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Abstract— We present BARAKA, a new simulator for SANETSs.
The evaluation of algorithms developed for communication ad
co-operation in this context is usually accomplished sepately.
On the one hand, network simulation helps to measure the
efficiency of routing or medium access. On the other hand, robt
simulators are used to evaluate the physical movements. Usgj
two different simulators might introduce inconsistent reaults,
and might make the transfer on real hardware harder. With
the development of methods and techniques for co-operatiom
Sensor/Actuator Networks (SANETSs), the need for integraté
evaluation increased. To compensate this demand, we devpéal
BARAKA. This tool provides integrated simulation of com-
munication networks and robotic aspects. Thus, it allows tk
complete modelling of co-operation issues in SANETSs includg
the performance evaluation of either robot actions or netweking
aspects while considering mutual impact.

I. INTRODUCTION

Sensor/Actuator Networks (SANETS) are challenging r

comprehensive tool for integrated SANET simulation. Inesth
words, there is no simulator that takes equally care of Hwogh t
networking of the nodes and the realistic movements of the
robots (we present an overview of up-to-date simulatiortstoo
in the next section). We think that an integrated simulation
is necessary for the following reasons: it allows to study
deeper form of interactions between robots and motes; most
importantly, it reduces the gap between simulation andtyeal
An integrated detailed simulator allows the experimenter t
develop algorithms in simulation and to immediately userthe
also on real hardware.

The lack of comprehensive tools led to the development of
BARAKA, the simulator we are going to present in this paper.
BARAKA was motivated by the need of an integrated SANET
simulation environment. We might have used two different
Simulators, one for the network and one for the robots.

search objects. The field was born from the intersection ofiS Would have most likely introduced inconsistent result

research on Wireless Sensor Networks (WSNs) and mo
robotics. The result is an heterogeneous system, made df fi
nodes capable only of sensing the environment (the sensGfd]
called alsomotes), and mobile nodes that are also able t

change it (the robots).Akyildiz et al. [1] cite as unique

features of a SANET: node heterogeneity, real-time requi . o ) g
0Qrotocols and corresponding properties in a single sinaulat

btﬂgtween the two simulators. This is because one simulator

}gkes particular care only of some aspects and approximates
Qme others, which indeed might be fundamental for the
gecond simulator. BARAKA now allows us to create realistic
physical environments in which we can model the robot
ystems and their behaviour as well as the communication

ments, different deployment strategies for motes and b
mobility and co-ordination paradigm—mote/robots and ntgf9 , X i X
only mote/sink as typically in WSNs. Research issues irelu nown netyvork S|mulat|on'tool, anc_j Qpen Dynarmcs Engine
power management, routing, co-ordination algorithmsigies (OPE). @ library used to simulate rigid-body physics.

and many other topics. Many algorithms and methods haveln& main contribution of this paper is to present a new
been proposed to optimise the efficiency of the networkidgtégrated simulation tool for SANETs. BARAKA features the

tup. Basically, BARAKA is built upon OMNeT++, a well

part as well as of the co-ordination between single nodd8!lowing characteristics:

Examples are the optimised navigation of robot systemgusin ,
a WSN [2] or efficient actuation control in SANETS [3].

All these approaches must be carefully evaluated in order,
to prove the promised capabilities. Usually, a simulation ,
environment is preferred to a lab setup. Even if advances
in electronics allow us to experiment with compact hardware
sensors and with robots in real environments, simulationés
still useful if we want to test larger networks, or if prelimairy
experiments with real objects might risk to break them.

. . BA

When we started our research in this area (we present qur
work in [4]), we discovered a major problem. There is n@

integrated simulation of communication networks and
robotics

complete modelling of co-operation issues in SANETs
performance evaluation of either robot actions or net-
working aspects considering mutual impact.

