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Abstract—Adaptive beamforming is an enabling technology for
millimeter-wave-based wireless communication which is used by
many standards like 3GPP NR and IEEE 802.11ay. Supporting
user mobility is challenging as efficient beam tracking is required.
Therefore, a variety of beam tracking techniques have been
proposed, many of which are machine learning (ML)-based.
However, ML approaches are often not of practical use due
to the long and complex learning phase. In this paper, we show
the feasibility of virtual to real-world transfer learning. Our
solution significantly speeds up the learning process as the learning
happens mostly in a simulated environment and requires only
little additional learning in the real-world deployment. As proof-
of-concept, we implemented and evaluated a low-complexity beam
tracking based on deep Q-network (DQN) reinforcement learning.
The results reveal a substantial speed-up by a factor of 3× using
transfer learning.

Index Terms—mmWave, beam tracking, machine learning,
transfer learning, deep Q-network, software defined radio

I. INTRODUCTION

In recent years, millimeter wave (mmWave) communications
has gained a lot of attention for the use in next-generation
communication systems like 5G NR, promising high data rates
and low latency communication [1], [2]. This is achieved
through the use of large bandwidths and high carrier frequencies
of 24 GHz and higher – in this paper, we focus on the 60 GHz
ISM band. Unfortunately, the high frequencies in the mmWave
band possess higher attenuation and are more susceptible to
being negatively impacted by obstacles such as vegetation,
humans, and weather conditions. Additionally, the license-free
band around 60 GHz suffers a very high attenuation caused by
the oxygen molecules in the atmosphere and rain drops [3].

To counter the higher attenuation, electronic beam forming
(EBF) with phased array antennas is used [4]. These antennas
increase the signal power by focusing the transmitted signal
in a specific direction, i.e. location of the mobile station. Such
a created beam has a specific width, depending on the design
of the antenna, e.g., number of antenna elements [4]. The
limited beam width leads to the situation where the mobile
user eventually moves out of the beam, and the signal degrades.
To prevent this, beam tracking is essential, in which the beam
direction is adapted in real-time according to the movement of
the user.

Current approaches for beam tracking can be classified into
pure data driven approaches [5] and those using machine
learning (ML) techniques [6]–[9]. Although ML approaches
provide better performance, they are often not practical because
of their long and complex learning phase.

In this paper, we show the feasibility of virtual to real-
world transfer learning (TL) which dramatically speeds up the
learning process as the learning happens mostly in a simulated
environment and requiring only little additional learning in the
real-world deployment. We use TL to transfer a baseline beam
tracking agent from virtual to real environment. We apply TL by
changing the observation to real-world input and performing
a short retraining period. With the training completed, the
agent can then be deployed at the base station (BS) and
track the mobile station (MS) with the same performance
as an agent trained purely in the real environment, requiring
only 1/3 the training time. At last, we test both TL and non
TL cases in a high noise environment and observe a slightly
higher performance of the TL agent, indicating a higher noise
robustness than the conventional agent.

This is demonstrated using the example of mmWave beam
tracking based on deep reinforcement learning (RL). We
specifically choose a deep Q-network (DQN) for the application
of TL to beam tracking because of the recent successful
application of a DQN to mmWave beam tracking [9]. We
propose a low-complexity system, using only easily available
data from the MS, such as a smartphone, and remove the
need for complex channel estimation and transmission of pilot
signals. Our approach, is first verified in simulation environment
using the Phased Array System Toolbox provided by MATLAB.
Afterwards, the trained agent is used as a baseline for the
application of TL.
Our main contributions can be summarized as follows:

• We present a low-complexity mmWave beam tracking
approach based on DQN reinforcement learning,

• We show the feasibility of virtual to real-world transfer
learning using the example of mmWave beam tracking,

• Results from experimental reveal that an agent using TL
achieves same performance but in a much shorter learning
time. Moreover, it can be applied in scenarios with high
observation noise.

