
TKN
Telecommunication

Networks Group

Technical University Berlin

Telecommunication Networks Group

T2: A Second Generation OS For
Embedded Sensor Networks

Philip Levis•, David Gay‡, Vlado Handziski◦, Jan-Hinrich Hauer◦,
Ben Greenstein./, Martin Turon⊥, Jonathan Huio, Kevin Klues◦∓,

Cory Sharp?, Robert Szewczyk?, Joe Polastre?,
Philip Buonadonnao, Lama Nachman‡, Gilman Tolleo,

David Cullero†, and Adam Wolisz◦

• Stanford University ‡ Intel Research ◦ Technische Universität Berlin
Stanford, CA Berkeley, CA; Santa Clara, CA Berlin, Germany

./ UCLA ⊥ Crossbow, Inc. o Arched Rock Corpration
Los Angeles, CA San Jose, CA Berkeley, CA

? Moteiv Corporation ∓ Washington University † UC Berkeley
Berkeley, CA St. Louis, MO Berkeley, CA

Berlin, November 2005

TKN Technical Report TKN-05-007

TKN Technical Reports Series
Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

We present T2, a second generation sensor network operating system written in the nesC language.
We describe why the limitations and problems of current OSes necessitate a new design.

T2 improves on current systems in three areas: platform support, application construction, and
reliability. We argue that existing systems neglected these properties in order to maximize flexibility.
In contrast, T2 limits flexibility to that which applications need, and leverages these constraints to
improve the rest of the system. We evaluate T2 in comparison to TinyOS, and show how its structure
simplifies applications, makes porting to a new platform much easier, and improves system reliability.

From these results, we discuss the frictions present in component-based OSes and how T2’s de-
sign and structure makes dealing with them more tractable.

TU BERLIN

Contents

1 Introduction 3

2 Background 5
2.1 TinyOS . 5
2.2 The nesC programming language . 5
2.3 802.15.4 and the CC2420 . 6
2.4 TinyOS limitations . 7

3 T2 Design Principles 9
3.1 Telescoping Abstractions . 9
3.2 Partial Virtualization . 9
3.3 Static allocation/binding . 10
3.4 Service Distributions . 10

4 T2 Core 11
4.1 Decomposition . 11
4.2 Boot Sequence . 12
4.3 Scheduler . 13
4.4 OSKI . 13

5 Timers 14
5.1 T2 Timer Subsystem . 14
5.2 Timers in OSKI . 16

6 Communication 17
6.1 CC2420 Communication . 18
6.2 Serial Communication . 19
6.3 Communication in OSKI . 20

7 Evaluation 21
7.1 Simplifying Platform Development . 21

7.1.1 Chips and Interconnects . 21
7.1.2 Reusable Hardware Libraries . 22

7.2 Simplifying Application Development . 22
7.3 Reliability . 23

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 1

TU BERLIN

7.4 Resource Usage and Performance . 23
7.4.1 Scheduler Overhead . 24
7.4.2 Application Resource Usage . 24
7.4.3 Network Performance . 26

8 Related Work 27

9 Discussion 29

10 Conclusion 31

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 2

TU BERLIN

Chapter 1

Introduction

Sensor networks defy traditional system boundaries. Their resource tradeoffs and applications lead
to a design space where the end to end principle does not hold, nodes are single-use rather than mul-
titasking, and collaborative rather than independent operation is the norm. The uncertainties of this
new design space have led to exploratory research that spans hardware [3, 12, 21], network proto-
cols [17, 35, 36], and applications [18, 27, 26]. While it is clear that the abstractions and boundaries
of other domains might not be not suitable, this raises the obvious question: which ones are?

Facing a huge design space filled with uncertainty, sensor node operating systems such as
TinyOS [15] and SOS [10] maximize system flexibility. The limited resources of long-lived, battery-
operated sensor nodes (especially RAM) lead these systems to adopt software components for effi-
cient yet flexible composition. TinyOS, for example, is little more than a non-preemptive scheduler;
applications are built from large libraries of components. SOS pushes flexibility even further, allow-
ing applications to dynamically add and replace components at runtime. Their flexibility has given
tremendous freedom to researchers and developers, placing few barriers to innovation and investiga-
tion.

But flexibility has a cost. To be efficient, a component must make assumptions about its use.
Handling every possibility requires a lot of code and state. When applications can compose com-
ponents arbitrarily, however, situations will arise that violate these assumptions. Rather than simply
combining components, building an application is a lengthy process of discovering and debugging all
of the unforeseen interactions between them. Incorporating new hardware or using a new platform
exacerbates these challenges. As there is no standard API, it is unclear exactly what it means to port
the OS. Applications depend on a huge range of component libraries, porting all of them is unfeasible,
and the lack of boundaries makes it unclear which ones are part of the OS.

Additionally, newer hardware resources have demonstrated ways in which the common sensor OS
scheduling policy – best effort, non-preemptive deferred procedure calls – is a basic source of system
failure. On the one hand, an OS can recover through periodic rebooting, watchdog timers, or grenade
timers. On the other, an OS whose basic mechanisms are liabilities is not very appealing.

These three limitations – application complexity, the high cost of porting to a new platform,
and reliability – are not a fault against the operating systems’ designers. Instead, the growth and
maturation of sensor systems has made some requirements more important and others less so. The
community now has a much greater understanding of what abstractions and boundaries a sensor OS
must provide.

In this paper, we describe T2, a second-generation sensor node operating system. T2 builds on

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 3

TU BERLIN

five years of community experience with sensor systems, constraining system flexibility to that which
applications need. An overallcomponent architecturelimits how users can combine components,
allowing T2 to improve reliability, provide better support for platform diversity, and simplify appli-
cation development.

Four design principles guide T2’s component architecture. These principles allow the OS to
achieve its goals without sacrificing efficiency. The first istelescoping abstractions. T2 abstractions
are logically split across hardware devices and have a spectrum of fine-grained layers. The highest
layers are the most simple and portable, while the lowest allow hardware-specific optimization. The
second ispartial virtualization. Some abstractions, such as basic timers, are virtualized, while others,
such as buses, are not. The decision between the two depends on an abstraction’s requirements and
usage model. The third isstatic binding and allocation. In T2, every resource and service is bound at
compile time and all allocation is static. As we discuss in Section 2, even statically-oriented TinyOS
sometimes uses dynamic allocation, and this turns out to be a significant source of failure. The fourth
and final design principle in T2 is the use ofservice distributions. A service distribution is a collection
of components that are intended to work together, providing a unified and coherent API.

T2 is an evolution of TinyOS. It is component-based, is written in nesC, has a single thread
of control, and uses non-blocking calls. However, although similar at a high level, T2 differs in
almost every detail. It has a more restrictive concurrency model, a different boot sequence, different
interfaces, as well as many design patterns and architectures absent in its predecessor. When it comes
to reliability, the proverbial devil is in the details, and we have designed T2 accordingly.

This paper has three research contributions. First, it identifies limitations in TinyOS and other
major embedded sensor OSes. Second, it defines four design principles to address these problems and
gives examples of their use. Third, we believe the problems we identified are fundamental — a natural
result of software components — and that they should be general considerations for component-based
systems.

Section 2 describes current sensor network OSes and outlines their limitations. Section 3 presents
the four design principles T2 applies to address these problems. Sections 4, 5 and 6 describe the
T2 core, timer system, and communication stacks, providing examples of how and when T2 uses
these principles. Section 7 evaluates T2, in terms of reliability, portability, code complexity, resource
utilization, and performance, comparing it to TinyOS as appropriate. Section 8 examines related
work. Finally, based on the evaluation, we discuss the implications and lessons of T2’s design in
Sections 9 and 10.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 4

TU BERLIN

Chapter 2

Background

In this section, we describe TinyOS, the dominant sensor network operating system, along with the
nesC programming language. We present several situations where TinyOS, despite its success, could
use improvements. Our inspection of other sensor OSes (MOS [1] and SOS [10]) show they suffer
from similar problems. For simplicity, we use TinyOS as the running example and defer discussing
these similarities to Section 8.

2.1 TinyOS

TinyOS is an operating system for tiny, embedded, and networked sensors (“motes”), which have
4-10 kilobytes of RAM, a 4-8 MHz 8 or 16 bit CPU, and low power radios with bandwidth of 20-
250kbps. As these nodes need to last unattended for long periods, energy is very valuable, leading
nodes to sleep most of the time. RAM is usually the limiting software resource.

