
Hybrid simulation of Sensor and Actor Networks with BARAKA

Thomas Halva Labella Æ Isabel Dietrich Æ
Falko Dressler

Published online: 11 September 2008

� Springer Science+Business Media, LLC 2008

Abstract We present BARAKA, a new hybrid simulator

for Sensor and Actor Networks (SANETs). This tool pro-

vides integrated simulation of communication networks

and robotic aspects. It allows the complete modelling of

co-operation issues in SANETs including the perfor-

mance evaluation of either robot actions or networking

aspects while considering mutual impact. This hybrid

simulation enables new potentials in the evaluation of

algorithms developed for communication and co-operation

in SANETs. Previously, evaluations in this context were

accomplished separately. On the one hand, network simu-

lation helps to measure the efficiency of routing or medium

access. On the other hand, robot simulators are used to

evaluate the physical movements. Using two different

simulators might introduce inconsistent results, and might

make the transfer on real hardware harder. With the

development of methods and techniques for co-operation in

SANETs, the need for integrated evaluation environment

increased. To compensate this demand, we developed

BARAKA.

Keywords Sensor and Actor Networks � Simulation �
Rigid-body simulation � OMNeT??

1 Introduction

Sensor and Actor Networks (SANETs) are challenging

research objects. The field was born from the intersection of

research on Wireless Sensor Networks (WSNs) and mobile

robotics. The result is an heterogeneous system, made of

fixed nodes capable only of sensing the environment (the

sensor nodes, sometimes called also motes), and mobile

nodes that are also able to change it (the robots).1 Akyildiz

et al. [1] cite as unique features of a SANET: node hetero-

geneity, real-time requirements, different deployment

strategies for motes and robots, mobility and co-ordination

paradigm—mote/robots and not only mote/sink as typically

in Wireless Sensor Network. Research issues include power

management, routing, co-ordination algorithms, design, and

many other topics. Many algorithms and methods have been

proposed to optimise the efficiency of the networking part as

well as of the co-ordination between single nodes [2].

Examples are the optimised navigation of robot systems

using a WSN [3], communication architectures for mobile

SANETs [4], and efficient actuation control in SANETs [5].

All these approaches must be carefully evaluated in

order to show the feasibility of the promised capabilities.

Usually, a simulation environment is preferred to a lab

setup. Even if advances in electronics allow us to experi-

ment with compact hardware sensors and with robots in

real environments, simulation is still useful if we want to

test larger networks, or if preliminary experiments with real

objects might risk to break them.

When we started our research in this area (we present our

work in [6]), we discovered a major problem. There is no

comprehensive tool for integrated SANET simulation. In

T. H. Labella (&) � I. Dietrich � F. Dressler

Autonomic Networking Group, Department of Computer

Science 7, University of Erlangen-Nuremberg,

Martensstr. 3, 91058 Erlangen, Germany

e-mail: hlabella@ulb.ac.be

I. Dietrich

e-mail: isabel.dietrich@informatik.uni-erlangen.de

F. Dressler

e-mail: dressler@informatik.uni-erlangen.de

1 We use the word agent in the following when we refer to either the

entities of a SANET.

123

Wireless Netw (2010) 16:1525–1539

DOI 10.1007/s11276-008-0134-1

other words, there is no simulator that takes equally care of

both the networking of the nodes and the realistic movements

of the robots (see our overview of up-to-date simulation tools

in the next section). We think that an integrated simulation is

necessary for the following reasons. First, it allows to study

deeper form of interactions between robots and motes.

Second and most importantly, it reduces the gap between

simulation and reality. An integrated detailed simulator

allows the experimenter to develop algorithms in simulation

and to immediately use them also on real hardware.

We would like to stress this point a bit more. A SANET

developer usually has to focus both on the communication

protocols between agents the movements of the robots. The

developer could use two different simulation tools if this two

aspects were independent, but this is not the case in SANETs.

When developing protocols, one tends to simplify and

underestimate the effects of robots’ movements. The net-

working community often uses real-world traces to tune the

protocols they are studying. This approach makes no sense in

SANETs, since the developer has control on the movements of

the robots, which can be foreseen since their behaviours are

known. Roboticians tend also to simplify and underestimate

the role of the network condition on the outcome of robots’

behaviours. For instance, it is often assumed that messages can

reliably sent in nearly no time. The effects of errors or delays

on the resulting behaviours are seldom taken into account.

A further argument against the use of two different simulators

is that it might introduce inconsistent results between the two

simulators. This is because one simulator takes particular care

only of some aspects and approximates some others, that

might be fundamental for the other simulator.

Let us take an often-cited example in the SANET lit-

erature: a robot moves to a part of the network which is

congested or where a node has just failed, in order to work

as extra gateway. However, the decision if and where to go

depends, from the robot’s point of view, on several factors:

how far is the place, if the robot has enough energy to reach

the place, if there is an obstacle on the way, if it is possible

to bypass the obstacle, if the failing part of the network is

important for the current work of the other robots, if there

are other tasks that are more important, and so on. Just to

mention one, the problem of recognising an obstacle is a

hard problem in itself for autonomous robots.2

We think this is a strong argument for the use of com-

prehensive tools for SANET development. Accordingly,

we decided to create BARAKA, the simulator we are going

to present in this paper.

BARAKA now allows us to create realistic physical

environments in which we can model the robot systems and

their behaviour as well as the communication protocols and

corresponding properties in a single simulation setup.

Basically, BARAKA is built upon OMNeT??, a well

known network simulation tool, and Open Dynamics

Engine (ODE), a library used to simulate rigid-body

physics.

The main contribution of this paper is to present a new

integrated simulation tool for SANETs. BARAKA features

the following characteristics:

– integrated simulation of communication networks and

robotics

– complete modelling of co-operation issues in SANETs

– performance evaluation of either robot actions or

networking aspects considering mutual impact.

The rest of the paper is organised as follows. Section 2

describes network simulators and robot simulators. We

describe OMNeT?? and ODE, which we used to build

BARAKA, in Sects. 3 and 4, respectively. In Sect. 5, we

present our new SANET simulator in more detail. Section 6

shows a case study to demonstrate the capabilities of

BARAKA using a comprehensive set-up. Section 7 con-

cludes the paper.

2 Simulators

A look at the current status of network and robot simulators

helps to understand the need of a simulator like BARAKA.

The following sections describe how network and robot

simulations usually take place, and why they are not

enough for SANETs.

2.1 Network simulators

Network simulators are typically used to study the inter-

actions between entities (such as routers, links or packets)

in communication networks. Because of the discrete nature

of the simulated entities, network simulations are most

efficiently carried out as discrete event simulations [9].

Discrete event simulators assume that a system can be

represented by a set of state variables. The variables

change values only at a countable number of points in time.