II. RELATED WORK

Some applications of TL in wireless networks include spec-
trum sensing, channel selection, and channel estimation [10].
In spectrum sensing, Zheng et al. [11] pretrain a convolutional
neural network with many different signal types and adapt
the pre-trained network to real-world signals. With the usage
of TL, their approach shows higher detection performance
in low SNR conditions compared to non TL and traditional



spectrum sensing methods. Using TL in channel selection,
Lin et al. [12] transfer knowledge between different frequency
bands and improve prediction accuracy when training data is
limited. Parera et al. [13] applied TL to channel estimation
and transfer knowledge between LTE channels for channel
quality prediction. Using TL in this scenario, shows improved
performance when the available data from the target channel
is limited.

We apply TL to beam tracking. The first beam tracking
algorithms were based on extended Kalman filter (EKF). In an
early work, Zhang et al. [14] suggest to perform a full scan of
all available beams to create an observation matrix, which is
used as input to the EKF for beam selection. Extending this
work, Va et al. [15] increased the efficiency of the system by
removing the need for a full scan, allowing for faster beam
switching in mobile environments, using only one measurement.
Further improvements were made by Jayaprakasam et al. [16],
showing better performance and eliminating the need for
channel re-acquisition. Liu et al. [17] remove the need for
prior knowledge of unknown path gains and start by using
two well-configured tracking beam pairs. A beam tracking
system based on a particle filter was proposed by Lim et al.
[18]. In their work, they perform the alignment and tracking
using pilot signals transmitted to the receiver. A data-driven
beam tracking approach was developed by Ma et al. [5], which
uses the signal strength as the tracking criterion, which has to
surpass a predefined QoS threshold for a beam to be selected.

More recent approaches rely on deep learning. Ma et al. [8]
tested convolution neural networks and long short-term memory
as training networks for improved beam training, which is the
initial step to acquire the starting beam configuration. They
were able to reduce the overhead of conventional sweeping
approaches and increase the alignment accuracy. An actual
beam tracking implementation based on deep learning was
developed by Lim et al. [6] using a long-short term memory
(LSTM) prediction model to predict the next beam based on
previous observations. They use channel state information that
is collected during specific beam transmission periods, where
some beams are selected and the channel is estimated. A similar
approach was developed by Liu et al. [7], which leverages a
model-based approach using traditional signal processing with
a matched filter that is then used as the input to their deep
learning neural network. Park et al. [9] propose to use a DQN.
Here the received pilot signals are used as inputs to the neural
network, which then selects the best-suited beam.

This approach also inspired us to evaluate DQN beam
tracking with transfer learning. We first simplify the required
inputs to the DQN by only using easily available data from the
MS. Furthermore, we take the trained agent from virtual to real-
world environment and evaluate TL and non TL cases in the
real world. At last, we introduce noise to the environment and
evaluate the robustness of both cases in the real environment.
To the best of our knowledge, TL has not yet been applied to
beam tracking.

III. BACKGROUND

A. mmWave Beamforming

Beamforming uses the concept of electromagnetic interfer-
ence to improve wireless connectivity by focusing the signal
toward a specific receiving device [19]. This is achieved by
combining the elements of an antenna in such a way, that
in certain directions the signals interfere constructively, while
in other directions interference is destructive. Beamforming
is usually an electronic process, where the beam can be re-
calibrated electronically to aim in a new direction so that the
beam is aligned towards the intended MS. Here, the usage of
EBF is of paramount importance in order to overcome the high
signal attenuation of the mmWave spectrum. However, in order
to make practical solutions inexpensive the EBF cannot be
freely controlled. Instead, standard beam-training algorithms
are used, which probe a set of pre-defined antenna patterns
and select the best configuration with respect to metrics like
signal strength or SNR [20]. Note, that sweeping through all
predefined antenna sectors is in general not feasible due to
the high signaling overhead. Therefore, especially in mobile
environments, techniques like beam tracking are applied, where
the EBF is constantly adjusted to maintain communication
towards the MS. Failing to adjust the configuration of EBF
can result in a link outage and may require costly sweeping to
reacquire the correct beam configuration.

With the IEEE 802.11ad/ay (WiGig) standard [21], WiFi is
able to use the mmWave spectrum at 60 GHz. As an example,
a commodity WiGig AP like the Talon AD7200 uses a beam
pattern set with 35 configurations [22].

