis. Section VI concludes
the paper. Table I lists the notation used in the paper.

II. RELATED WORK

This section reviews the literature on adversarial attacks
and security threats to FL, e.g., model poisoning, data
poisoning, inference, and backdoor attacks.

The periodic model updates in FL bear a discriminative
ability that reflects changes in data distribution, including
sensitive properties, making it possible for an attacker to
infer unintended information. In [4], the authors introduce a
poisoning-assisted property inference attack, which injects
malicious data into the training dataset to infer a targeted
property of the FL model. The attack modifies the training
data labels, thereby distorting the decision boundary of
the shared global model in FL, resulting in the disclosure
of sensitive property information by benign user devices.
In [5], the authors present that the attacker can infer the
presence or absence of a particular category in the data by
carefully crafting a malicious training dataset, despite the
secure aggregation methods. A category inference attack

TABLE I: Notation and definition

Notation Definition
I number of benign devices
J number of attackers
Di(t) datasets of the benign device i at the t-th commu-

nication round
D total datasets of I number of benign devices
D0(t) the claimed data size of the attacker
wwwi(t) local model weight parameters of the benign de-

vice i
www0

j(t) training parameters of the malicious model at at-
tacker j

www0
G(t) the global model of FL under attack

�0
i,j(t) the binary indicator for selecting benign local

model weights
�, ⇢ the Lagrangian dual variables
⌧i(t) the training delay of wwwi(t) at device i
M total number of model parameters in wwwi
wwwm

i (t) the m-th feature in wwwi
AAA the adjacency matrix formulated by attacker
FFF the feature matrix in VGAE of attacker
LLL the Laplacian matrix based on AAA
LLLk the rank-k SVD approximation of LLL
⌘loss the reconstruction loss of the decoder in VGAE
bAAA the reconstructed adjacency matrix generated at the

decoder of attacker
bFFF the reconstructed feature matrix at attacker

is developed, which iteratively generates malicious training
data and utilizes them to update the global model in FL. The
vulnerability of FL to label inference attacks is presented
in [6], where a malicious user device can infer the private
labels of other benign devices. With the observed aggregate
model updates, three label inference attacks have been
developed to infer private labels with the benign devices,
including direct, passive, and active label inference attacks.

In [7], a coordinated backdoor attack on FL is designed
using model-dependent triggers, where an attacker can
inject a backdoor trigger into a target model and then
train the models in FL to perform coordinated attacks.
The trigger uses the model dependency in FL to activate
the backdoor when the target client uses the compromised
model. A distributed attacking algorithm is also provided
to enable the attackers to select their respective backdoor
models for a high attack success rate while maintaining a
low impact on the overall training accuracy of FL.

The authors of [8] focus on data poisoning attacks in
both sequential and parallel FL settings. These attacks could
weaken the performance of trained models by injecting ma-
licious data into the training datasets used in FL. Sequential
FL involves user devices training successively, using the
output model from the previous device. In contrast, parallel
FL involves each user device simultaneously training a local
model before sending updates to the server for aggregation.
An attacker can later trigger malicious behavior during the
prediction phase by modifying specific training inputs using
a specific pattern. In [9], it is argued that FL based on
weighted averaging and trimmed averaging for mitigating
Byzantine faults is still vulnerable to data poisoning attacks.
These attacks can lead to considerable reductions in training
accuracy, highlighting a critical vulnerability in the current
mitigation strategies within FL. A data poisoning attack is
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Fig. 1: (a) Illustration of FL, where a local model update is trained at each benign user device based on its datasets. The
edge server aggregates the benign local model updates to train a global model that will be broadcast to the user devices
to update the training parameters of their local models. (b) By eavesdropping on the benign local model updates, the
attacker performs the proposed VGAE-MP attack to create a malicious poisoning model that is sent to the server. The
malicious model deviates the FL in the opposite direction, thereby falsifying the local model updates of the devices.

studied, which targets the FL system designed to be robust
against Byzantine attacks. The data poisoning attack can
exploit the characteristics of FL and the Byzantine-robust
mechanisms to insert malicious data into the system.

In [10], a model poisoning attack is introduced, which
accounts for the characteristics of FL, such as variability in
the training data and randomness of the training process.
The model poisoning attack uses a transfer learning strategy
to improve the attack efficiency. A model poisoning attack
on FL based on fake user devices added to the system
and operating as legitimate devices is presented in [11].
This fake device can manipulate its data to influence the
global model and potentially insert a backdoor or degrade
the FL performance. In [12], the authors study a perception
poisoning attack in which the attacker manipulates the FL
model’s perception by altering the training data. The attack
can be captured by building a poison perception model for
measuring a perception poisoning rate.

In [13], the authors focus on a generative poisoning
attack against FL, which generates malicious data us-
ing generative adversarial networks (GAN) to target user
devices in FL. The attack can introduce bias into the
aggregated model by injecting poisoned data generated by
the GANs. Another GAN-based poisoning attack against
FL is presented in [14]. The GANs-based poisoning attack
creates a set of malicious samples by generating poisoned
data samples to attack the local models of benign user
devices. To degrade the training accuracy of FL, the attacker
deceives the aggregation process at the server by strategi-
cally altering the models of the benign user devices. The
GAN-based poisoning attack is evaluated based on image
classification datasets.