The simulator maintains a set of future events (such as

message arrivals or timer firings) and processes this set one

event at a time. It starts with the earliest event in the list

and continues with the following ones. The simulation

2 Robots can sense obstacles using several devices: infra-red sensors,

lasers, radars, cameras, bumpers, etc. Each of them has some

advantages and disadvantages. Infrared-sensors, for instance, are

cheap but work at short range and cannot return the detailed shape of

an object. It might difficult to tell an obstacle, which has to be

avoided, from a target, which has to be reached. Cameras can give

more detailed information, but image processing requires a lot of

computational power. It is possible to combine data coming from

different sensors to overcome such problems, but this increases the

complexity of sensor data elaboration. The reader can refer to [7] and

[8] for some examples.

1526 Wireless Netw (2010) 16:1525–1539

123

times flows with the time associated to the events. It might

not advance if two events are concurrent, or advance with

big steps if two events are separated in time.

A large number of network simulation tools are avail-

able. Among the more well-known and popular tools, there

are the commercial simulators OPNET3 and Qualnet,4 and

the free open source simulators ns-25 and OMNeT??.6

Many simulators come with a number of ready-to-use

protocols, mostly including the common Internet protocols,

and often also a selection of protocols for ad hoc networks

(such as DSR [10] or AODV [11]). The simulators can

model wired as well as wireless connections. Mobile nodes

are simulated specifying the parameters of the physical

transmission devices (e.g., the transmitting power) and a

mobility model of the nodes.

The performance of simulation programs is the topic of

a lot of ongoing research. Fjord et al. discussed the scala-

bility of simulations and investigated parallel simulations

as a measure to counteract the performance problems of

many simulation programs [12]. Another approach is dis-

cussed by Breslau et al. [13]. They use several levels of

abstraction to adjust the trade-off between detail and per-

formance. Heidemann et al. analyse the effect of varying

levels of detail in network simulations [14]. They empha-

sise that an inappropriate level of detail can lead to very

slow simulation execution, but also to misleading or

incorrect results.

Pawlikowski et al. describe several methods to increase

the credibility of network simulations [15]. They point out

that the selection of an appropriate random number gen-

erator and appropriate output data analysis are very

important not only for the credibility, but also for the

outcome of a simulation.

With the rise of sensor networks, many simulators have

focus more and more on topics such as energy consumption

or interactions of the sensors with the environment. A brief

overview of some new simulators and the problems

encountered in sensor network scenarios is provided by

Sundresh et al. [16].

Simulation results depend also heavily on the mobility

model used. There are two types of mobility models: traces

and synthetic models [17]. Traces are real data collected in

real networks. Synthetic models attempt to represent the

real behaviour of a network without using traces. Examples

of synthetic models are the Random Waypoint model, the

Gauss–Markov model, and the Nomadic Community

model. These and many more were well reviewed by Camp

et al. [17] and by Bai and Helmy [18].

The use of models is sound when dealing with mobile

networks whose nodes follow unknown behaviours. In case

of SANETs however, the designer of the system does know

the behaviours of the nodes. It is more reasonable then to

use directly these behaviours instead of trying to approxi-

mate them with synthetic model or with traces. The latter

might not be yet available at development time and it will

always tend to produce unrealistic patterns as direct inter-

actions between the communication and the co-ordination

parts are not possible. Using directly the nodes’ pro-

grammed behaviours has also the advantage of reducing

the gap between simulation and real world. Additionally,

one could program the network to exploit any behavioural

pattern that might be typical for the nodes.

Programming robots’ behaviours is however not

straightforward. The programmer usually needs a good

knowledge of the environment and its dynamics. Robot

simulators take care of this by simulating realistic envi-

ronments. None of the network simulators that we know

supports the simulation of realistic environments, which

include nodes mobility based on their physical construction

and terrain characteristics.

2.2 Robot simulators

Robot simulators are used to implement control algorithms

for existent pieces of hardware. It is usually preferred to start

the implementation of any algorithm in simulation because it

is safer, and there is no risk to break a robot or to lose its

control. Because of this, the target of the simulator is to ease

the transfer of any program from simulation to real robots.

A robot is nowadays a complex object which can be

simulated at several level of details. One could be interested

for instance in simulating the working of the engines con-

nected to the wheel, or the analysis the pictures taken from

the camera, or the mechanical stress of a arm-like actuator.

We suppose in this paper that the designer of the SANET is

mostly interested in the development of the control algorithm

of the robots. The control algorithm is the part of the robot’s

software that receives as input the sensors’ data (raw or

elaborated) and sends as output commands to the actuators.

A simulator used for the development of a control

algorithm needs obviously to be able to simulate the sensor

readings and the actuator effects on the robots and in the

environment. A good simulation of sensor readings can

take place if the environment is well simulated in details.

Nowadays, every desktop computer is powerful enough

to accurately simulate the robot and its environment.

A number of simulators have been developed that can

simulate the world physics. One of the most used is the

commercial simulator Webots.7 The world physics

3 http://www.opnet.com/
4 http://www.scalable-networks.com/
5 http://www.isi.edu/nsnam/ns/
6 http://www.omnetpp.org/ 7 http://www.cyberbotics.com/

Wireless Netw (2010) 16:1525–1539 1527

123

http://www.opnet.com/
http://www.scalable-networks.com/
http://www.isi.edu/nsnam/ns/
http://www.omnetpp.org/
http://www.cyberbotics.com/

simulation is based on the ODE library (Sect. 4). ODE is

not the only solution for rigid-body simulation. There are

other commercial libraries available, such as Vortex8 and

Havok.9

The accurate environment simulation is a recent trend in

robot simulators. The RoboCup Simulator,10 used for

simulated football matches during the RoboCup [19]

competitions, began with a two dimensional environment

and has recently added the third dimension and the simu-

lation of players’ movements.

The focus of robot simulators is an accurate simulation

of a robot’s behaviour. They usually use the API that is

going to be used on the real hardware (e.g., to get the value

of the infrared sensors or to set the speed). They do not

consider the problem of modelling the networking of the

robots. Although there are simulators that run over a net-

work, like Player/Stage [20], they do not simulate the

network.

Most of the control algorithms developed for robotics

use quite simple communication schemata for co-ordina-

tion: blackboard, or point to point communication. When

using a blackboard, which is the common solution in

robotics, each robot is aware of every message that other

robots have sent. This kind of communication is important

for well known algorithms, like ALLIANCE [21]. While

blackboard communication is quite easy to implement in a

simulator, researchers in robotics usually do not realise that

it requires to broadcast, possibly by flooding, all the mes-

sages in the network. Additionally, effects like delays and

congestion can hardly be simulated with a robotics simu-

lator and their effect on the robots’ performance might be

underestimated. The outcome is that the control algorithms

might work well in simulation, but fail when used in a real

network.