.~ The rest of the paper is organised as follows. Section I
escribes network simulators as well as robot simulators.
We describe OMNeT++ and ODE, which we used to build
RAKA, in Sec. lll and IV, respectively. In Sec. V, we

resent our new SANET simulator in more detail.
ion VI shows a case study to demonstrate the capabilities

Sec-

1We use the wordgent in the following when we refer to either the entitiesOf BARAKA using a comprehensive set up. Section VII

of a SANET.

concludes the paper.



simulation
II. NETWORK AND ROBOT SIMULATORS simulation

Network simulators are typically used to study the interac- ‘ initialize() !
tions between entities (such as routers, links or packets) i M
communication networks. Because of the discrete nature of  |[  ____---
the simulated entities, network simulations are most effity -

carried out agdiscrete event simulations [5]. Discrete event \r

simulators assume that a system can be represented by a set of :

state variables. The variables change values only at a@blent \

number of points in time. The simulator maintains a set of } ™ scheduleat( now + 30s, timer)
future events (such as message arrivals or timer firings) and \ -
|
|
|
|
|
|
I

handleMessage( timer )

send( gate 1, msg )

processes this set one event at a time. It starts with thestarl
event in the list and continues with the following ones. The
simulation times flows with the time associated to the events
It might not advance if two events are concurrent, or advance
with big steps if two events are separated in time.

A large number of network simulation tools are available.
Among the more well-known and popular tools, there are thgy 1. umL sequence diagram of the OMNeT++ simulation kerfiae left
commercial simulators OPNETand Qualnet and the free bar represents the simulation kernel, the others two mediilee continuous-

open source simulators né-and OMNeT++> line arrows from one bar to another represent normal C++ odsticall. The

. . parameters of the calls are those between brackets.
Many simulators come with a number of ready-to-use

protocols, mostly including the common Internet protogcols

and often also a selection of protocols fad hoc networks it 4 two dimensional environment and has recently added
(such as DSR [6] or AODV [7]). The simulators can modehe third dimension and the simulation of players’ moversent
wired as well as wireless connections. Support for mobile 1q tcys of robot simulators is an accurate simulation of

nodes is available in most simulators in the form of one of \ohors hehaviour. They usually use the API that is going
more mobility models, such as the Random Waypoint mobilitg e seqd on the real hardware (e.g., to get the value of the

model [8]. , infrared sensors or to set the speed). They do not consider th
None of the network simulators that we know SUppor&%‘roblem of modelling the networking of the robots. Although

the simulation of realistic node movements, which take in ere are simulators that raver a network, like Player/Stage

account both the nodes’ physical construction and terra[%] they do notsimulate the network.
characteristics. '

Robot simulators are used to implement control algorithms I1I. OMNET++
for existent pieces of hardware. It is usually preferredtéots : . . .
the implementation of any algorithm in simulation because r;]gjhclgg-r:v?iE:lhl]c:nasilr?grigeesesvaene;[s&trg u(lgg; gt;g?utlﬁrtgz h
is safer, and there is no risk to break a robot or to lose its L 9 9

. . . communication channels. Modules connected together form
control. Because of this, the target of the simulator is teeea
. . a network. Modules can be compound, made of several sub-
the transfer of any program from simulation to real robots. .
. modules which form a sub-network between them.

Nowadays, every desktop computer is powerful enough to .

Modules, channels and messages are implemented as C++

accurately simulate the robot and its environment. A nurober . . .
y ORLeCtS' Each message represents an event and is stored in th

I I

select event/advance time | I
I

!

handleMessage( msg!)

e -------=-=---- i I

simulators have been developed that can simulate the wor .
physics. One of the most used is the commercial simulates eduler of OMNeT++(also called the future event list)e Th

Webots®? The world physics simulation is based on the OD |mula_tor, aft_er having i_nitiali_sed _the mo_dule;s, takes fihg
library. ODE is not the only solution for rigid body simulati. event in the list and delivers it to its destination. The iy

There are other commercial libraries available, such ateXor occurs by calling a method of the module and giving the
and Havok. message as parameter. Modules can send messages to others

. . Lo or to themselves. In this case, they mostly simulate interna
The accurate environment simulation is a recent trend jn

robot simulators. The RoboCup Simulatansed for simulated tlmers._A de_:llvery _t|_me S associated to _each message _and
i o determines its position in the scheduler list. The simatati

football matches during the RoboCup [9] competitions, Imega ™ . . .

continues till there are no more messages to be delivered or

2ht t p: / / www. opnet . cond till a specified time limit has been reached.