The existing data or model poisoning attacks against FL

lack the description of the implicit relationship between
different local models, which can be detected by recent
poisoning defense frameworks based on the probabilistic
graph model, e.g., [15], [16]. Additionally, convolutional
layers at the aggregator can excessively smooth out the
output features of the attacks, resulting in distinguishable
discrepancies between the malicious local model and the
benign ones. In contrast, the proposed VGAE-MP attack
is a new attacking method for model poisoning, which is
independent of the data. The VGAE-MP attack manipulates
the correlations among multiple data features in selected
benign local models while preserving the genuine data fea-
tures that support those models, thus keeping the malicious
local models undetectable.

III. SYSTEM MODEL AND PROBLEM STATEMENT

This section presents the training of the local and global
models of FL in mobile edge computing for image classi-
fication as an example. Figure 1(a) presents an FL training
process with I benign user devices. Each benign device
i 2 [1, I] has Di(t) data samples at the t-th communication
round of FL. Let x(di) denote a data sample captured at the
i-th benign device, and y(di) the local model update trained
at the i-th benign device, where di 2 [1, Di(t)] [17].

The training loss function of a benign device i, denoted
by f(wwwi(t);x(di), y(di)), measures approximation errors
based on the inputs x(di) and outputs y(di) in the t-
th communication round, where wwwi(t) 2 R1⇥M denotes
the local model obtained in the communication round.
For example, the loss function can be modeled as linear
regression, i.e., f(wwwi(t);x(di), y(di)) = 1

2 (www
T
i (t)x(di) �

y(di))2, or logistic regression, i.e., f(wwwi(t);x(di), y(di)) =
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y(di) log
⇣
1+exp

�
�wwwT

i (t)x(di)
�⌘
� (1�y(di)) log

⇣
1�

1

1+exp
�
�wwwT

i (t)x(di)
�
⌘

. Here, (·)T denotes transpose.

Given Di(t), the local loss function of the FL at device i
for the t-th communication round is

F(wwwi(t))=
1

Di(t)

Di(t)X

i=1

f
�
wwwi(t);x(di),y(di)

�
+↵⇣

�
wwwi(t)

�
,

(1)
where ⇣(·) is a regularizer function capturing the effect of
local training noise; ↵ 2 [0, 1] is a given coefficient [18].

With the learning rate µ, the local model of device
i is updated for TL local iterations throughout the t-th
communication round by

wwwi(t) wwwi(t)� µrF (wwwi(t)), (2)

After the TL local iterations, all devices upload their local
models wwwi(t), 8i to the server. The server aggregates the
local models to train a global model denoted by wwwG(t) for
the t-th communication round. Then, wwwG(t) is broadcast to
all user devices for their training of wwwi(t + 1), 8i in the
(t+ 1)-th communication round.

Figure 1(b) shows the FL of the benign user devices
under the proposed VGAE-MP attack, where an attacker
overhears wwwi(t) uploaded by the benign devices. The
attacker, who may appear as a legitimate device, can
progressively contaminate the global model represented by
wwwG(t) and the local models of the benign users, i.e., wwwi(t),
8i 2 [1, I], by creating and uploading malicious local
models during each communication round t. The malicious
local model at the attacker’s device j is represented by
www0

j(t). It is constructed based on the parameters of the
benign local models overheard by the attacker during each
communication round t. The server aggregates the local
models of the user devices, including both benign and
malicious models, without realizing the attacker’s presence.
This creates a contaminated global model, !!!0

G(t). The total
size of the local training data reported to the server, D(t), is
calculated as the sum of the data size of all devices, Di(t),
and the claimed data size of the attacker, D0(t).

Some FL systems allow the server to select a portion
of the collected wwwi(t) to train wwwG(t). For example, the
authors of [19] considered a selection scheme in which the
total bandwidth of the selected devices needs to be smaller
than the bandwidth capacity. We define a binary indicator
�0
i,j(t) at the attacker. If wwwi(t) is selected by the attacker

to train its adversarial and contaminating local model, then
�0
i,j(t) = 1; otherwise, �0

i,j(t) = 0. Thus, the contaminated
global model can be written as

www0
G(t) =

IX

i=1

Di(t)

D(t)
�0
i,j(t)wwwi(t) +

D0(t)

D(t)
www0

j(t), (3)

where www0
j(t) is the weight parameter of the malicious model

trained at attacker j. Then, the server broadcasts www0
G(t) to

all I devices.
The FL trains the global model based on the local

datasets of all user devices, including the non-existent

dataset claimed by the attacker, by minimizing the global
loss function:

min
www0

G(t)
F (www0

G(t))=
IX

i=1

Di(t)

D(t)
�0
i,j(t)Fi(wwwi(t))+

D0(t)

D(t)
F 0
j(www

0
j(t)), (4)

where the attacker’s claimed local loss function, represented
by F 0

j(·), is in accordance with (1).
The optimization of the proposed VGAE-MP attack aims

to construct an optimal www0
j(t) based on the overheard

wwwi(t) to maximize F (www0
G(t)) in (4), while maintaining a

reasonably small Euclidean distance between www0
j and www0

G.
This helps www0

j(t) remain undetectable by the server, because
the server could evaluate similarities among local models
and eliminate those differing significantly using, e.g., Krum
or multi-Krum [20]. Consequently, www0

G(t) deviates the most
in the opposite direction that the benign global model would
change in the absence of the attack.

