
BARAKA: A Hybrid Simulator of SANETs
Thomas Halva Labella, Isabel Dietrich and Falko Dressler

Autonomic Networking Group
Dept. of Computer Science 7, University of Erlangen-Nuremberg

Martensstr. 3, 91058 Erlangen, Germany
Email: hlabella@ulb.ac.be, {isabel.dietrich,dressler}@informatik.uni-erlangen.de

Abstract— We present BARAKA, a new simulator for SANETs.
The evaluation of algorithms developed for communication and
co-operation in this context is usually accomplished separately.
On the one hand, network simulation helps to measure the
efficiency of routing or medium access. On the other hand, robot
simulators are used to evaluate the physical movements. Using
two different simulators might introduce inconsistent results,
and might make the transfer on real hardware harder. With
the development of methods and techniques for co-operationin
Sensor/Actuator Networks (SANETs), the need for integrated
evaluation increased. To compensate this demand, we developed
BARAKA. This tool provides integrated simulation of com-
munication networks and robotic aspects. Thus, it allows the
complete modelling of co-operation issues in SANETs including
the performance evaluation of either robot actions or networking
aspects while considering mutual impact.

I. I NTRODUCTION

Sensor/Actuator Networks (SANETs) are challenging re-
search objects. The field was born from the intersection of
research on Wireless Sensor Networks (WSNs) and mobile
robotics. The result is an heterogeneous system, made of fixed
nodes capable only of sensing the environment (the sensors,
called alsomotes), and mobile nodes that are also able to
change it (the robots).1 Akyildiz et al. [1] cite as unique
features of a SANET: node heterogeneity, real-time require-
ments, different deployment strategies for motes and robots,
mobility and co-ordination paradigm—mote/robots and not
only mote/sink as typically in WSNs. Research issues include
power management, routing, co-ordination algorithms, design,
and many other topics. Many algorithms and methods have
been proposed to optimise the efficiency of the networking
part as well as of the co-ordination between single nodes.
Examples are the optimised navigation of robot systems using
a WSN [2] or efficient actuation control in SANETs [3].

All these approaches must be carefully evaluated in order
to prove the promised capabilities. Usually, a simulation
environment is preferred to a lab setup. Even if advances
in electronics allow us to experiment with compact hardware
sensors and with robots in real environments, simulation is
still useful if we want to test larger networks, or if preliminary
experiments with real objects might risk to break them.

When we started our research in this area (we present our
work in [4]), we discovered a major problem. There is no

1We use the wordagent in the following when we refer to either the entities
of a SANET.

comprehensive tool for integrated SANET simulation. In other
words, there is no simulator that takes equally care of both the
networking of the nodes and the realistic movements of the
robots (we present an overview of up-to-date simulation tools
in the next section). We think that an integrated simulation
is necessary for the following reasons: it allows to study
deeper form of interactions between robots and motes; most
importantly, it reduces the gap between simulation and reality.
An integrated detailed simulator allows the experimenter to
develop algorithms in simulation and to immediately use them
also on real hardware.

The lack of comprehensive tools led to the development of
BARAKA, the simulator we are going to present in this paper.
BARAKA was motivated by the need of an integrated SANET
simulation environment. We might have used two different
simulators, one for the network and one for the robots.
This would have most likely introduced inconsistent results
between the two simulators. This is because one simulator
takes particular care only of some aspects and approximates
some others, which indeed might be fundamental for the
second simulator. BARAKA now allows us to create realistic
physical environments in which we can model the robot
systems and their behaviour as well as the communication
protocols and corresponding properties in a single simulation
setup. Basically, BARAKA is built upon OMNeT++, a well
known network simulation tool, and Open Dynamics Engine
(ODE), a library used to simulate rigid-body physics.

The main contribution of this paper is to present a new
integrated simulation tool for SANETs. BARAKA features the
following characteristics:

• integrated simulation of communication networks and
robotics

• complete modelling of co-operation issues in SANETs
• performance evaluation of either robot actions or net-

working aspects considering mutual impact.