TinyOS is a component-based, event-driven OS. No call in TinyOS blocks. Instead, a call to start
a lengthy operation returns immediately, and the called component later signals when the operation
has completed. Operations are therefore split-phase. In this way, every component acts like a piece
of hardware which issues an interrupt when operations complete. The TinyOS concurrency model
is based on tasks, which are non-preemptive deferred procedure calls. Components can post tasks to
the scheduler for later execution. The TinyOS scheduler has a fixed-length queue that is processes in
FIFO order.

All TinyOS code is written in nesC, a C-based component language. Programmers build TinyOS
application by connecting sets of components to the TinyOS boot sequence and to each other.

2.2 The nesC programming language

The nesC language has three abstractions: components, interfaces, and a concurrency model [8].
Components are software units consisting of two parts: a specification, which states their interfaces,
and an implementation, which states what logic lies behind the interfaces.

Interfaces define a bidirectional relationship between components: the downcall and upcall of a
split-phase operation are syntactically bound together. In order to call the downcall (acommand), a
component must implement the upcall (anevent). Conversely, a component can only signal the upcall
if it implements the downcall. Connecting components that implement the two sides of an interface is

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 5

TU BERLIN

interface Timer {
command result t start(...);
command result t stop();
event void fired();

}
generic configuration SingleTimerC() {

provides interface Timer;
} implementation {

components TimerC;
Timer = TimerC.Timer[unique("Timer")];

}
module AppP {

uses interface Timer;
} ...C code ...
configuration AppC {}
implementation {

components new SingleTimerC() as MyTimer, AppP;
AppP.Timer -> MyTimer.Timer;

}

AppM

TimerC

SingleTimerC

Timer Interface
Application Component
T2 Component

Figure 2.1: Sample nesC code and its pictorial representation. AppC wires the AppP module
to the to the Timer interface provided by the newly instantiated SingleTimerC configuration.
SingleTimerC exports a Timer interface from TimerC, denoted by the pass through connections
(there is no intermediate code).

calledwiring . As both directions are statically bound, nesC programs need no function pointers and
the compiler optimizes both call directions heavily.

There are two kinds of components, modules and configurations. They differ in implementation.
Modules have C code and allocate state. In contrast, configurations wire other components together
and canexport their interfaces. Components can be instantiated at compile-time with constant and
type arguments. By convention in T2, private components end in P and public ones in C. Figure2.1
shows some sample nesC code, adapted from a TinyOS example to show component instantiation,
and a corresponding pictorial representation.

The nesC concurrency model is based on the TinyOS task abstraction. nesC tasks run atomically
with respect to one another. Tasks have no return value and may not take parameters: parameters
must be stored as fields of the task’s component. By default, code can only be called from tasks
(and not from interrupts). Most basic abstractions, such as sending a packet, fall into this category.
Interrupt handlers can only call code that has theasynckeyword. Examples of async functions include
sampling an A/D converter and toggling an LED. The task/async distinction means that a task must
be posted if an interrupt handler wants to, for example, send a packet or signal a send completion
(neither of which is async).

2.3 802.15.4 and the CC2420

802.15.4 is a recent low power wireless standard [28]. A comparatively high data rate (250kb) at
reasonable power cost (15-20mA) has led many sensor platforms to adopt it as a data link protocol.
The ChipCon 2420 (CC2420) is the dominant 802.15.4 chip.

The CC2420 provides a packet interface. It signals packet reception by triggering an interrupt.
If the hardware successfully receives a packet it automatically sends a synchronous data-link level

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 6

TU BERLIN

acknowledgment. The software stack is responsible for reading the received bytes out of the chip’s
memory over a bus. If this memory overflows, the radio stops receiving packets. A software stack
sends a packet by writing it to the CC2420’s memory then sending a transmit command.

This simple hardware interface turns out to have very complicated repercussions for TinyOS, as
described in the next section.

2.4 TinyOS limitations

Experience has shown us that TinyOS has three basic limitations: new platform support, application
construction, and reliable operation.

A typical port of TinyOS to a new platform involves copying a lot of code from an existing
one and modifying it where needed. There are hacks to mitigate this somewhat — a platform can
“inherit” from another — but supporting new combinations of chips is mostly a case-by-case basis of
getting things to work. Additionally, because TinyOS does not define clear abstraction boundaries,
components often directly access hardware resources. For example, the micaZ implementation of the
CC2420 stack uses a hardware timer for its CSMA backoffs. A new platform that inherits from the
micaZ must make sure it does not use this timer elsewhere, but no clear structure defines whether it
is being used.

TinyOS applications face failures that stem from component composition. Large numbers of
components lead to unforeseen interactions and dependencies. For example, on the Telos platform
both the CC2420 radio and the flash storage system share an SPI bus; the pins of this bus are also
used to connect to external sensors. Including all three in an application requires orchestrating their
use very carefully. For example, if the boot sequence tries to initialize the radio and flash system
simultaneously, one will fail. Details such as these are the source of many questions on the TinyOS
help list.

The CC2420 radio itself introduces several reliability challenges for which there are no good
solutions. When the TinyOS CC2420 software handles a packet receive interrupt, it reads the received
packet in over the SPI and posts a task to signal reception to higher components. Because the task
queue is a shared resource, it is possible that the post will fail. This raises a host of problems. The
CC2420 hardware successfully received the packet, so it has sent an acknowledgment. But the radio
software cannot deliver the packet to the application. Retrying the post requires that someone call
into the component again in the future, and there is no good way to ensure this happens (earlier stacks
for other chips had periodic interrupt sources). One possibility is using a timer, but the timer system
uses the task queue. Another possibility is to wait for another receive interrupt, but if the receive
memory overflows, the stack stops delivering interrupts. TinyOS deals with this problem by dropping
the packet, even if the hardware has acknowledged it.

The problem is even worse for packet transmission. Because transmission is split-phase, higher
level components wait for the radio to signal the sendDone() event before reusing the buffer to send
another packet. If the radio cannot post a task to signal the event, then the caller can block indefinitely.
TinyOS deals with this problem by breaking its concurrency model: if it cannot post the task, it signals
sendDone() in interrupt context. This introduces potential bugs: code written to be run in tasks only
(e.g., with no atomic sections) executes asynchronously and might corrupt memory.

Furthermore, this latter problem is not limited to the radio stack. Any component that signals
completion of a split-phase operation in a task is vulnerable. These failures can propagate between

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 7

TU BERLIN

components, causing higher level ones to block forever or suffer race conditions.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 8

TU BERLIN

Chapter 3

T2 Design Principles

Like TinyOS, T2 is a component-based operating system written in the nesC language. However, T2
avoids many of the problems of TinyOS by using a component architecture based on four design prin-
ciples. These principles aretelescoping abstractions, partial virtualization, static allocation/binding,
andservice distributions.

3.1 Telescoping Abstractions

T2 providestelescoping abstractionsin order to satisfy the requirements of general as well as spe-
cialized application domains. Telescoping abstractions provide both averticalandhorizontaldecom-
position. The vertical dimension spans an individual subsystem (e.g. communication stack), where
the higher layers are generally hardware independent and provide simple interfaces. Lower layers, in
contrast, can be hardware dependent and provide more powerful interfaces. The structure of these ab-
stractions make it clear to a developer where an abstraction lies in this spectrum, in case an application
needs to run on multiple platforms.

Horizontal decomposition simplifies porting by allowing reuse of subsystem implementations
across different platforms. Mote hardware is built out of standard chips, with well-defined physical
interfaces. Reflecting these physical interfaces as platform-independent abstractions such as buses
allows reuse of subsystems corresponding to these chips across different platforms.

3.2 Partial Virtualization

T2 abstractions fall into three categories. The top layers of a telescoping abstraction are usually
virtual and shared, as one user of an abstraction is hidden from others through software virtualization.
This virtualization simplifies application development. Virtual and shared abstractions are generally
supported with static allocation (discussed below) through the nesC Service Instance pattern [7]. The
bottom layers of a telescoping abstraction are usuallyphysical and dedicated, with only one user of
the abstraction.

The third class of abstraction isphysical and shared. Unlike the two more common classes, which
depend on compile-time mechanisms to virtualize or check needed properties, physical and shared
resources depend on run-time arbitration. While a user of this class of abstraction cannot conflict
with other users, it must explicitly request the abstraction before it can use it and must release it when

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 9

TU BERLIN

done. Generally, physical and shared resources provide the Resource interface, which has commands
for requesting and releasing the abstraction. There are several possible policy implementations of the
Resource interface, calledarbiters. Examples include round robin and first-come-first-served.

