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ABSTRACT
Nanodevices with Terahertz (THz)-based wireless communication
capabilities are providing a primer for flow-guided localization
within the human bloodstreams. Such localization is allowing for
assigning the locations of sensed events with the events themselves,
providing benefits along the lines of early and precise diagnostics,
and reduced costs and invasiveness. Flow-guided localization is still
in a rudimentary phase, with only a handful of works targeting
the problem. Nonetheless, the performance assessments of the pro-
posed solutions are already carried out in a non-standardized way,
usually along a single performance metric, and ignoring various
aspects that are relevant at such a scale (e.g., nanodevices’ lim-
ited energy) and for such a challenging environment (e.g., extreme
attenuation of in-body THz propagation). As such, these assess-
ments feature low levels of realism and cannot be compared in an
objective way. Toward addressing this issue, we account for the
environmental and scale-related peculiarities of the scenario and
assess the performance of two state-of-the-art flow-guided localiza-
tion approaches along a set of heterogeneous performance metrics
such as the accuracy and reliability of localization.
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1 INTRODUCTION
Advancements in nanotechnology have paved theway for nanoscale
devices that integrate sensing, computing, and data and energy
storage capabilities [1]. These nanodevices are expected to enable
various applications in precision medicine [2]. Some of these appli-
cations involve deploying nanodevices in patients’ bloodstreams,
which necessitates the nanodevice’s size to be comparable to that
of red blood cells (i.e., smaller than 5 microns). Due to their small
physical size, these nanodevices can only rely on scavenging en-
vironmental energy, such as from heartbeats or ultrasound-based
power transfer, using nanoscale energy-harvesting entities like
Zinc Oxide (ZnO) nanowires [1]. Consequently, these devices are
expected to be passively flowing within the bloodstreams.

Recent advancements in advancedmaterials, particularly graphene
and its derivatives [3], have opened up possibilities for nanoscale
wireless communication in the Terahertz (THz) frequencies (i.e., 0.1-
10 THz) [4]. Wireless communication capabilities enable two-way
communication between nanodevices and the external world [5]. In-
tegrated nanodevices with communication capabilities are enabling
sensing-based applications like oxygen sensing in the bloodstream
for hypoxia detection (a biomarker for cancer diagnosis), as well as
actuation-based applications like non-invasive targeted drug deliv-
ery for cancer treatment. Nanodevices with communication capa-
bilities also provide a primer for flow-guided localization within the
bloodstream [4]. Flow-guided localization would allow associating
the location of an event detected by a nanodevice, offering benefits
along the lines of non-invasiveness, early and precise diagnostics,
and reduced costs [6]–[8].

Performance evaluations of existing flow-guided localization
approaches, specifically those described in [6] and [7], have been
conducted in a simplified manner, focusing primarily on the mo-
bility of nanodevices. Consequently, these assessments overlook
various potential effects of THz wireless communication, such as
interference, as well as energy-related constraints arising from
energy-harvesting and intermittent operation of the nanodevices. It
is also worth noting that [8] performed a limited performance evalu-
ation, examining the number of nanodevices required for localizing
a nanodevice at any location in the body through multi-hopping.
As such, current evaluations provide only rough indications due to
their limited realism and subjective evaluation methodologies.

In this article, we aim to enhance such assessments’ realism by
simultaneously considering multiple factors. These factors include
accounting for the nanodevices’ mobility, in-body nanoscale THz
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communication between them and the external world, and various
energy-related and technological constraints, such as pulse-based
modulation, which impact the nanodevices’ performance. By incor-
porating these elements through the utilization of a simulator for
objective and standardized performance evaluation of flow-guided
nanoscale localization [9], we seek to provide a more comprehen-
sive and realistic understanding of the performance of flow-guided
localization. To the best of our knowledge, this article represents
one of the first attempts at an objective and realistic performance
assessment of different flow-guided localization approaches across
a set of standardized heterogeneous metrics, including point and
region estimation accuracies and localization reliability. Our work
is inspired by established approaches targeting objective evaluation
and benchmarking of traditional indoor localization solutions stem-
ming from efforts such as NIST PerfLoc [10], EU EVARILOS [11],
and Microsoft/IPSN indoor localization competition [12].

