
Latency Analysis of SDR-based Experimental
C-RAN / O-RAN Systems

Christos Laskos, Anatolij Zubow and Falko Dressler
Electrical Engineering and Computer Science, TU Berlin, Germany

{laskos, zubow, dressler}@tkn.tu-berlin.de

Abstract—A paradigm shift in radio access network (RAN)
architectures was initiated by Cloud RAN (C-RAN) and now
Open RAN (O-RAN) systems. Leveraging software defined radios
(SDRs), it is possible to enhance scalability, flexibility, and
cost efficiency; from prototyping to deployment. However, the
feasibility of using SDRs in C-RAN / O-RAN deployments heavily
depends on latency constraints, particularly for time-sensitive
protocol operations. In this paper, we present results from
an extensive experimental evaluation of latency in commonly
used SDR platforms, including USRP B210, N210, N310, and
X410. For this, we implemented a novel round trip time (RTT)
measurement method at the SDR driver level for precise RTT
analysis. Our findings highlight the impact of SDR hardware, the
connection to the host computer, sampling rates, and protocol
optimizations. While all tested SDRs meet the latency requirements
for 4G/5G-based C-RAN implementations (less than 500 µs),
some approach the 25 µs one-way O-RAN delay, and none
currently satisfy the more stringent 9 µs requirements of WiFi.
We identify key optimizations, such as reducing the maximum
transmission unit used in the fronthaul link layer and leveraging
data plane development kit (DPDK) for low-latency networking,
that significantly improves the SDR performance. Our results
show that, in an optimal setup using X410 USRP, 100Gbe Ethernet
fronthaul, DPDK, and optimal maximum transmission unit (MTU)
size, the worst-case RTT stays below 65 µs.

Index Terms—Software-defined radio, Cloud-RAN, Open-RAN,
Latency, RTT

I. INTRODUCTION

Softwarized radio access network (RAN) technologies
promise to enhance cost efficiency, energy savings, network
performance, and scalability, enabling rapid prototyping and
faster deployments for future networks. Examples include the
Cloud RAN (C-RAN) and the Open RAN (O-RAN) architec-
tures. C-RAN is an innovative mobile network architecture
that centralizes and virtualizes base station (BS) functions
using cloud computing [1]. It consists of distributed Remote
Radio Units (RRUs), a high-speed fronthaul network, and a
centralized Baseband Unit (BBU) pool. Hence the BS only
consists of a RRH, which implements the low-level parts
of the physical layer, such as digital to analog conversion
and power amplification [1]. A possible input to the RRH is
the digital baseband, i.e., I/Q sample stream, from the BBU.
An example of a C-RAN architecture is shown in Fig. 1.
Similarly, the O-RAN architecture consequently follows the
idea of softwarization and allows to distinguish between analog
radio frontends and processing using SDR technology [2].

These advantages come with new requirements for the
fronthaul network like high-speed, low latency, and low jitter.

digital baseband (I/Q stream)PHY

Data Link

Higher Layers

BBU RRH

RF

Fig. 1. Cloud-RAN architecture (3GPP split 8 [3])

Failing to meet the timing requirements makes radio trans-
mission and reception inefficient or even impossible. To meet
the latency requirements, the Common Public Radio Interface
(CPRI) [4] was developed. CPRI typically uses synchronous
serial transmission over fiber-optic links and has already been
successfully applied to 4G/LTE scenarios [5]. Later, the evolved
Common Public Radio Interface (eCPRI) [6] was designed with
a packet-based transport in the fronthaul. eCPRI packets are
transported inside IP/UDP frames over Ethernet, allowing for
more efficient bandwidth usage and flexible deployment. This
enables the possibility of implementing C-RAN architectures
using conventional software defined radio (SDR) hardware for
the RRH combined with Ethernet technology for the fronthaul
network. As such, C-RAN testbeds can be developed using
SDR hardware for rapid prototyping and evaluation. Similar
interfaces are defined for O-RAN.

