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Abstract— Division of labour is one of the possible strategies to a way that tasks do not overlap in the area. This is what we
efficiently exploit the resources of autonomous systems. i$ also mean by division of labour. The aim of division of labour is
a phenomenon often observed in animal systems. We show an ar-, efficiently exploit the available resources of the networ

chitecture that implements division of labour in Sensor/At¢uator Not all auth definiti f divisi flab
Networks. The way the nodes take their decisions is inspiretly otall authors agree on our detinition of division or labour.

ants’ foraging behaviour. The preliminary results show tha the On the contrary most of them call the problem of deciding
architecture and the bio-inspired mechanism successfullinduce which and how many agents should perform a taskaas&

self-organised division of labour in the network. The expeiments  gllocation(we discussed on this in [3]). We think this is mostly
were run in simulation. We developed a new type of simulator q,,q 5 different interpretations of the word “task”. In most

for this purpose. Key features of our work are cross-layer dsign it is intended fi iated with # ¢
and exploitation if inter-node interactions. No explicit negotiation cases, Itis intended as an operation associated with engtar

between the agents takes place. and a duration (or terminating time). The task “lives” lesan
the overall system. In our case, a task is something thasTiv
. INTRODUCTION as long as the SANET itself. The examples provided in Sec. llI

Sensor/Actuator Networks (SANETS) are interesting renake this definition clearer.
search objects. They are hybrid systems consisting of net-Our previous work [3], [4] demonstrated how a simple
worked sensor nodes (also calletbte$ and mobile robots learning mechanism could be useful to improve the efficiency
(wheeled, legged, flying, and so on). Robots and mote§ a group of autonomous robots. The learning, inspired
(henceforth referred to aagent$ can communicate togetherby ants’ foraging, was also able to introduce self-orgahise
via wireless communication for further cooperation, e@. tdivision of labour in the group. The discussions and results
achieve a common goal. presented in this paper extend our work in the context of
SANETs might be used for fire fighting in forests, or t&SANETS.
assist a rescue team after an earthquake or similar naturalVe describe here an architecture for division of labour in
disasters. Motes are deployed to sense the environmerit. TIBANETS. The architecture is based on probabilistic decssio
output can then be directed to a base host which elaborairging the lifetime of the SANET, the agents adapt the proba-
the data and sends out commands to the robots. A mduibty to execute one task among a given set. The architectur
challenging issue is to have robots responding autonomouskploits the interactions between agents, but only within a
to the motes’ output. limited range. The local interactions are however enough to
Akyildiz et al. [1] cites as unique features of a SANET: nodanduce division of labour at the global level, i.e. to prowid
heterogeneity, real-time requirements, different deplegt a self-organising behaviour [5]. No particular knowledde o
strategies for motes and robots, mobility and co-ordimatidthe environment or of the other nodes’ activity is required.
paradigm—mote/robots and not only mote/sink as typically iAdditionally, the architecture is based on a cross-laysigie
Wireless Sensor Networks (WSNs). Research issues includigplication and network layers are both responsible for the
power management, routing, co-ordination algorithmsigites division of labour.
and many other topics. We could not find any related work about division of labour
This work addresses one common problem that arisesiSANETS. There are however a few about task allocation,
autonomous systemdlivision of labour Suppose that the where “task” is meant as a short-living set of actions to be
agents in a SANET have to perform different tasks. Considgrerformed. Gerkey et al. [6] proposed a market-based task
ing the mentioned rescue example, the tasks would probahljocation schema. The agents bid to acquire a task based
be: report the state of the environment (temperature, i@stu on the estimation of their capabilities. The authors’ aurcti
sounds, etc.) and help victims. There are obviously a numbevolves the whole SANET. They are aware that this might be
of interesting applications that might fit this scenario.fdeus a problem and envisage to solve it by running only localised
only on coverage [2]. An autonomous SANET has to decidetions. Clustering methods provide the inherent capgtuifi
which and how many agents should perform each task, in symérforming operations in a local context. Younis et al. ex-



