
Technical University Berlin

Telecommunication Networks Group

The ns-2/akaroa2-project

Andreas Köpke, Hagen Woesner
koepke@ee.tu-berlin.de, woesner@ee.tu-berlin.de

Berlin, July 2001

TKN Technical Report TKN-01-008

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

This report describes the combination of ns-2 and Akaroa-2. Within the first chapter, both
tools are introduced shortly. It is assumed that the reader is familiar with ns-2 already to
a certain point at which the results of the simulation can be drawn out of the simulation
model. It is not required that the reader is familiar with Akaroa-2, although a brief look
into the manual of it is strongly recommended. After that, the combination of both tools is
emphasized along with the problems that had to be solved. A detailed instruction how to
install the interface is then followed by an example that shows how to obtain the mean length
of a M/M/1 queue. The source code of the C++ and OTcl classes that had to be changed
or invented concludes this report.

TU Berlin

Contents

1 Introduction 2

1.1 Motivation . 2
1.2 NS-2 . 2
1.3 Akaroa-2 . 3

2 Statistical Security 4

3 Interface internals 5

3.1 Call mapping . 5
3.2 Random Number Generator . 5

4 Installation 7

4.1 Preparation . 7
4.2 Putting things together . 7

5 Usage 8

5.1 From OTcl . 8
5.2 From C++ . 8
.1 akaroa.cc . 10
.2 rng.h . 14
.3 rng.cc . 18

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 1

TU Berlin

Chapter 1

Introduction

1.1 Motivation

Within the last decade, discrete simulation has become a standard tool of scientists and
engineers wherever it was necessary to estimate the behavior of large stochastic systems like
computer networks or national economies. As can be seen in the number of contributions
to scientific journals or conferences, almost every result that has been derived analytically is
nowadays justified or verified by simulation curves that support the thesis of the author.

Although quantitative stochastic simulation is a useful tool for studying performance of
stochastic dynamic systems,it can consume much time and computing resources. To overcome
these limits, parallel or distributed computation is needed.

Universities and research institutes often have lots of computers connected in a LAN.
Using these heterogenous (in terms of speed) computers for simulations is a straightforward
idea. One of the main obstacles is the easy distribution of simulations over this cluster. There
are two approaches to solve this problem. One is the explicit parallelization of the simulation
and the other one is the MRIP-approach taken by Akaroa-2. It runs Multiple Replications In

Parallel. This results in an almost linear speedup with the number of hosts.
NS-2 is a nice tool for network simulation, but does not provide support for statistical

analysis of the obtained results.
So by combining NS-2 and Akaroa-2 we add run-length control for simulations based on

statistic measures to NS-2 as well as a speed-up if the simulation can be run on many hosts
in parallel. The existing package for writing parallel simulations with ns is – at least in our
eyes – a bit more complicated and does not provide statistical run length control.

The changes were made only in the NS-2 package. The original code seems to be quite
stable, so these changes should not depend too much on the NS-2 version used.

1.2 NS-2

NS-2 is a discrete event simulator targeted at networking research. It provides substantial
support for simulation of TCP, routing, and multi-cast protocols over wired and wireless
(local and satellite) networks. Simulations are written in OTcl but if you need some specific
behavior of the OTcl Classes you can write your own in C++. For more information about

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 2

TU Berlin

Network Simulator check the home page of the ns project [3]. For a good tutorial refer to [4].
A Tcl/Tk- tutorial can be found at [5].

Ns-2’s main advantage is the multitude of network protocols implemented. On the other
hand it lacks support for statistical evaluations. Usually one writes the interesting variables
into a trace file, and measures such as mean and variance are evaluated with an awk-script.
But how many values should be written into the trace file? Sometimes simulations are run
much longer than necessary – or more often much shorter, which devaluates the conclusions
drawn out of the simulations. To get an expression of the quality of any simulation or
measurement result Another problem concerns the length of the random number generator.
Some simulations need less than a day to exhaust the random number stream.

1.3 Akaroa-2

Akaroa-2 is designed for running quantitative stochastic discrete-event simulations on Unix
multiprocessor systems or networks of heterogeneous Unix workstations. Instead of dividing
up the program for parallelization – a tremendous effort – multiple instances of an ordinary
simulation program are run simultaneously on different processors.