Depending on the wireless protocol to be evaluated, different
latency requirements are to be met. In case of 4G/LTE, the
Hybrid Automatic Repeat-Request (HARQ) requires a latency
of at most 1 ms in the downlink and 2 ms in the uplink [7].
O-RAN requires between 25 µs and 1 ms one-way latency [8].
In contrast, the IEEE 802.11 WiFi protocol has much tighter
latency requirements, where the channel has to be accessed
within a 9 µs slot [9]. To examine the feasibility of using SDRs
for RAN prototyping, we conducted experiments to investigate
latency and jitter of commonly available SDR platforms. We
implement a round trip time (RTT) measurement method at
the SDR driver level, utilizing the 802.11 waveform for precise
RTT analysis, and optimize the default SDR configurations for
low latency operation. With our approach, we determine the
RTT of an SDR with an actual physical signal transmission.

Our main contribution can be summarized as follows:

• We designed a driver-level method for precise RTT
measurements in SDR systems;

• we conducted an extensive measurement campaign for the
most widely used USRP SDR systems;

• we identified and optimized latency impacting parameters;
• we derived a latency model that can be used for prototyp-

ing SDR-based C-RAN and O-RAN architectures.

II. RELATED WORK

An early SDR latency study was performed by Valentin et al.
[10], where a simple send and wait protocol was implemented
in GNU Radio for measuring the RTT. The host system sends
out a frame through GNU Radio, which is processed and
then transmitted via a SDR. The receiving SDR then forwards
the received signal to the host, which processes it and sends
back another frame. The mean RTT observed was 3.14 ms.
Nychis et al. [11] measured the RTT between the kernel
on the host system and the field programmable gate array
(FPGA) in the SDR using a USB connection. Their effective
measured rate is 32 MByte/s, thus, we assume that USB 2.0
was used. Using the default configuration, the mean RTT was
291 µs with a standard deviation of 62 µs. Using an improved
configuration with smaller USB transfer block size, they were
able to reduce the mean RTT to 148 µs with standard deviation
35 µs. Similarly, Jiao et al. [12] measured the RTT between the
host system and the RF frontend in the SDR using the SDR
driver latency test, which sends out some stream data to the
SDR and measures the time it takes to be acknowledged. They
used sampling rates (SRs) of 5, 10 and 25 MHz. Depending
on the link technology used in the fronthaul, the latency varies.
For USB 3.0 they measured a mean RTT of 66 µs, for PCIe
79 µs, for 1 Gbit/s Ethernet 101 µs, and for 10 Gbit/s Ethernet
106 µs. In an analytical latency study by Molla et al. [13], the
RX side latency of an X310 USRP was determined at 4.47 ms,
while the minimum link latency is calculated at 2.5 µs.

The wide range of reported latency values from the existing
literature motivated us to perform our own measurement cam-
paign to accurately determine both RTT and jitter. Additionally,
we aim for further latency reduction by performing a parameter
optimization, which allows us to answer the question whether
conventional SDRs are suitable for the implementation of C-
RAN / O-RAN systems. Going beyond the related work, we
implement a precise over-the-air RTT measurement procedure,
which includes all sources of latency present in SDR systems.

III. BACKGROUND

A. C-RAN / O-RAN Architecture

In both the C-RAN and the O-RAN architectures, many
functional splits have been proposed by 3GPP [3]. These
functional splits determine where the processing steps are
performed, e.g., locally at the BS or offloaded to a centralized
processing unit [14]. Mainly the baseband unit (BBU) and
remote radio head (RRH) are now split into three components.
The radio unit (RU) is the RF front end, equivalent to the
RRH. The distributed unit (DU) is positioned at the BS and
performs tasks locally. The centralized unit (CU) is located at
a different site and communicates with the DU. The lowest
level split is split 8, where the DU does not have any local
processing capacities and the raw I/Q baseband sample stream is
forwarded to the CU, where the entire protocol stack is executed.