The rest of the paper is organised as follows. Section II
describes network simulators as well as robot simulators.
We describe OMNeT++ and ODE, which we used to build
BARAKA, in Sec. III and IV, respectively. In Sec. V, we
present our new SANET simulator in more detail. Sec-
tion VI shows a case study to demonstrate the capabilities
of BARAKA using a comprehensive set up. Section VII
concludes the paper.



II. N ETWORK AND ROBOT SIMULATORS

Network simulators are typically used to study the interac-
tions between entities (such as routers, links or packets) in
communication networks. Because of the discrete nature of
the simulated entities, network simulations are most efficiently
carried out asdiscrete event simulations [5]. Discrete event
simulators assume that a system can be represented by a set of
state variables. The variables change values only at a countable
number of points in time. The simulator maintains a set of
future events (such as message arrivals or timer firings) and
processes this set one event at a time. It starts with the earliest
event in the list and continues with the following ones. The
simulation times flows with the time associated to the events.
It might not advance if two events are concurrent, or advance
with big steps if two events are separated in time.

A large number of network simulation tools are available.
Among the more well-known and popular tools, there are the
commercial simulators OPNET2 and Qualnet3, and the free
open source simulators ns-24 and OMNeT++.5

Many simulators come with a number of ready-to-use
protocols, mostly including the common Internet protocols,
and often also a selection of protocols forad hoc networks
(such as DSR [6] or AODV [7]). The simulators can model
wired as well as wireless connections. Support for mobile
nodes is available in most simulators in the form of one or
more mobility models, such as the Random Waypoint mobility
model [8].

None of the network simulators that we know supports
the simulation of realistic node movements, which take into
account both the nodes’ physical construction and terrain
characteristics.

Robot simulators are used to implement control algorithms
for existent pieces of hardware. It is usually preferred to start
the implementation of any algorithm in simulation because it
is safer, and there is no risk to break a robot or to lose its
control. Because of this, the target of the simulator is to ease
the transfer of any program from simulation to real robots.

Nowadays, every desktop computer is powerful enough to
accurately simulate the robot and its environment. A numberof
simulators have been developed that can simulate the world
physics. One of the most used is the commercial simulator
Webots.6 The world physics simulation is based on the ODE
library. ODE is not the only solution for rigid body simulation.
There are other commercial libraries available, such as Vortex7

and Havok8.
The accurate environment simulation is a recent trend in

robot simulators. The RoboCup Simulator9, used for simulated
football matches during the RoboCup [9] competitions, began

2http://www.opnet.com/
3http://www.scalable-networks.com/
4http://www.isi.edu/nsnam/ns/
5http://www.omnetpp.org/
6http://www.cyberbotics.com/
7http://www.cm-labs.com/products/vortex/
8http://www.havok.com/
9http://sserver.sourceforge.net/

Fig. 1. UML sequence diagram of the OMNeT++ simulation kernel. The left
bar represents the simulation kernel, the others two modules. The continuous-
line arrows from one bar to another represent normal C++ methods call. The
parameters of the calls are those between brackets.

with a two dimensional environment and has recently added
the third dimension and the simulation of players’ movements.

The focus of robot simulators is an accurate simulation of
a robot’s behaviour. They usually use the API that is going
to be used on the real hardware (e.g., to get the value of the
infrared sensors or to set the speed). They do not consider the
problem of modelling the networking of the robots. Although
there are simulators that runover a network, like Player/Stage
[10], they do notsimulate the network.

III. OMN ET++

OMNeT++ [11] is a discrete event simulator. It simulates
modules, which can send messages to each other through
communication channels. Modules connected together form
a network. Modules can be compound, made of several sub-
modules which form a sub-network between them.