3 OMNeT11

OMNeT?? [22] is a discrete event simulator. It simulates

modules, which can send messages to each other through

communication channels. Modules connected together

form a network. Modules can be compound, made of

several sub-modules which form a sub-network between

them.

Modules, channels and messages are implemented as

C?? objects. Each message represents an event and is

stored in the scheduler of OMNeT?? (also called the

future event list). The simulator, after having initialised the

modules, takes the first event in the list and delivers it to its

destination. The delivery occurs by calling a method of the

module and giving the message as parameter. Modules can

send messages to others or to themselves. In this case, they

mostly simulate internal timers. A delivery time is asso-

ciated to each message and determines its position in the

scheduler list. The simulation continues till there are no

more messages to be delivered or until a specified time

limit has been reached.

Let us see, for example, how it is possible to simulate a

module, called mod½0�; that sends a message every 30 s to

another, mod½1�: The situation is depicted in Fig. 1. During

the initialisation phase, mod½0� schedules a message for

itself at time 0 s, that is, at the beginning of the simulation.

This is how module’s internal timers can be simulated.

When the simulation starts, the scheduler of OMNeT??

takes this message out of the list, and delivers it to mod½0�:
The module is waken up by this message and prepares the

message to send to mod½1�: mod½0� sends the message, that

is, calls a function of OMNeT?? to store the message in

the scheduler. Given the length of the message, the speed

of the connection between the modules and the current

status of the channel (busy or free), OMNeT?? calculates

the delivery time of the message to mod½1�: After having

sent the message, mod½0� sets another timer for 30 s later.

The control returns to the simulation kernel. It takes the

following event in the list, the message to mod½1�, and

Fig. 1 UML sequence diagram of the OMNeT?? simulation kernel.

The left bar represents the simulation kernel, the others two modules.

The continuous-line arrows from one bar to another represent normal

C?? methods call. The parameters of the calls are those between

brackets

8 http://www.cm-labs.com/products/vortex/
9 http://www.havok.com/
10 http://sserver.sourceforge.net/

1528 Wireless Netw (2010) 16:1525–1539

123

http://www.cm-labs.com/products/vortex/
http://www.havok.com/
http://sserver.sourceforge.net/

delivers it to its destination. The loop continues till the end

of the simulation.

OMNeT?? is a very general simulation tool. There are

plenty of extensions that have been created to simulate,

among other things, communication networks. We used

the ‘‘Mobility Framework (MF)’’11 for our simulation of

SANETs. MF provides a structure to simulate communi-

cating mobile nodes and additional modules that ease the

implementation of a reliable simulation.

A special module, the channelcontrol module, connects

hosts that could theoretically communicate with each other,

as shown in Fig. 2. After every movement of any host, the

channelcontrol updates its connections according to the

new positions.

Each host is simulated as a compound module. It

contains five other modules (Fig. 3). Three of them simu-

late the standard networking layers: application layer,

networking layer and physical transmission device (the

NIC). Any message received by the host goes upward from

the NIC, through the network layer to the application layer.

The inverse path is followed by a message generated by the

application layer and directed to other hosts.

There is an additional module ðmobilityÞ to communi-

cate the new position of the host to channelcontrol, and a

blackboard for cross-layer communication.

A number of reason drove our choice to OMNeT??.

First of all, it is open source: we could analyse its archi-

tecture and implementation in order to improve our hybrid

simulator. The highly modular code of OMNeT?? eased

the integration process. Additionally, OMNeT?? comes

with a highly functional Graphic User Interface (GUI),

which allows to inspect and control nearly all the details of

the simulation. The GUI is however an optional module. It

was very useful during development, but it slowed terribly

down the performances when we needed to perform our

experiments. For such cases, OMNeT?? can also use a

command line interface. The output goes to the console or

to a file. Last but not least, OMNeT?? has a scripting

language to describe the network, and a very detailed and

helpful user manual.

4 Open Dynamics Engine

The Open Dynamics Engine12 is a library used to simulate

rigid bodies. It provides primitives to define a body by its

mass, momentum of inertia, initial position and velocity.

A body corresponds to the dimensionless mass point used

in elementary physics. Different bodies can be attached to

each other through a number of joints: free, extensible,

hinges, ball&sockets, and so on. Each body can also have

more geometries attached to it, which are used to give a

shape to the body. The library also offers primitives to

apply forces and torques to the body (as a motor does on

the wheels of a car).

The library offers two very important functions. The first

one takes the state of the environment at time t and com-

putes the new state at time t ? D, where D is a user defined

parameter. This function integrates the equation of motion

and returns the solution at time t ? D, thus it is called

Fig. 2 Snapshot of BARAKA: network view. The icons on a grid

represent the position of motes. They are named m½X�; where X is just

a progressive number. One robot ðr½0�Þ is at the bottom left corner.

The arrows shows the connections, i.e., which are the nodes that can

be reached by each agents. Connections are handled by the

channelcontrol module of the MF. The circled mote is the target

that the robot has to reach in the experiment of Sect. 6

Fig. 3 Implementation of a mobile host in the Mobility Framework.

Each host is made of five modules: application layer, network layer,

NIC, blackboard and mobility

11 http://mobility-fw.sourceforge.net/ 12 http://ode.org

Wireless Netw (2010) 16:1525–1539 1529

123

http://mobility-fw.sourceforge.net/
http://ode.org

integration step. The second function checks whether any

two objects are colliding. If it is the case, the libraries takes

some measures in order to avoid the penetration of the

bodies at the next integration step. Collision detection is

also used to compute friction at the contact points. In this

way, if we apply a torque to the hinges that connect four

spheres to a parallelepiped, the spheres touch the ground,

and we set some friction between spheres and ground, we

can simulate the wheels of a car on a road.

It is up to the program using ODE to set-up the objects

correctly and to iteratively call the two functions to

advance the simulation. Between two calls to the integra-

tion step, the program can perform whatever task it needs

to do. It can change, for instance, the torque applied to

some robots’ wheel in order to avoid an obstacle.

An example can help to understand better how ODE

works. Our laboratory has a number of Robertino robots13

(Fig. 4(a)), that we want to simulate later together with a

WSN. Robertino is a three-wheeled omnidirectional robot,

with six infrared sensors around the body and an omnidi-

rectional camera. The robot uses Swedish wheels, which

have a strong grip in the direction of the rotation of the

motor, but a very low friction along the axis of the motor.

Three such wheels grant the robot the capability to reach

every configuration (position and rotation) on a plane.