Host LinkRF Frontend ADC/DAC DDC/DUC
FPGA

Host System
GPP

TXRX

SDR

Fig. 2. General software defined radio (SDR) architecture

Next, split 7-1 adds the inverse fast Fourier transformation
(IFFT) computation and cyclic prefix addition to the DU, while
all other higher level functions are still handled by the CU.
More functionality is added to the DU in split 7-2, with beam
forming and resource element mapping. In split 7-3, even more
functionality is added to the DU, by making it responsible for
precoding, layer mapping, and modulation. Split 6 delegates
the entire PHY layer processing to the DU and the CU is
responsible for the MAC and higher layers. Split 5 adds part of
the MAC layer to the DU, such as channel access scheduling.
Several more higher level splits exist, which however are not
relevant for this work. Split 8 has the highest requirements
in terms of data rate, while using split 5 has the lowest. A
significant reduction in data rate is already achieved when
moving to a 7-1 or 7-2 split. Afterwards, the reduction is not
as high as in lower levels.

Considering the WiFi protocol can also be realized using the
C-RAN architecture. It requires the split 8 option, but latency
requirements are very strict at sub 9 µs for channel access
using the carrier-sense multiple access (CSMA) protocol [9]. A
more suitable split would be 7-3, where, e.g., IFFT, precoding,
and modulation are run locally at the DU. With this approach,
many of the time critical tasks would be performed locally.
Of course, a split 5, where the entire channel access and PHY
layer can be handled locally on the DU, would help further
minimizing latency.

B. Software Defined Radio

SDRs are highly programmable devices that are capable of
transmitting and receiving radio signals – given certain physical
hardware limitations. The programmability is achieved by a
connection to a host system, which most commonly uses a
general purpose processor (GPP) and communicates to the
SDR via Ethernet or USB. The host system performs all
the signal processing in software and transmits or receives
a stream of samples to the SDR. For example, the entire
LTE protocol stack could be run as software on the host
system [15]. To support a large signal bandwidth of modern
wireless technologies, a high-speed link between the SDR and
host is required. This high-speed link connects the host to an
FPGA on the SDR, which performs digital down conversion
(DDC) and digital up conversion (DUC) to convert in- and out-
going samples to the appropriate SR. Next, analog to digital
conversion (ADC) and digital to analog conversion (DAC) take
place to transform samples either from or to the analog domain.
Finally, the now analog signal is mixed in the RF frontend
up/down to/from the set carrier frequency. Figure 2 shows a
general SDR architecture, which is equivalent to the 3GPP
C-RAN split 8 [3].

Table I
SPECIFICATIONS OF USED SDR CONFIGURATIONS

USRP SR (MS/s) fronthaul link technology required data rate

B210 61.44 USB 3.0 (5 Gbit/s) ≈ 2 Gbit/s
N210 25 1 Gbit/s Ethernet 0.8 Gbit/s
N310 153.6 10 Gbit/s Ethernet ≈ 4.9 Gbit/s
X410 500 100 Gbits/s Ethernet 16 Gbit/s

IV. PRELIMINARY INVESTIGATIONS

In this study, we focus on the universal software radio
peripheral (USRP) platform by National Instruments. The
selected USRPs and their capabilities are shown in Table I.
Note the wide range of sampling rates ranging from 25
to 500 megasamples per second (MS/s). Another distinction
between them is the used interconnection to the host system.
Mostly Ethernet is used with varying speeds. The B210 is the
only USRP using a USB 3.0 connection.

Based on the maximum SR the hardware is capable of,
the link technology has to be chosen to support the required
data rate. By default, the maximum transmission unit (MTU)
between USRP and host is 8000 Bytes, except for the N210,
where it is set to 1472 Bytes due to the 1 Gbit/s Ethernet
link. With the known maximum SR, we can calculate the
minimum required data rate to supply samples to the USRP
without the risk of over- and underruns. The default format for
transmitting I/Q samples is a 32 bit complex number, consisting
of two 16 bit floats for real and imaginary component. With
these parameters, we can calculate the required net data rate
for reliable sample transmission, without considering protocol
overhead and with using only one sample stream (receiving or
transmitting): Rnet = SR ×SF, where SR is the sample rate, SF
is the sample format (32 bit complex), and Rnet is the resulting
net data rate. The resulting required data rates are shown in
Table I. Most of the USRPs have some headroom to perform
parameter tweaking on the fronthaul link, i.e., lowering the
MTU size. An exception is the N210, which operates near the
maximum capacity.