The optimization of VGAE-MP launched by the at-
tacker j, 8j 2 [1, J ], in the communication round t is
formulated as

max
www0

j(t),�
0
i,j(t)

F (www0
G(t)) (5a)

s.t. d(www0
j(t),www

0
G(t))  dT , (5b)

IX

i=1

�0
i,j(t)d(wwwi(t), w̄ww(t))  ⌥, (5c)

�0
i,j(t) 2 {0, 1}, (5d)

where d(·, ·) calculates the Euclidean distance between www0
j

and www0
G, dT is a threshold of the Euclidean distance, w̄ww(t) =PI

i=1
Di(t)
D(t) wwwi(t), and ⌥ is a predefined upper bound of the

overall distance between the selected local models and the
aggregated model of the local models.

Constraint (5b) guarantees that the j-th attacker’s mali-
cious local model www0

j is in proximity to the global model in
terms of Euclidean distance, while constraint (5c) ensures
the overall distance between the selected local models
and their aggregated model is below the upper bound ⌥,
i.e.,

PI
i=1 �

0
i,j(t)d(wwwi(t), w̄ww(t))  ⌥. This is because the

defense mechanism at the FL server, e.g., Krum or multi-
Krum, may perform local model selection to rule out those
dissimilar to the rest. Constraint (5d) defines �0

i,j(t) as a
binary indicator.

IV. VARIATIONAL GRAPH AUTO-ENCODERS-BASED
MODEL POISONING ATTACK ON FL

Due to a lack of correlation between the arbitrary features
in www0

j(t) and wwwi(t), the malicious local model www0
j(t) could

be detected by the server. For example, recent graph neural
network (GNN)-based FL privacy protection schemes [21],
[22] can classify the local model weights based on their
features. To tackle this issue, we develop a new adversarial
VGAE model in this section to generate www0

j(t) in such
a way the individual feature correlation in wwwi(t), 8i is
captured in www0

j(t). As a result, the server can hardly detect
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Fig. 2: The proposed VGAE-MP attack creates www0
j(t) based on learning the correlation among the parameters of the

models being trained in FL, i.e., wwwi(t), 8i. A graph encoder trains FFFj and AAAj to build a feature representation matrix
ZZZ . The output of the encoder inputs to the decoder for the reconstruction of AAAj . The VGAE-MP attack is designed to
adjust www0

j to maximize the reconstruction loss ⌘loss, according to (19).

www0
j(t). For the brevity of notation, we omit the subscript j

for the attacker in the following discussions.
The optimization of VGAE-MP in (5) is a non-convex

combinatorial problem intractable for conventional opti-
mization techniques. We decouple the VGAE-MP problem
in (5) between the model attack and the bandwidth selection
using the Lagrangian-dual method [23]. A new approach
is developed to iteratively optimize the adversarial local
models by running graph autoencoder and subgradient
descent, as depicted in Fig. 2.

Let � and ⇢ denote the dual variables. The Lagrange
function of (5) is given by

L(�0
i,j(t),�, ⇢) = F (www0

G(t)) + �(dT � d(www0
j(t),www

0
G(t)))

+ ⇢

 
⌥�

IX

i=1

�0
i,j(t)d(wwwi(t), w̄ww(t))

!
.

(6)
The Lagrange dual function is

D(�, ⇢) = max
www0

j(t),�
0
i,j(t)

L(�0
i,j(t),�, ⇢). (7)

The dual problem of the primary problem in (5) is

min
�,⇢

D(�, ⇢). (8)

A. Client Selection

At communication round t, given � = �(t) and ⇢ = ⇢(t),
the primary variable �0

i,j(t) of the bandwidth selection can
be optimized by solving

�0
i,j(t)

⇤ = arg min
�0
i,j(t)

(
IX

i=1

�0
i,j(t)d(wwwi(t), w̄ww(t))

)
, s.t. (5d),

(9)
which is a standard 0/1 knapsack problem and can be
readily solved using dynamic programming.

B. Generation of Adversarial Local Models

A new adversarial VGAE model, leveraging unsuper-
vised learning on graph-structured data according to the
variational auto-encoder [24], is proposed to maximize the

Lagrange function (6). For given �0
i,j(t)

⇤, �(t) and ⇢(t),
we optimize www0

j(t) by solving

www0
j(t)

⇤=argmax
www0

j(t)

⇢
F (www0

G(t))��(t)d(www
0
j(t),www

0
G(t)))

+ ⇢(t)
IX

i=1

�0
i,j(t)

⇤d(wwwi(t), w̄ww(t))

�
.

