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Abstract— Division of labour is one of the possible strategies to
efficiently exploit the resources of autonomous systems. Itis also
a phenomenon often observed in animal systems. We show an ar-
chitecture that implements division of labour in Sensor/Actuator
Networks. The way the nodes take their decisions is inspiredby
ants’ foraging behaviour. The preliminary results show that the
architecture and the bio-inspired mechanism successfullyinduce
self-organised division of labour in the network. The experiments
were run in simulation. We developed a new type of simulator
for this purpose. Key features of our work are cross-layer design
and exploitation if inter-node interactions. No explicit negotiation
between the agents takes place.

I. I NTRODUCTION

Sensor/Actuator Networks (SANETs) are interesting re-
search objects. They are hybrid systems consisting of net-
worked sensor nodes (also calledmotes) and mobile robots
(wheeled, legged, flying, and so on). Robots and motes
(henceforth referred to asagents) can communicate together
via wireless communication for further cooperation, e.g. to
achieve a common goal.

SANETs might be used for fire fighting in forests, or to
assist a rescue team after an earthquake or similar natural
disasters. Motes are deployed to sense the environment. Their
output can then be directed to a base host which elaborates
the data and sends out commands to the robots. A more
challenging issue is to have robots responding autonomously
to the motes’ output.

Akyildiz et al. [1] cites as unique features of a SANET: node
heterogeneity, real-time requirements, different deployment
strategies for motes and robots, mobility and co-ordination
paradigm—mote/robots and not only mote/sink as typically in
Wireless Sensor Networks (WSNs). Research issues include
power management, routing, co-ordination algorithms, design,
and many other topics.

This work addresses one common problem that arises in
autonomous systems:division of labour. Suppose that the
agents in a SANET have to perform different tasks. Consider-
ing the mentioned rescue example, the tasks would probably
be: report the state of the environment (temperature, pictures,
sounds, etc.) and help victims. There are obviously a number
of interesting applications that might fit this scenario. Wefocus
only on coverage [2]. An autonomous SANET has to decide
which and how many agents should perform each task, in such

a way that tasks do not overlap in the area. This is what we
mean by division of labour. The aim of division of labour is
to efficiently exploit the available resources of the network.

Not all authors agree on our definition of division of labour.
On the contrary most of them call the problem of deciding
which and how many agents should perform a task astask
allocation(we discussed on this in [3]). We think this is mostly
due to different interpretations of the word “task”. In most
cases, it is intended as an operation associated with a starting
and a duration (or terminating time). The task “lives” less than
the overall system. In our case, a task is something that “lives”
as long as the SANET itself. The examples provided in Sec. III
make this definition clearer.

Our previous work [3], [4] demonstrated how a simple
learning mechanism could be useful to improve the efficiency
of a group of autonomous robots. The learning, inspired
by ants’ foraging, was also able to introduce self-organised
division of labour in the group. The discussions and results
presented in this paper extend our work in the context of
SANETs.

We describe here an architecture for division of labour in
SANETs. The architecture is based on probabilistic decisions.
During the lifetime of the SANET, the agents adapt the proba-
bility to execute one task among a given set. The architecture
exploits the interactions between agents, but only within a
limited range. The local interactions are however enough to
induce division of labour at the global level, i.e. to provide
a self-organising behaviour [5]. No particular knowledge of
the environment or of the other nodes’ activity is required.
Additionally, the architecture is based on a cross-layer design.
Application and network layers are both responsible for the
division of labour.

We could not find any related work about division of labour
in SANETs. There are however a few about task allocation,
where “task” is meant as a short-living set of actions to be
performed. Gerkey et al. [6] proposed a market-based task
allocation schema. The agents bid to acquire a task based
on the estimation of their capabilities. The authors’ auction
involves the whole SANET. They are aware that this might be
a problem and envisage to solve it by running only localised
actions. Clustering methods provide the inherent capability of
performing operations in a local context. Younis et al. ex-



ploited this behaviour for task allocation in WSNs [7]. Batalin
et al. [8] used a greedy policy to allocate tasks. Every task
is allocated to the best available agent. Low and co-workers
[9] used a bio-inspired task allocation mechanism. It is based
on the threshold model [10] and is used to allocate the task
of tracking objects in the network. As in the architecture we
describe below, their agents adapt during the network lifetime.
Jesi et al. [11] also use an adaptive threshold model for the
purpose of selecting superpeers in an overlay network. They
employ a different formula to adapt the system behaviour. It
will be part of future work to compare the different formulae
in detail.