Modules, channels and messages are implemented as C++
objects. Each message represents an event and is stored in the
scheduler of OMNeT++(also called the future event list). The
simulator, after having initialised the modules, takes thefirst
event in the list and delivers it to its destination. The delivery
occurs by calling a method of the module and giving the
message as parameter. Modules can send messages to others
or to themselves. In this case, they mostly simulate internal
timers. A delivery time is associated to each message and
determines its position in the scheduler list. The simulation
continues till there are no more messages to be delivered or
till a specified time limit has been reached.

Let us see, for example, how it is possible to simulate
a module, calledmod[0], that sends a message every30 s
to another,mod[1]. The situation is summarised in Fig. 1.
During the initialisation phase,mod[0] schedules a message
for itself at time0 s, that is, at the beginning of the simulation.
This is how module’s internal timers can be simulated. When



Fig. 2. Snapshot of BARAKA: network view. The icons on a grid represent
the position of motes. One robot is at the bottom left corner.The arrows
shows the connections, i.e., which are the nodes that can be reached by each
agents. Connections are handled by thechannelcontrol module of the MF.
The circled mote is the target that the robot has to reach in the experiment
of Sec. VI.

the simulation starts, the scheduler of OMNeT++ takes this
message out of the list, and delivers it tomod[0]. The module
is waken up by this message and prepares the message to
send tomod[1]. mod[0] sends the message, that is, calls a
function of OMNeT++ to store the message in the scheduler.
Given the length of the message, the speed of the connection
between the modules and the current status of the channel
(busy or free), OMNeT++ calculates the delivery time of the
message tomod[1]. After having sent the message,mod[0]
sets another timer for30 s later. The control returns to the
simulation kernel. It takes the following event in the list,the
message tomod[1], and delivers it to its destination. The loop
continues till the end of the simulation.

OMNeT++ is a very general simulation tool. There are
plenty of extensions that have been created to simulate,
among other things, communication networks. We used the
“Mobility Framework (MF)”10 for our simulation of SANETs.
MF provides a structure to simulate communicating mobile
nodes and additional modules that ease the implementation of
a reliable simulation.

A special module, thechannelcontrol module, connects
hosts that could theoretically communicate with each other,
as shown in Fig. 2. After every movement of any host, the
channelcontrol updates its connections according to the new
positions.

Each host is simulated as a compound module. It contains
five other modules (Fig. 3). Three of them simulate the
standard networking layers: application layer, networking layer
and physical transmission device (the NIC). Any message
received by the host goes upward from the NIC, through the
network layer to the application layer. The inverse path is
followed by a message generated by the application layer and

10http://mobility-fw.sourceforge.net/

Fig. 3. Implementation of a mobile host in the Mobility Framework. Each
host is made of 5 modules: application layer, network layer,NIC, blackboard
and mobility.

directed to other hosts.
There is an additional module (mobility) to communicate

the new position of the host tochannelcontrol, and ablack-
board for cross-layer communication.

IV. OPEN DYNAMICS ENGINE

The Open Dynamics Engine (ODE)11 is a library used to
simulate rigid bodies. It provides primitives to define a body
by its mass, momentum of inertia, initial position and velocity.
Different bodies can be attached to each other through a
number of joints: free, extensible, hinges, ball&sockets,and
so on. Each body can also have more geometries attached to
it, which are used to give a shape to the body. The library also
offers primitives to apply forces and torques to the body (as
a motor does on the wheels of a car).

The library offers two very important functions. The first
one takes the state of the environment at timet and computes
the new state at timet + ∆, where ∆ is a user defined
parameter. This function integrates the equation of motionand
returns the solution at timet+∆. The second function checks
whether any two objects are colliding. If it is the case, the
libraries takes some measures in order to avoid the penetration
of the bodies at the next integration step. Collision detection is
also used to compute friction at the contact points. In this way,
if we apply a torque to the hinges that connect four spheres
to a parallelepiped, and the spheres touch the ground, we can
simulate the wheels of a car on a road.