A. Analytical Latency Model

Using an SDR introduces additional latency to the entire
transmission and reception process. We analyze the RTT delay
from the point in time the radio signal is received at the SDR
and processed at the host system, to the point in time the signal
is transmitted back by the radio. The RTT can be modeled as
follows:

RTT = 2×DSDR + 2×DCOMM +DPROC, (1)

where DSDR is the delay introduced by the ADC/DAC and
DDC/DUC in the SDR, DCOMM is the communication latency
of the link between SDR and host, and DPROC is the processing
delay on the host system. Here DCOMM consists of the following
four components:

DCOMM = DPKT +DTRAN +DPROP +DBUFF, (2)

where DPKT is the packetization delay, DTRAN is the transmis-
sion delay, DPROP is the propagation delay, and DBUFF is the

buffering delay. In our study, we attempt to find the model
parameters in order to get a deeper understanding of the delays
present in state-of-the-art SDR systems.

B. Waveform Generation and Detection
For the RTT measurement, we use an OFDM 802.11a

waveform, as it can be used with all USRPs under study.
In particular only the short training field (STF) of the PHY
preamble is transmitted [9, Section 17.3.3]. For detecting the
STF on the receiver, we used the algorithm developed by
Chia-Horng [16], which has also been used in the 802.11a
GNU Radio implementation by Bloessl et al. [17]. This
algorithm calculates the autocorrelation of the incoming sample
stream using a double sliding window, where the sample
stream is multiplied with a delayed version of itself and then
normalized by the power. First, the autocorrelation coefficient a
is calculated, where the individual autocorrelation coefficients
of the incoming signal s are summed up over a varying window
Nwin:

a[n] =

Nwin−1∑
k=0

s[n+ k]s[n+ k + STFsym_len], (3)

where STFsym_len = 16 with the default SR of 20 MHz. In
[17], Nwin is chosen to be three times the STF symbol length
(STFsym_len), which in this case is 16, as such Nwin = 3 ×
STFsym_len = 3× 16 = 48. Next, the correlation coefficient a
needs to be normalized by the power of the incoming signal
p, where the power p is calculated as follows:

p[n] =

Nwin−1∑
k=0

s[n+ k]s[n+ k]. (4)

Finally, the normalized correlation coefficient c, ranging from
zero to one, is calculated by:

c[n] =
|a[n]|
p[n]

, (5)

where | | represents the magnitude. For a signal to be detected
as the STF, we chose c[n] ≥ 0.75. As soon as c[n] drops below
this level, we consider the frame as over.

V. EXPERIMENTAL SETUP

For our experimental study, we used following hardware:
• SDR: USRP B210, N210, N310, X410
• Host: AMD Ryzen 9 7950X 16-Core (simultaneous multi

threading disabled), 64 GByte RAM, Mellanox 100 Gbit/s
MT27800 Family [ConnectX-5], Intel 10 Gbit/s 82599ES,
Ubuntu 22.04 LTS, UHD 4.6

Our experimental setup is shown in Fig. 3. Two USRPs (sender
and receiver) were connected to one host each. Depending on
the USRP, it is either connected through USB 3.0 or Ethernet
(1, 10 and 100 Gbit/s). As our study requires both SDRs to
transmit and receive simultaneously during measurement, one
TX and one RX port on each device is used and is connected
to a shared coaxial cable using splitters (S). Using the wired
link, outside RF interference is avoided which results in very
accurate estimation of the RTT.

Initiator
USRP

TX

RX

Responder
USRP

TX

RX
1

2

3

4
Ethernet/USB Ethernet/USB

Host

S S

Host

Fig. 3. Setup with USRPs connected via splitters and coaxial cable.

VI. EVALUATION

A. Methodology

For a precise RTT measurement, we implemented the STF
detection algorithm directly inside USRP hardware driver
(UHD) using C++. We measure the RTT by running both SDRs
in full-duplex mode, where they can simultaneously transmit
and receive. During the measurement phase, the designated
responder USRP runs continuously, checking for the reception
of the expected waveform. If the waveform is detected, it replies
to it as soon as the correlation coefficient c drops below the
predefined 75% threshold by sending back the same waveform.
The designated initiator USRP initiates the measurement by
first starting to receive on its RX port and afterwards sends the
precomputed STF on its TX port. The transmitted waveform is
then received by the responder on its RX port, processed on the
host, and as soon as it ends, the same waveform is send back.
When sending back the reply, the responder drops all further
received samples to not create an infinite transmission loop.
After the predefined receive duration of the initiator (2 ms), the
received samples are saved to a file for post processing and
the next RTT measurement continues.