We tested our architecture in a proof-of-concept using a
simulated environment. There are still some minor things
that have to be improved before porting to real hardware.
We took particular care in designing a reliable simulator.
Our previous experience with similar simulations make us
confident in a successful port on real hardware and to more
complex environments in the future.

Section II briefly describes the simulator that we devel-
oped for our experiments. Sections III and IV describe the
application layer (for task selection) and the network layer
(for message routing) of our architecture. Section V shows
the results of the experiments, and Section VI draws the final
conclusions.

II. SIMULATION

Good simulation tools can be found for WSNs as well as
for robots. The former focus on the simulation of the com-
munication layers and environments, the latter on the physical
environment and how the robots perceive it. Something that
does both is, to the best of our knowledge, missing.

On the side of network simulations, OMNeT++1 is becom-
ing more and more popular. OMNeT++ is a modular discrete
event simulator. It can be extended by means of additional
components. The Mobility Framework (MF) simulates mobile
nodes that communicate through wireless communication. The
environment in which the nodes move is quite simple. Nodes
are simulated as points in a rectangular two-dimensional area.
Most of the simulations of wireless networks can be reliable
and effective also in such a simple environment.

On the side of robot simulation, a number of libraries have
appeared for the simulation of rigid bodies. Open Dynamics
Engine (ODE)2 is one of them. A body is defined by its
position, mass, velocity, orientation, and momentum of inertia.
More bodies can be connected through different types of joints.
Joints constrain the movement of one body w.r.t. another. Each
body might also be given a shape. Shapes are used by the
library to detect when and where two bodies collide. ODE
solves the equations of dynamics to obtain the trajectory of
the bodies.

We extended OMNeT++ to include in it the rigid-body
simulation provided by ODE. We called the resulting simulator

1http://www.omnetpp.org/
2http://www.ode.org

BARAKA. Unfortunately, there is not enough place here to
describe BARAKA in details. The interested reader can refer
to [12]. Fig. 1 shows the outcome of our hybrid simulator.
BARAKA is based on he principles set forth by Jakobi et al.
[13]. These principles make more likely a successful port of
the program on real hardware.

III. TASK SELECTION

We first describe the application layer, which is in charge
of selecting the tasks to perform. Agents have the capability
to perceive whether their action is successful or not, either by
directly sensing the environment, or by receiving a feedback
from other nodes (we discuss more on this in Sec. IV-C).
Before choosing a new task, the application layer adapts its
parameter on the base of the outcome of the previous task.

Robots and motes knowa priori the list of possible tasks
that they can perform. They have generally different sets of
tasks:Trobot = {1, . . .Nrobot} for the robots andTmote =
{1, . . .Nmote} for the sensors.Nrobot and Nmote might be
different, but in our experiments they are both set to 4. The
robots’ and motes’ four tasks are described below. Given that
Trobot = Tmote, we refer to both usingTagent.

Each agent associates a task to a real numberτi, with i ∈
Tagent. At the moment of selecting a task to perform, the agent
chooses randomly between the tasks. The probability to choose
task i is

P (i) =
τβtask

i
∑

k∈Tagent

τβtask

k

, (1)

with βtask ≥ 1 (in the experiments of Sec. V,βtask = 3). This
equation is like the one used to model how ants choose one
path among the several that bring to a food source [14]. In the
original formulation,τi was the concentration of pheromone
on path i. The parameterβ was introduced to increase the
exploitation of good paths.