(10)
An attacker positioned within the effective range of the

benign device’s wireless signal can overhear the transmit-
ted wwwi(t) to the server. The level of access an attacker
might have depends on the eavesdropping capabilities.
For example, standard wireless signals are broadcast in
a spherical radius around the transmitting device. This
means that the attacker within that radius can have access
to the broadcasted signal, where the attacker can capture
the traffic and observe the transmitted information. More
advanced attackers might employ methods that allow them
to extend the range of their eavesdropping capabilities or
to focus on specific directions, allowing them to intercept
communications from further away. For example, a highly
directional antenna can pick up wireless signals from a
much greater distance than a standard antenna.

An attacker, i.e., the j-th attacker, can observe the local
model parameters of the benign devices to establish the
intrinsic correlation between the different parameters of
the local models. A graph can be used to characterize the
correlation. The graph is then regenerated manipulatively
with the VGAE, and used to produce the malicious local
model www0

j(t). By this means, we can maximize (10) while
preventing the convergence of www0

G(t). Constraints (5b)-(5d)
are satisfied by designing the decoder of the VGAE to
reproduce the correlations. This approach reduces structural
dissimilarity between wwwi(t) and www0

j(t), which invalidates
the existing defense mechanisms. The VGAE is tailored to
ensure those constraints and hinder the convergence of the
global model by extracting the correlation features between
benign local models and embedding the correlation features
in graphs for malicious local model generation.

1) Graph Construction and Feature Extraction: As illus-
trated in Fig. 2, the graph represented by G = (V, E,F) is
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utilized to characterize the correlations among the parame-
ters of the models being trained in FL, i.e., wwwi(t), 8i [25].
The vertexes, edges, and feature matrix of the graph are
represented by V , E, and F , respectively. The VGAE
comprises a graph convolutional network (GCN) encoder
and an inner product decoder. The encoder encodes the
graph data using its features, and the decoder takes the
encoded output as input to reconstruct the original graph
G = (V, E,F) [26].

Let FFF(t) = [www1(t), · · · ,wwwI(t)]T 2 RI⇥M be the feature
matrix containing all I benign local models at communica-
tion round t, where M is the dimension of the local model.
Let !m(t) 2 RI⇥1 be the m-th column of FFF(t). We use
�m,m0(t) to denote the cosine similarity between the !m(t)
and !m0(t) at communication round t. m,m0

2 [1,M ].
�m,m0(t) is defined as [27]

�m,m0(t) =
(!m(t))T!m0

(t)

k!m(t)k · k!m(t)k
. (11)

The adjacency matrix, denoted by AAA(t) = [�m,m0(t)] 2
RM⇥M , is one of the inputs to the encoder of the VGAE
model at the attacker. According to AAA(t), the topological
structure of the graph G can be constructed at the attacker.
The feature matrix FFF(t) is the other input to the encoder
of the VGAE model at the attacker.

2) Encoder design of the VGAE model: The encoder
in the proposed VGAE maps G to a lower-dimensional
representation. We build the encoder based on the GCN ar-
chitecture, which learns a latent representation that captures
the underlying features of G. The encoded representation is
then used as input to the decoder to reconstruct the original
graph from the lower-dimensional representation to obtain
the malicious local model www0

j(t) in (9). For the brevity of
notation, we omit the index of communication rounds “t”
in the following discussions.

A graph encoder is defined as

ZZZ1 = frelu(FFF ,AAA, |WWW 0); (12)

ZZZ2 = flinear(ZZZ1,AAA|WWW 1), (13)

where frelu(·) is the Rectified Linear Unit (ReLU) activa-
tion function employed for the first layer, while flinear(·)
is the Linear activation function used for the second layer;
and WWW l is the learnable parameters specific to the l-th layer
of the neural networks.

Since determining the probability distribution of the
latent representation of vertexes ZZZ in G is difficult and
intractable [28], we approximate the true posterior by using
a Gaussian distribution N (·), while the encoder takes FFF

and AAA as its input to an inference model parameterized by
a two-layer GCN. Thus, we have

q(ZZZ|AAA,FFF) = ⇧M
m=1q(zzzm|AAA,FFF), (14)

and

q(zzzm|AAA,FFF) = N (zzzm|µµµm, diag(���2)), (15)

where µµµ = ZZZ2 builds the matrix of mean vectors µµµm.
Likewise, we have log��� = flinear(ZZZ1,AAA|WWW 1) that shares
the first-layer parameters WWW 0.