With this measurement procedure, we create a ping-pong
configuration between initiator and responder to determine the
RTT with a per sample accuracy. The measurement procedure
is shown in Fig. 4. To actually calculate the time it takes for the
responder to reply, we subtract the start time of the responder
transmission from the end time of the initiator transmission, in
this case x1 − x0. Using the known sample rate, we convert
this into time in seconds. With this procedure, we calculate
the RTT, because the signal has to be received at the SDR,
transmitted to the host, processed, and then a reply has to be
sent back to the SDR from the host.

Due to the homogeneous nature of the different SDRs used
in our study, we need to adapt the STF detection algorithm
to be able to handle the different SRs. As a first step, the

Time

Init.
TX

RX

Resp.
TX

RX Continuous

Measurement

STF

STF

8 µs

RTT

Fig. 4. Procedure for measurement: RTT is measured at the initiator RX port
with RTT = x1 − x0.

100 150 200 250 300 350 400
RTT [µs]

0.00

0.25

0.50

0.75

1.00

C
D

F

MTU:

lower MTU

1000 2000 4000 8000

Fig. 5. USRP B210 (USB, SR 20 MHz, variable MTU)

generated waveform is resampled to the correct frequency
from the base 20 MHz. We then use SRs that can be adjusted
to fit the STF accordingly. This is trivial for SRs of 20, 40 and
500 MHz, where we just down-sample the incoming signal to
the base 20 MHz SR by dropping samples. In case of a N310
using a SR of 125 MHz, we change the detection algorithm
as follows: First, we down-sample the signal to 31.25 MHz,
and then change the STFsym_len in Eq. (3) to 25, to adapt to
the new SR. This change is only possible due to STFsym_len =
16× 31.25MHz

20MHz = 25 having an integer result. The equivalent
holds for the X410 SR of 250 MHz, down-sampled by ten,
with STFsym_len = 20.

The parameters evaluated in our study are the following: SR,
interface SDR-Host (socket vs. DPDK), MTU size (number of
bytes per Ethernet/USB frame), and SDR type (B210, N210,
N310, X410). The reported RTT is given as a tuple of minimum
(min), median (mdn), maximum (max) RTT values for each
configuration.

B. Results

B210: Fig. 5 shows the results for the B210, which is the only
device using an USB connection. Using a SR of 20 MHz with
the default configuration of a 8000 Bytes MTU, the min, mdn,
and max RTT are (234 µs, 337 µs, and 418 µs), respectively.
Decreasing the MTU to 1000 Bytes reduces the RTT to (97 µs,
212 µs, and 260 µs). By doubling the SR to 40 MHz, the RTT
of the B210 can be improved to (171 µs, 271 µs, and 329 µs).
Again, a decrease in MTU results in RTT improvements. For a
1000 Bytes MTU, the worst case RTT slightly increases (95 µs,
196 µs, and 281 µs). A 2000 Bytes MTU shows better results
(104 µs, 203 µs, and 257 µs). Due to this increase in worst case
RTT and the possibility of dropped samples due to underruns
in low MTU configurations, a 2000 Byte MTU is preferred.

N210: Next, we examine the N210, which uses a 1 Gbit/s
Ethernet link. Here, the default configuration uses a MTU
of 1500 Bytes. We further set SR to 20 MHz. The results are
shown in Fig. 6. There is no significant RTT improvement
for a reduction in MTU size. All perform similar except
the 250 Bytes configuration. In the default configuration, the
RTT is (194 µs, 290 µs, and 411 µs), whereas the 250 Bytes
configuration results in (150 µs, 284 µs, and 395 µs).