The agent initialisesτi = τinit, ∀i ∈ Tagent. If the agent is
successful in performing taski, then

τi = min{τmax, τi + ∆τ} (2)

and
τi = max{τmin, τi − ∆τ} (3)

if it is unsuccessful.
The agents in our experiments have four tasks. For three of

them, the behaviours of robots and sensors are the same. We
suppose the agents are used to sense the environment and to
report to a base host. The tasks are:

T1) measure the temperature locally and send it to the base;
T2) record the sound in the surroundings and send it to the

base;
T3) record a video of the place and send it to the base.

Task T1 ends immediately because it creates and sends only
one small packet. Tasks T2 and T3 occupy the node for more
time, because they generate a stream of packets, which is
usually a big load for the network. T2 differs from T3 because
it generates less packets than the latter. These tasks are thus



the sensing task that both motes and robots have to perform.
They are successful if the packets are not rejected by a node
on the route to the host (Sec. IV-C).

Motes’ and robots’ behaviours are different in the case of
the fourth task:

T4) motes broadcast help requests, robots answer to them
and travel where they are needed.

In a general application, motes might decide that they need
help by analysing their data, or after instructions from thebase.
In our experiments, motes’ help needs are modelled with a
stochastic process. Robots listen to incoming help requests and
answer to them by travelling where they are required. Robots
and motes co-ordinate their actions through a well defined
protocol . In the context of this paper, it is sufficient to saythat
motes consider a failure if they do not need to send any help
request, a success otherwise (a mote’s success does not depend
on robots’ action). A robot considers the task successful ifit
can reach the requesting mote, a failure if there are no pending
requests or if it can not reach its destination.

Assuming that the robots can know the direction of a nearby
mote3, the robots can use the route discovery capability of the
network layer to find a path to their destination. In WSNs, the
topology of the network usually corresponds to the topologyof
the environment. Robots do not need a map of the environment
because the network topology can be seen as a simple map.

IV. N ETWORKING

The literature proposes several routing protocols for net-
works with mobile nodes [15]. We focused our attention on
AntHocNet[16] which is a self-organising routing algorithm,
inspired by the food searching behaviour of ants. There are
two main reasons why we chose this algorithm: firstly, it is
inspired by ants’ behaviour and perfectly fits in the contextof
our work; secondly, and more important, Di Caro et al. [16]
showed that it performs better than AODV [17], which is the
common reference point forad hoc networks. We modified
the original algorithm to fit into our work. We describe below
the algorithm used for our experiments. We are going to
explicit the differences w.r.t. the original algorithm during our
exposition.

Each message coming from the application layer belongs to
different classes, one for each type of task. The network layer
of nodei keeps routing information in a number of tablescR

i

for each classc. There is an additional class that is used for
the messages originated by the network layer, like delivery
error notifications or route discovery responses.

Each entrycR
i
nd is a tuple〈t, h, e, s, m, v〉4 that records

some statistics about the path from nodei to noded using node
n as next hop for a message belonging to classc. The entryt
is the estimation of the transmission time,h is the number of

3It is not the purpose of our work to address this problems, butit might be
done, e.g., by triangulating the signal emitted by a node, byusing directional
antennas, or by means of a vision system.

4In AntHocNet, there is only one routing table, because it does not
differentiate messages into classes. Each entry is just onereal number: the
estimation of delivery time for a message.

hops in the route,e is the energy required for transmission,s
is the minimal signal-to-noise ratio of all the links in the path,
m ∈ {true, false} denotes if the next hopn is mobile, and
v ∈ {true, false} whether it is still valid for routing.cRi

nd ∈
R = R

3 × N × {true, false}2.
Storing several statistics allows the node to use different

routing strategies. Every node might have different objectives
to maximise. It might choose, for instance, the route with
higher minimal signal-to-noise ratio, increasing the reliability
of the message delivery. The node might also choose to use
different criterion in different moments. If it detects important
information to be sent, it might decide to use a route that
minimise the end-to-end delay. If the node has low power
level, it might decide to send the message to a near node to
reduce transmission power.5

When the application layer wants to send a message to a
host for which there is no known path, the network layer starts
a route discovery process. When one or more routes have
been found, the network layer routes the data on the newly
discovered paths. The processes of route discovery and routing
are done independently for each message class. If a route is
known for a classc1 but the network layer receives a message
of class c2, a new route discovery takes place. This was
introduced to address problems, like anycast communication
and spatial load balancing of the routes, that we do not address
in this paper.