It is up to the program using ODE to set up the objects
correctly and to iteratively call the two functions to advance
the simulation. Between two calls to the integration step, the
program can perform whatever task it needs to do. It can
change, for instance, the torque applied to some robots’ wheel
in order to avoid an obstacle.

An example can help to understand better how ODE works.
Our laboratory has a number of Robertino robots12 (Fig. 4),
that we want to simulate later together with a WSN. Robertino
is a three-wheeled omnidirectional robot, with six infrared
sensors around the body and an omnidirectional camera. The
robot uses Swedish wheels, which have a strong grip in the
direction of the rotation of the motor, but a very low friction
along the axis of the motor. Three such wheels grant the

11http://ode.org
12http://www.openrobertino.org/



Fig. 4. Picture of a Robertino robot.

Fig. 5. This sequence shows how the Robertino robots can be built and
simulated in ODE: 1) three spheres simulate the omnidirectional wheels; 2)
the main body of the robot is approximated by two cylinders; 3) three hinges
connect the wheels to the robot’s main body along radial axes; 4) the simulated
robot is ready to move.

robot the capability to reach every configuration (positionand
rotation) on a plane.

Figure 5 illustrates how we simulate Robertino with ODE.
The main body of the robot is approximated by two cylinders
(two geometries). The cylinders are connected to the body
placed in the centre of mass of the robot. Weight of the
body and dimensions of the geometries respect those of the
real Robertino. Wheels are simulated with three spheres. The
spheres are connected to the main body through three hinge
joints. The hinges are free to turn around the radial axes. The
motors of the robot are simulated by applying torques to the
spheres along the rotational axes.

ODE allows to specify two friction coefficients for each
geometry. We set very low friction between wheels and ground
in the direction of the radial axes and high friction in the
perpendicular direction, that is, the direction in which the
wheel turns. This can effectively simulate a Swedish wheel.

V. BARAKA

BARAKA is the name that we gave to our simulator. It
is the result of the integration of ODE into OMNeT++. The
integration takes two steps: first, to integrate the collision
detection/integration step loop in the OMNeT++ flow; second,
to create modules that simulate the robots and the motes both
in their physical and networking aspects. These modules are
used by the agents’ programs to control the behaviours of the
agents in the simulated world.

Fig. 6. UML sequence diagram of the integration between OMNeT++ and
ODE. The left bar refers to the simulation kernel of OMNeT++.The right bar
refers to the OMNeT++ module which implements the real worldsimulation
with ODE.

The ODE loop takes place in an OMNeT++ module called
odesim (it is represented as a square in the top left corner
of Fig. 2, abovechannelcontrol). It has no connection to
any other module in the simulation.odesim neither receives
messages from nor sends messages to the others. During its
initialisation, it sets up a timer in the OMNeT++ scheduler.
When waken up,odesim performs the collision detection and
the integration step of ODE. It then sets up the same timer for
∆ seconds later.odesim behaves likemod[0] in Fig. 1, only
without the sending of a message (Fig. 6).

We defined a set of interface classes. They allow to mod-
ularise the whole simulation and to separate the objects in
charge of the simulation from the objects in charge of the agent
control. RealWorldObject (Fig. 7) formalises the API
common to each simulated agents. It includes, for instance,
the methods to send messages.Robot adds the methods
typical for robots (setting the speed of the wheels, gettingthe
sensor readings, etc.). The interfaceController specifies
the methods that the agents’ controllers have to implement.
They include most notably a method that is called at each
control cycle and a method to handle incoming messages.
These interfaces allows a more painless switch from simulation
to real hardware. It will be not necessary to rewrite the
controllers of the agents, but only the classes that implement
the interfaces.

Two classes take care of simulating the agents. They
are the ones handled by OMNeT++ simulation kernel:
SimulatedMote andSimulatedRobot. They implement
respectively the interfaces described byRealWorldObject
andRobot. We used the multiple inheritance mechanism to
allow these classes to simulate both the networking behaviour
and the physical-world behaviour.