2 FLOW-GUIDED LOCALIZATION
2.1 Flow-guided Localization Fundamentals
Flow-guided localization aims to localize a target event using nan-
odevices without requiring the nanodevices to determine their
own location. The concept presented in [8] supports this type of
scenario and falls within this category. However, the notable rep-
resentatives of this localization approach are [6] and [7]. In these
studies, Machine Learning (ML) models are employed to differen-
tiate the regions through which each nanodevice passes during
a single circulation through the bloodstream. The authors in [7]
achieve this by tracking the distances a nanodevice covers during
its circulation using a nanoscale Inertial Measurement Unit (IMU).
However, this poses challenges concerning the limited resources
available for storing and processing IMU-generated data at the nan-
odevice level, as well as the accuracy of IMU readings being affected
by the blood’s vortex flow. On the other hand, the authors in [6]
address these challenges by tracking the time required for each
circulation through the bloodstream. The captured distance or time
information is then transmitted to a beaconing anchor located near
the heart using short-range THz-based backscattering.

Unlike [8], these localization approaches are not explicitly de-
signed to provide precise point localization of the target. Despite
the potential benefits of achieving point localization for health-
care diagnostics, these methods focus on detecting the body region
through which the nanodevice has passed. Furthermore, increas-
ing the number of circulations the nanodevices make through the
bloodstream can improve the accuracy and reliability of region
detection. However, this increase would result in higher energy
consumption for the localization procedure. Thus, performance
metrics such as point and region accuracies and reliability should
and will be evaluated in relation to the application-specific delay
allowed for localizing events, as also stated in [9].

2.2 Off-the-shelf Localization Solution
The first flow-guided localization solution we consider is an off-
the-shelf solution presented in [6]. The authors assume that, due to
the physiology of the bloodstream, the nanodevices travel in closed
loops. They further assume that the nanodevices feature an internal
counter that increases its value periodically and restarts in each

passage through the heart. The final counter value is reported to
an external gateway located at the heart proximity before resetting
the counter. The counter value is used as an input to a ML model
to predict the traveling loop for each nanodevice. The utilized ML
model is a Neural Network (NN) that implements two fully con-
nected layers, a ReLU activation function for the first and a SoftMax
function for the second layer. The model is trained to classify 24
different circuits with traveling times as reported by the simulator
(more details in the following section). The optimization algorithm
to evaluate the NN hyperparameters is the Limited Memory Broy-
den–Fletcher–Goldfarb–Shanno (L-BFGS), which minimizes the
cross-entropy between predictions and labels.

2.3 In-house Localization Solution
The second considered approach is a a scenario-optimized in-house
NN solution that implements three fully connected layers, with
PReLU activation function for the first two and log-softmax for the
last one. The first and second layers feature a dropout for regular-
ization and batch normalization to stabilize the learning process.
The hidden layer’s size is 512, and the model is trained to classify
25 classes (in contrast to the off-the-shelf solution, which is, by
design, unable to detect events in the heart). We use the Negative
Log Likelihood loss due to its ability to handle unbalanced datasets.
Finally, we use the Adam optimizer, as it adjusts the learning rate
dynamically and is known to operate well with relatively simple
fine-tuning of the hyperparameters.

3 EVALUATION FRAMEWORK
In this section, we outline the evaluation framework employed to
assess the effectiveness of two flow-guided localization approaches.
The framework integrates a carefully designed simulator, specific
scenarios and parameters defining our design space, and a set of
performance metrics to rigorously test the capabilities of these
approaches under simulated physiological conditions.