To describe the routing algorithm, we need to describe the
route discovery process (Sec. IV-A) and the route selection
(Sec. IV-B) separately. We then describe an additional feature
of our system in Sec. IV-C: a packet filtering mechanism.
Sec. IV-D describes the additional packet types used by the
network layer.

A. Route Discovery

If a node wants to send packets to a destination for which it
does not know any route, it broadcasts a ROUTEDISCOVERY

packet, containing the address of the desired destinationd. The
request is treated by the other nodes as a normal data packet.

The packet is transmitted to the node’s neighbours. They
might know a route that reachesd, or not. If a neighbour
knows how to reach the destination, it randomly chooses a
next hopn to relay the request. The node uses a function
r : R → R

+ to transform the statistics about the route tod in
a positive real value.6 The probabilityP i

nd at nodei to choose
n as next hop to reachd is:

P i
nd =

r(cR
i
nd)

βdisc

∑

j∈Ni

d

r(cR
i
jd)

βdisc

. (4)

whereN i
d is the set of neighbours for which a path tod is

known. βdisc is a parameter that can control the exploratory

5The distance of a node can be estimated by the receiving powerof the
message, as measured by the antenna, that is, by the physicallayer. It should
be noted however that it is not really important in this case to know the real
distance, but the power required for the transmission.

6AntHocNetdoes not need the functionr( ·) since the routing table contains
already positive real numbers.



behaviour of the algorithm, in the same fashion as for task
selection. For route discovering, it is however set to 1.

The actualr( ·) used in our experiments is:

rtime(cR
i
nd) =

{

1
t

if t 6= 0,

H if t = 0.
,

r(cR
i
nd) =































0 if n is not a valid hop,

H if n is a valid hop andn = d,
rtime(cR

i

nd
)

2 if n is a valid hop,n 6= d

andn is a mobile hop,

rtime(cR
i
nd) otherwise.

,

where H is a high-value constant. As it can be seen, this
function increases the probability to route packets through
nodes which are not mobile, i.e., the sensors. This is because a
link to a mobile node is likely to break soon, while the sensors
can form a sort of stable backbone.

If a neighbour does not know anything aboutd, it broadcasts
the incoming request again. Due to broadcasting, the discovery
messages can proliferate quickly and follow different paths in
the network.

The ROUTEDISCOVERY stores the path travelled so far. If
a node receives several requests originating from the same
node, it compares the path of each packet with the shortest
known path, the distance being measured in number of hops.
We apply the same filters as [16]: only packets that have not
travelled over very bad paths are let through.

We assume that the paths are symmetric: if node A can
directly communicate with node B, than node B can di-
rectly communicate with node A. On arrival to destination,
the receiving node generates a ROUTEDISCOVERYRESPONSE

packet. The ROUTEDISCOVERYRESPONSEis sent back with
high priority along the same path of the incoming packet.
During its travel back, it collects the statistics about thepath
that will be used to updateRi

nd. The statistics are not collected
and stored only in the ROUTEDISCOVERYRESPONSEpackets,
but in all the packets that the network layer receives. In this
way, other nodes can passively set up routes to other hosts
when they receive a message from it.7

At arrival of a new packet with data about the route tod
throughn, the network layer updates the routing table using
a custom function⊕ : R

2 → R. If r
i
nd is the information

obtained from the incoming packet,

cR
i
nd =c R

i
nd ⊕ r

i
nd

performs a weighted sum of the real valuest, h, e, s and
setsm to the new value. All occurs only if both the previous

7In AntHocNet only the returning packets set up the routes.AntHocNet
keeps the routing table up-to-date by means of a proactive strategy. While
communicating with the destination,AntHocNetgenerates new ROUTEDIS-
COVERY packets to find new routes. Our solution avoids this, at the cost of
slightly bigger network packets.

information and the new information are valid.8

Once a node starts the route discovering process, it waits
for a response for some time and buffers the data to send. If
it did not receive any response after some time (5 s), it starts
the discovering process again. The node repeats the process
for a maximum number of times (5) before giving up. Once a
route has been found, it is kept in the routing table for120 s
and then removed.