On the one side, they inherit fromODEObject. This class
is used as gateway to ODE library andodesim. It allows to
create the bodies, geometries and joints related to one object,
to get and set the speeds, and so on. WhenSimulatedMote
and SimulatedRobot are initialised at the beginning of



Fig. 7. UML class diagram of the most relevant classes of BARAKA. See the text for the description.

Fig. 8. Snapshot of BARAKA: three-dimensional world view. This picture
shows a view of the three dimensional world associated with the network view
of Fig. 2. The real dimension of the motes, usually few centimetres, were
increased to make them visible. For comparison, the robot inthe bottom right
corner in the simulated world view is42 cm tall. The picture shows also one
obstacle, a wall, placed between the robot and the first mote it has to reach.

the simulation, they create the objects in the physical world.
Motes are simply simulated as light cubes (5 cm side, 50 g
mass). Robots are created as shown in Fig. 5, respecting the
real masses and sizes.13 Figure 8 shows the resulting simulated
world. During the simulation, theSimulatedRobot applies
the torques to the object’s wheel according to the commands
given by the controller. If, for instance, the controller decides
that the robot has to move forward, the controller calls
the method inSimulatedRobot to set the speed of the
wheels. The implementation inSimulatedRobot calculates
which is the required rotational speeds of the wheels. It
then calls viaODEObject functions of the ODE to set
the desired rotational speed by applying a torque on the
hinges.SimulatedRobot’s work ends here. During the next
integration step,odesim will let the wheels rotate. Given
the friction with the ground, the rotation of the wheels will
result also in a forward translation of the wheel and its con-
nected bodies, i.e., the robot. On request from the controller,
SimulatedRobot uses information obtained byodesim in
order to simulate the robot’s sensors.SimulatedRobot can
get, for instance, a list of nearby objects and use it to calculate
the value of the infrared sensors to return to the controller.

13http://www.openrobertino.org/hw/dimensions/
overview.html

The other inheritance branch comes fromOMNETObject.
This class deals with everything that has to do with the
networking of the node. It is derived from the application
layer class specified by the MF. If the controller wants to
send a message,SimulatedMote andSimulatedRobot
take the message from the controller, wrap it into a OMNeT++
message and put it in the scheduler of the simulation kernel.
When an agent receives a message from others, the message
passes through the NIC, the network layer till the application
layer, that is, an instance of eitherSimulatedMote or
SimulatedRobot. The message is then forwarded to the
controller to be processed.

The controllers of the motes and the robots are implemented
respectively by the classesMoteController and
RobotController. They both implement the interface
Controller. Each instance of SimulatedMote
(SimulatedRobot) contains one instance of
MoteController (RobotController) and simulates
one mote (robot).

Figure 9 summarises how the classes work together. It
depicts the typical working flow of the simulation of a robot.

The network connections to other agents are kept up to date
by the mobility module related to each simulated agent. The
mobility node regularly queriesodesim for the position of the
agents, that is, of the objects created bySimulatedMote
andSimulatedRobot.

The advantage of BARAKA w.r.t. OMNeT++ and ODE
taken individually is that BARAKA is better when one has
to focus on both the networking and the physics of the system
at the same time. In [4], for instance, we study a system where
the robots’ controllers (implemented in the application layers)
heavily interact with the network layers of the nodes. If we
had run two different set of experiments, one with a network
simulator and one with a robot simulator, we would not have
been able to understand and exploit the effects of physics on
communication and the other way round.