N310: The N310 uses a 10 Gbit/s Ethernet link and supports
SRs of up to 125 MHz. Additionally, it supports data plane
development kit (DPDK), which replaces the network card

100 150 200 250 300 350 400
RTT [µs]

0.00

0.25

0.50

0.75

1.00

C
D

F
MTU: 250 500 1000 1500

Fig. 6. USRP N210 (1 Gbit/s Ethernet, SR 20 MHz, variable MTU)

50 100 150 200 250 300
RTT [µs]

0.00

0.25

0.50

0.75

1.00

C
D

F

SR (DPDK):

SR (Socket):

with DPDK

higher SR

125 MHz

125 MHz

62.5 MHz

62.5 MHz

31.25 MHz

31.25 MHz

Fig. 7. USRP N310 (10 Gbit/s Ethernet, with/without DPDK, variable SR)

driver and bypasses the operating system network stack. We first
examine the impact of using a conventional socket compared to
DPDK, as well as the impact of the SR. The results are shown
in Fig. 7. We observe a significant reduction in RTT when
using DPDK, where the higher SRs benefit the most from it.
Comparing 125 MHz DPDK to the socket case, the RTT drops
from (125 µs, 187 µs, 254 µs) to (69 µs, 101 µs, 137 µs). DPDK
nearly reduces RTT by 50 %. Another interesting observation, is
that the RTT does not change significantly when increasing the
SR using a socket, while there is a substantial RTT reduction
with increasing SR and DPDK. The fairly constant RTT in the
socket case, may be caused by the operating system kernel
having a high but constant delay. Overall, it is recommend
to use DPDK when possible, as it significantly decreases the
RTT, especially for higher sampling rates.

We continue with the N310 and examine the impact of
the MTU size when using DPDK and a SR of 125 MHz.
The results are shown in Fig. 8. Again, we see significant
RTT improvements with decreasing MTU, where the default
8000 Byte has an RTT of (69 µs, 101 µs, 137 µs), while the
reduced 500 Bytes has an RTT of (28 µs, 57 µs, 91 µs). Just
reducing the MTU can reduce the median RTT by over 40 %.
We recommend using a 1000 Bytes MTU with DPDK for low
latency and avoiding potential sample drops, as the difference
to 500 Bytes is only 3 µs.

X410: Finally, we evaluate the X410 and analyze the impact
of SR and MTU. We use both maximum available SRs of
250 and 500 MHz, which depends on the FPGA image type.
We use DPDK in all cases. The results are shown in Fig. 9.
Again, we see similar results as in the previous USRPs, where
the RTT is reduced drastically with increased SR and lower

20 40 60 80 100 120 140
RTT [µs]

0.00

0.25

0.50

0.75

1.00

C
D

F

MTU:

lower MTU

500 1000 2000 4000 8000

Fig. 8. USRP N310 (10 Gbit/s Ethernet, DPDK„ SR 125 MHz, variable MTU)

20 40 60 80 100 120 140
RTT [µs]

0.00

0.25

0.50

0.75

1.00

C
D

F

MTU (500 MHz):

MTU (250 MHz):

lower MTU

higher SR

1000

1000

2000

2000

4000

4000

8000

8000

Fig. 9. USRP X410 (100 Gbit/s Ethernet, DPDK, variable SR, variable MTU)

MTU. Just increasing the SR with default 8000 Bytes MTU,
can reduce RTT from (58 µs, 108 µs, and 140 µs) to (32 µs,
49 µs, and 79 µs). This corresponds to a reduction of roughly
50 %. Lowering the MTU for a SR of 250 MHz shows further
improvements until an MTU of 2000 Bytes. The best case
RTT for 1000 Bytes MTU is (26 µs, 75 µs, and 104 µs). In the
500 MHz case, only lowering the MTU to 4000 Bytes shows a
significant RTT decrease. A lower MTU does not lead to further
improvements. Here, the best case RTT is MTU 1000 Bytes)
is (20 µs, 34 µs, and 64 µs). In general, it is recommended to
adapt the default configuration for the X410 to a lower MTU
and increase the SR for latency minimization.

Summary: Fig. 10 shows the results of all USRPs using
their best configuration. We observe that the X410 and N310
are better suited for low latency applications. The B210 and
N210 on the other hand, have a much higher latency, but may
still be useful for application, e.g., LTE, where higher RTT
can be tolerated.