ploited this behaviour for task allocation in WSNs [7]. Bata BARAKA. Unfortunately, there is not enough place here to
et al. [8] used a greedy policy to allocate tasks. Every taslescribe BARAKA in details. The interested reader can refer
is allocated to the best available agent. Low and co-workedrs [12]. Fig. 1 shows the outcome of our hybrid simulator.
[9] used a bio-inspired task allocation mechanism. It isesdasBARAKA is based on he principles set forth by Jakobi et al.
on the threshold model [10] and is used to allocate the tai3]. These principles make more likely a successful port of
of tracking objects in the network. As in the architecture wihe program on real hardware.
describe below, their agents adapt during the networkirifet 1. TASK SELECTION
Jesi et al. [11] also use an adaptive threshold model for the '
purpose of selecting superpeers in an overlay network. TheyVe first describe the application layer, which is in charge
employ a different formula to adapt the system behaviour. 9 selecting the tasks to perform. Agents have the capgbilit
will be part of future work to compare the different formulad0 perceive whether their action is successful or not, eitlye
in detail. directly sensing the environment, or by receiving a feedlbac
We tested our architecture in a proof-of-concept using fEem other nodes (we discuss more on this in Sec. IV-C).
simulated environment. There are still some minor thingzefore choosing a new task, the application layer adapts its
that have to be improved before porting to real hardwar@arameter on the base of the outcome of the previous task.
We took particular care in designing a reliable simulator. Robots and motes know priori the list of possible tasks
Our previous experience with similar simulations make dgat they can perform. They have generally different sets of
confident in a successful port on real hardware and to mdAsks: Tiobot = {1,... Niobot} for the robots andlinote =
complex environments in the future. {1,... Nmote} for the sensorsNionot and Nmote Might be
Section Il briefly describes the simulator that we deveflifferent, but in our experiments they are both set to 4. The
oped for our experiments. Sections Il and IV describe tHebots’ and motes’ four tasks are described below. Given tha
application layer (for task selection) and the network taydrobot = Tmote, We refer to both usinggens.
(for message routing) of our architecture. Section V showsEach agent associates a task to a real numbewith i €
the results of the experiments, and Section VI draws the finkizent- At the moment of selecting a task to perform, the agent

conclusions. chooses randomly between the tasks. The probability tosghoo
tasks is 5
) Ti task
Il. SIMULATION P(i) = — 1)
Good simulation tools can be found for WSNs as well as > i

- - keTa*en
for robots. The former focus on the simulation of the com- st

munication layers and environments, the latter on the paysiWith Seask > 1 (in the experiments of Sec. Vs = 3). This
environment and how the robots perceive it. Something tHguation is like the one used to model how ants choose one
does both is, to the best of our knowledge, missing. path among the several that bring to a food source [14]. In the

On the side of network simulations, OMNeT4is becom- Original formulation,; was the concentration of pheromone
ing more and more popular. OMNeT++ is a modular discref! Pathi. The parametef; was introduced to increase the
event simulator. It can be extended by means of additiorfafPloitation of good paths. . .
components. The Mobility Framework (MF) simulates mobile The agent initialises; = 7inis, Vi € Tagens- If the agent is
nodes that communicate through wireless communicatioa. T3Hccessful in performing task then
envir_onment in whic_h thg nodes move is quite_ simp!e. Nodes i = min{Tmax, 7 + AT} )
are simulated as points in a rectangular two-dimensiores.ar
Most of the simulations of wireless networks can be reliabRnd
and effective also in such a simple environment. 7i = max{Tmin, i — AT} 3)

On the side of ro.bot S|mulatlop, a number of libraries ha.vlfp it is unsuccessful.
appeared for the simulation of rigid bodies. Open Dynamics g 4gents in our experiments have four tasks. For three of

Engine (ODE} is one of them. A body is defined by Sthem, the behaviours of robots and sensors are the same. We

position, mass, velocity, orientation, and momentum oftiBe ;56 the agents are used to sense the environment and to
More bodies can be connected through different types Ofso'”report to a base host. The tasks are:

[ in th f r.t. hehE .
Joints constrain the movement of one body w.r.t. anothat aTl) measure the temperature locally and send it to the base;

body might also be given a shape. Shapes are used by : : :
library to detect when and where two bodies collide. ODISPS) tr)zcszr.d the sound in the surroundings and send it to the

solves the equations of dynamics to obtain the trajectory o]t3) record a video of the place and send it to the base

the bodies. ) ] )
We extended OMNeT++ to include in it the rigid-body Task T1 ends immediately because it creates and sends only

¢ one small packet. Tasks T2 and T3 occupy the node for more
time, because they generate a stream of packets, which is

Ihtt p: / / waw. ormet pp. or g/ usually a big load for the network. T2 differs from T3 because

2http: // ww. ode. org it generates less packets than the latter. These tasks wge th

simulation provided by ODE. We called the resulting simaila



the sensing task that both motes and robots have to perfolraps in the routee is the energy required for transmission,
They are successful if the packets are not rejected by a nasi¢he minimal signal-to-noise ratio of all the links in thatp,
on the route to the host (Sec. IV-C). m € {true, false} denotes if the next hop is mobile, and
Motes’ and robots’ behaviours are different in the case ofe {true, false} whether it is still valid for routing. R}, €
the fourth task: R = R3 x N x {true, false}?.
T4) motes broadcast help requests, robots answer to thentoring several statistics allows the node to use different
and travel where they are needed. routing strategies. Every node might have different olbjest

oF maximise. It might choose, for instance, the route with

In a general application, motes might decide that they neE h inimal sianal-t . o, | ina theaeiit
help by analysing their data, or after instructions fromtiase. Igher minimal sighal-1o-noise ratio, Increasing theaefity
of the message delivery. The node might also choose to use

In our experiments, motes’ help needs are modelled Withd t criterion in diff ¢ ts. If it detects | i
stochastic process. Robots listen to incoming help requaest . merent criterion In artierent moments. Tt detects onan
dfgormanon to be sent, it might decide to use a route that

answer to them by travelling where they are required. Rob imise th d-t d del If th de has |
and motes co-ordinate their actions through a well defin?ﬂmm'se € end-lo-end delay. € node has low power

protocol . In the context of this paper, it is sufficient to shgt e\(/jel, I tm|ght _det_:lde tows%end the message to a near node to
motes consider a failure if they do not need to send any héﬁa uce transmission power.
When the application layer wants to send a message to a

request, a success otherwise (a mote’s success does nm:ideﬁ(tgst for which there is no known path. the network laver start
on robots’ action). A robot considers the task successfitl if whl ' wn path, W y

can reach the requesting mote, a failure if there are no pgndEl ronutfe dnlzcctJ;]/eryr/] ﬁ;\?cr?(sf' V\:hren tonethor dm:)re rrnotL;]teSn hvav\lle
requests or if it can not reach its destination. een found, the network fayer routes the data o € newly

Assuming that the robots can know the direction of a nearlgjlscovered paths. The processes of route discovery anitigout

mote’, the robots can use the route discovery capability of t e done independently for each message class. If a route is

network layer to find a path to their destination. In WSNSs, thlénown for a class; but the network layer receives a message

topology of the network usually corresponds to the topoloigy of class ¢y, a new route discovery takes place. This was

the environment. Robots do not need a map of the environm'gnri[doguacsgl Itgazdgggssci?:oglfet?;};'Efe:q%;?ﬁecggn::;r;;g:':
because the network topology can be seen as a simple m?ﬁ'thisppaper 9 '

IV. NETWORKING To describe the routing algorithm, we need to describe the
ute discovery process (Sec. IV-A) and the route selection

. . r
The literature proposes several routing protocols for n Sec. IV-B) separately. We then describe an additionalfeat

works with mobile nodes [15]. We focused our attention o0 our system in Sec. IV-C: a packet filtering mechanism.