For more information about Akaroa check the home page of the AKAROA-2 project [6].
Akaroa-2 is a process oriented simulation engine. Written completely in C++ it is easy to
write fast simulations with it. The random number generator used in the current release has
a really long period. It would take decades to exhaust it. The main disadvantage is the lack
of network protocols. It uses statistical run length control, and the observed variables are
summarized in two statistics, mean and variance, which is enough for most purposes. If you
need some more you can write your own class.

Akaroa-2 does the parallelization of the simulation in a client-server manner. A unique
process called akmaster runs on one machine in the cluster and controls the execution of
the simulations using a number of akslave processes. These have to be started beforehand
on every machine that shall be used to run simulations on it. The command to run the
simulations is e.g.:
> akrun -n 5 ns mm1.tcl

The value of n=5 means to start the simulation on five machines, whereas the simulation to
be executed is given after. Eventually, a result should appear in the form of:

Param Estimate Delta Conf Var Count Trans
1 97.6467 0.400812 0.95 0.0405465 264078 1259
2 2.77603 0.134357 0.95 0.0045561 263346 1673

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 3

TU Berlin

Chapter 2

Statistical Security

In order to ensure that the made predicates have a statistical security, it is necessary to control
the temporal duration of the simulation. For this purpose AKAROA-2 records results and
calculates the half–length H of the confidence interval. The half–length is the momentary
deviation from the current average value.

Given a number of values xn then the mean value is:

x̄(n) =

∑

n xi

n
(2.1)

and the variance of the mean values x̄(n) is [?]:

σ2

n =

∑

(xi − x̄(n))2

n − 1
(2.2)

Thus the half–length H of the confidence interval, which indicates the precision of the
mean value, which is to be situated within statistical security z,

H = z ·

√

σ2
n

n
(2.3)

whereby H is situated in both negative and positive direction of the mean value x̄(n).

[x̄ − H, x̄ + H] (2.4)

In the above notation σ2
n is the variance and n the number of simulation values. The

value z corresponds to a certain safety limit of the confidence interval that can be stated.
The corresponding confidence level values of z can be taken from a table [?].

confidence level z

0,90 % 1,645

0,95 % 1,966

0,99 % 2,576

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 4

TU Berlin

Chapter 3

Interface internals

During the project we experimented with several implementations. The first one was the most
conservative and was guarded against a lot of errors that simply don’t occur. Although this
was useful to learn about the structure of NS-2 and Akaroa-2 the overhead was unnecessary
and following versions were much simpler.

We ended with a new file akaroa.cc and some changes in the existing files of NS-2 rng.h

and rng.cc. You will have to install all these files in order to use the Akaroa-NS-interface.

3.1 Call mapping

In the file akaroa.cc the complete Akaroa-NS-interface is defined. The interface consists of
the new class Akaroa, which is derived from TclObject. The class AkaroaClass provides the
interface for Tcl to create C++-objects. When an Akaroa-method is called from OTcl, the
complete OTcl string is passed to the Akaroa-method command. In this method the string is
evaluated by simple string comparisons and the appropriate library function is called.

3.2 Random Number Generator

When running multiple replications of simulation model in parallel, it is important that each
simulation engine uses a unique stream of random numbers. So we had to change the Random
Number Generator.

The new class AkRNGImplementationwas derived. It is also contained in the file akaroa.cc.
It maps calls for a new uniformly distributed random number to the Akaroa Random Number
Generator. Additionally some initializations are performed.

The original RNGImplementation of NS-2 was not intended to be inherited, so changes
rng.h and rng.cc became necessary.

The class RNGImplementation has now a virtual long next() and a virtual long

next double() methods. This class and AkRNGImplementation don’t belong to the public
interface, but are used only internal. The “official” interface to the random number generator
is the class RNG. We added the static void setRNGImplementation(RNGImplementation

*imp) method, to set a new RNGImplementation when needed. The Akaroa-class uses it to
install its own implementation. Due to its dynamic nature the random number stream of RNG

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 5

TU Berlin

is a pointer now. We added reference counting for the stream to ensure that there is only
one RNGImplementation-object.

It is impossible to use more than one random number stream, even multiple RNG-objects
would use only one. This is a restriction if you want to use NS-2 without Akaroa.

The seeds which can be set and obtained are useless with Akaroa. Seeds are managed
centrally by the akmaster-process.