Our framework enables realistic testing of nanodevice function-
ality and localization techniques, incorporating wireless communi-
cation and energy harvesting. By simulating both the physiological
and mechanical properties of the human vascular system, this setup
addresses the challenges nanodevices face in real scenarios, includ-
ing modeling THz signal propagation and energy dynamics within
the bloodstream, essential for deploying such technologies in medi-
cal diagnostics and treatments.

The framework is implemented in the form of a simulator [9].
The simulator assumes that deploying a flow-guided localization
in the bloodstream requires at least one anchor attached to the
patient’s body. Approaches in [6] and [7] can be enabled with a
single anchor positioned near the heart, as the heart is the only body
region with guarantees that each nanodevice will pass through it in
every iteration. The anchor is envisioned as a static entity powered
by reliable sources such as batteries; hence, it is assumed to be
continuously operational. The role of the anchor is to transmit
beacons and receive backscattered responses from the nanodevices.

The nanodevices are energy-harvesting entities that can move
passively in the bloodstream. To model their mobility, the utilized
simulator features the integration with BloodVoyagerS [13]. Blood-
VoyagerS provides a simplified model of the bloodstream, including
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Figure 1: Nanodevice mobility in the BloodVoyagerS [13]

94 vessels and organs, with the coordinate system centered in the
heart. All organs have the same spatial depth, with a reference
thickness of 4 cm resembling the depth of a kidney. This results
in the z-coordinates of the nanodevices ranging from 2 to -2 cm,
as illustrated in Figure 1. The simulator assumes that arteries and
veins are positioned anterior and posterior, respectively. Transitions
between arteries and veins occur in the organs, limbs, and head.
In the heart, blood transitions from veins to arteries (i.e., posterior
to anterior). The flow rate is modeled based on the relationship
between pressure difference and flow resistance, resulting in aver-
age blood speeds of 20 cm/sec in the aorta, 10 cm/sec in arteries,
and 2-4 cm/sec in veins. Transitions between arteries and veins are
simplified by assuming a constant velocity of 1 cm/sec.

In the simulator, the nanodevices are assumed to have capacitors
for energy storage and utilize ZnO nanowires for energy harvesting.
The charging of capacitors is modeled as an exponential process that
considers the energy-harvesting rate and interval (e.g., 6 pJ per sec
and per 20 ms for harvesting from heartbeats and ultrasound-based
power transfer, respectively [1]), as well as the storage capacity
of the capacitors. The nanodevices exhibit intermittent behavior
due to energy harvesting and storage constraints. This behavior is
modeled through a Turn ON threshold, where a nanodevice turns
on if its current energy level exceeds the threshold. Once the energy
is fully depleted, the nanodevice turns off and turns back on when
its energy increases above the threshold.

When the nanodevices are turned on, they periodically perform
sensing or actuation tasks at a given sampling frequency or gran-
ularity. Each execution consumes a constant amount of energy,
meaning that more frequent tasks result in higher energy consump-
tion. The location of the event to be detected is assumed to be
hard-coded by the experimenter. A nanodevice is considered to de-
tect an event if it is turned on and the Euclidean distance between

its location at the time of task execution and the location of the
event is smaller than a predefined detection threshold.

In communication with a nanodevice, the anchor transmits bea-
cons at a constant frequency and power. The nanodevices passively
receive the beacons and actively backscatter a response, which
consumes energy. The backscattered packets from the nanodevices
contain two pieces of information: the time elapsed since their last
passage through the heart and an event bit [14]. These raw data
points are then used by a flow-guided localization approach to local-
ize an event. Whenever a nanodevice passes through the heart, the
time elapsed since the last passage is reset to avoid accumulating
multiple circulation periods. The event bit is set to logical "1" if an
event is successfully detected, and is envisaged to be reset in each
passage through the heart.