0 50 100 150 200 250 300 350 400
RTT [µs]

0.00

0.25

0.50

0.75

1.00

C
D

F

USRP: X410 N310 B210 N210

Fig. 10. Comparison of different USRPs using the best configuration

VII. LATENCY ANALYSIS

After our extensive measurement campaign, we now aim to
solve Eq. (1) for a specific configuration. We consider the N310
USRP with 125 MHz SR, 10 Gbit/s Ethernet link, and usage
of DPDK. We assume that the measured RTT is symmetric.
In a first step, we subtract the processing delay from the RTT
measurements, which we measured at DPROC ≤ 1.7 µs. We
divide the RTT by two to get the one-way delay and subtract
the SDR delay DSDR, which we assume to be equal to the
measurement results reported by Bräuer et al. [18], i.e., 5.1 µs,
when using DDC/DUC. The last unknown is the communication
delay DCOMM. We have to analyze each of its components
individually. We first calculate the packetization delay DPKT
based on the SR and the sample size ssize = 32bit with DPKT =

MTU
SR×ssize

. For MTUs of 8000, 4000, 2000, 1000, and 500 Bytes
we get an approx. DPKT = 16, 8, 4, 2 and 1 µs (rounded
to µs). Next, we analyze the transmission delay DTRAN, with
DTRAN = Psize

R , where Psize is the packet size including all
headers (UHD, UDP, IP, Ethernet) and R is the data rate of the
link with R = 10Gbit/s. For our different MTUs, we get an
approx. DTRAN = 6, 3, 2, 1 and 0.5 µs. DPROP is calculated
with DPROP = l

(2/3)×c = 10ns, where l = 2m and c is the
speed of light. We attribute the rest of our occurring delay
to the remaining term DBUFF. As the buffering delay is not a
constant like all other delays, it follows a random distribution.
We perform a distribution fit and determine that DBUFF follows
a normal distribution, which can be parameterized as follows:

DBUFF = N (23, 8) µs (6)

This completes the latency model for the N310 USRP so that
it can be used in simulation studies.

VIII. DISCUSSION AND CONCLUSIONS

We investigated the latency and jitter introduced by the
widely used SDR platforms by means of extensive experiments.
We found that the RTT depends mainly on the SDR used.
Moreover, the used configuration like the SR has a large impact.
We discovered that for all platforms under study significant
latency and jitter reductions can be achieved by tuning the
MTU size of the fronthaul link, i.e., Ethernet or USB, as
well as increasing the used SRs. We found that the biggest
contributor to latency is the communication link between SDR
and host whereas the latency inside the SDR, i.e., up/down
conversion, and host, i.e., processing delay, play only a minor
role. Moreover, the use of DPDK reduced the RTT by 50 %.
We now have a good understanding of the different sources
of latency in a SDR system. All examined SDRs have the
potential to be used for LTE C-RAN prototyping, some for
O-RAN prototyping, but unfortunately none are able to satisfy
the very low latency requirements of the WiFi protocol.

ACKNOWLEDGMENTS

This work was supported by the Federal Ministry of Educa-
tion and Research (BMBF, Germany) within the 6G Research
and Innovation Cluster 6G-RIC under Grant 16KISK020K.

REFERENCES

[1] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras,
M. S. Berger, and L. Dittmann, “Cloud RAN for Mobile Networks—A
Technology Overview,” IEEE Communications Surveys & Tutorials,
vol. 17, no. 1, pp. 405–426, Jan. 2015.

[2] M. Polese, M. Dohler, F. Dressler, M. Erol-Kantarci, R. Jana, R. Knopp,
and T. Melodia, “Empowering the 6G Cellular Architecture with Open
RAN,” IEEE Journal on Selected Areas in Communications, vol. 42,
no. 2, pp. 245–262, Feb. 2024.

[3] “Study on new radio access technology: Radio access architecture and
interfaces,” 3GPP, Sophia Antipolis, France, TR 38.801 V14.0.0, Mar.
2017.

[4] “Common Public Radio Interface (CPRI),” Ericsson AB, Huawei
Technologies Co. Ltd, NEC Corporation, Alcatel Lucent, and Nokia
Networks, Interface Specification V7.0, Oct. 2015.