B. Virtual to Real-World Transfer Learning

Transfer learning (TL) is a technique in ML in which
knowledge learned from one task is re-used in order to boost
performance on a related task [23]. As an example consider
the task of image classification where knowledge gained while
learning to recognize dogs could be utilized when trying to
recognize cats. The key idea behind transferring knowledge
from previously learned tasks to new tasks is to accelerate the
learning speed and therefore efficiency.

The application of ML techniques in networking in general
and beam tracking in particular is very promising as it is
able to provide superior performance over classically designed
approaches [23]. However, they are often not practical because
of their long and complex learning phase requiring large
amount of adequate training data. This is where the use of TL
could prove useful. Adequate training data can be collected
using simulation-based (virtual) training at a much lower cost
and higher learning speed, and the trained model can be
transferred to the real physical system, e.g., robot [24] or a
cellular BS, see Fig. 1. However, the transfer of knowledge
from virtual/simulated environments to the real world often
encounters a fundamental mismatch, but this challenge can be
effectively addressed by providing sufficient realistic virtual
environments. In the sense of TL, the tasks mainly differ in
their degree of realism.
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Fig. 1. Virtual to real-world transfer learning.
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Fig. 2. Scenario under study with MS starting at random position and moving
along a straight line with random speed/direction.

IV. SYSTEM MODEL & PROBLEM STATEMENT

We consider a network consisting of a single BS serving a
MS, see Fig. 2. The BS is equipped with a phased array antenna
operating in mmWave spectrum with K number of different
beam configurations. We consider the downlink (DL) of a time-
slotted transmission scheme. The beam configuration of the
BS can be adapted at the beginning of each time slot. The MS
is mobile and moves along a straight line with random speed
and into random direction (left or right). Speed is randomly
selected between 1 or 2 m/s. Moreover, its start position is
selected randomly. To make the mobility pattern more realistic,
the mobile agent starts on either end of the path and traverses
it until the other end. Additionally, with 25% probability he
can change direction in the middle of the path.

The objective of the BS is to select the beam configuration
out of the K possible for the next time slot which maximizes
the signal strength at the MS.

V. DEEPMMTRACK APPROACH

A. Description
DeepMMTrack is a low-complexity mmWave beam track-

ing approach based on deep RL which is described in this
section. The DeepMMTrack architecture is shown in Fig. 3.
For the DQN agent, we used the implementation provided by
Matlab1. We define observation, action, and reward as follows:
Observation: The observation consists of two parts. First, a
vector of receive power values of selected beam configurations
in the last N time slots PrxN...1

b . Second, the speed and
movement direction of the MS.
Action: The beam configuration selected by the BS for the
next time slot.
Reward: The reward function is defined as:

r =

{
Prxtb if Prxtb ≥ 5

−10, otherwise
(1)

1Matlab rlDQNAgent reinforcement learning agent
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Fig. 3. DeepMMTrack architecture: RL agent residing in the BS uses DQN
to decide on the next beamforming configuration using the observations made
by the MS.
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Fig. 4. Prototype of BS with mmWave frontend and signal processing using
an SDR.

where Prxtb is the normalized receive power at the MS in
the last time slot t and selected beam configuration b. Hence
the agent can receive rewards between 5 and 10, as well as
negative punishment of -10. The negative punishment is used
to accelerate training and minimize the selection of wrong
beam configurations.

We use a deep neural network with one fully connected layer,
followed by a dropout layer, a rectified linear unit (ReLU)
activation layer, and lastly the output. The dropout layer has
a 10% chance of dropping neurons and is used to prevent
over-fitting.

B. Prototype

We prototypically implemented DeepMMTrack using com-
mercially available mmWave frontends (Sivers EVK06005
mmWave front-end with BFM06009 antenna) whereas the
baseband processing was performed by software-defined radio
(SDR) Ettus USRP X310 (Fig. 4). The mmWave frontend
produces beams with a width of 12°, that are steerable from
−54° to +54° in 5.4° steps. The carrier frequency was set to
60.48 GHz. As waveform we selected IEEE 802.11a OFDM
which was generated and processed using Matlab. The BS is
placed in one corner of our lab, while the MS is mounted on
a robot used for alignment, which is then moved on a tray.
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(a) Virtual (simulated) environment.
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(b) Real-world (lab) environment.