AntHocNet[16] which is a self-organising routing algorithm, ) . .

inspired by the food searching behaviour of ants. There asrgc' IV-D describes the additional packet types used by the
. . o - .nétwork layer.

two main reasons why we chose this algorithm: firstly, it is

inspired by ants’ behaviour and perfectly fits in the contaxt A. Route Discovery

our work; secondly, and more important, Di Caro et al. [16] |f a node wants to send packets to a destination for which it

showed that it performs better than AODV [17], which is thgloes not know any route, it broadcasts @uREDISCOVERY

common reference point foad hoc networks. We modified packet, containing the address of the desired destindti®he

the original algorithm to fit into our work. We describe belowequest is treated by the other nodes as a normal data packet.

the algorithm used for our experiments. We are going to The packet is transmitted to the node’s neighbours. They

explicit the differences w.r.t. the original algorithm éhg our  might know a route that reaches or not. If a neighbour

exposition. knows how to reach the destination, it randomly chooses a
Each message coming from the application layer belongsiext hopn to relay the request. The node uses a function

different classes, one for each type of task. The networsrlay- . R — R* to transform the statistics about the routeitm

of nodei keeps routing information in a number of tablds’  a positive real valué The probabilityP? , at nodei to choose

for each clasg. There is an additional class that is used foy as next hop to reacti is:

the messages originated by the network layer, like delivery

. i \Baisc
error notifications or route discovery responses. Pl.= T(CRnd)‘ ) (4)
Each entry.R! , is a tuple(t, h,e, s, m,v)* that records 3 7RG )P
some statistics about the path from nade noded using node JEN

n as next hop for a message belonging to classhe entryt  where IV} is the set of neighbours for which a path dois
is the estimation of the transmission tintejs the number of known. 34 is a parameter that can control the exploratory

31t is not the purpose of our work to address this problemsjtbmight be 5The distance of a node can be estimated by the receiving pofvére
done, e.g., by triangulating the signal emitted by a nodeydigg directional message, as measured by the antenna, that is, by the pHggieallt should
antennas, or by means of a vision system. be noted however that it is not really important in this cas&riow the real
4In AntHocNet there is only one routing table, because it does ndlistance, but the power required for the transmission.
differentiate messages into classes. Each entry is justr@aenumber: the 6AntHocNetdoes not need the functior( - ) since the routing table contains
estimation of delivery time for a message. already positive real numbers.



behaviour of the algorithm, in the same fashion as for tagkformation and the new information are vafid.

selection. For route discovering, it is however set to 1. Once a node starts the route discovering process, it waits
The actual-( -) used in our experiments is: for a response for some time and buffers the data to send. If
it did not receive any response after some tifie)( it starts
; % if t#£0, the discovering process again. The node repeats the process
Ttime (cRig) = H ift=0. " for a maximum number of times (5) before giving up. Once a
' route has been found, it is kept in the routing table 120 s
and then removed.
0 if n is not a valid hop, If a node does not find a route to the destination, it takes
H if n is a valid hop anch = d, one of two actions according to who originated the message:
(R ) = mme(gRiLd) if 1 is a valid hop,n # d 7 if the message came from the application layer, the network

layer notifies it about the failure; if the message came from

andn is a mobile hop someone else, it sends ®RTEFAILURE packet to the origin.

rime(cRY ) oOtherwise
B. Routing

where 1 is a high-value constant. As it can be seen, this once one or more routes have been found, the network layer
function increases the probability to route packets thhougia s sending the data. The node chooses randomly the next
nodes which are not mopﬂe, i.e., the sensors. Thls is beaaushop for each packet. The probability for each hop is caledlat
link to a mobile node is likely to break soon, while the sessoy, i, (4), only using another exponeit,,.i., higher thanji..
can form a sort of stable backbone. (in our experimentsZ.oute = 2). The higher exponent results

If a neighbour does not know anything abait broadcasts i a greedier behaviour w.r.t. good paths. The probalilisti

the incoming request again. Due to broadcasting, the d&sgovata routing leads to data load spreading, relieving caades
messages can proliferate quickly and follow different path paths.

the network.