If a node does not find a route to the destination, it takes
one of two actions according to who originated the message:
if the message came from the application layer, the network
layer notifies it about the failure; if the message came from
someone else, it sends a ROUTEFAILURE packet to the origin.

B. Routing

Once one or more routes have been found, the network layer
starts sending the data. The node chooses randomly the next
hop for each packet. The probability for each hop is calculated
with (4), only using another exponent,βroute, higher thanβdisc

(in our experiments,βroute = 2). The higher exponent results
in a greedier behaviour w.r.t. good paths. The probabilistic
data routing leads to data load spreading, relieving congested
paths.

C. Packet Filtering

Most of the packets travelling though the SANET are likely
to contain data coming from sensor readings. In order to
reduce the congestion of the network, a node might decide, in-
stead of routing a packet, to drop it, for instance, if it contains
the same information. The rejection of others’ messages plays
an important role in the division of labour. It is the source of
the competition that is required by the agents to specialise. If
an agent can successfully send a message associated to a task,
it increases the probability to perform the task again. If itis not
successful, someone has taken over it, and thus it decreasesits
probability to perform the task again. We already showed [3]
that similar interactions play a key role in division of labour.

Agents do not need to signal to their neighbours the task
they are currently executing, because their output is likely
to be read anyway by nearby agents. This is why it is
reasonable to directly use this ‘free’ source of information
as base mechanism for agents’ specialisation.

Each node remembers the last packet that it received of a
given class and for a given destination.9 Upon arrival of a new
packet to route, the network layer compares it with the one
previously stored. It then randomly decides whether the packet

8In our experiments, it does happen that sensors become mobile, and thus
changingm might seem useless. It could happen in other applications that
some robot decides to “become” a sensor, that is, not to move.The robot
could decide it because the network in that point is particularly under load,
or because there was a failure of one sensor and the network lost connectivity.

9This implementation might require much memory and might notwell
scale. Other solutions can be used on devices with limited memory. We could
use a limited array for recording the last messages. If the array is full and a
new message should be stored, then the oldest element can be deleted. This
system would have the effect only to weaken the interaction between nodes.
This effect could be compensated by some other means, like increasing∆Q—
see later.



should be routed or not. In case the node decides to route the
packet, it increases the probability to route it again laterand
decreases theτi related to packet using (3). If the node rejects
the packet, it decreases the probability to route it later, sends
a ROUTEFAILURE message to the source and the application
layer increases itsτi using (2).

This mechanism does not take place in the following cases:

1) the packet is broadcast (it might be some important
message to spread in the network);

2) the packet is not the first packet of a stream generated
by T2 or T3 (streams are interrupted at the beginning,
but not when the connection with the destination has
already been established);

3) it is a packet belonging to T4 (this task requires a strict
co-ordination between robots and motes, thus it should
not be interrupted);

4) the packet comes from a source further than a given
hop-count thresholdD (packets from near sources have
correlated content, and thus they can be dropped without
losing much information).

Each node i keeps a tablecQ
i of values cQ

i
d ∈

[Qmin,Qmax] for known destinationsd and packet classc.
The probabilitycP

i
d to route a packet is

cP
i
d =



















cQ
i
d if this is the first packet

of classc to d seen, or

α1α2(cQ
i
d −Qmin)+

+Qmin otherwise.

,

α1 = (1 − e−γ1h) , α2 = (1 − e−γ2∆t) ,

where h is the number of hops travelled by the incoming
packet, ∆t is the elapsed time from the previous known
message and the incoming packet,0 < Qmin < Qmax ≤ 1,
γ2 > 0 (in our experiments,γ2 = 0.01 s−1). The coefficients
α1 andα2 decrease the probability to route a packet for near
sources and for information recently transmitted. We want that
the effect ofα1 smoothly decreases forh → D. Because
α1 ≈ 1 when the exponentγ1h ≈ 5, we setγ1 = 5/D.