[5] A. de la Oliva, J. A. Hernandez, D. Larrabeiti, and A. Azcorra, “An
overview of the CPRI specification and its application to C-RAN-based
LTE scenarios,” IEEE Communications Magazine, vol. 54, no. 2, pp. 152–
159, Feb. 2016.

[6] “Common Public Radio Interface: eCPRI Interface Specification,”
Ericsson AB, Huawei Technologies Co. Ltd, NEC Corporation and
Nokia, Interface Specification V2.0, May 2019.

[7] V. Q. Rodriguez, F. Guillemin, A. Ferrieux, and L. Thomas, “Cloud-
RAN functional split for an efficient fronthaul network,” in International
Wireless Communications and Mobile Computing (IWCMC 2020),
Limassol, Cyprus: IEEE, Jun. 2020.

[8] E. Municio, G. Garcia-Aviles, A. Garcia-Saavedra, and X. Costa-Pérez,
“O-RAN: Analysis of Latency-Critical Interfaces and Overview of
Time Sensitive Networking Solutions,” IEEE Communications Standards
Magazine, vol. 7, no. 3, pp. 82–89, Sep. 2023.

[9] IEEE, “Wireless Medium Access Control (MAC) and physical layer
(PHY) specifications: High Speed Physical Layer in the 5 GHz band,”
IEEE, Std 802.11a-1999, Dec. 1999.

[10] S. Valentin, H. von Malm, and H. Karl, “Evaluating the GNU Software
Radio platform for wireless testbeds,” Paderborn University, Paderborn,
Germany, Technical Report TR-RI-06-273, Feb. 2006.

[11] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, and P. Steenkiste, “Enabling
MAC Protocol Implementations on Software-Defined Radios,” in 6th
USENIX/ACM Symposium on Networked Systems Design and Implemen-
tation (NSDI 2009), Boston, MA: USENIX, Apr. 2009, pp. 91–105.

[12] X. Jiao, I. Moerman, W. Liu, and F. A. P. de Figueiredo, “Radio
Hardware Virtualization for Coping with Dynamic Heterogeneous
Wireless Environments,” in 12th International Conference on Cognitive
Radio Oriented Wireless Networks (CrownCom 2017), Lisbon, Portugal:
Springer, Sep. 2017, pp. 287–297.

[13] D. M. Molla, H. Badis, L. George, and M. Berbineau, “Software Defined
Radio Platforms for Wireless Technologies,” IEEE Access, vol. 10,
pp. 26 203–26 229, Feb. 2022.

[14] L. M. P. Larsen, A. Checko, and H. L. Christiansen, “A Survey of the
Functional Splits Proposed for 5G Mobile Crosshaul Networks,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 1, pp. 146–172, 2019.

[15] I. Gomez-Miguelez, A. Garcia-Saavedra, P. D. Sutton, P. Serrano, C.
Cano, and D. J. Leith, “srsLTE: An Open-Source Platform for LTE
Evolution and Experimentation,” in 22nd ACM International Conference
on Mobile Computing and Networking (MobiCom 2016), 10th ACM
International Workshop on Wireless Network Testbeds, Experimental
evaluation and Characterization (WiNTECH 2016), New York City, NY:
ACM, Oct. 2016, pp. 25–32.

[16] L. Chia-Horng, “On the design of OFDM signal detection algorithms
for hardware implementation,” in IEEE Global Telecommunications
Conference (GLOBECOM 2003), San Francisco, CA: IEEE, Dec. 2003,
pp. 596–599.

[17] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, “An IEEE 802.11a/g/p
OFDM Receiver for GNU Radio,” in ACM SIGCOMM 2013, 2nd ACM
Software Radio Implementation Forum (SRIF 2013), Hong Kong, China:
ACM, Aug. 2013, pp. 9–16.

[18] S. Bräuer, A. Zubow, and F. Dressler, “Towards Software-Centric
Listen-Before-Talk on Software-Defined Radios,” in IEEE Wireless
Communications and Networking Conference (WCNC 2021), Nanjing,
China: IEEE, Mar. 2021.