Figure 4(b) illustrates how we simulate Robertino with

ODE. The shape of the robot is approximated by two

cylinders (two geometries). The cylinders are connected to

the body placed in the centre of mass of the robot. Weight

of the body and dimensions of the geometries respect those

of the real Robertino. Wheels are simulated with three

spheres. The spheres are connected to the main body

through three hinge joints. The hinges are free to turn

around the radial axes. The motors of the robot are simu-

lated by applying torques to the spheres. The rotational axis

of each sphere corresponds to the motor axis of the real

robot.

ODE allows to specify two friction coefficients for each

geometry. We set very low friction between wheels and

ground in the direction of the radial axes and high friction

in the perpendicular direction. This is the direction of

rotation of the turns. This can effectively simulate a

Swedish wheel.

The main reason for our choice of ODE is that it is open

source. We did not need to change the original code much,

except for a small patch to simulate cylinders. Having

access to the code however allowed us to tune better our

simulator. We had past experience with commercial tools

[23], and the fact of being closed source gave us some

problems. The worst one was probably the dependency to

the license policy of the companies. If, for instance, the

licenses became prohibitively expensive, we could not use

our tools any more. ODE is in this regard highly safe.

Additionally, ODE uses algorithms that were optimised for

speed. Although we did not perform rigorous measure-

ments, we had the feeling that it run faster than the tools we

previously used.

5 BARAKA

BARAKA is the name that we gave to our simulator. It is

the result of the integration of ODE into OMNeT??.

The advantage of BARAKA w.r.t. OMNeT?? and

ODE taken individually is that BARAKA is better when

Fig. 4 Left: picture of a

Robertino robot. Right: the

sequence shows how the

Robertino robots can be built

and simulated in Open

Dynamics Engine: (1) three

spheres simulate the

omnidirectional wheels; (2) the

main body of the robot is

approximated by two cylinders;

(3) three hinges connect the

wheels to the robot’s main body

along radial axes; (4) the

simulated robot is ready to

move

13 http://www.openrobertino.org/

1530 Wireless Netw (2010) 16:1525–1539

123

http://www.openrobertino.org/

one has to focus on both the networking and the physics of

the system at the same time. In [6], for instance, we study a

system where the robots’ controllers (implemented in the

application layers) heavily interact with the network layers

of the nodes. If we had run two different sets of experi-

ments, one with a network simulator and one with a robot

simulator, we would not have been able to understand and

exploit the effects of physics on communication and the

other way round.

We first provide some details about BARAKA’s archi-

tecture. The description goes into some technicalities of the

implementation, but it helps to explain how we could

merge discrete event simulation with the simulation of

rigid bodies. To better understand the interplay between

OMNeT?? and ODE, we also explain how we simulate

the infrared sensors of our robots. Finally, we conclude the

section with some considerations about the simulator’s

performance.

5.1 Architecture

BARAKA’s architecture was designed to tackle the problem

of integrating two different type of simulators: a discrete

event network simulator and a rigid-body simulator. The

points to solve are two: first, to merge the collision

detection/integration step loop in the OMNeT?? flow;

second, to create modules that simulate the robots and

the motes both in their physical and networking aspects.

These modules are used by the agents’ programs to control

the behaviours of the agents in the simulated world.

The ODE loop takes place in an OMNeT?? module

called odesim (it is represented as a square in the top left

corner of Fig. 2, above channelcontrol). It has no con-

nection to any other module in the simulation. odesim

neither receives messages from nor sends messages to the

others. During its initialisation, it sets up a timer in the

OMNeT?? scheduler. When waken up, odesim performs

the collision detection and the integration step of ODE. It

then sets up the same timer for D seconds later. odesim

behaves like mod½0� in Fig. 1, only without the sending of

a message (Fig. 5).

We defined a set of interface classes. They allow to

modularise the whole simulation and to separate the objects

in charge of the simulation from the objects in charge of

the agent control. RealWorldObject (Fig. 6) formalises

the API common to each simulated agents. It includes, for

instance, the methods to send messages. Robot adds the

methods typical for robots (setting the speed of the wheels,

getting the sensor readings, etc.). The interface

Controller specifies the methods that the agents’ con-

trollers have to implement. They include most notably a

method that is called at each control cycle and a method to

handle incoming messages. These interfaces allows a more

painless switch from simulation to real hardware. It will be

not necessary to rewrite the controllers of the agents, but

only the classes that implement the interfaces.

Two classes take care of simulating the agents. They are

the ones handled by OMNeT?? simulation kernel:

SimulatedMote and SimulatedRobot: They implement

respectively the interfaces described by RealWorldObject

and Robot: We used the multiple inheritance mechanism to

allow these classes to simulate both the networking

behaviour and the physical-world behaviour.

On the one side, they inherit from ODEObject: This class

is used as gateway to ODE library and odesim: It allows to

create the bodies, geometries and joints related to one object,

to get and set the speeds, and so on. When SimulatedMote

and SimulatedRobot are initialised at the beginning of the

simulation, they create the objects in the physical world.

Motes are simply simulated as light cubes (5 cm side, 50 g

mass). Robots are created as shown in Fig. 4(b), respecting

the real masses and sizes.14 Figure 7 shows the resulting

simulated world.

During the simulation, the SimulatedRobot applies the

torques to the object’s wheel according to the commands

given by the controller. If, for instance, the controller

decides that the robot has to move forward, the controller

calls the method in SimulatedRobot to set the speed of

the wheels. The implementation in SimulatedRobot

Fig. 5 UML sequence diagram for the integration between OMNeT??

and ODE. The left bar refers to the simulation kernel of OMNeT??. The

right bar refers to the OMNeT?? module which implements the real

world simulation with ODE

14 http://www.openrobertino.org/hw/dimensions/overview.html

Wireless Netw (2010) 16:1525–1539 1531

123

http://dx.doi.org/http://www.openrobertino.org/hw/dimensions/overview.html

calculates which is the required rotational speeds of the

wheels. It then calls via ODEObject functions of the ODE

library to set the desired rotational speed by applying a

torque on the hinges. SimulatedRobot’s work ends here.

During the next integration step, odesim will let the

wheels rotate. Given the friction with the ground, the

rotation of the wheels will result also in a forward trans-

lation of the wheels and their connected bodies, i.e., the

robot.

On request from the controller, SimulatedRobot uses

information obtained by odesim in order to simulate the

robot’s sensors. SimulatedRobot can get, for instance, a

list of nearby objects and use it to calculate the value of the

infrared sensors to return to the controller (Sect. 5.2).

The other inheritance branch comes from OMNETObject:

This class deals with everything that has to do with the net-

working of the node. It is derived from the application layer

class specified by the MF. If the controller wants to send a

message, SimulatedMote and SimulatedRobot take the

message from the controller, wrap it into a OMNeT??

message and put it in the scheduler of the simulation kernel.

When an agent receives a message from others, the message

passes through the NIC, the network layer till the application

layer, that is, an instance of either SimulatedMote or

SimulatedRobot: The message is then forwarded to the

controller to be processed.