Every cQ
i
d is first initialised toQinit. If a node decides to

reject a packet, it updatescQi
d using

cQ
i
d = max{cQ

i
d − ∆Q,Qmin} ,

and uses

cQ
i
d = min{cQ

i
d + ∆Q,Qmax} ,

if it decides to route the packet.
The thresholdD grants that the interactions between agents

are localised. Each agent looks only at neighbours no more
thanD hops away and adapts accordingly. Therefore, agents
decide only based on local information, but their decisions
have an effect on the whole system, as we show in Sec. V.

D. Other Packet Types

For the correct functioning of the network layer, the nodes
need some other information to be exchanged. In addition
to ROUTEDISCOVERY, ROUTEDISCOVERYRESPONSE and
ROUTEFAILURE (used for route discovery), the network layer
generates DATA packets. They contain the information coming
from the application layer. The information is routed as ex-
plained in Sec. IV-B and using the routing table corresponding
to the message class.

The network layer regularly broadcasts to all its neighbours
a HELLOMESSAGE. After a node receives a HELLOMES-
SAGE, it expects to receive it regularly. If it does not occur
within a given amount of time, the neighbour and all its
associated routes are deleted from the routing table.

The HELLOMESSAGE rates are different for robots and
motes.10 The robots use a higher sending rate (30 s) than the
motes (120 s). The nodes use also two different timeouts in
case the node is mobile (180 s) or not (600 s). The infor-
mation about the mobility of the nodes is contained in the
HELLOMESSAGE.

V. EXPERIMENTS

We simulated SANETs in a squared area, whose side is
500 m. Twenty-five motes were placed in a grid that covers
the environment. This is a likely placement if the motes are
dropped from above and the purpose is to uniformly cover the
environment. To simulate however a real deployment process,
the motes were randomly placed in an area5 m around the
actual grid point. Robots were placed at the corners of the
environment. We tested 1, 2 and 3 robots at each corner, for
a total group sizes of 4, 8 and 12 robots. Figure 1 shows the
set-up, from the point of view both of the network and of the
simulated three-dimensional world.

The remaining parameters of our architecture were set as
follows: Qmin = 0.01, Qmax = 1.0, Qinit = 1.0, ∆Q = 0.02,
D = 2, τmin = 0.1, τmax = 10, ∆τ = 0.5 and τinit =
3.0. The sound stream size was40 kB and the video stream
size400 kB. The choice of the values was based on empirical
experience.

The base host is at the top left corner of Fig. 1(a). The
resulting set-up is symmetrical along one of the diagonals.

Robots and motes did not know the address of the base. The
application layer of the base broadcast regularly a packet with
its address. The agents started working only after the arrival of
this message. Given the importance of this information, it was
replicated and broadcast also in each node’s HELLOMESSAGE.
Apart from broadcasting its address, the application layer
of the base only received and recorded the messages it had
received. The network layer of the base was the same as the
other nodes.

The MAC and physical layers simulated the IEEE 802.11
protocol. We used the modules included in the MF.

10AntHocNetuses one rate for all the nodes. It should be noted however
than in the networks studied in [16] the nodes are all homogeneous. The
different rates are then a natural extension to face heterogeneous nodes.



(a) Network view

(b) Simulated world

Fig. 1. Set-up of the experiments: views of the network and ofthe simulated
three-dimensional world. In the bottom view, the real dimension of the motes,
usually few centimetres, were increased to make them visible. For comparison,
the robot in the bottom left corner in the simulated world view is 42 cm tall.

The help requests were generated by a stochastic process.
Each mote decided every second whether it required help or
not. We call help densitythe probability per second that a
mote requires help. In this set of experiments, help densi-
ties were constant during each run. Each newly generated
help request was put in a queue in the mote. When motes
executed T4, they checked if the queue was empty or not.
If it was empty, they considered it a failure and adaptedτ4

using (3). If there were pending requests, they broadcast a
HELPREQUESTpacket and adaptedτ4 using (2). We used help
densities12.5 10−6s−1, 25 10−6s−1 and 50 10−6s−1. Each
combination of robot group size/help density was tested in
forty different runs. Each run was described by a seed for the
random number generator and the misplacement of the motes.
Another random number generator, initialised with a different
seed, was used to generate the help-request events during the
simulation.