3.3 Static allocation/binding

Because the nesC compilation model allows full program analysis, T2 pushes as much allocation
and binding to compile time as possible. This design principle limits flexibility, but makes many
OS behaviors deterministic. Dynamic approaches are ultimately a bet that certain circumstances are
unlikely (e.g., that every component will need a piece of state at once). Long lifetimes, large numbers,
and an uncontrollable environment mean that making wagers is unadvisable.

Static allocation means that components allocate all of the state they might possibly need. If
a component needs to be able to send a packet, it must allocate a packet buffer. Sometimes, a set
of components designed to work together may never send messages concurrently, so only one packet
buffer is needed. But the maximal state needed at any time must be statically allocated. Static binding
involves pushing as many interface, parameter, and function bindings to compile time as possible. If
there are invariants, components and interfaces should reflect them, rather than leave their checking
to runtime.

3.4 Service Distributions

On the one hand, arbitrary component composition gives a developer a great deal of power and flex-
ibility when building applications. On the other, it can make building non-trivial applications time
consuming and difficult, due to unforeseen conflicts and interactions between these independent ele-
ments. Because T2 components need to be usable in a wide range of application domains, they tend
to provide only basic mechanisms and leave policies up to higher level code. Pushing all of this com-
plexity into applications increases their complexity. For example, determining when a component is
powered on is often left up to the application.

T2 improves reliability and simplifies application-level development withservice distributions. A
service distribution has a set ofservice componentsthat define and provide its abstractions as services.
An application wires only to service components, limiting flexibility but increasing reliability. A
distribution has internal components that wire underlying implementations in a manner that ensures
they will work properly. Finally, a service distribution establishes coherent policies across its services
so that the application does not have to.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 10

TU BERLIN

Chapter 4

T2 Core

In this section, we describe the three core parts of the T2 operating system. The first is how it
structures application code, chip-specific code, and platform-specific code. The second is its boot
sequence. The third is its scheduler. We conclude with a brief presentation of OSKI, T2’s first service
distribution.

4.1 Decomposition

Table 4.1 shows a sample of current sensor network platforms and their important hardware compo-
nents. Although there is a lot of diversity, there are also commonalities. For example, the micaZ,
Telos, and iMote2 all share a common radio, the CC2420, while the Telos, WISAN, eyesIFX, Scat-
terWeb, and imecCube all share a common microcontroller, the MSP430.

In prior work, we proposed the Hardware Abstraction Architecture (HAA) to decompose the
functionality of an individual subsystem, such as MCU timers [11]. The HAA breaks a hardware
abstraction into three layers, described in Table 4.2. The commonalities across platforms, however,
mean that in addition to thevertical decomposition of the HAA, T2 needs ahorizontaldecompo-
sition to promote subsystem reuse. To this aim, T2 introduces the concept ofchips, self-contained
abstractions of a given hardware chip such as an MCU or radio. Each chip follows the HAA model,

AppM

CC2420
Radio Stack

TimerMilliC
MicaZ Component
Chip Component

ActiveMessageC

Atmega128
Timer Stack

Application Component

CC2420AlarmC

32kHz Timer
Millisecond Timer
Communication

Figure 4.1: The T2 chip/platform decomposition. The CC2420 software depends on a physical
and dedicated timer. The micaZ platform code maps this to a specific Atmega128 timer.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 11

TU BERLIN

Platform MCU Buses Radio Flash

eyesIFX [11] MSP430
UART/SPI/I2C0,
UART/SPI/I2C1

TDA5250 at45db

ScatterWeb [24] MSP430
UART/SPI0,
UART/SPI1

TR1001
microchip
24xx64

imecCube [32] MSP430
UART/SPI0,
UART/SPI1

nRF2401

Telos [21] MSP430
UART/SPI/I2C0,
UART/SPI/I2C1

CC2420 stm25p

WISAN [23] MSP430
UART/SPI/I2C0,
UART/SPI/I2C1

CC2420

iMote2 PXA27X
UART0, UART1,
SPI0, SPI1, I2C

CC2420 strataflash

micaZ [14] Atmega128
UART0, UART1, SPI,
I2C

CC2420 at45db

mica2 [33] Atmega128
UART0, UART1, SPI,
I2C

CC1000 at45db

BTnode [2] Atmega128
UART0, UART1, SPI,
I2C

ZV4002,
CC1000

sst39

evb13192 [6] HCS08
UART0, UART1, SPI,
I2C

MC13192

Table 4.1: Typical WSN platforms and their hardware components. These 10 platforms use
4 different microcontollers, 7 different radios, and 5 different storage chips: there are many
possibilities for reuse.

HIL The Hardware Independent Layer provides general, cross-
platform abstractions, such as packet transmission and timers.

HAL The Hardware Abstraction Layer has usable abstractions that
provide the capabilities of the underlying hardware resources,
which are usually richer than the HIL.

HPL The Hardware Presentation Layer is a thin layer of nesC code
on top of the raw hardware, such as pins, interrupts and registers.

Table 4.2: The Hardware Abstraction Architecture layers.

providing a telescoping abstraction with a HIL implementation at the top.
Platforms are compositions of chips. They use static binding to connect chip software stacks to the

interfaces they require from each other. T2 has HIL level, microcontroller-independent abstractions
of common bus protocols such as I2C, SPI, and UART. This enables protocol-specific optimizations;
for example, the SPI abstraction does not have to deal with client addresses, while the I2C abstraction
does. Assuming there are implementations for each of a platform’s chips, porting T2 requires little
more than connecting buses and other resources through nesC configurations, as shown in Figure 4.1.

4.2 Boot Sequence

The T2 boot sequence has five steps, some general to T2, some platform specific, and some applica-
tion specific: initialize the scheduler (T2), initialize hardware (platform), initialize software (platform
+ application), signal boot() to components (application), and run the main task loop (T2).

Hardware initialization is for very low-level operations, such as configuring IO pins and calibrat-

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 12

TU BERLIN

ing clocks. As the nesC component model only includes components that are actually used, in T2
these components automatically wire themselves to the boot sequence. Platform components that
require a specific initialization sequence can incorporate these constraints into their code and wiring.
Initialization is the one time when T2 can block for more than a few microseconds, as it is rare and
parallelism is rarely desirable.

This boot sequence is different from TinyOS in two respects. TinyOS both initializes and starts
any components wired to the boot sequence, and components are expected to initialize, start and stop
any services they depend on. T2 differs in the first respect in that it starts no components: it just issues
a booted event to the top-level application, which can then power on systems as needed.

T2 differs in the second respect because software initialization is generally flat. T2 takes this
approach because in TinyOS, general services like timers are initialized and started many times. This
is inefficient and, in buggy implementations, can lose requests or cause call loops. Also, the deep
init/start/stop semantics cause many runtime failures. For example, on the Telos platform, stopping
the radio to save power also stops the SPI bus, rendering flash storage inoperable. T2 solves this prob-
lem at lower levels either with the Resource interface (for physical and shared) or with virtualization.
It solves this problem at the application level using service distributions, which provide higher-level
interfaces to system services, keeping track of service clients to provide a coherent power manage-
ment policy.

4.3 Scheduler

The T2 scheduler is based on the observation that while TinyOS allows tasks to be posted many times,
in practice they almost never are. Instead, when a task runs it performs all outstanding work. The
ability to post multiple times is unnecessary flexibility that introduces significant reliability issues.
Therefore, T2 tasks have different semantics: a task can always be posted unless it is already in the
queue. The scheduler provides these semantics by using static allocation to reserve a slot in the queue
for each task. This requires a byte of RAM per task (TinyOS uses two bytes per entry to store a
pointer), but code can assume that task posting will never fail.

4.4 OSKI

OSKI (OS Key Interfaces) fulfills the two goals of a service distribution, simplifying application
development and managing component interactions to improve reliability. OSKI services are virtual-
ized versions of underlying T2 subsystems, and provide a coherent power management policy. OSKI
keeps a statically allocated bitmask to keep track of which clients are active, ensuring that no service
stops prematurely. Bitmasks are more reliable than reference counts, as they are not affected by in-
advertent multiple starts or stops. Internally, OSKI orders subsystem initialization and parameters, so
that all an application has to do is wire to services and start them when needed. We present the OSKI
API for timers and communication in Sections 5.2 and 6.3.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 13

TU BERLIN

Chapter 5

Timers

In most mote applications, execution is driven solely by timer events and the arrival of radio messages.
Responding to external stimuli via interrupt requests only makes sense if the power usage of an
always-active hardware sensor is lower than the cost of polling it with the processor. Additionally,
energy constraints require that radios be off most of the time, so timers generally drive the radio.
Correspondingly, a critical part of a mote OS is having a reliable, powerful, and efficient timer system.
This system must provide a standard interface to an arbitrary number of timers, to support portable,
composable high-level services. Timer rates vary from a few events per day to sampling rates of
10kHz or even higher. Finally the timer system must allow the mote to be placed in a low-power
mode (a fewµA) between timer events.