The controllers of the motes and the robots are imple-

mented respectively by the classes MoteController and

RobotController: They both implement the interface

Controller: Each instance of SimulatedMoteðSimulated
RobotÞ contains one instance of MoteControllerðRobot
ControllerÞ and simulates one mote (robot).

5.2 OMNeT?? /ODE interplay

Figure 8 summarises how the classes described above work

together. The figure depicts the typical working flow of the

simulation of a robot. During initialisation, SimulatedRobot

creates all the elements for the simulation of the robot, and

then registers the robots into odesim: During simulation,

SimulatedRobot can receive two type of events from the

OMNeT?? simulation kernel: new incoming messages or

the beginning of a new control cycle.

Let us give a look to what happens during the control

cycle, since it is the most complex and richest part. Objects

of the class SimulatedRobots set a timer event for every

control cycle. When they are waken up by this event, they

call the robot’s control program, implemented in an object

of type Controller: A robot’s control program usually

starts by querying the sensors to know the current state of

the environment. In our case they are the infrared sensors.

The method to obtain the infrared readings is implemented

in SimulatedRobot: SimulatedRobot asks odesim for a

list of nearby objects. This list, together with a model of the

infrared sensors, is used by SimulatedRobot to calculate

the values to return to the control algorithm. The latter then

evaluates the speed and direction of the robot, which are set

through a method of SimulatedRobot: As we already

explained before, SimulatedRobot asks then the ODE

library to set the right torques to the robot’s wheels.

It should be noted that it is quite expensive to calculate

the list of nearby objects every time the controller wants to

read the infrared sensors. If every controller did it, it would

imply to check at every control time step the distances

between nearly N2 pairs of objects, where N is the number

of objects in the environment. This is obviously a likely

Fig. 6 UML class diagram of

the most relevant classes of

BARAKA. See the text for the

description

Fig. 7 Snapshot of BARAKA: three-dimensional world view. This

picture shows a view of the three dimensional world associated with

the network view of Fig. 2. The real dimension of the motes, usually

few centimetres, were increased to make them visible. For compar-

ison, the robot in the bottom right corner in the simulated world view

is 42 cm tall. The picture shows also one obstacle, a wall, placed

between the robot and the first mote it has to reach

1532 Wireless Netw (2010) 16:1525–1539

123

bottleneck of the simulation. However, we can skip this

step: we can exploit the collision detection step of Open

Dynamics Engine, which basically does the same, but in an

optimised way.

ODE first controls if the bounding boxes of any two

objects intersect. The bounding box is the box with mini-

mum volume that contains the object and whose faces are

parallel to the XY, XZ and YZ planes. If two bounding

boxes intersect, ODE will call another function provided by

BARAKA. This function has to calculate more accurately

the contact points of the shapes of the two objects. We

exploited this mechanism by artificially increasing the

robots’ bounding boxes in order to be as big as the area

covered by infrared sensors. When ODE calls BARAKA’s

functions to find the contact points, and if one of the two

objects is a robot, we add the object under examination to

the a list of near objects. Each SimulatedRobot instance

has its own list. The list is updated at every collision

detection step. Afterwards, the normal bounding-box check

takes place and in case BARAKA calculates the real con-

tact points.

The network connections to other agents are kept up to

date by the mobility module related to each simulated

agent. The mobility node regularly queries odesim for the

position of the agents, that is, of the objects created by

SimulatedMote and SimulatedRobot:

5.3 Performances

It is hard to give some sound measure of ‘performances’,

mostly because we miss similar tools for comparison. We

think however that we might give the reader a sort of a

‘feeling’: in [6] we performed 240 runs, each run one

simulated hour long. The whole experiment took less than

1 day on a 20-CPU cluster. Even with our most complex

configuration (25 motes plus 12 robots) the simulation was

faster than real time. All experiments were done obviously

using the command line interface to OMNeT??.

A serious bottleneck is in the way network connections

are handled. At every movement of a robot, the MF checks

the distance of the robot with all the other objects in order

to find out new connections and delete the old ones. The

developer of MF are aware of this problem and are already

considering faster solutions for future versions.

6 Case study

We now describe an experiment we ran in order to test our

simulator. The following set-up might seem too complex

and some design decision that we took might seem

unmotivated. This is due to the fact that what we discuss

now is in fact only a part of a bigger scenario that we

described and analysed in [6]. There is unfortunately not

enough space to justify our choices here. We think however

that it is not so important now to give a sound justification

of our set-up. Our purpose is to test BARAKA and to give

some examples of what we can do with it. The following

set-up, albeit complex, can effectively test both the net-

working and the physical behaviour of a SANET at the

same time.

6.1 Experiment description

In this experiment, both networking and physical simu-

lation of the environment are important. We simulate a

SANET with 25 motes placed on a grid in a square

environment of side 500 m, as shown in Figs. 2 and 7.

One mote (highlighted by a circle in Fig. 2) broadcasts a

message requesting for a robot’s intervention. There is

one robot in the bottom left corner that listens for

incoming requests. When it receives one, it answers and

drive to the requesting mote, avoiding to collide against

other objects.

Fig. 8 UML sequence diagram that summarises how a robot is

simulated in BARAKA. During the initialisation, simulatedRobot
(an instance of SimulatedRobot), creates the body in the world

handled by odesim: The simulation kernel delivers messages to

simulatedRobot, which forwards it to robotController, the controller

of the robot. simulatedRobot sets a periodic timer to simulate the

robot’s control cycle. During the control cycle, the controller might

call methods of SimulatedRobot to obtain, e.g, the value of the IR

sensors. SimulatedRobot calculates the value using information

coming from odesim

Wireless Netw (2010) 16:1525–1539 1533

123

The environment size is smaller than the one commonly

used for SANETs. On the one hand, we need a large area to

have a realistic simulation of the system; on the other hand,

larger area increases the simulation time, since the speed of

the robot is fixed. The size of our environment is a trade-off

between different between the two criteria and is enough to

test BARAKA’s features.

The robot is too far away to directly communicate with

the mote, thus the network requires a routing mechanism.

Our routing algorithm, derived from AntHocNet [24] is

thoroughly described in [6] and in [25]. We need however

to highlight some characteristics that we require later. Each

node i keeps routing information in a number of tables cR
i

for each class of messages c. Classes are be used to identify

messages belonging to different tasks of the SANET. Each

entry cRnd
i is a tuple that contains some statistics about the

path from node i to node d using node n as next hop for a

message belonging to class c. A single tuple can contain for

instance the energy required for transmission, the minimal

signal-to-noise ratio or the end-to-end delay. The routing

discovery mechanisms allows to find multiple routes to

destination. Each packet is randomly forwarded to one of

the node i’s neighbour n for destination d with probability

Pi
nd ¼

rðcRi
ndÞ

b

P
j2Ni

d
rðcRi

jdÞ
b
; ð1Þ

where Nd
i is the set of neighbours for which a path to d is

known, r(�) is a function that takes a tuple in cR
i and returns

are real positive value, b is a constant bigger than or equal

to 1. For medium access protocol, we use the IEEE 802.11

as implemented by the modules provided by MF.