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 6

TU Berlin

Chapter 4

Installation

4.1 Preparation

• get Akaroa and install it (might need some tweaking to run under Linux)

• get Ns-2 and install it

• get files and install changed rng.h, rng.cc and new akaroa.cc into your /wherever/ns/ns-2.1b7
directory

4.2 Putting things together

• Changes in the Makefile.in of ns:

– approx. l. 59: set an include directory pointing to the header files (akaroa.H) of
your akaroa installation

– approx. l. 68: set a lib directory pointing to the akaroa libraries
-L/wherever/akaroa/lib -largs -lakaroa

– in the same line, add -lfl (akaroa needs the flex-library)

– approx. l. 170: add akaroa.o to the objects list

• run ./configure

• run make etc. as described in the ns-Manual.

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 7

TU Berlin

Chapter 5

Usage

5.1 From OTcl

In your ns-simulation.tcl file do the following:

1. instantiate a new Akaroa object in the Tcl script method

set ak [new Akaroa]

2. if you want to observe more than one parameter, tell Akaroa about it, else leave the
following line out:

$ak AkDeclareParameters $number-of-parameters

3. inform Akaroa about each parameter change

one: $ak AkObservation $delay

more: $ak AkObservation 1 $delay

$ak AkObservation 2 $packet-size

5.2 From C++

Since Akaroa is written in C++, we did not write a special interface. So if you want to observe
a parameter in your C++-Class, write some interface code for OTcl. During the OTcl setup
you should tell your class, which variable to observe as well as its Akaroa number. When
running your simulation your class should directly call the Akaroa library functions. Anything
else would be too slow.

This is slightly abstract, but follows the ns philosophy closely: use Tcl for setup stuff and
C++ for everything when time matters. Akaroa is unable to tell whether the library function
was called by the Akaroa class or whether it is merely a library function call. These ways are
completely equivalent – except for speed.

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 8

TU Berlin

Bibliography

[1] Pawlikowski, K., Yau, V. and McNickle, D., Distributed stochastic discrete-event sim-

ulation in parallel time streams, Proc. of the 1994 Winter Simulation Conference, pp.
723–730, 1994.

[2] Pawlikowski, K., McNickle, D. and Ewing. G., Coverage of confidence intervals in steady-

state simulation, Journal Simulation Practice and Theory, 6(1998), pp. 255–267.

[3] The home page of the ns project: http://www.isi.edu/nsnam/ns/

[4] Marc Greis’ ns Tutorial: http://www.isi.edu/nsnam/ns/tutorial/index.html

[5] Tcl/TK Tutorial page: http://hegel.ittc.ukans.edu/topics/tcltk/

[6] AKAROA-2 home page:
http://www.cosc.canterbury.ac.nz/research/RG/net sim/simulation group/akaroa/about.chtml

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 9

TU Berlin

Files

.1 akaroa.cc

/*

* File: Code for a Akaroa class for the ns

* network simulator

*

*

*/

#include <stdlib.h>

#include "akaroa.H"

#include "tclcl.h"

#include "rng.h"

#include <errno.h>

// Akaroa Objects

class Akaroa : public TclObject {

public:

Akaroa(); // Constructor
// Method for dynamic binding of Calls

int command(int argc, const char*const* argv);

private:

// Helper functions for conversions, for error handling.

int convert to int(const char *const ctoi, int *result);

int convert to double(const char *const ctod, double *result);

};

// Provides an interface for creating akaroa Objects.

static class AkaroaClass : public TclClass {

public:

AkaroaClass() : TclClass("Akaroa") {}

TclObject* create(int, const char*const*) {

return (new Akaroa());

}

} class akaroa;

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 10

TU Berlin

// Interface to the random number generator of Akaroa

class AkRNGImplementation : public RNGImplementation

{

public:

AkRNGImplementation(long s) {seed = s;};

long next() // compatibility method
{

seed = (long) AkRandom();

return seed ;

};

double next double() // Preferred method
{

return AkRandomReal();

};

};

Akaroa::Akaroa()

{

RNG::setRNGImplementation(new AkRNGImplementation(1L));

}

// The Tcl - C++ binding is done by this function

//

// Intention: Map all calls to the Tcl-Akaroa Object to

// Akaroa library functions. See the documentation of

// Akaroa for details.