A. Evaluation

The intuitive way of measuring the division of labour is
to count how many nodes are involved in a task. This is the
method we followed for instance in [3]. This method has one
problem: it does not consider the spatial positions of the nodes.
Two neighbouring nodes performing the same task would be

treated in the same way as two nodes far away. If the task were
measuring the temperature, the neighbouring nodes would be
doing redundant work.

To account also for the spatial distribution of the tasks,
we used thehierarchic social entropy[18]. Each agent was
represented as a point in a 5-dimensional space. The co-
ordinates of each point were given by the(x, y) co-ordinates
of the node in the arena (normalised by the arena side), and
by the probability of performing T1, T2 and T3. There is no
point to consider also the probability to perform T4 because
it is dependent on the other three tasks.

Then, we fixed the value of a parameterd, and we clustered
all the points that were no further away thand in the 5-
dimensional space. The number of clusters depends ond, thus
we denote it withC(d). The total number of agents isA. A
clusteri containsI(i, d) agents. Picking up an agent randomly,
it has probabilitypi = I(i, d)/A of belonging to clusteri. The
entropy of the system [18] can be measured by:

H(d) = −K

C(d)
∑

i=1

pi log2 pi ,

where K is an arbitrary constant, which we set to 1. The
hierarchic social entropy is defined as

S =

∫

∞

0

H(d) dd . (5)

Note that, thanks to the integral,S is not dependent ond,
but only on the positions of the points in the 5-dimensional
space. Note also that∃M : ∀d > M, C(d) = 1 andH(d) = 0.
Balch [18] shows thatS increases when the system becomes
more and more heterogeneous and the agents differentiate
themselves. In our case,S increases either if two neighbours
have different probabilities of performing the same task, or if
the nodes have the same probabilities but are far away.

B. Results

There might several interesting data to show about our
simulations, like delivery rate, end-to-end delays, and soon.
Unfortunately we have no space for all of them. We focus then
only on those measurements that are strictly related with the
division of labour.

At the beginning of the experiments, the agents of the
SANET had uniform probability of performing each task. The
hierarchic social entropy was thus at its minimum since the
only source of differentiation was given by the positions in
the arena of the nodes.

The situation after3600 s is shown in Fig. 2. As a reference,
we report the median value of the distribution of hierarchicso-
cial entropy at0 s (bottom segments in Fig. 2). The hierarchic
social entropy at0 s was not constant because of the stochastic
placement of the motes, thus the median value represents a
sort of approximated lower bound. The upper segments are a
sort of approximated upper bound ofS. They were calculated
by keeping fixed the motes, and finding the value of robots’
positions and agents’ task probabilities that maximisedS. S
is however complex to maximise, so we searched for the
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Fig. 2. Hierarchic social entropy after3600 s. The three groups of bars
correspond to a group size. Each bar in a triplet refers to a help density (as
shown in the legend) and summarises the results of 40 runs. The notches of
the bars correspond to the median results. The bars extend tothe first to the
third quartile of the distribution of results. The whiskersextend till the points
that are no more than 1.5 times the inter-quartile distance.The horizontal
segments show the approximated upper and lower bounds of thehierarchic
social entropy.
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Fig. 3. Distribution of the probabilities to perform task T2among the agents
(12 robots, help density50 10−6s−1). On thex-axis there are ten intervals
of probability. On they-axis, we report the fraction of agents that have been
observed having probability to perform T2 in the corresponding x range at
two snapshots of the system (see the legend).

local optimum reached from random initialisation of agents’
probabilities and robots’ positions. We repeated the process
for each motes’ initial position. The segments in Fig. 2 are
the medians of the local optima we found.