Mote microcontrollers come with a wide variation of hardware timers. For instance, the AT-
mega128 has two 8-bit timers and two 16-bit timers, while the MSP430 has two 16-bit timers. All
of these timers come with different clocking options, compare and external event capture registers,
etc. A standard interface cannot hope to provide a consistent view of this hardware diversity. Instead,
T2’s timer subsystem follows the telescoping abstraction principle. At the top-level are virtualized
and shared timers with a standard, limited interface. These virtualized timers are statically allocated
to different services. Underneath, there are microcontroller-specific interfaces to the hardware timers.
These timers are physical and dedicated, e.g., providing the virtual timers, or doing cycle-counting
for benchmarking purposes.

5.1 T2 Timer Subsystem

The Timer interface (Figure 5.1) provides 32-bit periodic and one-shot timers. To support accurate
timing, these timers include a starting time (t0). Times and intervals are 32-bit values whose granu-
larity depends on the component providing the Timer interface (see below). The LocalTime interface
allows a component to determine the current time in terms of a local clock, which can wrap-around.
Values of t0 greater than the current time refer to the past, not the future.

These interfaces are offered by one or more components which expose virtual timers at different
time granularities. T2 platforms must offer a TimerMilliC which provides a millisecond granularity
timer. Platforms may provide other granularities, e.g., 1/32768s andµs.

A T2 platform must also provide access to each hardware timer using the Alarm interface (Fig-
ure 5.1). The Alarm interface serves two purposes. First, T2 has a reusable component library that

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 14

TU BERLIN

interface Timer {
command void startPeriodicAt(uint32 t t0, uint32 t dt);
command void startOneShotAt(uint32 t t0, uint32 t dt);
command void stop();
event void fired();

}
interface LocalTime {

async command uint32 t get();
}
interface Alarm <width t > {

async command void startAt(width t t0, width t dt);
async command void stop();
async event void fired();

}

Figure 5.1: Timer interfaces and components (simplified).

VirtualizeTimerC

TransformAlarmC

Millisecond Counter

Millisecond Timer

AlarmToTimerC

Atm128AlarmP

HIL Component
Timer Library Component
Atmega128 Component

MilliCounterC

Millisecond Alarm
TimerMilliC

HplTimer0C

HPL Timers/Counters

Figure 5.2: Timer stack on the micaZ and mica2 platforms.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 15

TU BERLIN

can build up a full Timer system from a single Alarm. Second, since Timer is task-only, it introduces
some jitter. Unlike the Timer interface, the Alarm interface is only one-shot and is async. Applica-
tions or components which need low-jitter timer events (high sampling rates, MAC timers) use an
Alarm interface, and therefore either depend on platform interconnect code (e.g., CC2420AlarmC
in Figure 4.1) or are platform specific. In this latter case, standardizing the Alarm interface reduces
porting effort.

Figure 5.2 shows the mica family’s timer subsystem. Low-level components (HplTimer[0-3]C)
provide dedicated access to the two 8-bit and two 16-bit timers of this family’s ATmega128 microcon-
troller. The Atm128AlarmP component transforms this low-level interface into an Alarm interface.
The T2 timer subsystem is built over the 8-bit timer 0, as it is the only timer that can run when the
ATmega128 is in its low-power mode. The other hardware timers are available to the platform or
applications; on the micaZ, timer 1 is used for the CC2420 radio and is exported through the platform
CC2420AlarmC component (Figure 4.1).

5.2 Timers in OSKI

OSKI timers have one fidelity: milliseconds. While microcontrollers can generally provide higher
fidelities (e.g., 32kHz), some, such as the Atmega128, cannot do so in an energy efficient manner.
Applications obtain a timer by instantiating an OskiTimerMilliC component, which offers the Timer
interface (Figure 5.1). As the set of Timer interfaces implicitly define activity (individual start/stop),
the OSKI timer service has no service-level start/stop abstraction.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 16

TU BERLIN

Chapter 6

Communication

Networking dominates sensor node software. It dominates energy considerations: the high order bit
in power management is turning off the radio. It dominates RAM considerations: when compiled
for the mica2 platform, the TinyDB system dedicates half of its RAM to packet buffers and routing
tables. Therefore, the interfaces to and implementation of networking stacks have significant effects
on the rest of the system. In this section we describe two communication stacks and their structure.

While motes are generally purely wireless, most deployed networks have one or more tethered
motes that are connected to a higher power device through their serial port. Tethered motes take one
of two forms. They are either a node running the same software as other nodes, but which forward
data to the serial port instead of the radio (base stations), or they are nodes that act as transparent
serial/radio forwarders (bridges).

Tethered motes, combined with the fact that some platforms have multiple radios [2], means that
OS networking abstractions must support cheaply passing packets between different stacks. The T2
network stacks resemble TinyOS in that they follow azero-copypolicy. T2 achieves this by requiring
a platform to define its packet format. Figure 6.1 shows the structure of a T2 packet. A T2 packet
has a fixed size data payload which exists at a fixed offset. Data-link headers and footers are right
and left justified accordingly. This structure allows a node to receive a packet with one data-link level
stack and pass it another stack that has completely different headers without requiring any data shifts
or copies.

The HIL of a data link stack is an active message interface. Layers on top of this interface may
introduce new headers. For example, tree-based collection routing usually embeds a source address,
per-hop destination address, and a packet sequence number. T2 uses static binding to allow protocol

DatamicaZ Packet Buffer Header Footer + MD

 Serial Packet Data

CC2420 Packet Data

Figure 6.1: A T2 packet buffer. MD is metadata that is not transmitted, such as acknowledgment
reception and timing. The footer box represents allocation but not necessarily placement. Packets
are generally contiguous, so a short packet may store its footer in the data region.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 17

TU BERLIN

ActiveMessageC

CC2420RadioC

CC2420ActiveMessageC

Active Message
CSMA
802.15.4 Packet
802.15.4 Specific

(a) The telescoping abstraction of the CC2420 radio stack. ActiveMessageC is platform
independent and can encapsulate many data link layers. It is a simple wrapper around
CsmaActiveMessageC, which provides additional CSMA-based interfaces. This sits on
top of CC2420RadioC, which provides 802.15.4 raw packet and configuration interfaces
(such as address decoding).

CC2420RadioP

CC2420P

CC2420 Registers
CC2420 FIFO Memory

SPI Bus
Interrupts

Atm128SpiMasterC

HplCC2420PinsC

Atm128IOC

CC2420 Component/Wire
MicaZ Component/Wire
Atmega128 Component

(b) A partial decomposition of CC2420RadioC on the micaZ platform. CC2420RadioP
uses interfaces that access the chip’s registers and packet memory through an SPI pro-
tocol. It also depends on handling interrupts for events such as packet reception. The
micaZ platform code exports the bus and interrupts from Atmega128 abstractions.

Figure 6.2: The T2 CC2420 stack.

layering with zero copies. A layer determines the offset where it can safely write by calling the Packet
interface of the layer below. Since these relationships are static, nesC collapses several calls through
components into a single constant.

6.1 CC2420 Communication

The problems posed by the CC2420 stack in TinyOS led us to completely redesign most of its decom-
position. In T2, the majority of CC2420 code is platform independent, requiring only four abstrac-
tions from a platform: the interrupts the chip triggers (physical and dedicated), a capture register for
timing (physical and dedicated), an SPI bus for communicating with the chip (physical and shared),
and a 32khz async timer for CSMA backoff and acknowledgment timeouts (physical and dedicated).
Figure 6.2(b) shows this decomposition.