With the identity matrix I 2 RM⇥M , we define
eAAA = AAA + I with the (m,m0)-th element eAAAm,m0 , and the
(diagonal) degree matrix DDD with the (m,m)-th element
DDDm,m =

PM
m0=1

eAAAm,m0 . Each layer of the GCN can be
written as

fG(ZZZ l�1,AAA|Wl) = �(DDD� 1
2 eAAADDD

� 1
2ZZZ l�1Wl), (16)

where �(·) is the activation function such as relu(·).
3) Decoder design of the VGAE model: The input to the

decoder of the proposed VGAE model is ZZZ , which is the
output of the GCN in the encoder. The decoder aims to
reconstruct AAA, denoted by bAAA, predicting whether there is
a link between two vertexes by an inner product between
latent variables, which is designed as

p(bAAA|ZZZ) =
MX

m=1

MX

m0=1

p(�̂m,m0 |zzzm, zzzm0); (17)

p(�̂m,m0 = 1|zzzm, zzzm0) = sigmoid(zzzTmzzzm0), (18)

where zzzm 2 RM⇥1 is the m-th column of ZZZ ,
and sigmoid(·) is the logistic sigmoid function, i.e.,
sigmoid(x) = 1/(1 + exp�x). Here, the larger the inner
product (zzzTmzzzm0) in the embedding, the more likely ver-
texes m and m0 are connected in the graph, according to
bAAA = [�̂m,m0 ] 2 RM⇥M in the autoencoder [29].

We can view (17) as the inverse operation of the encoder
for constructing a reconstructed adjacency matrix bAAA as the
output of the decoder. A reconstruction loss function ⌘loss
is defined at the decoder to measure the difference between
AAA and bAAA. Given (14) and (17), ⌘loss is given as

⌘loss=Eq(ZZZ|AAA,FFF)

h
log p(bAAA|ZZZ)

i
��[q(ZZZ|AAA,FFF)|p(ZZZ)],

(19)

where p(ZZZ)=⇧mp(zzzm)=⇧mN (zzzm|0, I) provides a Gaus-
sian prior, and �[q(ZZZ|AAA,FFF)|p(ZZZ)] provides the Kullback-
Leibler divergence [30] between q(ZZZ|AAA,FFF) and p(ZZZ).

4) Generation of adversarial local models www0
j(t): The

Laplacian matrix of G [31] is built based on the adjacency
matrix of the benign models, i.e., AAA, as given by

L = diag(AAA)�AAA. (20)

By applying singular value decomposition (SVD) [32] to L,
i.e., L = B⌃BT , we can obtain a complex unitary matrix
B 2 RJ⇥J , also known as graph Fourier transform (GFT)
basis, that is used to transform graph data, e.g., FFF , to its
spectral-domain representation. ⌃ 2 RJ⇥J is a diagonal
matrix with the eigenvalues of L along its main diagonal.

Due to the abundance of local training data at a client,
wwwm

i (t) typically contains numerous model parameters, i.e.,
M � 1, which leads to a large size of AAA = {�m,m0} 2

RM⇥M . The exact SVD of L that has an M⇥M matrix has
time complexity O(M3), which is infeasible in the presence
of a large AAA. To reduce the dimensionality of AAA while
preserving the features, we consider a fast low-rank SVD
approximation [33], which retains the k singular values and
their corresponding singular vectors, where k ⌧ M3. In
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particular, a truncated SVD of L can be formulated as Lk ⇡

Bk⌃kBT
k , where Bk is an m⇥k matrix with columns being

the first k left singular vectors of L, ⌃k is a k⇥k diagonal
matrix with entries being the first k singular values of L,
and Bk is an n⇥ k matrix with columns being the first k
right singular vectors of L.

With B (or more explicitly, Bk), an attacker, i.e., attacker
j, can obtain a matrix S that contains the spectral-domain
data features of all !m(t), 8m by removing the correlations
among the models and subsequently focusing on the data
features substantiating the local models. S is given by [34]

S = B�1
k FFF . (21)

Likewise, the attacker can produce a Laplacian matrix
based on the output of the VGAE, as given by

bL = diag(bAAA)� bAAA. (22)

The corresponding GFT basis, denoted by bBk, can be
obtained by applying the fast low-rank SVD approximation
to bL. With reference to (21), the malicious local model that
follows AAA in the VGAE can be determined by

bFFF = bBkS, (23)

where bFFF 2 RI⇥M . The j-th row vector of bFFF is selected as
the malicious local model www0

j(t) and uploaded by the j-th
attacker to the aggregator for global model aggregation in
communication round t.

C. Update of Dual Variables
Given the attack model www0

j(t), with the obtained �0
i,j(t)

⇤,
the sub-gradient descent method can be taken to update
�(t) and ⇢(t) by solving the dual problem (8). Specifically,
�(t)and ⇢(t) are updated by [35]

� (t+ 1)=
⇥
�(t)� "

�
d(www0

j(t),www
0
G(t))� dT

�⇤+
; (24a)

⇢ (t+ 1)=

"
⇢(t)�"

 
IX

i=1

�0
i,j(t)

⇤d(wwwi(t), w̄ww(t))�⌥

!#+
,

(24b)

where " is the step size, and [x]+ = max (0, x). At
initialization, �(t) and ⇢(t) are non-negative, i.e., �(1) � 0
and ⇢(1) � 0, to ensure (24) converges.

Since the attacker aims to generate the malicious local
models to disorient FL, the proposed VGAE is constructed
and trained to maximize ⌘loss. As a consequence, www0

j(t) pro-
gressively and increasingly contaminates the FL training, as
global model aggregations increase, i.e., t = 1, 2, 3, · · · .