The ROUTEDISCOVERY stores the path travelled so far. IfC. Packet Filtering
a node receives several requests originating from the sam@/ost of the packets travelling though the SANET are likely
node, it compares the path of each packet with the shortgstcontain data coming from sensor readings. In order to
known path, the distance being measured in number of hopsduce the congestion of the network, a node might deciede, in
We apply the same filters as [16]: only packets that have nsitad of routing a packet, to drop it, for instance, if it @ons
travelled over very bad paths are let through. the same information. The rejection of others’ messagesspla

We assume that the paths are symmetric: if node A can important role in the division of labour. It is the sourde o
directly communicate with node B, than node B can dihe competition that is required by the agents to specidlise
rectly communicate with node A. On arrival to destinatioran agent can successfully send a message associated to a task
the receiving node generates @lRrEDISCOVERYRESPONSE it increases the probability to perform the task again. i itot
packet. The RUTEDISCOVERYRESPONSEIS sent back with successful, someone has taken over it, and thus it decriémses
high priority along the same path of the incoming packeprobability to perform the task again. We already showed [3]
During its travel back, it collects the statistics about ga¢h that similar interactions play a key role in division of lalvo
that will be used to updat®’ ,. The statistics are not collected Agents do not need to signal to their neighbours the task
and stored only in the ®UTEDISCOVERYRESPONSEpackets, they are currently executing, because their output is kel
but in all the packets that the network layer receives. Is thio be read anyway by nearby agents. This is why it is
way, other nodes can passively set up routes to other hastasonable to directly use this ‘free’ source of informatio
when they receive a message froni it. as base mechanism for agents’ specialisation.

At arrival of a new packet with data about the routedto = Each node remembers the last packet that it received of a
throughn, the network layer updates the routing table usingiven class and for a given destinatibblpon arrival of a new
a custom functions : R*> — R. If ¢! ; is the information packet to route, the network layer compares it with the one
obtained from the incoming packet, previously stored. It then randomly decides whether thé&giac

R, =.R',prt 8In our experiments, it does happen that sensors becomeenabitl thus
e*ind e Tnd nd changingm might seem useless. It could happen in other applicatioas th

. some robot decides to “become” a sensor, that is, not to nibve.robot

performs a weighted sum of the real valugsh, e, s and could decide it because the network in that point is pasidylunder load,
setsm to the new value. All occurs only if both the previoug®r because there was a failure of one sensor and the netusirédonectivity.
9This implementation might require much memory and might weil

scale. Other solutions can be used on devices with limitechang We could

7In AntHocNet only the returning packets set up the routdsmtHocNet use a limited array for recording the last messages. If theyds full and a
keeps the routing table up-to-date by means of a proactisgegy. While new message should be stored, then the oldest element cagldbedd This

communicating with the destinatio®ntHocNetgenerates new ®JTEDIS-  system would have the effect only to weaken the interactietwéen nodes.
COVERY packets to find new routes. Our solution avoids this, at ttet 06 This effect could be compensated by some other means, ttkeasingA O—

slightly bigger network packets. see later.



should be routed or not. In case the node decides to route EheOther Packet Types

packet, it increases the probability to route it again laed £ the correct functioning of the network layer, the nodes
decreases the related to packet using (3). If the node rejeCtieeq some other information to be exchanged. In addition

the packet, it decreases the probability to route it latends ROUTEDISCOVERY, ROUTEDISCOVERYRESPONSE and

a ROUTEFAILURE message to the source and the applicatiqRy, ,reFaiLure (used for route discovery), the network layer
layer increases its; using (2). generates BrA packets. They contain the information coming
This mechanism does not take place in the following casggm the application layer. The information is routed as ex-
1) the packet is broadcast (it might be some importaftained in Sec. IV-B and using the routing table correspogdi
message to spread in the network); to the message class.
2) the packet is not the first packet of a stream generatedl he network layer regularly broadcasts to all its neighsour
by T2 or T3 (streams are interrupted at the beginning, HELLOMESSAGE After a node receives a BiLOMES-
but not when the connection with the destination ha8AGE, it expects to receive it regularly. If it does not occur
already been established); within a given amount of time, the neighbour and all its
3) it is a packet belonging to T4 (this task requires a striéssociated routes are deleted from the routing table.
co-ordination between robots and motes, thus it shouldThe HELLOMESSAGE rates are different for robots and
not be interrupted); motes!® The robots use a higher sending raté §) than the
4) the packet comes from a source further than a givemotes (20 s). The nodes use also two different timeouts in
hop-count threshold (packets from near sources hav€ase the node is mobilel§0 s) or not (00 s). The infor-
correlated content, and thus they can be dropped withduation about the mobility of the nodes is contained in the
losing much information). HELLOMESSAGE