The T2 CC2420 stack uses the Resource interface to arbitrate for the SPI bus. On the micaZ
platform, the SPI bus is dedicated and arbitration always succeeds (nesC’s inlining and full program
analysis removes most of the overhead). On the Telos platform, the SPI is shared with other devices.
Of course, if another Telos system holds onto the bus for long enough, the CC2420 packet buffer will

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 18

TU BERLIN

// TinyOS approach
uses interface Register;
call Register.cmd(CC2420_STXON);
call Register.write(CC2420_MDMCTRL0, modem0Param);

// T2 approach
uses interface CC2420StrobeRegister as STXON;
uses interface CC2420RWRegister as MDMCTRL0;
call STXON.cmd();
call MDMCTRL0.write(modem0Param);

Figure 6.3: Static binding of CC2420 registers. Strobe and read/write registers share an address
space. In TinyOS, the address is a runtime parameter, requiring runtime checks. T2 uses static
binding so no checks are necessary, yet the implementations do not replicate code.

fill up and drop packets.
T2’s task semantics mean that the race condition problems which plague TinyOS do not exist.

The stack waits until it signals the sendDone() or receive() event before returning to an idle state. The
worst that can happen with lots of tasks (heavy load) is long queue waits, which will decrease packet
throughput: they do not, however, introduce race conditions or crash the system.

Internally, the CC2420 stack uses static binding heavily. For example, controlling the CC2420
requires accessing hardware registers through commands over the SPI bus. In the TinyOS stack,
accessing registers is a very general interface and requires several runtime checks. In T2, the register
interfaces are much more constrained and written in a way to not require these checks. Figure 6.3
illustrates how. This structure has the additional benefit that a programmer can see what registers
a component accesses by looking at what interfaces it uses, rather than having to read through the
implementation.

Finally, the CC2420 stack uses telescoping abstractions to allow components to access CC2420-
specific functionality, as shown in Figure 6.2(a). Components can wire to the platform-independent
component ActiveMessageC, control CSMA parameters by wiring to CC2420ActiveMessageC, or
directly access the 802.15.4 packet layer by wiring to CC2420RadioC.

6.2 Serial Communication

Bridges and base stations have very different requirements. Base stations wish to communicate in
terms of radio independent OS-level packets, while bridges are a transparent translation between
media, therefore wish to communicate in terms of radio specific packets.

TinyOS addresses this problem by requiring all packets over the serial link to be radio packets. On
one hand, this approach means that the serial and radio stacks can share packets, freely passing buffers
between queues. On the other, it means that each platform talks a different format over the serial port
and so requires different PC software. Platform family compatibility complicates this further. For
example, although the micaZ and Telos share a radio format, the micaZ uses the mica2 serial format
to maintain backward compatibility with tools. This discrepancy has caused a lot of confusion among
users.

T2’s serial stack solves these compatibility issues by providing both forms of communication.
The serial stack supports multiple packet formats. Since T2 message buffers are right justified to the

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 19

TU BERLIN

SerialDispatcherP

SerialActiveMessageP
AM Packet
Packet
Data Bytes
Encoded/decoded bytes

SerialP

SerialPacketInfoP

UART

Platform Independent
Protocol Specific
Platform Dependent

Packet Format

F P S D Data CRC FSerial Packet

Figure 6.4: The T2 serial stack. F is a framing byte, P is a protocol type for the serial stack, S
is a sequence number for data packets, and D is the packet format byte. The arrows show which
component is responsible for each header byte.

internal data payload, the serial stack needs to know the size of a format’s header to properly read in
a packet. The stack uses static binding to make an inexpensive call to determine the proper offset. A
program that supports a packet format wires an implementation of this call (a SerialInfo component)
to the stack. Base stations support platform-independent packets, while bridges support radio-specific
ones. Figure 6.4 the structure of the stack and how it relates to the actual serial packet format. The
serial stack’s telescoping abstraction lets application wire in new packet types (e.g., for low-level
operations such as ping) if needed.

The T2 serial stack structure supports greater platform diversity. In TinyOS, adding a new plat-
form requires modifying the PC-side toolchain to recognize a new packet format or having a platform
pretend to be an existing one. This has been the source of many development headaches (e.g., the
fact that the micaZ looks like a mica2). As deployments commonly use base stations (rather than
bridges, which are for development), tools can now easily incorporate new platforms. Supporting a
new UART requires implementing a simple byte interface (94 lines of code on the Atmega128), while
supporting a new packet type requires implementing a SerialInfo component (9 lines of code for the
CC2420).

6.3 Communication in OSKI

OSKI builds three services over T2’s communication stack: AM for node-to-node messages, Broad-
cast for broadcast messages, and Uart for serial communication. All of these services have a ServiceC
client component for starting and stopping as well as SenderC and ReceiverC components for actual
communication. Every sender and receiver component takes a numeric identifier as a parameter to
distinguish different instances of the service. Senders embed the parameter in a packet header, and
the OSKI internals uses it to dispatch to the correct receiver.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 20

TU BERLIN

Chapter 7

Evaluation

In this section, we evaluate how well T2 achieves its goals. We quantify the costs of these im-
provements by comparing T2’s static resource utilization (code size and RAM), dynamic resource
utilization (CPU cycles, which quantify the OS energy cost), and performance (network bandwidth)
with that of TinyOS.

7.1 Simplifying Platform Development

Two main factors simplify platform development in T2. First, the telescoping abstraction principle
means that platforms are broken up into subsystems corresponding to individual chips. We evaluate
how this decomposition simplifies the development of a new platform, using their radios and micro-
controllers as examples. Second, each subsystem is broken up into many individual layers. We show,
using the example of timers, how this vertical decomposition allows using a reusable component
library, easing timer implementation for a new microcontroller.

7.1.1 Chips and Interconnects

To illustrate the impact of chips on the platform building process, we examined the code that defines
the binding between chip abstractions. We use physical source lines of code (PSLOC) [20] as an
approximate indication for the amount of effort the platform developer has to invest in order to build
a platform out of available chip abstractions. The hope is that the code to incorporate chips into a
new platform (once per platform) is small compared to the code written for each chip (once for many
platforms).

Table 7.1(a) shows the total PSLOC count for radio and microcontroller chips that T2 currently
supports. The radio chip usually has the most interconnect demands. For example, the CC2420
requires (Section 6.1) interrupts, a capture register, SPI, and a 32kHz Alarm (Figures 6.2(b)), and
the CC1000 has similar requirements. Thus radio integration overhead is a good worst case for
other, simpler chips such as nonvolatile storage. Table 7.1(b) shows the comparative sizes of the
microcontroller, radio, and interconnect code for the mica2, micaZ and Telos platforms. The platform-
specific interconnect code is at most 5% (micaZ) of the chip abstractions (and 14%, demonstrating
significant code reuse.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 21

TU BERLIN

Chip Total PSLOC
msp430 4400
atm128 3142
cc1000 1705
cc2420 1733

(a) Chip PSLOC

mica2 micaZ Telos
Processor 3142 3142 4400
Radio 1705 1733 1733
Platform 228 248 192
Percentage 13% 14% 11%

(b) Platform Interconnect PSLOC

Table 7.1: PSLOC of the mica2, micaZ, and Telos platforms and their underlying chips. Radio
interconnect code is 11-14% of the radio chip implementation and 3-5% of the overall source
base.

mica2 Telos
HW independent configurations and interfaces 62 62

algorithmic code 359 359
Total 421 421

HW dependent configurations and interfaces 128 362
algorithmic code 102 138
register wrapper code 71 353
Total 301 853

Reuse percentage 58% 33%

Table 7.2: Breakdown of the timer subsystem in PSLOC.

7.1.2 Reusable Hardware Libraries

Chip-specific implementations often have commonalities, such as the Alarm to Timer transforma-
tion in timer stacks. These commonalities allow reusable hardware library components, simplifying
platform development.

Table 7.2 shows this reuse in T2’s timer subsystem on the mica2 and Telos platforms. We break
the code down into configuration code, algorithmic code and register wrapper code. Although more
than half of the total code written is platform-dependent, much of it simply connects components to-
gether (configuration code) or provides convenient shortcuts for accessing hardware registers (register
wrappers).

The difficult code to write and debug – timer virtualization over a single hardware timer resource,
transitioning timer-related interrupts to the synchronous task context, and transforming arbitrary hard-
ware timer widths to a common format – resides in the reusable hardware library. Bringing up a timer
stack on a new microcontroller requires writing HPL access functions for each timer register and code
for the low-level Counter and Alarm interfaces. T This last task requires fewer than 150 lines on both
the mica2 and Telos platforms.

7.2 Simplifying Application Development

T2 simplifies application development in two ways. First, high-level applications can be built on top
of a service distribution. As the service distribution handles all of the complexity below its abstraction
boundary, the application does not have to simultaneously manage abstractions at the low-level (e.g.,
SPI bus power state) and high level (e.g., query processing). Admittedly, no large applications yet run

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 22

TU BERLIN

on T2; as service distributions grew from our experiences building such systems [19, 31, 7, 27, 9],
however, we believe they will be successful. For example, consider managing the power state of the
radio. An application may have several concurrent network services running (e.g., routing and code
propagation). Components are independent units, but these components must collaborate to manage
the power state. OSKI’s Service interface provides a simple solution to this problem.