D. Algorithm Design of The VGAE-MP Attack
According to the design of the new VGAE-MP attack

in Figure 2, Algorithm 1 is developed along with the FL
training of the benign user devices and the FL server.
Specifically, the FL server broadcasts www0

G in every com-
munication round. Each benign node i (1  i  I) applies
the LocalTraining start(www0

G) function for training the local
model wwwi. Each attacker, i.e., the j-th attacker (1  j  J),

Algorithm 1 The proposed VGAE-MP attack algorithm

1: 1. Initialize: G = (V, E,F), TL, I , J , dT , www0
G(t),

wwwm
i (t), and �(1) � 0.

% Adversarial FL:
2: for round t = 1, 2, 3, · · · do
3: for Local iteration number l = 1, · · · , TL do
4: All benign user devices train their benign local

model !!!i(t), i = 1, · · · , I .
5: end for
6: All benign user devices upload their benign local

models wwwi(t), i = 1, · · · , I to the server, and the
attackers overhear the benign local models.

7: The attacker j carries out the proposed VGAE, i.e.,
VGAE(!m(t), 8m,FFF ,�(t)), and obtains www0

j(t):
8: · Build the adjacency matrix AAA = [�m,m0 ] 2

RM⇥M according to (11), and input AAA and FFF

into the VGAE.
9: · Train the VGAE to maximize the reconstruction

loss ⌘loss to obtain bAAA.
10: · Obtain S based on (20) and (21), next obtain

bFFF based on (22) and (23), and then determine
!m(t) based on bFFF .

11: Update �(t), according to (24).
12: The attacker uploads the malicious local model www0

j(t)
to the server.

13: The server aggregates selected local models to obtain
the global model under attack www0

G(t) by (3), and
broadcasts www0

G(t).
14: All benign user devices update their local models

with the global model, i.e., wwwi(t) www0
G(t), 8i.

15: end for

overhears the global model www0
G and the local model wwwi

from the benign nodes. The GAE is trained to maximize
the reconstruction loss with AAA and FFF . At the output of
the GAE, the attacker achieves the optimal malicious local
model, i.e., www0

j . Then, www0
j is uploaded to the FL server for

aggregation. As www0
j is highly correlated with wwwi from the

benign user devices, the FL server is unlikely to detect and
identify the attacker.

Note that an attacker positioned in proximity to be-
nign devices and equipped with radio transceivers has the
potential to passively eavesdrop on the transmitted local
models from one or more benign devices. This allows the
attacker to discern their characteristics and subsequently
devise a malicious local model. The more benign local
models are overheard, the more profound the exploration
into the feature correlation between the benign local and
global models, and the more unlikely the malicious local
models are detected by the server. The VGAE-MP attack
remains operational even if only a single benign local
model is overheard, though its effectiveness is diminished
compared to scenarios where multiple benign local models
are eavesdropped upon.

Although cryptography can prevent eavesdropping at-
tacks to some extent, existing techniques, such as those
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TABLE II: The setting of parameters in PyTorch

Parameters Values
number of benign devices (I) 5 ⇠ 30
number of attackers (J) 1 ⇠ 5
communication rounds of the FL 100
number of local iterations (TL) 10
model parameters in wwwi(t) (M ) 100, 200, or 300
1st hidden layer size of the VGAE 32
2nd hidden layer size of the VGAE 16
learning rate of the VGAE 0.01
batch size of the SVM 30
learning rate of the SVM 0.001
regularization of the SVM loss function 0.01
k-Fold cross-validation 5

developed in [36] and [37], have demonstrated the pos-
sibility of deciphering encrypted information with limited
initial data. This risk is even more threatening with the
rapid advancement of Quantum computing. The proposed
data-untethered VGAE-MP attack could potentially work
in compiling with these attack techniques to evade crypto-
graphic protection of the benign local models and poison
the training of FL.

V. PERFORMANCE EVALUATION

This section demonstrates the implementation of the pro-
posed new VGAE-MP attack in PyTorch. Based on MNIST
handwritten digits [38], FashionMNIST and CIFAR-10
datasets [39], the training accuracy of the local and global
models under the attack is evaluated. The detection rate
of the VGAE-MP attack is also presented, which is mea-
sured according to the Euclidean distance between the
malicious local model and the benign one. The source
code of the proposed VGAE-MP attack is available on
GitHub: https://github.com/jjzgeeks/VGAE-based Model
Poisoning Attack FL.

A. Implementation of The VGAE-MP Attack
The benign FL is designed to improve image classifica-

tion accuracy, while the proposed VGAE-MP attack aims
to reduce accuracy and cause label misclassification. The
number of benign devices I increases from 5 to 30, while
the number of attackers J increases from 1 to 5. The global
model www0

G(t) in FL is trained with 100 communication
rounds, and training of the local model wwwi(t) is carried
out in 10 iterations. For building the adjacency matrix AAA

at the attacker, the number of selected model parameters
in wwwi(t), i.e., M , is set to 100, 200, or 300. The VGAE
encoder is a two-layer GCN network with a dropout layer to
prevent overfitting. The VGAE decoder is an inner product.
The Adam optimizer with a learning rate of 0.01 is adopted
to optimize the network. For all datasets, we use the same
encoder, decoder and SVM models. Table II lists the setting
of parameters in PyTorch.