The robot needs to know the path (in the environment)

to its destination. The robot does not require a map of the

environment since it can obtain enough information from

the routing table of its network layer. The topology of the

WSN can be seen as an approximation of the topology of

the environment. The robot can exploit this feature instead

of trying to build a map of the environment. Assuming that

the robot can know the direction of a nearby mote,15 it can

travel in the SANET in the same way in which network

packets do.

6.2 Agents’ controllers

After the mote has broadcast its help request, its controller

works as depicted in Fig. 9:

request

The mote waits for any robots to reply. In our case, only

one robot can reply. If the mote does not receive a

positive answer within 30 s, it broadcasts the request

again. It repeats this for a maximum of 3 times and then

gives up.

wait

The mote waits for the robot that was assigned the task.

During this period, the robot is travelling through the

network to reach its destination. It regularly sends

messages to the mote. Messages are both used as ‘keep

alive’ and to update the robot’s route. They contain also

the expected maximum time the robot requires to travel

one hop. If the mote does not receive a message from the

robot again within this time, the mote ‘drops’ the robot,

broadcasts the request again and returns to request.

Upon arrival, the robot sends a message to signal it is on

the place, and the mote considers the request fulfilled.

The robots starts acting after the arrival of the mote’s

request. The controller of the robot works as shown in

Fig. 10:

select destination

In [6], the robot probabilistically chooses one host

among the set HD of motes that are waiting for help. In

our case there is however only one mote requesting, and

thus it is chosen with probability 1.

request assignment

The robot informs the destination that it is willing to take

on the request. The mote decides whether the robot can

continue or not. The mote may reject because the request

was already fulfilled, or because another robot is work-

ing on it. If the robot does not receive an answer after

30 s, it sends the request again for a maximum of 3

times, then it gives up.

Fig. 9 Motes’ behaviour for help-request task. The dash-dotted

arrow represents a transition that occurs thanks to an incoming packet,

in this case a robot that answers the mote’s request or that signals its

arrival. The dotted arrow stands for an incoming packet from the

robot which gave up the task. Continuous-line arrows are internal

events which the mote evaluates at each control step. See the text for

the description of the states

15 It is not the purpose of our work to address this problems, but it

might be done, e.g., by triangulating the signal emitted by a node, by

using directional antennas, or by means of a vision system.

1534 Wireless Netw (2010) 16:1525–1539

123

find next hop

The controller looks into the routing table of the network

layer to select the next hop of the route to its destination.

The next hop is chosen as in (1). We refer only to the

information in the routing table regarding this task only

(request for help), therefore we drop the class specifi-

cation from the notation of (1). The probability Pnd that

robot r selects neighbour n as next hop to go to d is given

by:

Pnd ¼
rðRr

ndÞ
2

P
i2Nr

d
rðRr

idÞ
2
;

rðRr
idÞ ¼

H if i ¼ d;
1
h otherwise.

�

where Nd
r is the set of the robot’s neighbours that know a

way to d, h is the distance measured in number of hops,

and H is a high value constant. This functions selects the

next hop in the same way as the network layer does to

route data packets. A robot going to its destination can be

seen as a special kind of packet travelling the network.

request next hop

If there is no entry in the routing table about destination

d, the robot sends a message to the destination and waits

for a reply. This message is used to start the route dis-

covery process at the network layer. As in request

assignment, the robot waits 30 s before sending another

request, for a maximum of 3 times, then it gives up.

go to next hop

The robot proceeds towards the next hop. It periodically

checks the IR sensors to see whether it is going to collide

with an obstacle, and avoids it if necessary. When the

robot is at 10 m from the mote, it invalidates the hop’s

entry in the routing table, and sends a message to the

destination, in order to start a new route discovery pro-

cess. When it reaches the distance 4 m, it considers the

hop reached and searches for a new one. If the previous

message did not get lost, the routing table should already

contain the information to find the new hop immediately.

If the robot has been trying to reach the hop for more

than 300 s, it gives up.

go to destination

In this state, the robot behaves mostly as in go to next

hop, only the robot does not need to send a message to

the destination when it is at 10 m from it. When the

robot is at less that 10 m from destination, it signals the

mote that it has arrived.

It should be clear now to the reader that to simulate this

set-up we need a good simulation of both the network and

the physical world. The former is required to accurately

simulate the communication between robots and motes, the

latter to allow the robot to move. Although this set-up

might seem to the reader somehow crafty (we recall that

this is due to the fact that is only a part of our work in [6]),

it is a good test bed for our simulator.

The messages exchanged between the robot and the

mote consist of three Boolean fields: ra; ma and a: The

robot sets ra (it stands for ‘‘robot acknowledgement’’) to

true when it asks to be assigned the help request, or when

it sends messages to find the next hops in the route. The

field is set to false when the robot gives up. The mote sets

ma (‘‘mote acknowledgement’’) to true to inform the robot

that it is in charge of the request. The mote sets it to false

if the mote gives up on the task. Finally, the robot sets a

(‘‘arrived’’) to true to inform the mote that it arrived at the

destination.

6.3 Measurements

We run 10 experiments with the setup explained above. In

this section, we show selected examples of these experi-

ments in order to demonstrate the possibilities of what can

be measured with BARAKA.

One might be interested in the trajectory of the mobile

nodes. It is easy to modify the mobility modules of each

node to log the position. We prepared such a modification

in order to appropriately evaluate the mobility of the robot

Fig. 10 Robots’ behaviour for help-request task. The meaning of

dash-dotted, dotted and continuous-line arrows is as in Fig. 9. See the

text for the description of the states

Wireless Netw (2010) 16:1525–1539 1535

123

systems. The result of one example run is shown in

Fig. 11.16

While analyzing the mobility models of the robot sys-

tems according to the ODE based physical simulation, it is

at the same time possible to perform measurements in the

network using the features provided by OMNeT??. At

this place, all typical measures can be taken as requested by

standard network simulators.

For example, if one wanted to see which parts of the

network are under load, one could plot the number of

packets received by each node, as we do in Fig. 12. This

measure provides a rough idea of the overall resource

utilization in the entire network. As can be seen, the nodes

in the core of the network have to perform more operations

compared to border nodes. We can derive a number of

questions regarding the quality of the algorithm under test

from these numbers, e.g., to analyze the global fairness or

the average energy consumption.