Second, telescoping abstractions and static binding simplify building highly optimized applica-
tions. Telescoping abstractions give components options besides directly accessing hardware, which
bypasses the component graph and precludes compile-time checks. Static binding enables these
compile-time checks: nesC has mechanisms, for example, to check that two components do not
accidentally both wire to a dedicated resource.

7.3 Reliability

To validate that T2 improves system reliability, we constructed two stress cases. The first is a simple
sense and send application that samples a sensor at 1kHz and continuously reports the results over
the radio. We tested this application on the micaZ platform. With a two entry task queue, the TinyOS
version crashes (stops sending messages) after a few seconds to a few minutes. Admittedly, this result
is for artificially high message rates and a very short task queue. However, reducing the message rate
only lowers the probability of problems, rather than eliminating them. This is not acceptable for
applications which are expected to run for months to years. Similarly, while it is possible to increase
the task queue size to fix this particular application, there is no way to determine a safe queue size for
an arbitrary one, especially given that tasks may be posted multiple times.

The second stress case involves the CC2420. To quantify how often the TinyOS CC2420 stack
might introduce race conditions into a problematic application, we instrumented the stack to count
how many times it issued a synchronous event in an async context. We then ran the same communica-
tion application as in the bandwidth experiments in Section 7.4.3, except that the application included
a task that degeneratively reposted itself enough to fill the task queue.

This degenerate task had three effects. First, it caused the timer system to fail. Second, the stack
communication rate dropped by approximately 50%. Third, after running for one minute, the stack
had violated the TinyOS concurrency model 48 times. The best analogy to this behavior would be
for a thread library to once a second randomly ignore a request to acquire a mutex. While in lightly
loaded systems this might go unnoticed, under load, large scale, or long lifetimes it would fail.

None of these reliability failures occur in T2. The sensing application ran overnight with no
problems. A degenerate task does not disrupt timers and does not reduce throughput. The CC2420
stack does not ever violate the task/async boundary.

7.4 Resource Usage and Performance

The four design principles used in T2 can lead to increases in code size, RAM and CPU usage. Service
distributions and telescoping abstractions break subsystems into more layers, potentially increasing
code size and CPU usage. Static allocation may increase RAM usage by reducing the amount of
runtime sharing between components. Finally, virtualizing or sharing a resource at run-time requires
extra RAM and CPU cycles.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 23

TU BERLIN

However, several factors mitigate these resource impacts. First, the nesC compiler performs ex-
tensive inlining (The compiler only inlines small and called-once functions, thus decreasing rather
than increasing code size). Combined with dead-code elimination, this reduces the impact of break-
ing applications into many small components [7]. Finally, the elimination of runtime failures due
to static allocation, virtualization and resource sharing often simplifies components, allowing the re-
moval of, e.g., state variables.

We compare TinyOS’s and T2’s resource usage and performance in three ways. First, we look at
the core OS cost – the scheduler overhead. Next, we compare the code size, RAM usage and CPU
cycles of four simple applications. Finally, we evaluate the OS’s performance by comparing their
sustainable maximum bandwidth.

7.4.1 Scheduler Overhead

The scheduler imposes two kinds of overhead. The first is the cost of posting and executing a task,
the second is the cost of checking that the task queue is empty and going back to sleep (this has to be
done after every interrupt). We wrote two simple applications to measure these costs on the micaZ
platform, using a hardware timer to count processor cycles. We measured the cost of posting and
executing a task using a simple task that always reposts itself. We measured the cost of checking the
task queue is empty by instrumenting the scheduler.

Posting and executing a TinyOS task takes 80 cycles, while checking that the task queue is empty
takes 26 cycles. The T2 scheduler takes 103 cycles to post and execute a task, and 20 cycles to test
for an empty task queue. The relative overhead of the TinyOS vs T2 scheduler will thus depend on
the ratio between the number of interrupts taken and the number of tasks posted by an application.
These small differences will not have a significant affect on overall CPU usage.

As noted in Section 4.3, the T2 scheduler allocates one byte per task rather than have a fixed
size (8) task queue with two byte entries. For simple applications, such as SerialBridge with its five
tasks, this saves 11 bytes. For the largest TinyOS application, TinyDB, which has 28 tasks, the T2
scheduler costs 12 bytes. However, even this cost is often mitigated by simpler state management, as
a component does not need to keep track of whether a task has already been posted.

7.4.2 Application Resource Usage

We consider the RAM size, code size, and CPU utilization of four simple applications: Null, the
simplest, do-nothing program; Blink, which blinks a motes LEDs; RadioSenseToLeds, which reports
sensor values over the radio; and SerialBridge, which is the standard serial-radio bridge. We compare
resource usage on the mica2, micaZ and Telos platforms.

Table 7.3 shows the results. For each application and operating system, the first number is the code
size and the second RAM usage, both in bytes. The extensive cross-component inlining performed by
nesC makes it hard to explicitly attribute code to a particular component. Nevertheless, by examining
code sizes with inlining disabled, we observed that the main increases of code size in T2 are due
to a more complex timer system, a more flexible serial port protocol and a better quality random
number generator. The more complex time system costs about 300 bytes on the mica family, as seen
in Blink. The better random number generator is used by the mica2 radio, and adds about 1kB to the
RadioSenseToLeds and SerialBridge applications. Finally, the increase in the serial port protocol size
is visible on all platforms in the SerialBridge application.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 24

TU BERLIN

Application TinyOS T2
code / ram code / ram

Null mica2 434 / 19 494 / 3
micaZ 464 / 19 440 / 2
Telos 1056 / 20 1510 / 6

Blink mica2 1890 / 69 2270 / 53
micaZ 1920 / 69 2216 / 52
Telos 2838 / 62 2938 / 61

RadioSenseToLeds mica2 9538 / 400 10922 / 231
micaZ 8134 / 300 10808 / 246
Telos 13988 / 285 12238 / 238

SerialBridge mica2 11380 / 1986 14520 / 1444
micaZ 9804 / 1900 14330 / 1447
Telos 12102 / 1844 12202 / 1431

Table 7.3: Code and RAM sizes for simple applications.

Application TinyOS T2
(kcycles/s) (kcycles/s)

Blink mica2 8.0 5.4
micaZ 8.0 5.4

RadioSenseToLeds mica2 240 186
micaZ 9.1 7.5

SerialBridge mica2 206 186
micaZ 8.0 12.3

Table 7.4: CPU usage for simple applications.

The RAM usage is comparable or lower in T2. A cleanup of the mica2 radio stack saved 150
bytes in T2 (see RadioSenseToLeds). The difference in RAM for SerialBridge is due to a very large
task queue in the TinyOS version, which was recently added “to lower the chance of a [task] post
failure”.

We also compare the CPU usage of the Blink, RadioSenseToLeds and SerialBridge applications,
on the mica2 and micaZ platforms – the Telos T2 support is still in development and not completely
stable. The RadioSenseToLeds application was ran alone, so sent a message a second and did not
receive anything. The SerialBridge application was run with another mote sending a message a sec-
ond, leading to one radio message reception and one serial message transmission per second. We
ran these applications for 30 seconds, instrumented to count the number of CPU cycles spent in the
scheduler, tasks and interrupt handlers. Table 7.4 reports these results, averaged over three runs, in
cycles / second.

These results show that on Blink and RadioSenseToLeds T2 is more efficient than TinyOS. The
higher CPU usage in SerialBridge is due to higher overhead in the serial port protocol – we verified
this by testing a version of SerialBridge with serial port transmission disabled, giving a CPU usage of
5.1kcycles/s on the micaZ in T2. As the serial protocol is generally used on motes connected to PCs,
its CPU efficiency is not critical.

While these results are only for very simple applications, they do show that T2 has comparable
resource usage to TinyOS applications. In particular, we see that using a statically allocated task
queue can save, rather than cost, RAM (see SerialBridge).

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 25

TU BERLIN

One-Way Two-Way
Packet Size 40B 14B 40B 14B
TinyOS 200 246 254 362
T2 380 616 386 648
Improvement 90% 150% 51% 79%

Table 7.5: Packet per second throughput for the CC2420 stack on micaZ.