Shttp: // www. scal abl e- net wor ks. conf Let us see, for example, how it is possible to simulate
;‘http://\ANVW- i si . edu/nsnant ns/ a module, callednod[0], that sends a message evelys
Gﬂt:g%m SSEE: PP ?Lg’com to another,mod[1]. The situation is summarised in Fig. 1.
Thttp: / / www. cm | abs. cond pr oduct s/ vor t ex/ Dur_lng the !n|t|allsat|0n_phasemod[O]_ sc_hedules a message
8htt p: / / ww. havok. cond for itself at time0 s, that is, at the beginning of the simulation.

Shttp://sserver. sourcef orge. net/ This is how module’s internal timers can be simulated. When
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Fig. 2. Snapshot of BARAKA: network view. The icons on a grgpresent
the position of motes. One robot is at the bottom left corfiére arrows
shows the connections, i.e., which are the nodes that casdoaed by each IV. OPENDYNAMICS ENGINE

agents. Connections are handled by ¢hennelcontrol module of the MF. . . . .
The circled mote is the target that the robot has to reachdnettperiment  1he Open Dynamics Engine (ODE)is a library used to

of Sec. VI. simulate rigid bodies. It provides primitives to define a yod
by its mass, momentum of inertia, initial position and véhpc
Different bodies can be attached to each other through a

the simulation starts, the scheduler of OMNeT++ takes thig;mber of joints: free, extensible, hinges, ball&socketsd
message out of the list, and delivers ittwd[0]. The module g on. Each body can also have more geometries attached to
is waken up by this message and prepares the messagg {@hich are used to give a shape to the body. The library also
send tomod[1]. mod[0] sends the message, that is, calls gffers primitives to apply forces and torques to the body (as
function of OMNeT++ to store the message in the schedulgr.motor does on the wheels of a car).
Given the length of the message, the speed of the connectiofe |iprary offers two very important functions. The first
between the modules and the current status of the chanpgl takes the state of the environment at tinzad computes
(busy or free), OMNeT++ calculates the delivery time of thg,o new state at time -+ A, where A is a user defined
message tanod[1]. After having sent the messag@od[0] parameter. This function integrates the equation of mcai
sets another timer foB0 s later. The control returns to the o ,rns the solution at timet+ A. The second function checks
simulation kernel. It takes the following event in the lidte \\hether any two objects are colliding. If it is the case, the
message tenod[1], and delivers it to its destination. The looRpraries takes some measures in order to avoid the peioetrat
continues fill the end of the simulation. of the bodies at the next integration step. Collision déteds

OMNeT++ is a very general simulation tool. There argso used to compute friction at the contact points. In trig,w
plenty of extensions that have been created to simulajeye apply a torque to the hinges that connect four spheres
among other things, communication networks. We used the 4 parallelepiped, and the spheres touch the ground, we can
“Mobility Framework (MF)™ for our simulation of SANETS. simulate the wheels of a car on a road.
MF provides a structure to simulate communicating mobile |; s up to the program using ODE to set up the objects
nodes and additional modules that ease the implementaltion;grrectly and to iteratively call the two functions to adean
a reliable simulation. the simulation. Between two calls to the integration stép, t

A special module, theehannelcontrol module, connects program can perform whatever task it needs to do. It can
hosts that could theoretically communicate with each ch%'hange, for instance, the torque applied to some robotseivhe
as shown in Fig. 2. After every movement of any host, tha grder to avoid an obstacle.
channelcontrol updates its connections according to the new pp, example can help to understand better how ODE works.
positions. Our laboratory has a number of Robertino roboiEig. 4),

Each host is simulated as a compound module. It contaifpgt we want to simulate later together with a WSN. Robertino
five other modules (Fig. 3). Three of them simulate thg a three-wheeled omnidirectional robot, with six infre
standard networking layers: application layer, netwogkayer sensors around the body and an omnidirectional camera. The
and physical transmission device (the NIC). Any messaggnot uses Swedish wheels, which have a strong grip in the
received by the host goes upward from the NIC, through thgrection of the rotation of the motor, but a very low frigtio
network layer to the application layer. The inverse path [g§ong the axis of the motor. Three such wheels grant the
followed by a message generated by the application layer and

Uhttp://ode.org
Ot t p: // nobi | i ty- fw. sour cef orge. net/ ntt p: / / wwy. openr oberti no. or g/
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‘ initialise() I

scheduleAt( 0, tim:

scheduleAt( now + delta, timer )

Fig. 4. Picture of a Robertino robot.