Additionally, it is also easy to measure the time it takes

to discover a particular route. This measure allows to study

the real-time behavior of applications using the analyzed

routing scheme. If the route setup is either unpredictable or

just too high, real-time applications cannot be used in

combination with this routing scheme. For the given

example, the distribution of the time to discover a route is

shown in Fig. 13, and it is summarised by the following

numbers: minimum 0.96 ms, first quartile 2.11 ms, median

10.27 ms, third quartile 60.72 ms, maximum 10.02 s.

Finally, the end-to-end delay is a typical measure used

to characterise the behaviour of routing protocols. Again,

some kinds of applications essentially rely on a low vari-

ation of this measure (similarly to the route setup delay). In

measurement results for our scenario are shown in Fig. 14

and summarised by: minimum 0.7 ms, first quartile 0.7 ms,

median 2.52 ms, third quartile 8.7 ms, maximum 5.66 s.

There are several more things that can be measured with

BARAKA. In fact, BARAKA can be used to estimate or

measure whatever observable might interest the researcher,

as long as the measurements can be expressed in the form

of C/C?? code to insert in the source. For instance in [6],

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

x

y

0 5 10 15 20

0
5

10
15

20

x

y

Fig. 11 Left: Trajectory that

the robot followed to reach its

destination. Ticks mark the

position every 30 s. Note the

obstacle avoiding manoeuvre at

the bottom left corner. Right:

close up on the avoiding

manoeuvre. The values on the x
and y-axes are in meters

Fig. 12 Number of packets received by each node during the

experiment. Each node is represented by a fuzzy circle. The darker

the circle, the more packets the node received. Data refers to 10

replications. The node with the highest number of received packets is

the one in the second row from the top and the third column from the

left (4,272 packets). The one with the lowest number is the lowest

right node (1,848 packets). The values on the x and y-axes are in

meters

16 Some movies from this experiment, can be seen at

http://www7.informatik.uni-erlangen.de/*labella/comsware07.html.

1536 Wireless Netw (2010) 16:1525–1539

123

http://www7.informatik.uni-erlangen.de/~labella/comsware07.html

we studied an architecture for division of labour. The

robots and the motes choose randomly one task to perform

and adapt the task during time. Thanks to BARAKA, we

were able to study the development of the robots’ and

motes’ probability, depicted in Fig. 15.

7 Conclusions

We described BARAKA, the simulation tool that we devel-

oped for a comprehensive analysis of SANETs. This simulator

is more advanced than the ones currently available in the sense

that it can accurately simulate the networking and the physical

world of the system. This goes at the cost of some more

computation time. The overhead is however negligible: in our

experiments the speedup with reality was more than satisfy-

ing. The advantage of BARAKA is that it allows a researcher

to do experiments on new forms of robot/mote and applica-

tion/network layer interactions. It also reduces the work

necessary to port the algorithms on the real hardware.

However, the simulator still lacks a validation in more

complex scenarios, and our future work will for sure go in

this direction. Our preceding experience with simulation

both of networks and of robots make us confident in a

successful validation: when designing BARAKA, we used

our experience to improve its reliability.

The current development status of BARAKA is more

similar to a prototype than to a proper simulator. Robots

and motes are well simulated, and the simulation can be

easily controlled through the user interface of OMNeT??.

If the user wanted, for instance, to change the shape of the

robots, this would be possible only by reimplementing the

SimulatedRobot class. For the future, we plan to expand

BARAKA by means of a script file that can describe the

robots, and possibly choose between different control

algorithms. This would help BARAKA to become even

more flexible.

Acknowledgements Thomas Halva Labella thanks the DAAD

(Deutscher Akademischer Austausch Dienst), grant number 331 4 03

003, for the fellowship that funded this work.

References

1. Akyildiz, I., & Kasimoglu, I. (2004). Wireless sensor and actor

networks: Research challenges. Ad Hoc Networks, 2, 351–367.

2. Melodia, T., Pompili, D., Gungor, V., & Akyildiz, I. (2005).

A distributed coordination framework for wireless sensor and

actor networks. In: Proceedings of the 6th ACM International
Symposium on Mobile Ad Hoc Networking and Computing (ACM
Mobihoc 2005) (pp. 99–110). New York, NY: ACM Press.

3. Batalin, M., & Sukhatme, G. (2004). Using a sensor network for

distributed multi-robot task allocation. In: Proceedings of the
IEEE International Conference on Robotics and Automation
(ICRA2004) (Vol. 1, pp.158–164). New York, NY: IEEE Press.

4. Melodia, T., Pompili, D., & Akyildiz, I. (2006). A communica-

tion architecture for mobile wireless sensor and actor networks.

In: Proceedings of IEEE Conference on Sensor, Mesh and
Ad Hoc Communications and Networks (SECON 2006). New

York, NY: IEEE Press.

5. Dressler, F. (2006). Network-centric actuation control in sensor/

actuator networks based on bio-inspired technologies. In: 3rd
IEEE International Conference on Mobile Ad Hoc and Sensor
Systems (IEEE MASS 2006): 2nd International Workshop on
Localized Communication and Topology Protocols for Ad hoc
Networks (LOCAN 2006), Vancouver, Canada.

6. Labella, T., & Dressler, F. (2006). A bio-inspired architecture for

division of labour in SANETs. In: Proceedings of the First IEEE/

route discovery time (s)

ob
se

rv
ed

 f
re

qu
en

cy

0 0.002 0.015 0.098 0.624 3.972

0.
00

0.
10

0.
20

Fig. 13 Distribution of the time to discover a route in the simulated

SANET. The x-axis uses a log scale. Data refers to 10 replications

end−to−end delay (s)

ob
se

rv
ed

 f
re

qu
en

cy

0 0.001 0.01 0.062 0.38 2.303

0.
0

0.
1

0.
2

0.
3

0.
4

Fig. 14 Distribution of the end-to-end delay in the simulated

SANET. The x-axis uses a log scale. Data refers to 10 replications

probability

ob
se

rv
ed

 f
re

qu
en

cy

0.
0

0.
1

0.
2

0.
3

0.
4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3600 s
60 s

Fig. 15 Analysis of agent behaviours with BARAKA. This plot,

described more properly in [6], shows the development in time of

agents’ probabilities of choosing a task. It used here to show the

possibility of performing complex analyses with BARAKA

Wireless Netw (2010) 16:1525–1539 1537

123

ACM International Conference on Bio Inspired Models of Net-
work, Information and Computing Systems (BIONETICS 2006).
Italy: Cavalese.

7. Manduchi, R., Castano, A., Talukder, A., & Matthies, L. (2005).

Obstacle detection and terrain classification for autonomous off-

road navigation. Autonomous Robots, 18, 81–102.