Fig. 5. Normalized receive power for different MS positions and beam
configurations.

VI. EVALUATION

A. Methodology

In order to show the feasibility of virtual to real-world
transfer learning using the example of mmWave beam tracking
we set up two environments, one virtual and one real.

1) Real Environment: We recreated the scenario from
Fig. 2 in our laboratory and used the prototype described
in Section V-B. We placed the MS at each of the 62 positions,
which is the maximum distance reachable in our lab, and
measured the signal strength for each beam configuration
(cf. Fig. 5b). We transmitted 802.11a (BPSK, 20 MHz) WiFi
frames from the BS to the MS. We chose small bandwidth
802.11a frames because we are only interested in the signal
strength information, larger bandwidth and high data rates are
not required in our beam tracking scenario. The actual learning
of the agent occurred by playing back this trace while taking
into account the speed and direction of the MS.

2) Virtual Environment: The virtual (simulated) environment
mimics the real one described in previous section. We modeled
all relevant aspects like the geometry of the mmWave phased
array as well as the signal path loss in the simulation.
Specifically, we used the MATLAB Phased Array System
Toolbox. The measured signal strength for each position and
beam configuration is shown in Fig. 5a. Note, the large
similarities but also differences as compared to the results
obtained in the real environment (cf. Fig. 5b). The latter is due
to the objects such as chairs and tables not taken into account
in the simulation.

3) Modelling Noise: In order to analyze the impact of noisy
observations in the measured signal strength, i.e., RSSIi, the
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Fig. 6. TL vs. no TL reward after 1000 test runs.

following model is used:

Y = X + w (2)

where X is the ground truth observation matrix and w is a
random variable representing Gaussian noise with zero mean
and some standard deviation σ. Hence the observation available
to the agent is Y instead of the noise-free X .

B. Hyperparameter Estimation

We optimized the hyperparameters for DeepMMTrack
by testing different lengths for signal strength history (sh),
neural network sizes (nn), and learning rates (lr). Using the
simulation environment, we tested 180 different combinations
of hyperparameters and evaluated their performance in 1000
test runs. Based on these results, the agents were scored
according to their mean reward and their reward deviation.
A top performing agent requires a high reward and a low
reward deviation. Best results were obtained with sh = 16,
nn = 3, lr = 1× 10−5.

C. Feasibility of Transfer Learning

We evaluated the performance of DeepMMTrack with and
without TL. Here we are interested in investigating whether
or not the TL has an influence on the final performance after
learning. We start with optimal conditions, absence of any noise
in the observation, i.e., σ = 0. Fig. 6 shows the mean and
median relative reward computed over 1000 test runs and 25
different seed values. We observe that both cases have similar
performance, with nearly identical mean performance, but the
agent with TL has a 2% higher median. Both agents perform
very well in the scenario and are suitable for beam tracking.

Next, we analyze the learning speed of both approaches.
Fig. 7 shows the relative reward for each training episode of
both approaches. To filter out the volatile reward per episode,
we show the moving average over 100 training episodes. We
can observe the much faster learning when using TL. The agent
with TL starts with a much higher reward, starting at about
zero, whereas the agent without TL lacks behind with a start
reward of -0.5. Additionally, the agent using TL completes
the training process significantly faster than the agent without.
Both agents have a stop training criterion when reaching 90%
of the maximum reward over the last 40 episodes. The TL
agent has completed its training in 6100 episodes whereas the
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agent without transfer required 19 000 episodes. In our case,
TL can reduce the required training time to just 32 %.

Our results confirm the feasibility of virtual to real-world
TL where an agent trained purely in a simulated environment
can quickly adapt to a real-world environment. The same
performance is achieved, but in much less learning time. The
simplifications made in the virtual/simulated environment had
no visible impact.