The results in Fig. 2 show that the agents in the SANET
specialised themselves. The level ofS increased after the
beginning of the experiments, meaning that they agents tended
either to be near and perform different tasks, or to perform
the same tasks but far one from the other. We can see that the
agents indeed specialised by looking at the distribution among
the agents of the probabilities to perform each task. They look
for every robot group size, help density and for tasks T1, T2
and T3 like Fig. 3.11

Shortly after the beginning (60 s), there is only one peak.
Agents’ probabilities were all initialised to the same value, and
are now spreading. At3600 s, three peaks appear. About 30%
of the agents had low probability of performing a given task.
Less than 30% had probability between 0.4 and 0.5. Finally,
there is a small peak also for probability between 0.9 and
1. We are granted that two agents with same probability of
performing a task were not likely to be neighbours by the
high values reached byS (Fig. 2).

11Due to the limited space, we do not show all the plots.
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Fig. 4. Distribution of the probabilities to perform task T4among the agents
(12 robots, help density50 10−6s−1).
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Fig. 5. Distribution of task T3 among the agents. Each agent is represented
by a fuzzy circle. The picture refers to a run with 8 robots, help density
25 10−6s−1 and depicts the state at2490 s after the beginning. The darker
the circle, the higher is the probability that an agent performs T3.

The situation was different for task T4. The distributions of
the probability to perform T4 looked like Fig. 4. The left peak
grew for decreasing help density. The high number of agents
that did not perform task T4 is explained by the relative low
help density. The distribution expanded to the right for fixed
help density and increasing robot number. This is simply due
to the fact that the higher the number of robots, the higher is
the probability that a robot answers to a help request. Thus,
the higher is the number of successful ends of this task, and
the higher the probability that the same robot repeats the task.

In Fig. 5, we show a typical snapshot of the distribution
of tasks in the SANET. The plot refers to T3. It can be
seen, that when a node had high probability of performing
T3, its neighbours were likely to have a low one. The routes
that were used to send the data to the base host are depicted
in Fig. 6. The network was split in two halves: there were
few links between the top right triangle and the bottom left
triangle. Figures 5 and 6 do not represent the steady state
of the SANET. The network reached a dynamic equilibrium,
where things continually changed. This is especially true for
the routes in Fig. 6, since the routing tables entries were
removed after a while, and new discoveries took place.

VI. CONCLUSIONS

This paper illustrated an architecture for division of labour
in SANETs. The agents make use of solutions inspired by ants’
behaviour. The control architecture is based on strong inter-
layer and inter-agent interactions. The latter are local, meaning
that they occur only between agents within a given range,
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Fig. 6. Routes to deliver the output of T3 to the base host (in upper left
corner). The situation is the same as in Fig. 5. The arrows show for every
node the known next hops. The thickness of the arrows is proportional to the
probability of choosing a node as next hop.

smaller than the experimental area. The local interactionsare
however enough to induce self-organised division of labourin
the SANET.

The degree of division of labour can be still improved.
It could be argued that it is possible to achieve the max-
imum degree of division by pre-programming the nodes to
do only one task and to spread them alternatively. This
solution however introduces other problems that do not touch
our solution. Firstly, the deployment process becomes more
complex, since the right nodes must be placed in the right
place to cover the environment. Secondly, the SANET can
not adapt to changes in the environment. Nodes require to be
reprogrammed for a new situation. Reprogramming might be
driven by the base host, which sends the new programs to
the nodes. The drawback is that the network has to sustain a
bigger load. Another solution would be to use the robots to
go and reprogramme individual nodes. The drawback here is
that a number of resources, the mobile robots, are taken away
from other tasks only for the maintenance of the network.
Algorithms similar to those used by our SANET have shown
to adapt well to changes in the environment [3], [14], [16].
Thirdly, one needs to know in advance the characteristics of
the environment and the number of motes and robots to find
the optimal division of labour. Thisa priori knowledge might
not be correct or difficult to retrieve.12 This knowledge is not
required by our architecture.

Future work will test other adaptation rules both at the ap-
plication layer and at the network layer in order to improve the
division of labour. We will also test how our system behaves
under dynamic environments. To improve the response time to
changes in the environment, we think it will be important to
base the packet filtering mechanism also on the content of the
messages. Suppose that two neighbouring nodes are measuring
the temperature of the environment, but they measure two very
different values. It is important that both values are reported,
since it might mean that a fire broke out.

12Additionally, if we already knew the environment, it would make little
sense to use a WSN to sense it.
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