VI. CASE STUDY

We now describe an experiment we ran in order to test our
simulator. The following set-up might seem too complex and
some design decision that we took might seem unmotivated.
This is due to the fact that what we discuss now is in fact only
a part of a bigger scenario that we described and analysed in



Fig. 9. UML sequence diagram that summarises how a robot is simulated
in BARAKA. During the initialisation, simulatedRobot (an instance of
SimulatedRobot), creates the body in the world handled byodesim. The
simulation kernel delivers messages tosimulatedRobot, which forwards it to
robotController, the controller of the robot.simulatedRobot sets a periodic
timer to simulate the robot’s control cycle. During the control cycle, the
controller might call methods ofSimulatedRobot to obtain, e.g, the value
of the IR sensors.simulatedRobot calculates the value using information
coming fromodesim.

another work [4]. There is unfortunately not enough space to
justify our choices here. We think however that it is not so
important now to give a sound justification of our set up. Our
purpose is to test BARAKA and to give some examples of
what we can do with it. The following set-up, albeit complex,
can effectively test both the networking and the physical
behaviour of a SANET at the same time.

In this experiment, both networking and physical simulation
of the environment are important. We simulate a SANET with
25 motes placed on a grid in a square environment of side
500 m, as shown in Fig. 2 and Fig. 8. One mote (highlighted
by a circle in Fig. 2) broadcasts a message requesting for
a robot’s intervention. There is one robot in the bottom left
corner that listens for incoming requests. When it receivesone,
it answers and drive to the requesting mote, avoiding to collide
against other objects.

The environment size is smaller than the one commonly
used for SANETs, because it is the trade-off between different
criteria: on the one hand, we need a large area to have a
realistic simulation of the system; on the other hand, larger
area increases the simulation time, since the speed of the robot
is fixed. The size of our environment is however sufficient to
test BARAKA’s features, which is our main concern in this

Fig. 10. Motes’ behaviour for help-request task. The dash-dotted arrow
represents a transition that occurs thanks to an incoming packet, in this case
a robot that answers the mote’s request or that signals its arrival. The dotted
arrow stands for an incoming packet from the robot which gaveup the task.
Continuous-line arrows are internal events which the mote evaluates at each
control step. See the text for the description of the states.

paper.
The robot is too far away to communicate with the mote,

thus the network requires a routing mechanism. Our routing
algorithm is explained in [4]. It is able to set up several
routes (in the network topology) to one destination. The MAC
protocol is the IEEE 802.11 as implemented by the modules
provided by MF.

The robot needs to know the path (in the environment)
to its destination. The robot does not require a map of the
environment since it can obtain enough information from
the routing table of its network layer. The topology of the
WSN can be seen as an approximation of the topology of
the environment. The robot can exploit this feature insteadof
trying to build a map of the environment. Assuming that the
robot can know the direction of a nearby mote14, it can travel
in the SANET in the same way in which network packets do.

A. Agents’ Controllers

After the mote has broadcast its help request, its controller
works as depicted in Fig. 10:

request
The mote waits for any robots to reply. In our case, only
one robot can reply. If the mote does not receive a positive
answer within30 s, it broadcasts the request again. It
repeats this for a maximum of 3 times and then gives
up.

wait
The mote waits for the robot that was assigned the
task. During this period, the robot is travelling through
the network to reach its destination. It regularly sends
messages to the mote. Messages are both used as ‘keep
alive’ and to update the robot’s route. They contain also
the expected maximum time the robot requires to travel
one hop. If the mote does not receive a message from the
robot again within this time, the mote ‘drops’ the robot,
broadcasts the request again and returns torequest. Upon

14It is not the purpose of our work to address this problems, butit might be
done, e.g., by triangulating the signal emitted by a node, byusing directional
antennas, or by means of a vision system.



Fig. 11. Robots’ behaviour for help-request task. The meaning of dash-
dotted, dotted and continuous-line arrows is as in Fig. 10. See the text for the
description of the states.

arrival, the robot sends a message to signal it is on the
place, and the mote considers the request fulfilled.