7.4.3 Network Performance

We compare the network performance of T2 and TinyOS on the micaZ platform. The major difference
between the two radio stacks is that TinyOS uses larger and more monolithic hardware abstractions,
and assumes it can freely use shared resources, such as the SPI bus. Additionally, TinyOS uses more
run-time parameters. We compared the two with simple applications that send packets as fast as
they can (calls send() in the sendDone() event). We ran two separate experiments. In the first, we
measured single node bandwidth by having one node transmit and one node listen. In the second,
we had two nodes try to send packets as quickly as possible. We ran each experiment twice, once
with large packets (40 bytes, including all headers and footers) and once with small packets (14
bytes). We measured average packet per second communication over a 60 second window (the nodes
communicated for 60 seconds then stopped). Each experiment had five separate runs; the results for
the runs were all within 3% of each other.

Table 7.5 shows the results. T2 shows a 51-150% performance improvement over TinyOS. The
TinyOS stack is unable to process packets at same rate as T2. This is due to two factors that we
were able to identify. First, both stacks flush the receive memory whenever they think there is a
problem, but the TinyOS stack has a much broader definition of what constitutes a problem. Second,
the TinyOS stack reads packets in task context, incurring task latency between a receive interrupt and
actual reception, while the T2 stack starts the split-phase SPI read in the async interrupt handler.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 26

TU BERLIN

Chapter 8

Related Work

TinyOS [15] is the dominant sensor network operating system today. Designed in concert with the
nesC language [8], it relies on language mechanisms to enforce and support its design methodol-
ogy. T2 builds on TinyOS’s successes, but casts off decisions which experience has shown to be
problematic.

Other sensor OSes, such as MOS [1] and SOS [10], have taken more traditional approaches.
Rather than use a new language, they are C based. MOS provides a microthreaded UNIX-like envi-
ronment with blocking operations: a thread configures a sensor with adev ioctl call and samples it
with dev read . It therefore follows the UNIX “everything is a file” abstraction, via a few calls with
a large number of parameters. This pushes error checking to runtime, as the interfaces do not express
the constraints underlying resources. For example, a program can try to read from an A/D converter
pin that does not exist. TinyOS’s (and T2’s) wiring model catches such errors at compile-time.

The SOS operating system is also written in C, but is otherwise similar to TinyOS, as it is com-
ponent based and has a run-to-completion concurrency model. However, it is less restrictive than
TinyOS. Rather than a single FIFO task queue, SOS has priority queues. SOS also provides mech-
anisms for dynamically linking new binary components. However, RAM constraints prevent linking
correctness checks from being foolproof. Furthermore, while checking individual components may
be tractable, the most difficult errors and bugs are often the result of combinations of components and
their interactions. Leaving these complexities to a dynamic environment makes diagnosing problems
even more difficult.

Design differences aside, MOS and SOS both still suffer from the same problem as TinyOS does
with its task queue. In MOS, a program has a fixed maximum number of threads. While they are
usually allocated at boot time (making errors easy to find), they can also be allocated at runtime,
opening the possibility of failure. SOS uses a memory pool to dynamically allocate inter-component
messages. While the runtime propagates allocation failure as an error to the message passing call,
few components check for this, and as the complexities of the CC2420 stack show, sometimes there
is no good way to deal with such a failure.

There are many component languages besides nesC, designed for regular programming tasks [34,
5, 22, 4], for hardware design [16], for distributed systems [13] or for modeling [29]. Most of the
implementation-oriented work has focused on large systems, with two major exceptions. The Flux
OSKit [5] is a component system designed for building desktop-style operating systems, which have
very different resource and reliability issues than sensor networks, while the Koala system [34] is
designed for consumer electronic (CE) devices (such as TVs). On one hand, Koala’s intended domain

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 27

TU BERLIN

has similarities to sensor networks: CE devices require rapid development, but software must be very
reliable as there is no way to upgrade it once deployed. On the other hand, the design space is also
very different: CE devices are a narrow set of product lines that evolve over time. Therefore, Koala
takes an object-oriented approach, so software for a new model can extend prior functionality. Koala
is intended for the user interface to product families within a few application domains, while T2 is
intended to be an operating system for as broad a spectrum of application domains as possible.

The Snack [9] system builds applications by automatically combining system modules while re-
solving application constraints and cross-service interdependencies. Service distributions build on
Snack’s observation that unforeseen interactions are a major source of complications when develop-
ing applications with software components Just as TinyOS is about discovering system boundaries,
service distributions draw the line between applications and the operating system – providing func-
tionality without the complexity.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 28

TU BERLIN

Chapter 9

Discussion

T2 borrows many of TinyOS’s design decisions because they have, for the most part, been success-
ful. The CPU is mostly idle in a wide range of sensor network applications [25]. Instead of heavy
processing, the CPU’s major responsibility is to move data from one peripheral to another (e.g., from
sensor to storage, from storage to radio), perhaps processing it a bit along the way. Therefore, a data
flow centric approach, with events and lightweight handlers, is better suited to sensor applications
than a threaded approach.

TinyOS’s flexibility and few restrictions makes it an excellent research tool. A new routing pro-
tocol is a small handful of components that sit on top of the data link layer, a new MAC protocol is
a replacement for one or more of the components within the data link layer. Having complete con-
trol of the entire system makes it easy to addressing narrow and specific research questions, whose
experimental methodologies often require settings that a real deployed system would rarely encounter.

When it comes to larger and more complex systems, however, this power is a liability. TinyDB,
for example, was the first large system built for TinyOS. After three years, small teams of researchers
were still unable to achieve reasonable data delivery rates [30, 31], citing subsystem interactions as
the cause.

While the T2 scheduler improves system reliability, it still has limitations. Like TinyOS and
SOS, a run-to-completion model means that an infinite loop can, like an overflowing task queue,
cause the system to fail. However, compared to the task queue, which involves interactions between
many components, checking the code in a task is a much easier local problem. In practice, while
programmers occasionally encounter this problem, it is generally very early in the development cycle
(e.g., the first installation). Similarly, while the nesC component model provides structure to limit
memory access errors, components that pass variable size memory regions around can still have
faults. For example, while developing the T2 CC2420 stack, we encountered an off-by-one error that
caused a length byte to be overwritten, leading the SPI bus to read into the entire program rather than
just a buffer. However, in the entire development cycle of tens of thousands of lines of code, this was
the only such bug we encountered.

The problems that operating systems such as T2, TinyOS, and SOS face stem from a basic ten-
sion in component systems between local independence and global properties. On the one hand,
components are intended to be completely independent, black-box functionality that can be quickly
incorporated into a program. On the other hand, they inevitably share resources, and therefore com-
position decisions affect global system behavior.

The application specificity of sensor networks means that no single global policy is suitable for

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 29

TU BERLIN

addressing such global issues. For example, one complaint often made about TinyOS is its lack of
scheduling priority levels. At first glance, this idea makes sense, as depending on the task, latency
can have a wide range of effects, including dropping packets, reduced bandwidth, and timer jitter.
But priority schemes raise the follow-up question: who specifies the priorities? Depending on the
application, each of the previously mentioned effects could be negligible or serious. A communication
stack that assumes it has the highest priority can cause an application that cares about timer precision
to fail. Our best solution to this conundrum – leaving task priority assignment to the application – is
problematic: the application writer has to correctly figure out the relative importance of thirty or more
tasks. Thus we believe that avoiding priorities is a good example of limiting flexibility to improve the
reliability and usability of the system.

As many of the figures have shown, one result of this tension is that T2 does not always have
monolithic layers. Rather than just placing components above or below a layer, many compositions
involve placing components in between layers (e.g., CC2420PlatformAlarmC in Figure 4.1), or both
above and below (e.g., SerialActiveMessageP and SerialPacketInfoP in Figure 6.4).

Ultimately, T2’s four design principles are about component composition and boundaries. They
help manage the tension between local independence and global properties. Telescoping abstrac-
tions allow developers to consciously choose a point between portability and functionality. Partial
virtualization allows compositions to share resources implicitly through virtualization and explicitly
through the Resource interface, and to deny sharing when necessary. Static allocation and bind-
ing reduces unforeseen interactions and makes the relationships between components as explicit as
possible. Finally, service distributions establish a boundary between application-level code and OS
services. A service distribution can reorganize and change underlying implementations without re-
quiring application modifications.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 30

TU BERLIN

Chapter 10

Conclusion

T2 takes five years of development with sensor networks and tries to create a fresh start, defining a
component architecture that will be effective and useful in the long term. It is still very much a work
in progress, and includes several subsystems we do not discuss here, such as power management, sen-
sors, and non-volatile storage. Platform evolution, emerging applications and increasing experience
in the user community will drive future T2 evolution.