The THz channel is modeled by calculating the receive power for
each pair of communicating devices and scheduling the invocation
of the ReceivePacket() method based on the corresponding propaga-
tion time. The channel model takes into account in-body path-loss
and Doppler effects. The path-loss is determined by considering the
attenuation and thickness parameters of the vessels, tissues, and
skin. The Doppler effect is incorporated by evaluating the changes
in relative positions between the nanodevices and the anchor over
time. The ReceivePacket() method checks for potential collisions by
calculating the Signal to Interference and Noise Ratio (SINR) and
discards the packet if the SINR falls below a predefined threshold
for reception, known as the receiver sensitivity.

Our aim is to explore several aspects of the design space of flow-
guided localization. To this end, we identify a set of parameters
worth exploring and keep the others at a fixed value. Table 1 out-
lines the fixed parameters. Then, the parameters constituting the
considered design space are (i) the number of administered nan-
odevices, (ii) event sampling frequency or granularity, and (iii) the
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Table 1: Simulation parameters

Parameter Value
Generator voltage𝑉𝑔 [V] 0.42
Energy consumed in pulse reception 𝐸𝑅𝑋𝑝𝑢𝑙𝑠𝑒

[pJ] 0.0
Energy consumed in pulse transmission 𝐸𝑇𝑋𝑝𝑢𝑙𝑠𝑒

[pJ] 1.0
Maximum energy storage capacity [pJ] 800
Turn ON/OFF thresholds [pJ] 10/0
Harvesting cycle duration [ms] 20
Harvested charge per cycle [pC] 6
Transmit power 𝑃𝑇𝑋 [dBm] -20
Operational bandwidth [GHz] 10
Receiver sensitivity [dBm] -110
Operational frequency [THz] 1
Simulation time [sec] 1100

Table 2: Design space parameters

Parameter Baseline Design space
Number of nanodevices 64 [32, 64, 128]
Event sampling granularity [1/sec] 3 [2, 3, 5, 10]
Event detection threshold [cm] 1 [0.5, 1, 2, 3]

distance threshold for event detection. Table 2 shows their baseline
values, as well as values considered within the design space. In
each scenario, we vary one parameter while keeping the others at
their baseline values, allowing us to isolate the effects of a single
parameter on the overall performance of the considered solutions.

Following guidelines from [9], we utilize three heterogeneous
metrics for characterizing the performance of the evaluated solu-
tions, which provide insights into different performance trade-offs
that occur in flow-guided localization. The first one is the region
detection accuracy, which characterizes the level of correctness
of estimating a body region containing an event. Then, point accu-
racy represents the Euclidean distance between the true location
of an event and its estimated location as yielded by a flow-guided
localization solution. Finally, the reliability of localization char-
acterizes the capability of the solution to provide a location estimate
(regardless of its correctness) after a certain period.

To obtain the performance metrics, we first trained both local-
ization solutions. The training was carried out by specifying the
location of an event in the centroid of each of the 25 body regions
covered by BloodVoyagerS (i.e., organs, head, and extremities, with
regions indicated with gray rounded rectangles in Figure 1). The
raw training data for each event location was then generated by
running the simulations for 5000 sec, and fed in both of the con-
sidered solutions. This was followed by generating a set of testing
datasets to capture the outlined design space. The testing dataset
for each scenario contained 25 different event locations, one in each
region, selected randomly within the region. The intuition for such
a selection is that an event of interest can be located in any part
of the considered region. Given that the considered solutions are
unable to provide a point estimate but solely an estimated region
by design, the point estimate was obtained as the centroid location
of the estimated region.

Our results in Figures 2, 3 and 4 are depicted in a way that each
data point on the x-axis (e.g., each box-plot in the point accuracy
plot) shows the performance averaged over the 25 evaluation points.

Such depiction of the results allows for reporting the average per-
formance of the solutions for the entire environment, encapsulating
the performance variability in different environmental regions.