Fig. 6. UML sequence diagram of the integration between OtiNeand
ODE. The left bar refers to the simulation kernel of OMNeT+he right bar
refers to the OMNeT++ module which implements the real weitdulation
with ODE.

The ODE loop takes place in an OMNeT++ module called
odesim (it is represented as a square in the top left corner
of Fig. 2, abovechannelcontrol). It has no connection to
Fig. 5. This sequence shows how the Robertino robots can tieanad 2Ny Other module in the simulationdesim neither receives
simulated in ODE: 1) three spheres simulate the omnidoeati wheels; 2) messages from nor sends messages to the others. During its
the main body of the robot is approximated by two cylindeisthBee hinges jnjtialisation, it sets up a timer in the OMNeT++ scheduler.
connect the wheels to the robot’'s main body along radial;a®ehe simulated . . .
robot is ready to move. When waken uppdesim performs the collision detection and

the integration step of ODE. It then sets up the same timer for
A seconds latelodesim behaves likenod[0] in Fig. 1, only
robot the capability to reach every configuration (positioni  Without the sending of a message (Fig. 6).
rotation) on a plane. We defined a set of interface classes. They allow to mod-

Figure 5 illustrates how we simulate Robertino with ODgUlarise the whole simulation and to separate the objects in
The main body of the robot is approximated by two cylinde/@arge of the simulation from the objects in charge of theage
(two geometries). The cylinders are connected to the boB9ntrol. Real Vor1 dGbj ect (Fig. 7) formalises the API
placed in the centre of mass of the robot. Weight of tHgPmmon to each simulated agents. It includes, for instance,
body and dimensions of the geometries respect those of {8 methods to send messag&sbot adds the methods
real Robertino. Wheels are simulated with three spheres. TiPical for robots (setting the speed of the wheels, getlireg
spheres are connected to the main body through three hi§§8sor readings, etc.). The interfaCentr ol | er specifies
joints. The hinges are free to turn around the radial axes. Tie methods that the agents’ controllers have to implement.

motors of the robot are simulated by applying torques to tHd18Yy include most notably a method that is called at each
spheres along the rotational axes. control cycle and a method to handle incoming messages.

ODE allows to specify two friction coefficients for each! hese interfaces allows_amore painless switch from siri_mniat
geometry. We set very low friction between wheels and groufigy '6@l hardware. It will be not necessary to rewrite the
in the direction of the radial axes and high friction in th&ontrollers of the agents, but only the classes that impiéme
perpendicular direction, that is, the direction in whicte thth€ interfaces.

wheel turns. This can effectively simulate a Swedish wheel. TWO classes take care of simulating the agents. They
are the ones handled by OMNeT++ simulation kernel:

Si mul at edMot e andSi nul at edRobot . They implement

respectively the interfaces describedRgal Wor | dObj ect
BARAKA is the name that we gave to our simulator. land Robot . We used the multiple inheritance mechanism to

is the result of the integration of ODE into OMNeT++. Theallow these classes to simulate both the networking bebavio

integration takes two steps: first, to integrate the caltisi and the physical-world behaviour.

detection/integration step loop in the OMNeT++ flow; second On the one side, they inherit fro@DEChj ect . This class

to create modules that simulate the robots and the motes bistlused as gateway to ODE library andesim. It allows to

in their physical and networking aspects. These modules areate the bodies, geometries and joints related to onetpbje

used by the agents’ programs to control the behaviours of tlreget and set the speeds, and so on. W8iemul at edMot e

agents in the simulated world. and Si mul at edRobot are initialised at the beginning of