Specifying interfaces is the most challenging aspects of nesC development, as changing them
requires changing every component that uses them. The lack of boundaries in TinyOS complicates
this problem, as applications often access interfaces that were initially intended to be internal. In this
paper, we showed how applying four design principles to component architecture in T2 increases its
reliability, decreases its overhead, simplifies application construction, and makes porting to new plat-
forms easier. While TinyOS and nesC are about creating reusable components, T2 is about composing
components and building reliable applications.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 31

TU BERLIN

Bibliography

[1] H. Abrach, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shucker, J. Deng, and R. Han.
MANTIS: System Support for MultimodAl NeTworks of In-situ Sensors. InProceedings of the
Second ACM International Workshop on Wireless Sensor Networks and Applications (WSNA),
2003.

[2] Jan Beutel, Matthias Dyer, Martin Hinz, Lennart Meier, and Matthias Ringwald. Abstract: Next-
generation prototyping of sensor networks. InProceedings of the Second ACM Conference on
Embedded Networked Sensor Systems (SenSys), pages 291–292, New York, NY, USA, 2004.
ACM Press.

[3] Virantha N. Ekanayake, Clinton Kelly IV, and Rajit Manohar. An ultra low-power processor for
sensor networks. InProceedings of the ACM Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XI), pages 27–36, 2004.

[4] Matthew Flatt and Matthias Felleisen. Units: cool modules for hot languages. InProceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and Implementation
(PLDI), pages 236–248, New York, NY, USA, 1998. ACM Press.

[5] Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers. The flux
OSKit: A substrate for kernel and language research. InSymposium on Operating Systems
Principles, pages 38–51, 1997.

[6] Freescale zigbee/802.15.4 evaluation kit.http://www.freescale.com/files/rf_
if/doc/app_note/AN2772.pdf .

[7] David Gay, Phil Levis, and David Culler. Software design patterns for tinyos. InProceed-
ings of the 2005 ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for
Embedded Systems (LCTES), pages 40–49, New York, NY, USA, 2005. ACM Press.

[8] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler. The
nesc language: A holistic approach to networked embedded systems. InProceedings of the ACM
SIGPLAN 2003 Conference on Programming Language Design and Implementation (PLDI),
pages 1–11, New York, NY, USA, 2003. ACM Press.

[9] Ben Greenstein, Eddie Kohler, and Deborah Estrin. A sensor network application construction
kit (snack). InProceedings of the Seconnd ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2004.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 32

TU BERLIN

[10] Chih-Chieh Han, Ram Kumar Rengaswamy, Roy Shea, Eddie Kohler, and Mani Srivastava. Sos:
A dynamic operating system for sensor networks. InProceedings of the Third Internaltiona
Conference on Mobile Systems, Appliactions, and Services (Mobisys), 2005.

[11] V. Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, and D. Culler. Flexible hardware
abstraction for wireless sensor networks. InProceedings of Second European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey, February 2005.

[12] Mark Hempstead, Nikhil Tripathi, Patrick Mauro, Gu-Yeon Wei, and David Brooks. An ultra
low power system architecture for sensor network applications.SIGARCH Comput. Archit.
News, 33(2):208–219, 2005.

[13] Andrew Herbert. An ANSA Overview.IEEE Network, 8(1):18–23, 1994.

[14] Jason Hill, Mike Horton, Ralph Kling, and Lakshman Krishnamurthy. The platforms enabling
wireless sensor networks.Commun. ACM, 47(6):41–46, 2004.

[15] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David E. Culler, and Kristofer S. J. Pis-
ter. System Architecture Directions for Networked Sensors. InArchitectural Support for Pro-
gramming Languages and Operating Systems, pages 93–104, 2000. TinyOS is available at
http://webs.cs.berkeley.edu.

[16] IEEE Standard 1076-2002.VHDL Language Reference Manual.

[17] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed diffusion: a scal-
able and robust communication paradigm for sensor networks. InProceedings of the Interna-
tional Conference on Mobile Computing and Networking, August 2000.

[18] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. Energy-efficient comput-
ing for wildlife tracking: Design tradeoffs and early experiences with zebranet. InProceedings
of the ACM Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), oct 2002.

[19] Philip Levis, David Gay, and David Culler. Active sensor networks. InProceedings of the 2nd
USENIX/ACM Symposium on Networked Systems Design and Implementation (NSDI 2005),
2005.

[20] Robert Park. Software size measurement: A framework for counting source statements. Tech-
nical Report CMU/SEI-92-TR-020, Carnegie Mellon University, sep 1992.

[21] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: Enabling ultra-low power wireless
research. InProceedings of the Fourth International Conference on Information Processing in
Sensor Networks: Special track on Platform Tools and Design Methods for Network Embedded
Sensors (IPSN/SPOTS), 2005.

[22] Alastair Reid, Matthew Flatt, Leigh Stoller, Jay Lepreau, and Eric Eide. Knit: Component
composition for systems software. InProceedings of the 4th Operating Systems Design and
Implementation (OSDI 2000), pages 347–360, October 2000.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 33

TU BERLIN

[23] E. Sazonov, K.D. Janoyan, and R. Jha. Wireless intelligent sensor network for autonomous
structural health monitoring. InSmart Structures/NDE 2004, 2004.

[24] Jochen Schiller, Achim Liers, Hartmut Ritter, Rolf Winter, and Thiemo Voigt. Scatterweb - low
power sensor nodes and energy aware routing. InProceedings of the Proceedings of the 38th
Annual Hawaii International Conference on System Sciences (HICSS’05) - Track 9, page 286.3,
Washington, DC, USA, 2005. IEEE Computer Society.

[25] Victor Shnayder, Mark Hempstead, Bor rong Chen, Geoff Werner Allen, and Matt Welsh. Simu-
lating the power consumption of large-scale sensor network applications. InProceedings of the
Second ACM Conference on Embedded Networked Sensor Systems (SenSys), pages 188–200,
New York, NY, USA, 2004. ACM Press.

[26] Gyula Simon, Miklos Maroti, Akos Ledeczi, Gyorgy Balogh, Branislav Kusy, Andras Nadas,
Gabor Pap, Janos Sallai, and Ken Frampton. Sensor network-based countersniper system. In
Proceedings of the Second ACM Conference on Embedded Networked Sensor Systems (SenSys),
pages 1–12, New York, NY, USA, 2004. ACM Press.

[27] Robert Szewczyk, Joseph Polastre, Alan Mainwaring, and David Culler. An analysis of a large
scale habitat monitoring application. InProceedings of the Second ACM Conference on Embed-
ded Networked Sensor Systems (SenSys), 2004.

[28] The Institute of Electrical and Electronics Engineers, Inc. Part 15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), October 2003.

[29] Unified modeling language (UML) specification: Infrastructure, November 2004.

[30] Gilman Tolle and David Culler. Design of an application-cooperative management system for
wireless sensor networks. InProceedings of Second European Workshop on Wireless Sensor
Networks (EWSN 2005), 2005.

[31] Gilman Tolle, Joseph Polastre, Robert Szewczyk, Neil Turner, Kevin Tu, Phil Buonadonna,
Stephen Burgess, David Gay, Wei Hong, Todd Dawson, and David Culler. A macroscope in
the redwoods. InProceedings of the Third ACM Conference on Embedded Networked Sensor
Systems (SenSys), 2005.

[32] Tom Torfs, Chris Van Hoof, Steven Sanders, Christophe Winters, and Steven Brebels. Wireless
network of autonomous environmental sensors. InProceedings of the Third IEEE International
Conference on Sensors (IEEE Sensors), 2004.

[33] University of California, Berkeley. Mica2 schematics.http://webs.cs.berkeley.
edu/tos/hardware/design/ORCAD_FILES/MICA2/6310-%0306-01ACLEAN.
pdf , March 2003.

[34] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The koala component
model for consumer electronics software. InComputer, volume 33, pages 78–85, March 2000.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 34

TU BERLIN

[35] Alec Woo, Terence Tong, and David Culler. Taming the underlying challenges of reliable mul-
tihop routing in sensor networks. InProceedings of the First ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 14–27. ACM Press, 2003.

[36] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac protocol for wireless
sensor networks. InIn Proceedings of the 21st International Annual Joint Conference of the
IEEE Computer and Communications Societies (INFOCOM 2002), New York, NY, June 2002.

Copyright: Technical University Berlin.
All Rights reserved.

TKN-05-007 Page 35