4 EVALUATION RESULTS
Figure 2 depicts the performance achieved by the two solutions
as a function of the number of administered nanodevices. The fig-
ure shows that the in-house solution generally outperforms the
off-the-shelf solution regarding the point accuracy metric. For ex-
ample, in the scenario assuming 128 deployed nanodevices, the in-
house solution yields a median localization error of around 25 cm
throughout the simulation run. In contrast, this error is roughly
40 cm throughout the simulation for the off-the-shelf solution. This
can be confirmed by the results depicted in Figures 3 and 4 demon-
strating the influence of the event sampling granularity and event
detection threshold of the performance of the considered solutions,
respectively. A similar conclusion can be drawnwhen observing the
region detection accuracy, although in this case, the improvements
yielded by the in-house solution are less pronounced and in the
range of several percent. This is observed because the off-the-shelf
solution is not tailored to our framework data. As such, its hyper-
parameters have not been fine-tuned for the raw datasets utilized
in this study, in contrast to the in-house-made solution.

Moreover, Figure 2 depicts that point and region estimation ac-
curacies increase either slightly or not at all with the increase in
the duration of a simulation runtime. For example, considering the
in-house solution with the assumption of 64 nanodevices being
deployed in the bloodstream, the median localization error char-
acterizing the pointing accuracy decreases from around 30 to 20
cm if the duration of raw data collection is extended from 120 to
960 sec. At the same time, the region estimation accuracy increases
from around 20 to 25%. Interestingly, for the scenario assuming
128 deployed nanodevices, the point and region detection accura-
cies are effectively unchanged throughout the simulation run. The
main reason for such behavior stems from two aspects affecting
the solutions’ performance. The first and arguably more intuitive
reason comes from the fact that ML models generally improve their
performance with the increased amount of raw data fed into them
for making predictions. Obviously, an increase in the duration of
a simulation run results in an increase in the amount of raw in-
put data for the considered solutions, which benefits estimation
accuracy. However, one should also account for the fact that THz
communication between the nanonodes and the anchor is challeng-
ing for several reasons, including high in-body attenuation, high
mobility of the nanonodes, and self-interference between different
nanonodes trying to communicate with the anchor simultaneously.
For these reasons, the communication is unreliable, which can re-
sult in the anchor not receiving the raw data by some nanonodes
at specific time instances. More problematically, these nanonodes
do not reset their iteration times and event bits in such cases. Once
the data is eventually reported to the anchor, the reported iter-
ation times are the compounds of multiple iterations, while the
event bit might be erroneous (i.e., the event was detected in one
of the iterations, yet propagated through multiple iterations, some
of which did not feature the event). In addition, the nanodevice’s
energy-harvesting nature and, consequently, its intermittent opera-
tion might result in the nanodevice failing to detect the event as
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(a) Off-the-shelf solution (b) In-house solution

Figure 2: Number of nanodevices

(a) Off-the-shelf solution (b) In-house solution

Figure 3: Event sampling granularity

it was turned off, despite passing through the bloodstream region
containing such an event. More details on the features of the raw
data can be found in [9]. The outlined behavior results in the fact
that, although more data inputted into the models should increase
the accuracy of estimation, its highly erroneous nature balances out
these improvements, resulting in the “flat” performance regarding
region and point detection accuracy for both solutions.

Observing Figures 2, 3, and 4, one can see that the region es-
timation accuracy respectively converges towards the values of
roughly 20 and 25% for both localization solutions, although the
rate of convergence differs across scenarios. The converging values
represent the achievable performance of the models, which is in
contrast to the significantly better performance reported by state-
of-the-art works proposing the considered models (e.g., [6]). The
models’ unsatisfactory accuracy is due to a difference in the raw
data utilized for their training and evaluation. The raw input data
generated in these works did not account for the energy-harvesting
nature of the nanodevices, as well as for unreliable communication
between the nanodevices and the anchor resulting from various
phenomena such as self-interference between the nanodevices,
high-attenuation of in-body THz communication, etc. In addition,
these models are, by design, unable to distinguish between the left
and right-hand sides of the body, given that in such cases, the iter-
ation times are the same. Future efforts should consider new and
more powerful ML tools, with primary candidates stemming from

the Graph Neural Networks (GNN) family due to their intrinsic
ability to handle complex graph-structured data, capture non-linear
relationships between different data points (i.e., nodes), and gen-
eralize to unseen data. In addition, future efforts should consider
introducing additional anchors at strategic locations of the body
(primarily the hands and leg wrists) to support the ascertainment
of the left and right-hand sides of different body regions.