//

// Input: parameters passed by ns. See ns Documentation for details.

//

// Output: Mostly none. Except when conversion fails.

//

// When calls to Akaroa fail, Akaroa will abort the simulation,

// providing its own diagnostics.

int Akaroa::command(int argc, const char*const* argv)

{

int parameter = 0;

double observation = 0;

// Some function calls to akaroa take zero, one or two arguments.

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 11

TU Berlin

switch (argc)

{

case 4: // Evaluate function calls with two arguments first
if (strcmp(argv[1], "AkObservation") == 0)

{

if(convert to int(argv[2], ¶meter) == TCL ERROR)

return TCL ERROR;

if(convert to double(argv[3], &observation) == TCL ERROR)

return TCL ERROR;

// Tell AkObservation the parameter observed and the value
AkObservation(parameter, observation);

return TCL OK;

}

break;

case 3: // one argument (less likely to occur)
if (strcmp(argv[1], "AkObservation") == 0)

{

if(convert to double(argv[2], &observation) == TCL ERROR)

return TCL ERROR;

// Tell Akaroa about a new Observation
// here we observe only one parameter
AkObservation(observation);

return TCL OK;

};

if (strcmp(argv[1], "AkDeclareParameters") == 0)

{

if(convert to int(argv[2], ¶meter) == TCL ERROR)

return TCL ERROR;

// Declare number of Parameters to be observed
AkDeclareParameters(parameter);

return TCL OK;

};

if (strcmp(argv[1], "AkObservationType") == 0)

{

// Switch to a different Observation Type
if (strcmp(argv[2], "AkIndependent") == 0)

{

AkObservationType(AkIndependent);

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 12

TU Berlin

return TCL OK;

}

else if (strcmp(argv[2], "AkCorrelated") == 0)

{

AkObservationType(AkCorrelated);

return TCL OK;

}

else

{

Tcl& tcl = Tcl::instance();

tcl.resultf("Akaroa: Invalid AkObservation type: %s",argv[2]);

return TCL ERROR;

}

}

break;

}

return (TclObject::command(argc, argv));

}

int Akaroa::convert to int(const char *const ctoi, int *result)

{

char *endptr = NULL;

errno = 0;

*result = strtol(ctoi,&endptr,0);

if(*endptr == int(ctoi))

{

Tcl& tcl = Tcl::instance();

tcl.resultf("Akaroa: Problems converting %s to integer (invalid string)",

ctoi);

return TCL ERROR;

}

if(errno)

{

Tcl& tcl = Tcl::instance();

tcl.resultf("Akaroa: Problems converting %s to integer (out of range).",

ctoi);

return TCL ERROR;

}

return TCL OK;

}

int Akaroa::convert to double(const char *const ctod, double *result)

{

char *endptr = NULL;

errno = 0;

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 13

TU Berlin

*result = strtod(ctod,&endptr);

if(*endptr == int(ctod))

{

Tcl& tcl = Tcl::instance();

tcl.resultf("Akaroa: Problems converting %s to double (invalid string)",

ctod);

return TCL ERROR;

}

if(errno)

{

Tcl& tcl = Tcl::instance();

tcl.resultf("Akaroa: Problems converting %s to double (out of range)",

ctod);

return TCL ERROR;

}

return TCL OK;

}

.2 rng.h

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */

/*

* Copyright (c) 1997 Regents of the University of California.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

*

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* This product includes software developed by the Computer Systems

* Engineering Group at Lawrence Berkeley Laboratory.

* 4. Neither the name of the University nor of the Laboratory may be used

* to endorse or promote products derived from this software without

* specific prior written permission.

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 14

TU Berlin

*

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*

* "@(#) $Header: /nfs/jade/vint/CVSROOT/ns-2/rng.h,v 1.18 2000/09/15 20:46:12 haoboy Exp $ (LBL)";

*/

/* new random number generator */

#ifndef rng h

#define rng h

// Define rng test to build the test harness.

#define rng test

#include <math.h>

#include <stdlib.h> // for atoi

#ifndef stand alone

#include "config.h"

#endif /* stand alone */

/*

* RNGImplementation is internal---do not use it, use RNG.