The robots starts acting after the arrival of the mote’s
request. The controller of the robot works as shown in Fig. 11:

select destination
The robot probabilistically chooses one host among the set
HD of motes that are waiting for help. In this case there is
however only one mote requesting, and thus it is chosen
with probability 1.

request assignment
The robot informs the destination that it is willing to take
on the request. The mote decides whether the robot can
continue or not. The mote may reject because the request
was already fulfilled, or because another robot is working
on it. If the robot does not receive an answer after30 s, it
sends the request again for a maximum of 3 times, then
it gives up.

find next hop
The controller looks into the routing table of the network
layer to select the next hop of the route to its destination.
The next hop is chosen randomly. The probabilityPnd of
a neighbourn to be selected as next hop to go tod is
given by:

Pnd =
r(n, d)2
∑

i∈N(d)

r(i, d)
,

r(n, d) =

{

H if n = d,
1
h

otherwise.
,

whereN(d) is the set of the robot’s neighbours that know
a way tod, h is the distance measured in number of hops,

andH is a high value constant. This functions selects the
next hop in the same way as the network layer does to
route data packets (see [4]).

request next hop
If there is no entry in the routing table about destinationd,
the robot sends a message to the destination and waits for
a reply. This message is used to start the route discovery
process at the network layer. As inrequest assignment,
the robot waits30 s before sending another request, for a
maximum of 3 times, then it gives up.

go to next hop
The robot proceeds towards the next hop. It periodically
checks the IR sensors to see whether it is going to collide
with an obstacle, and avoids it if necessary. When the robot
is at 10 m from the mote, it invalidates the hop’s entry in
the routing table, and sends a message to the destination,
in order to start a new route discovery process. When
it reaches the distance4 m, it considers the hop reached
and searches for a new one. If the previous message did
not get lost, the routing table should already contain the
information to find the new hop immediately. If the robot
has been trying to reach the hop for more than300 s, it
gives up.

go to destination
In this state, the robot behaves mostly as ingo to next
hop, only the robot does not need to send a message to
the destination when it is at10 m from it. When the robot
is at less that10 m from destination, it signals the mote
that it has arrived.

It should be clear now to the reader that to simulate this
set-up we need a good simulation of both the network and the
physical world. The former is required to accurately simulate
the communication between robots and motes, the latter to
allow the robot to move. Although this set-up might seem to
the reader somehow crafty (we recall that this is due to the
fact that is only a part of our work in [4]), it is a good test
bed for our simulator.

The messages exchanged between the robot and the mote
consist of three Boolean fields:ra, ma and a. The robot
setsra (it stands for “robot acknowledgement”) totrue
when it asks to be assigned the help request, or when it sends
messages to find the next hops in the route. The field is set
to false when the robot gives up. The mote setsma (“mote
acknowledgement”) totrue to inform the robot that it is in
charge of the request. The mote sets it tofalse if the mote
gives up on the task. Finally, the robot setsa (“arrived”) to
true to inform the mote that it arrived at the destination.

B. Measurements

There are several things that can be measured with
BARAKA. In fact, BARAKA can be used to estimate or
measure whatever observable might interest the researcher, as
long as the measurements can be expressed in the form of
C/C++ code to insert in the source.

For instance, one might be interested in the trajectory of
the mobile nodes. It is easy to modify themobility modules of



0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

x

y

Fig. 12. Trajectory that the robot followed to reach its destination. Ticks
mark the position every30 s. Note the avoiding manoeuvre at the bottom left
corner: the straight line is interrupted by an obstacle.

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

x

y

Fig. 13. Number of packets received by each node during the experiment.
Each node is represented by a fuzzy circle. The darker the circle, the more
packets the node received.

each node to log the position. The result is shown in Fig. 12.15

As an additional example, we analyse in [4] the degree of
division of labour between the agents. The mean time to travel
to the next node and the time needed to avoid an obstacle
might be other interesting measures that can be easily collected
by our simulator.

It is at the same time possible to perform measurements on
the network. If one wanted to see which parts of the network
are under load, one could plot the number of packets received
by each node, as we do in Fig. 13. It is also easy to measure
the time it takes to discover a route,16 the end-to-end delay,17

or to see the routes that packets travel (see [4]).