8. Jia, S., Sheng, J., Chugo, D., & Takase, K. (2007). Obstacle

recognition for a mobile robot in indoor environments using

RFID and stereo vision. In: Proceedings of International Con-
ference on the Mechatronics and Automation, (ICMA 2007) (pp.

2789–2794). New York, NY: IEEE Press.

9. Law, A., & David Kelton, W. (2000). Simulation modeling and
analysis (3rd ed.). Boston: McGraw-Hill.

10. Johnson, D., Hu, Y. C., & Maltz, D. (2007). The dynamic source
routing protocol (DSR) for mobile ad hoc networks for IPv4.

IETF RFC 4728.

11. Perkins, C., Belding-Royer, E., & Das, S. (2003). Ad hoc on
demand distance vector (AODV) routing. IETF RFC 3561.

12. Fujimoto, R., Perumalla, K., Park, A., Wu, H., Ammar, M., &

Riley, G. (2003). Large-scale network simulation: How big? how

fast? In: Modeling, Analysis and Simulation of Computer Tele-
communications Systems (MASCOTS 2003) (pp. 116–123). New

York, NY: IEEE Press.

13. Breslau, L., Estrin, D., Fall, K., Floyd, S., Heidemann, J., Helmy, A.,

et al. (2000). Advances in network simulation. IEEE Computer, 33,

59–67.

14. Heidemann, J., Bulusu, N., Elson, J., Intanagonwiwat, C., Lan, K. C.,

Xu, Y., et al. (2001). Effects of detail in wireless network

simulation. In: SCS Multiconference on Distributed Simulation,

pp. 3–11

15. Pawlikowski, K., Jeong, H. D., & Lee, J. S. (2002). On credibility

of simulation studies of telecommunication networks. IEEE
Communications Magazine, 40(1), 132–139.

16. Sundresh, S., Kim, W., & Agha, G. (2004). SENS: A sensor,

environment and network simulator. In: Proceedings of the 37th
Annual Simulation Symposium (pp. 221–228). New York, NY:

IEEE Press.

17. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility

models for ad hoc network research. Wireless Communications
and Mobile Computing: Special Issue on Mobile Ad Hoc Net-
working: Research, Trends and Applications, 2, 483–502.

18. Bai, F., & Helmy, A. (2004). A survey of mobility modeling and

analysis in wireless ad hoc networks. In: Wireless ad hoc and
sensor networks. Dordrecht, The Netherlands: Kluwer Academic

Publishers.

19. Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., &

Matsubara, H. (1997). Robocup: A challenge AI problem. AI
Magazine, 18, 73–85.

20. Gerkey, B., Vaughan, R., & Howard, A. (2003). The player/stage

project: Tools for multi-robot and distributed sensor systems. In:

Proceedings of the International Conference on Advanced
Robotics (ICAR 2003) (pp. 317–323). Portugal: Coimbra.

21. Parker, L. (1997). L-ALLIANCE: Task-oriented multi-robot

learning in behavior-based systems. Journal of Advanced
Robotics, 11(4), 305–322.

22. Varga, A. (2001). The OMNeT?? discrete event simulation

system. In: Proceedings of the 15th European Simulation Mul-
ticonference (ESM’2001). Nottingham, UK: European Council

for Modelling and Simulation.

23. Dorigo, M., Trianni, V., Şahin, E., Groß, R., Labella, T., Bald-

assarre, G., et al. (2004). Evolving self-organizing behaviors for a

Swarm-Bot. Autonomous Robots, 17, 223–245.

24. Di Caro, G., Ducatelle, F., & Gambardella, L. (2005). AntHocNet:

An adaptive nature-inspired algorithm for routing in mobile ad hoc

networks. European Transactions on Telecommunications, Special
Issue on Self-organization in Mobile Networking, 16, 443–455.

25. Labella, T. (2007). Division of Labour in Groups of Robots. PhD

thesis, Université Libre de Bruxells.

Author Biographies

Thomas Halva Labella gradu-

ated in Computer Science

Engineering at Politecnico di

Milano (Italy) in 2001. He

received his Diplôme d’Études

Approfondies (DEA) degree in

2003 and his Ph.D. in 2007 from

the Université Libre de Brux-

elles (Belgium). In 2005 and

2006 he was a visiting student at

the Computer Networks and

Communication Systems group

at the Department of Computer

Science, University of Erlangen.

His main research topic is about self-organised division of labour in

autonomous robots by means of bio-inspired algorithms.

Isabel Dietrich received her

M.Sc. in Computer Science from

the University of Erlangen,

Germany in 2005. She is cur-

rently a Ph.D. student in the

Computer Networks and Com-

munication Systems group at

the Department of Computer

Science, University of Erlangen.

Her research interests include

UML-based discrete-event simu-

lation, and performance analysis

of communication networks and

wireless sensor networks.

Falko Dressler received his

M.Sc. and Ph.D. from the Uni-

versity of Erlangen in 1998 and

2003, respectively. In 2003, he

joined the Computer Networks

and Internet group at the

Wilhelm-Schickard-Institute for

Computer Science, University

of Tuebingen. Since 2004, he is

an assistant professor in the

Computer Networks and Com-

munication Systems group at

the Department of Computer

Science, University of Erlangen,

where he coordinates the Auto-

nomic Networking group. Dr. Dressler is an Editor for the Elsevier

Ad Hoc Networks journal, the ACM/Springer Wireless Networks

(WINET) journal, and the Journal of Autonomic and Trusted Com-

puting (JoATC). He was guest editor of special issues on self-

organization, autonomic networking, and bio-inspired computing and

communication for IEEE Journal on Selected Areas in Communica-

tions (JSAC), Elsevier Ad Hoc Networks, and Springer Transactions

on Computational Systems Biology (TCSB). Dr. Dressler published

two books including Self-Organization in Sensor and Actor Networks,

1538 Wireless Netw (2010) 16:1525–1539

123

published by Wiley in 2007. He co-authored more than 100 reviewed

research papers. Dr. Dressler is Senior Member of the IEEE (IEEE

Communications Society, IEEE Computer Society), member of ACM

and GI (Gesellschaft fnr Informatik). He is actively participating in

several working groups of the IETF. His research activities are

focused on (but not limited to) Autonomic Networking addressing

issues in Wireless Ad Hoc and Sensor Networks, Self-Organization,

Bio-inspired Mechanisms, Network Security, Network Monitoring

and Measurements, and Robotics.

Wireless Netw (2010) 16:1525–1539 1539

123

	Hybrid simulation of Sensor and Actor Networks with BARAKA
	Abstract
	Introduction
	Simulators
	Network simulators
	Robot simulators

	OMNeT++
	Open Dynamics Engine
	BARAKA
	Architecture
	OMNeT++ /ODE interplay
	Performances

	Case study
	Experiment description
	Agents’ controllers
	Measurements

	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