The proposed VGAE-MP attack is implemented on an
SVM model using PyTorch 1.12.1, Python 3.9.12 on a
Linux workstation with an Intel(R) Core(TM) i7-9700K
CPU@3.60GHz (8 cores) and 16 GB of DDR4 mem-
ory@2400 MHz. The experiments are carried out on three
datasets:

• The standard MNIST dataset, comprising 60,000 train-
ing and 10,000 testing grayscale images of handwritten
digits from 1 to 10;

• The FashionMNIST dataset, comprising Zalando’s ar-
ticle grayscale images with the size of 28 ⇥ 28 in
ten classes, including 60,000 and 10,000 images for
training and testing, respectively;

• The CIFAR-10 dataset, consisting of 60,000 images
with the size of 32 ⇥ 32 in ten classes (6,000 per
class), 50,000 for training and 10,000 for testing.

At each benign user device, a standard quadratic
optimization algorithm is utilized to train the SVM
models with the three datasets. The loss function
of the SVM models is Fi(wwwi(t)) = 1

2 kwwwi(t)k
2
2 +

1
Di

PI
i=1 max

n
0, 1� ydi

i (�i +!!!T
i (t)x

di
i )
o

, where �i is a
parameter that can be obtained based on wwwi(t).

In addition, the proposed VGAE-MP attack is compared
with an existent data-agnostic model poisoning (MP) attack
that produces malicious local models by mimicking other
benign devices’ training samples to degrade the learning
accuracy. The MP attack considered for comparison has
been used in several existing studies, e.g., [40], [41], where
the attacker manipulates the training process by injecting
a fake device and sending fake local models to the server.
Moreover, we implemented another existing attack on FL,
i.e., a random MP (RMP) attack considered in [9], [11].
Specifically, RMP generates the malicious local model by
injecting a Gaussian random noise into the received global
model, which can enlarge the magnitudes of the random
local model updates using a scaling factor.

B. Attacking Performance
In Fig. 3, we plot the local model’s testing accuracy

with 100 FL communication rounds under the proposed
VGAE-MP attack on the MNIST, FashionMNIST, and
CIFAR-10. When M of VGAE-MP increases from 100 to
300, the FL accuracy fluctuates dramatically, successfully
restraining the convergence of the testing accuracy. Using
FashionMNIST as an example, the FL accuracy of the
five benign devices converges to 80% in 3(d) under the
VGAE-MP attack with M = 100. Once M increases to 300
in 3(f), the FL accuracy of the five benign devices consis-
tently experiences fluctuations between 50% and 80%. This
confirms that M determines the size of features in !!!m(t)
whose correlation in AAA is learned to generate the malicious
poisoning model www0

j(t). Therefore, a large M leads to a
more complete graph trained by the VGAE model.

In Figs. 3(a) to 3(i), we interestingly observe that VGAE-
MP demonstrates more prominent attacking performance on
the FL with the FashionMNIST and CIFAR-10 than the one
with the MNIST. This might be attributed to the variances
in the MNIST, FashionMNIST, and CIFAR-10. MNIST
comprises grayscale images of handwritten digits, whereas
FashionMNIST houses grayscale images of apparel and
accessories. CIFAR-10, on the other hand, has 10 distinct
categories of objects, including animals, vehicles, among
others. The simplicity of the MNIST’s handwritten digits

https://github.com/jjzgeeks/VGAE-based_Model_Poisoning_Attack_FL
https://github.com/jjzgeeks/VGAE-based_Model_Poisoning_Attack_FL
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(a) M = 100 with MNIST. (b) M = 200 with MNIST. (c) M = 300 with MNIST.
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(d) M = 100 with FashionMNIST. (e) M = 200 with FashionMNIST. (f) M = 300 with FashionMNIST.
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Fig. 3: Given 100 FL communication rounds, I = 5 and J = 2, we study the local model’s testing accuracy under the
proposed VGAE-MP attack on the MNIST, FashionMNIST, and CIFAR-10 datasets.

(a) MNIST (b) FashionMNIST (c) CIFAR-10

Fig. 4: The global model’s testing accuracy (“avg” means the average value and “std” stands for the standard deviation)
under the VGAE-MP attack on the MNIST, FashionMNIST, and CIFAR-10 datasets.
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Fig. 5: Given the MNIST, FashionMNIST, and CIFAR-10 datasets, the average testing accuracy of the local models under
the VGAE-MP attack when J increases from 1 to 5.

may make them more easily classified by FL compared
to the more complex images found in FashionMNIST or
CIFAR-10.

Fig. 4 shows the global model’s testing accuracy mea-
sured at the server based on the MNIST, FashionMNIST,
and CIFAR-10. Under the VGAE-MP attack, the steady
convergence of FL accuracy is inhibited. In particular, for

the CIFAR-10 with M = 300, the FL accuracy maintains
around 58% under the VGAE-MP attack. Moreover, the
VGAE-MP attack doesn’t lead to a considerable decrease
in the testing accuracy of the global model. This is because
that a significant performance dip could potentially reveal
the presence of the attacker.