VII. C ONCLUSIONS

We described BARAKA, the simulation tool that we devel-
oped for a comprehensive analysis of SANETs. This simulator

15Some movies from this experiment, can be seen athttp://www7.
informatik.uni-erlangen.de/~labella/comsware07.html

16In our case: minimum1 ms, first quartile1.7 ms, median10.6 ms, third
quartile 73.9 ms, maximum7.5 s.

17Minimum 0.7 ms, first quartile 2.1 ms, median8.7 ms, third quartile
20.8 ms, maximum0.25 s.

is more advanced than the ones currently available in the sense
that it can accurately simulate the networking and the physical
world of the system. This goes at the cost of some more
computation time. The overhead is however negligible: in [4]
we simulated up to 25 motes and 12 robots, and the speedup
with reality was still high. The advantage of BARAKA is
that it allows a researcher to do experiments on new forms of
robot/mote and application/network layer interactions. It also
reduces the work necessary to port the algorithms on the real
hardware.

However, the simulator still lacks a validation in more
complex scenarios, and our future work will for sure go in
this direction. Our preceding experience with simulation both
of networks and of robots make us confident in a successful
validation: when designing BARAKA, we used our experience
to improve its reliability.

ACKNOWLEDGEMENTS

Thomas Halva Labella would like to thank the DAAD
(Deutscher Akademischer Austausch Dienst), grant number
331 4 03 003, for the fellowship that funded this work.

REFERENCES

[1] I. Akyildiz and I. Kasimoglu, “Wireless sensor and actornetworks:
research challenges,”Ad Hoc Networks, vol. 2, no. 4, pp. 351–367,
2004.

[2] M. Batalin and G. Sukhatme, “Using a sensor network for distributed
multi-robot task allocation,” inProceedings of the IEEE International
Conference on Robotics and Automation (ICRA2004), vol. 1. IEEE
Press, New York, NY, 2004, pp. 158–164.

[3] F. Dressler, “Network-centric Actuation Control in Sensor/Actuator Net-
works based on Bio-inspired Technologies,” in3rd IEEE International
Conference on Mobile Ad Hoc and Sensor Systems (IEEE MASS 2006):
2nd International Workshop on Localized Communication and Topology
Protocols for Ad hoc Networks (LOCAN 2006), Vancouver, Canada,
October 2006.

[4] T. Labella and F. Dressler, “A bio-inspired architecture for division of
labour in SANETs,” inProceedings of the First IEEE/ACM International
Conference on Bio Inspired Models of Network, Information and Com-
puting Systems (BIONETICS 2006), Cavalese, Italy, Dec. 11–13, 2006,
In press.

[5] A. M. Law and W. D. Kelton,Simulation modeling and analysis, 3rd ed.
Boston: McGraw-Hill, 2000.

[6] D. Johnson, D. Maltz, and Y.-C. Hu, “The dynamic source
routing protocol for mobile ad hoc networks (DSR),” Internet
Draft, 2004. [Online]. Available: http://www.ietf.org/internet-drafts/
draft-ietf-manet-dsr-10.txt

[7] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on demand distance
vector (AODV) routing,” IETF RFC 3561, 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3561.txt

[8] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,”Wireless Communications and Mobile
Computing: Special Issue on Mobile Ad Hoc Networking: Research,
Trends and Applications, vol. 2, no. 5, pp. 483–502, 2002, p6-3
camp2002survey.pdf.

[9] H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsub-
ara, “Robocup: a challenge AI problem,”AI Magazine, vol. 18, no. 1,
1997.

[10] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stageproject: Tools
for multi-robot and distributed sensor systems,” inProceedings of the
International Conference on Advanced Robotics (ICAR 2003),, Coimbra,
Portugal, June 30–July 3 2003, pp. 317–323.

[11] A. Varga, “The OMNeT++ discrete event simulation system,” in Pro-
ceedings of the 15th European Simulation Multiconference (ESM’2001).
European Council for Modelling and Simulation, Nottingham, UK, May
2001.