V. BARAKA
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The other inheritance branch comes fraMNETObj ect .
This class deals with everything that has to do with the
networking of the node. It is derived from the application
layer class specified by the MF. If the controller wants to
send a messag8&j mul at edMbt e and Si mul at edRobot
take the message from the controller, wrap it into a OMNeT++
message and put it in the scheduler of the simulation kernel.
When an agent receives a message from others, the message
passes through the NIC, the network layer till the applisati
layer, that is, an instance of eith&i nul at edMbt e or
Si mul at edRobot . The message is then forwarded to the
controller to be processed.
Fig. 8. Snapshot of BARAKA: three-dimensional world viewhid picture The controllers of the motes and the robots are implemented
shows a view of the three dimensional world associated Wwigmetwork view  respectively by the classesMot eController and
e e e e vare RODO Cont r ol | er . They both implement the interface
corner in the simulated world view i€ cm tall. The picture shows also one Control l er. Each instance of Si mul at edMote
obstacle, a wall, placed between the robot and the first nidtesi to reach. (Sji mul at edRobot ) contains one instance of

Mot eControl | er (Robot Control |l er) and simulates
one mote (robot).

the simulation, they create the objects in the physical &vorl Figure 9 summarises how the classes work together. It
Motes are simply simulated as light cubésc{n side,50 g  depicts the typical working flow of the simulation of a robot.
mass). Robots are created as shown in Fig. 5, respecting th@ne network connections to other agents are kept up to date
real masses and siz€5Figure 8 shows the resulting simulatedyy the mobility module related to each simulated agent. The
world. During the simulation, th&i mul at edRobot applies mopility node regularly queriesdesim for the position of the
the torques to the object’s wheel according to the comman&i@ems, that is, of the objects created Siynul at edMbt e
given by the controller. If, for instance, the controllec@®s 5ndsi nul at edRobot .
that the robot has to move forward, the controller calls Tpe advantage of BARAKA w.rt. OMNeT++ and ODE
the method inSi mul at edRobot to set the speed of thetaken individually is that BARAKA is better when one has
wheels. The implementation Bi mul at edRobot calculates g focus on both the networking and the physics of the system
which is the required rotational speeds of the wheels. 4t the same time. In [4], for instance, we study a system where
then calls viaODECDj ect functions of the ODE to set the rohots’ controllers (implemented in the applicatioyeks)
the desired rotational speed by applying a torque on thgayily interact with the network layers of the nodes. If we
hinges Si nul at edRobot 's work ends here. During the nextpaq run two different set of experiments, one with a network
integration step,odesim will let the wheels rotate. Given gimylator and one with a robot simulator, we would not have

the friction with the ground, the rotation of the wheels wilheen able to understand and exploit the effects of physics on
result also in a forward translation of the wheel and its cORymmunication and the other way round.

nected bodies, i.e., the robot. On request from the coetroll
Si mul at edRobot uses information obtained lydesim in VI. CASE STUDY
order to simulate the robot’'s senso®.mul at edRobot can

get, for instance, a list of nearby objects and use it to ¢aleu
the value of the infrared sensors to return to the controller

We now describe an experiment we ran in order to test our
simulator. The following set-up might seem too complex and
some design decision that we took might seem unmotivated.

B3nt t p: / / wwn. openr ober ti no. or g/ hwi di mensi ons/ This is due to the fact tha_t what we dlscus_s now is in fact onIy_
overvi ew. ht i a part of a bigger scenario that we described and analysed in
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| [« create gpometries | | ,
‘ [——L=aisteriobot(this ) ! ‘
| _-0 L :
‘ scheduleAt( 0, controlStep ) il 0 ! ‘ L
I : ! ! | robot arrived
| | 1 1 |
L |- --------=-—=-—=-=-=-- T | | |
e [ e It i ::: ——— :: — Fig. 10. Motes’ behaviour for help-request task. The dasted arrow

handleMessage( fromNetwork )

represents a transition that occurs thanks to an incomiogepain this case
a robot that answers the mote’s request or that signalsritslarThe dotted

[ |
| AN > | i . .

| e S = | arrow stands for an incoming packet from the robot which ggvehe task.
[ \

Continuous-line arrows are internal events which the mutduates at each

I
I
A — _ _ _ _ control step. See the text for the description of the states.
© handleMessage( controlStep ) | ! ! Bl
: > actig')n() : :
| getIRRe4&dings() |
| [ getNearObjects() | paper.
: ;’:j_ L : The robot is too far away to communicate with the mote,
control cycle == . . . .
‘ i  setspeed|h, a,r) | thus the network requires a routing mechanism. Our routing
: Cdee-mm- ; } algorithm is explained in [4]. It is able to set up several
\ e e & G @n W) ! | routes (in the network topology) to one destination. The MAC
: : : protocol is the IEEE 802.11 as implemented by the modules
L = _________________ [ 2 provided by MF.