Each nodei keeps a table.Q' of values .Q) €

[Omin, Omax] for known destinations! and packet class. ) ) o
The probability, P} to route a packet is We simulated SANETs in a squared area, whose side is

500 m. Twenty-five motes were placed in a grid that covers
the environment. This is a likely placement if the motes are

V. EXPERIMENTS

< if this is the first packet dropped from above and the purpose is to uniformly cover the

P = ‘ of classc to d seen, or ., environment. To simulate however a real deployment process
a102(cQy — Qmin)+ the motes were randomly placed in an afeam around the

+Omin otherwise. actual grid point. Robots were placed at the corners of the

environment. We tested 1, 2 and 3 robots at each corner, for
a total group sizes of 4, 8 and 12 robots. Figure 1 shows the
set-up, from the point of view both of the network and of the
simulated three-dimensional world.

where 1y is the number of hops travelled by the incoming 1 remaining parameters of our architecture were set as
packet, At is the elapsed time from the previous know'?ollows- O = 0.01, Opax = 1.0, Oiie = 1.0, AQ = 0.02

message and the incoming packets Qmin < Qmax <L, p _ 9 ~  _ 71 . — 10, AT = 0.5 and 7,5 =

) . - 1 =
72 > 0 (in our experimentsy, = 0.01s77). The coefficients 3.0. The sound stream size wd8 kB and the video stream

a1 anda; decrease the probability to route a packet for neg,q 4 k. The choice of the values was based on empirical
sources and for information recently transmitted. We what t experience

the effect ofa; smoothly decreases fot — D. Because The base host is at the top left corner of Fig. 1(a). The

a ~ 1 whe‘n _the_ ex_po_r_1er.111h ~ 5, we sety, =5/D. ) resulting set-up is symmetrical along one of the diagonals.
Every . Q; is first initialised t0Qiyic. If a node decides 0 pohots and motes did not know the address of the base. The
reject a packet, it update®; using application layer of the base broadcast regularly a packat w
. ) its address. The agents started working only after theamiv
cQq = mar{cQy — AQ, Qmin} , this message. Given the importance of this information ais w
replicated and broadcast also in each hodeEsOMESSAGE

ap = (1—e nhy | g = (1 —e 728

and uses Apart from broadcasting its address, the application layer
Q4 = min{.Q% + AQ, Omax} of the base only received and recorded the messages it had
' ' received. The network layer of the base was the same as the
if it decides to route the packet. other nodes.

The thresholdD grants that the interactions between agents '€ MAC and physical layers simulated the |IEEE 802.11
are localised. Each agent looks only at neighbours no mdtgtocol. We used the modules included in the MF.
thar.] D hops away and adapt_s accordmgly. There.fore’ .agent%AntHocNetuses one rate for all the nodes. It should be noted however
decide only based on local information, but their decisiong in the networks studied in [16] the nodes are all homeges. The
have an effect on the whole system, as we show in Sec. Wdifferent rates are then a natural extension to face hetesmus nodes.



treated in the same way as two nodes far away. If the task were
measuring the temperature, the neighbouring nodes would be
doing redundant work.
To account also for the spatial distribution of the tasks,

we used thehierarchic social entropy{18]. Each agent was

o represented as a point in a 5-dimensional space. The co-
I>< >< B ordinates of each point were given by the y) co-ordinates
& of the node in the arena (normalised by the arena side), and

o 9
by el

AP P
ﬁ ‘1% % W by the probability of performing T1, T2 and T3. There is no
PR NS TS VA A point to consider also the probability to perform T4 because
T SO [wg, it is dependent on the other three tasks.
Vil iat Then, we fixed the value of a parameiland we clustered
(a) Network view all the points that were no further away thanin the 5-

dimensional space. The number of clusters depends thus
we denote it withC'(d). The total number of agents i4. A
clusteri containsI (4, d) agents. Picking up an agent randomly,
it has probabilityp; = 1(i,d)/A of belonging to clustei. The
entropy of the system [18] can be measured by:

C(d)

H(d)=—-K Y pilog,pi ,

1=1
where K is an arbitrary constant, which we set to 1. The
hierarchic social entropy is defined as

S /0 H(d) dd . )

Fig. 1. Set-up of the experiments: views of the network anthefsimulated Note that, thanks _t9 the mtegraﬂ, !S ”9t dependgnt Odf

three-dimensional world. In the bottom view, the real disien of the motes, BUt only on the positions of the points in the 5-dimensional

usually few centimetres, were incre_ased to_make them eism_jr comparison, space. Note also that\/ : Vd > M, C(d) =1 andH(d) = 0.

the robot in the bottom left corner in the simulated worldwis 42 cm tall. Balch [18] shows thals increases when the system becomes
more and more heterogeneous and the agents differentiate

The help requests were generated by a stochastic procéré?mselves. In our case, increases either if two neighbours
t

Each mote decided every second whether it required help ve different probabilities of perfp_rming the same taskf o
not. We callhelp densitythe probability per second that a e nodes have the same probabilities but are far away.

mote requires help. In this set of experiments, help den8- Results

ties were constant during each run. Each newly generateGrhere might several interesting data to show about our
help request was put in a queue in the mote. When moig&, jations, like delivery rate, end-to-end delays, ancdso
executed T4, they checked if the queue was empty Or Nfnsortynately we have no space for all of them. We focus then

If it was empty, they considered it a failure and adapted qny on those measurements that are strictly related with th
using (3). If there were pending requests, they broadcasHigision of labour.

HELFTREQUESTpf‘gkelt and adiptefi using (2)-)’;’6 lised help At the beginning of the experiments, the agents of the
densities12.5107"s™", 25107"s™" and 50 107"s™". Each gANET had uniform probability of performing each task. The
combination of robot group size/help density was tested {fararchic social entropy was thus at its minimum since the

forty different runs. Each run was described by a seed for th@ay source of differentiation was given by the positions in
random number generator and the misplacement of the mo{gs: 5rena of the nodes.

Another random number generator, initialised with a défér ¢ sjtuation afte8600 s is shown in Fig. 2. As a reference,

seed, was used to generate the help-request events duging i renort the median value of the distribution of hierarcitie
simulation. cial entropy ab s (bottom segments in Fig. 2). The hierarchic
social entropy ab s was not constant because of the stochastic
placement of the motes, thus the median value represents a
The intuitive way of measuring the division of labour issort of approximated lower bound. The upper segments are a
to count how many nodes are involved in a task. This is thls®rt of approximated upper bound 8f They were calculated
method we followed for instance in [3]. This method has orgy keeping fixed the motes, and finding the value of robots’
problem: it does not consider the spatial positions of th#eiso positions and agents’ task probabilities that maximised
Two neighbouring nodes performing the same task would e however complex to maximise, so we searched for the

(b) Simulated world

A. Evaluation
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Fig. 2. Hierarchic social entropy afteé¥600 s. The three groups of bars . -
correspond to a group size. Each bar in a triplet refers tol@ density (as *
shown in the legend) and summarises the results of 40 ruresndtcthes of
the bars correspond to the median results. The bars extetine tiirst to the
third quartile of the distribution of results. The whiskesgend till the points
that are no more than 1.5 times the inter-quartile distaii¢® horizontal
segments show the approximated upper and lower bounds dfi¢harchic > . L
social entropy.
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8 3 Fig. 5. Distribution of task T3 among the agents. Each agen¢presented
° l= - W by a fuzzylcircle. The picture refers to a run with 8 _rot_)otslpr‘eensity
e 25 10~%s~! and depicts the state at90 s after the beginning. The darker

0 01 02 03 04 bOk.J_SI_ 06 07 08 09 the circle, the higher is the probability that an agent peno T3.
probability