Fig. 5 plots the average testing accuracy of the local
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Fig. 6: Given J = 5, the average testing accuracy under the VGAE-MP attack on the MNIST, FashionMNIST, and
CIFAR-10 datasets, where I increases from 5 to 30.

models under the VGAE-MP attack when J increases from
1 to 5. Since the number of benign devices is fixed at 3,
the FL accuracy falls with the growth of the number of
attackers. This is because the proposed VGAE-MP attack
hinders the training convergence of FL. In particular, when
M = 300, the average testing accuracy under the VGAE-
MP attack drops about 5%, 12%, and 4% according to
the MNIST, FashionMNIST, and CIFAR-10, respectively.
When J = 5, the VGAE-MP attack outperforms the MP
attack 10% and 20% given the FashionMNIST and CIFAR-
10, respectively. The reason is the new VGAE-MP attack
reconstructs the adversarial adjacency matrix according to
the individual features of the devices. Consequently, the
attacker falsifies the local models to maximize the FL loss.

Fig. 6 depicts the average testing accuracy of FL without
the attack and FL under the VGAE-MP, MP or RMP
attack, where J is set to 5 and I ranges from 5 to 30.
As the benign devices increase, the FL accuracy under
the VGAE-MP, MP and RMP attacks improves, given that
the FL can quickly converge when the ratio of wwwi(t) to
www0

j(t) is heightened. On the three considered datasets, the
FL accuracy is 6%, 5%, and 5% under the VGAE-MP
attack lower than it is under the MP attack, respectively,
when M = 300 and I = 5. The RMP attack has lower
FL accuracy than the VGAE-MP and MP attacks. This
is because the malicious local model update of the RMP
attack is generated according to a Gaussian random noise,
which is not correlated with any benign local models.
However, this can make the malicious local models more
easily detected and subsequently eliminated, as will be
shown in Fig. 7.

Existing MP attacks in FL result in a high training loss
of the FL model. One way to detect these malicious attacks
is to compare the distance between the malicious local
and global models with the distance between the benign
local and global models. Suppose the distance between the
malicious local and global models is larger. In such case,
it can indicate a malicious attack, and the server can detect
it accordingly.

To evaluate the invisibility of the proposed VGAE-MP
attack, we study the distance between the local and the
global models based on the CIFAR-10 datasets in Fig. 7,
where I = 5 and J = 3. As shown in Figs. 7(a), 7(b),
and 7(c), the Euclidean distances between the malicious
local models generated by the new VGAE-MP attack and

the corresponding global models are below that of the
benign local models. This makes it difficult for the server
to detect and defend against the attacker. In contrast, as
shown in Figs. 7(d) and 7(e), the MP attack and the RMP
attack result in a significantly larger distance between the
malicious local and global models, making them easier to
detect. This highlights the key strength of the proposed
VGAE-MP attack, that is, VGAE-MP generates malicious
local models based on the feature correlation between the
benign local and global models, and hence makes the
differences between the malicious and benign local models
indistinguishable.

Fig. 8 shows the average testing accuracy under the
proposed VGAE-MP attack on the MNIST, FashionMNIST,
or CIFAR-10 dataset. This is observed as the attacker
eavesdrops on an increasing number of benign user devices,
ranging from 1 to 25. Generally, a noticeable fall in the
local model updates’ average accuracy is observed as the
number of eavesdropped benign devices escalates. This
trend is attributed to the attacker’s ability to intercept
more benign local models, thereby acquiring a broader
range of correlation features. Such extensive data aids
in crafting a more potent malicious model for effective
system poisoning. In particular, the average accuracy on
the MNIST, FashionMNIST, and CIFAR-10 datasets drops
about 27.4%, 32.3%, and 24.9%, respectively.

VI. CONCLUSION AND FUTURE WORK

In this paper, a new data-untethered VGAE-MP attack
against FL was proposed, where the adversarial VGAE was
developed to create malicious local models based solely on
the benign local models overheard without access to the
training data of FL. The proposed adversarial VGAE allows
the attacker to extract the common underlying data features
of the benign local models and their correlations to generate
the malicious model with which the FL training loss is
maximized. The VGAE-MP attack maintains the feature
correlation between the benign local and global models,
making the differences between the malicious and benign
local models indistinguishable. The VGAE-MP attack on
the FL was implemented using PyTorch with the source
code released on GitHub. The performances were evaluated
using the MNIST, fashionMNIST, and CIFAR-10 datasets.

The proposed data-untethered VGAE-MP attack involves
a single poisoning objective, which aims to degrade the
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Fig. 7: Based on the CIFAR-10 training datasets, the Euclidean distances of the local models are measured at the server
in order to detect a poisoning attack, where we set I = 5 and J = 3.
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Fig. 8: The number of eavesdropped benign local model
updates increases from 1 to 25, based on the MNIST,
FashionMNIST, or CIFAR-10 datasets.

training accuracy of FL. In our future work, multiple per-
formance metrics of FL will be considered in the poisoning,
such as training fairness, robustness, and model utility.
A multi-objective optimization will be formulated while

the VGAE will be further studied to extract the graph
representation.
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