The robot needs to know the path (in the environment)
Fig. 9. UML Sequencr:% diagre}m that SumTafizeS QOW(a fObom'Hlﬁiedf to its destination. The robot does not require a map of the
in BARAKA. During the initialisation, simulatedRobot (an instance o . . - . . .
Si mul at edRobot ), creates the body in the world handled desim. The enVIronmem since It. can obtain enough information from
simulation kernel delivers messagesstmulatedRobot, which forwards itto  the routing table of its network layer. The topology of the
robotController, the controller of the robosimulatedRobot sets a periodic \WSN can be seen as an approximation of the topology of
timer to simulate the robot's control cycle. During the cohtcycle, the . : : :
controller might call methods @i nul at edRobot to obtain, e.g, the value the_ envwonr_nent. The robot can _epr0|t this featur_e instefad
of the IR sensorssi imul at edRobot calculates the value using information trying to build a map of the environment. Assuming that the
coming fromodesim. robot can know the direction of a nearby midtet can travel

in the SANET in the same way in which network packets do.

another work [4]. There is unfortunately not enough space £ Agents Controllers
justify our choices here. We think however that it is not so
important now to give a sound justification of our set up. Our
purpose is to test BARAKA and to give some examples 6’¥
what we can do with it. The following set-up, albeit complex, "€duest

can effectively test both the networking and the physical —The mote waits for any robots to reply. In our case, only
behaviour of a SANET at the same time. one robot can reply. If the mote does not receive a positive

answer within30 s, it broadcasts the request again. It
repeats this for a maximum of 3 times and then gives

After the mote has broadcast its help request, its controlle
orks as depicted in Fig. 10:

In this experiment, both networking and physical simulatio
of the environment are important. We simulate a SANET with
25 motes placed on a grid in a square environment of side UYP-:

500 m, as shown in Fig. 2 and Fig. 8. One mote (highlighted Walt , ,

by a circle in Fig. 2) broadcasts a message requesting for "€ Mote waits for the robot that was assigned the
a robot's intervention. There is one robot in the bottom left t@Sk. During this period, the robot is travelling through
corner that listens for incoming requests. When it receives the network to reach its destination. It regularly sends

it answers and drive to the requesting mote, avoiding tadzl| messages to the mote. Messages are both used as ‘keep
against other objects. alive’ and to update the robot’s route. They contain also

The environment size is smaller than the one commonly the expected maximum time the robot requires to travel

used for SANETS, because it is the trade-off between diftere Onbe ?op. I_f the_trr]r_wotte;]_dotg s no:hrecelvte a‘1 dmess,e;%e frok;n tthe
criteria: on the one hand, we need a large area to have a [)0 Odagatmt\rllw n 'St Ime, edmote rops tSro ot,
realistic simulation of the system; on the other hand, large roadcasts the request again and returmedoest Upon
area increases the simulation time, since the speed of g ro

is fixed. Th . f . is h P ffici 1t is not the purpose of our work to address this problemsjtbatght be

Is fixed. The size of our environment is however sufficient t@,ne e g, by triangulating the signal emitted by a nodeydig directional

test BARAKASs features, which is our main concern in thisntennas, or by means of a vision system.



no request
somebody

requested help

select destination
.| regest assignment

‘" /Communication
timeout

mote
refused ,-*

~
~ Inote accepted
o P

mote &

next hop
is destination

travel

travel
timeout

go to destination

destination
reached

Fig. 11. Robots’ behaviour for help-request task. The nreamf dash-
dotted, dotted and continuous-line arrows is as in Fig. &@. tBe text for the
description of the states.

and H is a high value constant. This functions selects the
next hop in the same way as the network layer does to
route data packets (see [4]).

request next hop
If there is no entry in the routing table about destinatipn
the robot sends a message to the destination and waits for
a reply. This message is used to start the route discovery
process at the network layer. As iaquest assignment
the robot waits30 s before sending another request, for a
maximum of 3 times, then it gives up.