Fig. 3. Distribution of the probabilities to perform task &hong the agents

(12 robots, help densitg0 10~ %s—1). On thez-axis there are ten intervals . . . s
of probability. On they-axis, we report the fraction of agents that have been The situation was different for task T4. The distributiorfis o

observed having probability to perform T2 in the correspogdr range at the probability to perform T4 looked like Fig. 4. The left frea
two snapshots of the system (see the legend). grew for decreasing help density. The high number of agents
that did not perform task T4 is explained by the relative low
) o help density. The distribution expanded to the right for dixe
local optimum reached from random initialisation of agént$,e|p density and increasing robot number. This is simply due
probabilities and robots’ positions. We repeated the @®cqg the fact that the higher the number of robots, the higher is
for each motes’ initial position. The segments in Fig. 2 aige probability that a robot answers to a help request. Thus,
the medians of the local optima we found. the higher is the number of successful ends of this task, and
The results in Fig. 2 show that the agents in the SANEhe higher the probability that the same robot repeats e ta
specialised themselves. The level §fincreased after the | Fig. 5, we show a typical snapshot of the distribution
beginning of the experiments, meaning that they agent®tengyf tasks in the SANET. The plot refers to T3. It can be
either to be near and perform different tasks, or to perfor§gen. that when a node had high probability of performing
the same tasks but far one from the other. We can see that g jis neighbours were likely to have a low one. The routes
agents indeed specialised by looking at the distributionmIn that were used to send the data to the base host are depicted
the agents of the probabilities to perform each task. Thel lojn Fig. 6. The network was split in two halves: there were
for every robot group size, help density and for tasks T1, T links between the top right triangle and the bottom left
and T3 like Fig. 3\ triangle. Figures 5 and 6 do not represent the steady state
Shortly after the beginnings( s), there is only one peak. of the SANET. The network reached a dynamic equilibrium,
Agents’ probabilities were all initialised to the same wgland \here things continually changed. This is especially trore f
are now spreading. A600 s, three peaks appear. About 30%he routes in Fig. 6, since the routing tables entries were

of the agents had low probability of performing a given taskemoved after a while, and new discoveries took place.
Less than 30% had probability between 0.4 and 0.5. Finally,

there is a small peak also for probability between 0.9 and VI. CONCLUSIONS
1. We are granted that two agents with same probability of This paper illustrated an architecture for division of labo
performing a task were not likely to be neighbours by thiea SANETS. The agents make use of solutions inspired by ants
high values reached by (Fig. 2). behaviour. The control architecture is based on strong-inte
layer and inter-agent interactions. The latter are localmmng
1pye to the limited space, we do not show all the plots. that they occur only between agents within a given range,
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(2]

(3]

(4]

(5]

however enough to induce self-organised division of labour [g)

the SANET.

The degree of division of labour can be still improved.
It could be argued that it is possible to achieve the maxw)

imum degree of division by pre-programming the nodes

to

do only one task and to spread them alternatively. This
solution however introduces other problems that do notfhouc

our solution. Firstly, the deployment process becomes motél
complex, since the right nodes must be placed in the right
place to cover the environment. Secondly, the SANET can

not adapt to changes in the environment. Nodes require to 68

reprogrammed for a new situation. Reprogramming might be
driven by the base host, which sends the new programs to

the nodes. The drawback is that the network has to sustaif@

bigger load. Another solution would be to use the robots

to

go and reprogramme individual nodes. The drawback here is

that a number of resources, the mobile robots, are taken awdy

from other tasks only for the maintenance of the network.
Algorithms similar to those used by our SANET have shown

to adapt well to changes in the environment [3], [14], [16]12]

Thirdly, one needs to know in advance the characteristics of

the environment and the number of motes and robots to fifd]

the optimal division of labour. Thia priori knowledge might
not be correct or difficult to retriev&. This knowledge is not
required by our architecture.

Future work will test other adaptation rules both at the a;Pl—4]

plication layer and at the network layer in order to imprdve t

division of labour. We will also test how our system behaves

under dynamic environments. To improve the response timeltd)

changes in the environment, we think it will be important to

base the packet filtering mechanism also on the content of thé
messages. Suppose that two neighbouring nodes are megsurin

the temperature of the environment, but they measure two ver

different values. It is important that both values are régayr [17]

since it might mean that a fire broke out.

2pdditionally, if we already knew the environment, it wouldake little
sense to use a WSN to sense it.

(28]
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