D. Impact of Noisy Observation

Finally, we analyzed the impact of a noisy observation on
the performance of the agent (Section VI-A3). For this we
have analyzed different levels of noise on the observed signal
strength, i.e. σ = [1, 2, 3] (Eq. (2)), and compared it to a
perfect environment without any noise, i.e., σ = 0. First, we
examine the performance of a conventional agent without TL
in the lab environment. From Fig. 8a, we can observe that with
an increasing σ the agent performance drops. The achieved
mean relative reward at σ = 3 is 3× lower compared to the
environment without noise. However, even with highest noise,
resulting in frequent punishments, the agent is able to track
the mobile user without completely losing its performance, i.e.
relative reward remains > 0 where the agent receives more
rewards than punishments. When applying TL, as shown in
Fig. 8b, performance loss is similar to the conventional learning
case, with TL performing marginally better, especially in high
noise conditions. Comparing both cases, we can conclude that
TL may additionally offer higher robustness against noise.

VII. DISCUSSION

Next, we discuss the advantages, limitations, and future work
we plan for our DeepMMTrack system.

A. Advantages

With the introduction of DeepMMTrack, beam tracking can
be successfully transferred from virtual to real environment.
This enables purely simulation trained agents to be adapted
to real-world scenarios with reduced training amount. Com-
pared to the conventional training case, TL offers a training
time reduction of 68 %. Additionally, in the case of noisy
environments, TL shows more robustness with higher tracking
performance than the conventional case. Furthermore, we are
able to simplify the required inputs to the RL agent while

maintaining high tracking performance, both in virtual and real
environments. Overall, DeepMMTrack enables the transfer of
beam tracking from virtual to real environment with minimal
training effort, an increase in noise robustness compared to the
conventional case, and a simplification of the required tracking
inputs.

B. Limitations

1) Multi-user Beam Tracking: So far, we considered the
single-user beam tracking. However, DeepMMTrack can be
used to track multiple users for which no modifications need to
be made. This is because all relevant information is contained
in the observation space. Moreover, it enables new MS to join
the network in a smooth way since the RL agent is already
trained.

2) Realistic Mobility Models: Currently, we modeled user
mobility only in 1D, limiting the possible movements of
the user. To accurately model user mobility, more complex
and hence realistic mobility models are required. Specifically,
examining MS mobility in 2D is necessary. Even 3D space
might be considered, which would make the use of 2D beam
steering necessary.

3) Influence by External Factors: So far, we have assumed
optimal conditions for mmWave communication. However, in
reality the line of sight path might be blocked by objects like
trees. Moreover, the mmWave signal might be attenuated by
rain or snow.

C. Future Work

In future work, we plan to extend DeepMMTrack for
tracking multiple users simultaneously starting in 1D and
later extending to more complex environments with 2D
movements. We may also consider 3D movements to emulate
mobile users in an area with many elevation changes. Another
extension we plan, is the realistic modeling of mmWave channel
fading. Currently, we only considered Gaussian noise and
plan to extend the noise modeling to real-world conditions
by performing measurements in our lab over a long period of
time. Additionally, we plan to investigate the impact of external
factors on beam tracking performance, such as rain or snow,
and create a more realistic environment. With these extensions,
we aim to build a transferable beam tracking system, which
closely models real-world environments.

VIII. CONCLUSION

In this paper, we studied the use of TL for use in beam
tracking. TL promises many advantages such as a significantly
shortened training time after deployment. We first simplify
the required inputs of DQN mmWave beam tracking using
only readily available data from the MS. After successfully
evaluating our approach in the simulated environment, we
apply transfer learning to evaluate real-world performance. We
are able to show that virtual to real-world transfer learning
is not just feasible for mmWave beam tracking. Results from
experiments reveal that an agent using transfer learning achieves
same performance but only requires 1/3 of learning time.
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Fig. 8. Noisy lab environment.

Moreover, pre-learning in a simulated environment is much
more cost-effective because it is not limited by the actual speed
of a robot or human carrying the MS. With our contribution,
we lay the foundation for transferring beam tracking from
purely simulation based evaluation to real-world prototype
with minimal additional effort.
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