go to next hop
The robot proceeds towards the next hop. It periodically
checks the IR sensors to see whether it is going to collide
with an obstacle, and avoids it if necessary. When the robot
is at 10 m from the mote, it invalidates the hop’s entry in
the routing table, and sends a message to the destination,
in order to start a new route discovery process. When
it reaches the distancem, it considers the hop reached
and searches for a new one. If the previous message did
not get lost, the routing table should already contain the
information to find the new hop immediately. If the robot
has been trying to reach the hop for more tI380 s, it
gives up.

arrival, the robot sends a message to signal it is on thed0 © destination

place, and the mote considers the request fulfilled.

The robots starts acting after the arrival of the mote’s

request. The controller of the robot works as shown in Fig. 11

select destination

The robot probabilistically chooses one host among the Sseet-up we need a good simulation of both the network and the

HD of motes that are waiting for help. In this case there i

with probability 1.

request assignment
The robot informs the destination that it is willing to tak
on the request. The mote decides whether the robot
continue or not. The mote may reject because the reque

was already fulfilled, or because another robot is Workingon

on it. If the robot does not receive an answer afi@es, it

In this state, the robot behaves mostly asgim to next
hop, only the robot does not need to send a message to
the destination when it is a0 m from it. When the robot

is at less that 0 m from destination, it signals the mote
that it has arrived.

It should be clear now to the reader that to simulate this

t

Shysical world. The former is required to accurately sineila

however only one mote requesting, and thus it is chosﬁ}n

e communication between robots and motes, the latter to
allow the robot to move. Although this set-up might seem to
the reader somehow crafty (we recall that this is due to the
E}gr(]:t that is only a part of our work in [4]), it is a good test
QDe for our simulator.

he messages exchanged between the robot and the mote
sist of three Boolean fields:a, nma and a. The robot

setsra (it stands for f obot acknowledgement”) tat r ue

sends the request again for a maximum of 3 times, thén

it gives up.

find next hop
The controller looks into the routing table of the network
layer to select the next hop of the route to its destination
The next hop is chosen randomly. The probability,; of
a neighbourn to be selected as next hop to go dois
given by:

when it asks to be assigned the help request, or when it sends
messages to find the next hops in the route. The field is set
to f al se when the robot gives up. The mote set (“note
acknowledgement”) td r ue to inform the robot that it is in
charge of the request. The mote sets if &d se if the mote
gives up on the task. Finally, the robot set{“arrived”) to

true to inform the mote that it arrived at the destination.

Py = _rnd)? B. Measurements
‘Z r(i, d) There are several things that can be measured with
iEN(d) BARAKA. In fact, BARAKA can be used to estimate or
H if n=d, measure whatever observable might interest the reseassher
r(n,d) =4 o long as the measurements can be expressed in the form of
7 Otherwise. i ,
C/C++ code to insert in the source.

whereN (d) is the set of the robot’s neighbours that know For instance, one might be interested in the trajectory of
a way tod, h is the distance measured in number of hopthe mobile nodes. It is easy to modify theobility modules of
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] is more advanced than the ones currently available in theesen
o that it can accurately simulate the networking and the @aysi
g world of the system. This goes at the cost of some more
o computation time. The overhead is however negligible: i [4
g | we simulated up to 25 motes and 12 robots, and the speedup
- o with reality was still high. The advantage of BARAKA is
8 | that it allows a researcher to do experiments on new forms of
o robot/mote and application/network layer interactionsal$o
g | reduces the work necessary to port the algorithms on the real
o hardware.
o However, the simulator still lacks a validation in more

complex scenarios, and our future work will for sure go in
x this direction. Our preceding experience with simulatiathb
Fig. 12. Trajectory that the robot followed to reach its degton. Ticks of networks and of robots make us confident in a successful

mark the position ever0 s. Note the avoiding manoeuvre at the bottom lefivalidation: when designing BARAKA, we used our experience
corner: the straight line is interrupted by an obstacle. to improve its reliability.

8 ACKNOWLEDGEMENTS

Thomas Halva Labella would like to thank the DAAD
(Deutscher Akademischer Austausch Dienst), grant number
331 4 03 003, for the fellowship that funded this work.