Regarding the design space of the considered solutions, Figure 2
depicts the effects of an increasing number of administered nan-
odevices on the accuracy and reliability-related metrics. As visible,
an increase in the number of nanodevices increases the accuracies
of both solutions for point and region estimation. As an example,
when increasing the number of nanodevices from 32 to 128 and
considering an entire simulation run with the duration of 960 sec,
the third quartile of localization error for the in-house solution is
decreased from more than 75 to less than 40 cm. This improvement
is a direct result of the system producing more raw data as a result
of introducing additional nanodevices. However, the region accu-
racy is only minorly affected, which can be attributed to the fact
that the more data is generated, the more erroneous instances it fea-
tures, eventually resulting in poor region detection accuracy. The
introduction of additional nanodevices benefits reliability, although
eventually, the reliability of producing location estimates generally
converges toward 100%. Optimizing the reliability increase will
benefit applications with latency requirements, e.g., drug delivery.
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(a) Off-the-shelf solution (b) In-house solution

Figure 4: Detection distance threshold

Figures 3 and 4 depict the effects of the event sampling frequency
and detection distance threshold on the performance of the solu-
tions, respectively. As visible, these parameters’ variations only
slightly affect the considered metrics. The sampling granularity
only affects the rate at which the events can be detected. As such,
it is expected that the more frequent the sampling, the higher the
convergence rate toward the region detection accuracy achievable
by the models. In addition, the energy consumed in sampling is
small compared to the overall energy of the nanodevices. In other
words, even the fastest sampling of 10 samples/sec is insufficient to
deplete the energy of the nanodevices; hence, the granularity does
not significantly affect the reliability of producing estimates. More
generally, the selection of sampling frequency should be considered
in relation to the blood speeds and available energy at the nanon-
ode level. For the considered regions in which the blood speeds are
1 cm/sec and with the event detection threshold of 1 cm, there is no
need for increasing the sampling frequency beyond 1 sample/sec,
as this will solely result in increased energy consumption.

As visible in Figure 4, an increase in the distance threshold for
event detection harms the point accuracy. When the detection
distance is increased, events that are further away from the nanode-
vices are also detected. This has a direct impact on the accuracy of
event detection. For certain regions, such as the ones in the torso,
this increase is sufficient to detect events in regions where a nanode-
vice did not pass, eventually resulting in some estimates featuring
significant errors. Thus, the distribution of errors depicted in each
point accuracy box-plot gets visibly larger when the threshold is
increased beyond 1 cm.

5 CONCLUSION
We have followed a standardized methodology for assessing the
performance of two contemporary flow-guided localization solu-
tions. The followed assessment methodology allowed us to explore
the design space of the solutions in an objective way and along
heterogeneous metrics. The high level of realism was achieved by
utilizing a state-of-the-art simulation environment that is able to
capture the peculiarities of nanodevices, Terahertz (THz) wireless
nanocommunication, and the harsh environment that the human
bloodstream represents. Our results reveal relatively poor perfor-
mance of the solutions, which can be attributed to the unreliable

nature of THz communication between the in-body nanodevices
and the outside world, and the inability of the solutions to deal
with the high complexity and erroneous nature of the input data.
Future work will aim at enhancing the accuracy of localization
by considering different ML models, primarily the ones from the
Graph Neural Networks (GNN) family, and introducing additional
anchors at strategic locations on the body.
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