400

300

REFERENCES

[1] 1. Akyildiz and I. Kasimoglu, “Wireless sensor and actoetworks:

research challengesAd Hoc Networks, vol. 2, no. 4, pp. 351-367,
F - - 2004.

s | ; [2] M. Batalin and G. Sukhatme, “Using a sensor network fatributed

- multi-robot task allocation,” inProceedings of the |IEEE International

Conference on Robotics and Automation (ICRA2004), vol. 1. IEEE

o | Press, New York, NY, 2004, pp. 158-164.

‘ ‘ ‘ ‘ ‘ ‘ [3] F. Dressler, “Network-centric Actuation Control in Sem/Actuator Net-
0 10200 300 400 50 works based on Bio-inspired Technologies,”3rd |EEE International
Conference on Mobile Ad Hoc and Sensor Systems (IEEE MASS 2006):
2nd International Workshop on Localized Communication and Topology
Protocols for Ad hoc Networks (LOCAN 2006), Vancouver, Canada,
October 2006.

[4] T. Labella and F. Dressler, “A bio-inspired architeeufor division of
labour in SANETS,” inProceedings of the First IEEE/ACM International
Conference on Bio Inspired Models of Network, Information and Com-

each node to log the position. The result is shown in Figt®12.  puting Systems (BIONETICS 2006), Cavalese, Italy, Dec. 11-13, 2006,

As an additional example, we analyse in [4] the degree In press.

L . E A. M. Law and W. D. Kelton,Smulation modeling and analysis, 3rd ed.
division of labour between the agents. The mean time to ltrav ] Boston: McGraw-Hill, 2000. 9 ¥

to the next node and the time needed to avoid an obstad& D. Johnson, D. Maltz, and Y.-C. Hu, “The dynamic source

200

Fig. 13. Number of packets received by each node during tpergwent.
Each node is represented by a fuzzy circle. The darker thoéecithe more
packets the node received.

i i ; 'jcd:@di routing protocol for mobile ad hoc networks (DSR),” Interne
might be.OtherlntereStmg measures that can be easil € Draft, 2004. [Online]. Available: http://www.ietf.orgfiernet-drafts/
by our simulator. draft-ietf-manet-dsr-10.txt

It is at the same time possible to perform measurements @fl C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on dethdistance

the network. If one wanted to see which parts of the network Vector (AODV) routing,” IETF RFC 3561, 2003. [Online]. AVable:
. http://www.ietf.org/rfc/rfc3561.txt
are under load, one could plot the number of packets receivgg] T camp, J. Boleng, and V. Davies, “A survey of mobility ceis

by each node, as we do in Fig. 13. It is also easy to measure for ad hoc network researchMreless Communications and Mobile

i i ; oo Computing: Special Issue on Mobile Ad Hoc Networking: Research,
the time it takes to discover a routethe end-to-end delay, Trends and Applications, vol. 2. no. 5. pp. 483-502, 2002, p6-3
or to see the routes that packets travel (see [4]). camp2002survey.pdf.

[9] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, andNatsub-
VIl. CONCLUSIONS ara, “Robocup: a challenge Al problem® Magazine, vol. 18, no. 1,

We described BARAKA, the simulation tool that we devel-, 1997

. . L 10] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Staggect: Tools
oped for a comprehensive analysis of SANETSs. This S|mU|at[0r for multi-robot and distributed sensor systems,”Rroceedings of the

International Conference on Advanced Robotics (ICAR 2003),, Coimbra,

1550me movies from this experiment, can be seemtatp: / / www7. Portugal, June 30-July 3 2003, pp. 317-323.
informati k. uni - erl angen. de/ ~l abel | a/ conswar e07. ht ni [11] A. Varga, “The OMNeT++ discrete event simulation sysfein Pro-
18In our case: minimun ms, first quartile1.7 ms, median10.6 ms, third ceedings of the 15th European Simulation Multiconference (ESM’2001).
quartile 73.9 ms, maximum?7.5 s. European Council for Modelling and Simulation, Nottinghaui, May
Minimum 0.7 ms, first quartile 2.1 ms, median8.7 ms, third quartile 2001.

20.8 ms, maximum0.25 s.