*

* Prepared for inheritance Andreas Koepke, 2001-07-04,

* declared next and next double virtual and seed protected

*/

class RNGImplementation {

public:

RNGImplementation(long seed = 1L) {

seed = seed;

};

void set seed(long seed) { seed = seed; }

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 15

TU Berlin

long seed() { return seed ; }

virtual long next(); // return the next one
virtual double next double();

protected:

long seed ;

};

/*

* Use class RNG in real programs.

*

* Changed stream from RNGImplementation to

* RNGImplementation *, made it static.

* Added reference counting. akoepke

*/

class RNG

#ifndef stand alone

: public TclObject

#endif /* stand alone */

{

public:

enum RNGSources { RAW SEED SOURCE, PREDEF SEED SOURCE, HEURISTIC SEED SOURCE };

RNG(); // : stream (1L) {}; stream now pointer.
RNG(RNGSources source, int seed = 1) { set seed(source, seed); };

void set seed(RNGSources source, int seed = 1);

inline int seed() { return stream ->seed(); }

inline static RNG* defaultrng() { return (default); }

#ifndef stand alone

int command(int argc, const char*const* argv);

#endif /* stand alone */

// These are primitive but maybe useful.
inline int uniform positive int() { // range [0, MAXINT]

return (int)(stream ->next());

}

inline double uniform double() { // range [0.0, 1.0)
return stream ->next double();

};

// Added 2000-12-15, akoepke
static void setRNGImplementation(RNGImplementation *imp);

~RNG(); // RNG owns a dynamic object

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 16

TU Berlin

// these are for backwards compatibility
// don’t use them in new code
inline int random() { return uniform positive int(); }

inline double uniform() {return uniform double();}

// these are probably what you want to use
inline int uniform(int k)

{ return (uniform positive int() % (unsigned)k); }

inline double uniform(double r)

{ return (r * uniform());}

inline double uniform(double a, double b)

{ return (a + uniform(b - a)); }

inline double exponential()

{ return (-log(uniform())); }

inline double exponential(double r)

{ return (r * exponential());}

inline double pareto(double scale, double shape)

{ return (scale * (1.0/pow(uniform(), 1.0/shape)));}

inline double paretoII(double scale, double shape)

{ return (scale * ((1.0/pow(uniform(), 1.0/shape)) - 1));}

double normal(double avg, double std);

inline double lognormal(double avg, double std)

{ return (exp(normal(avg, std))); }

protected: // need to be public?

static RNGImplementation *stream ;

static RNG* default ;

static int refCount; // needed to clean up the stream
};

/*

* Create an instance of this class to test RNGImplementation.

* Do .verbose() for even more.

*/

#ifdef rng test

class RNGTest {

public:

RNGTest();

void verbose();

void first n(RNG::RNGSources source, long seed, int n);

};

#endif /* rng test */

#endif /* rng h */

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 17

TU Berlin

.3 rng.cc

/* -*- Mode:C++; c-basic-offset:8; tab-width:8; indent-tabs-mode:t -*- */

/*

* Copyright (c) 1997 Regents of the University of California.

* All rights reserved.

*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions

* are met:

* 1. Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* 3. All advertising materials mentioning features or use of this software

* must display the following acknowledgement:

* This product includes software developed by the Computer Systems

* Engineering Group at Lawrence Berkeley Laboratory.

* 4. Neither the name of the University nor of the Laboratory may be used

* to endorse or promote products derived from this software without

* specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ‘‘AS IS’’ AND

* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE

* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE

* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL

* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)

* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT

* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

* SUCH DAMAGE.

*/

#ifndef lint

static const char rcsid[] =

"@(#) $Header: /nfs/jade/vint/CVSROOT/ns-2/rng.cc,v 1.20 2000/07/21 04:56:58 yewei Exp $ (LBL)";

#endif

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 18

TU Berlin

/* new random number generator */

#ifndef WIN32

#include <sys/time.h> // for gettimeofday
#include <unistd.h>

#endif

#include <stdio.h>

#include "rng.h"

#include "config.h" // for gettimeofday

#ifndef MAXINT

#define MAXINT 2147483647 // XX [for now]
#endif

/*

* RNGImplementation

*/

/*

* Generate a periodic sequence of pseudo-random numbers with

* a period of 2^31 - 2. The generator is the "minimal standard"

* multiplicative linear congruential generator of Park, S.K. and

* Miller, K.W., "Random Number Generators: Good Ones are Hard to Find,"

* CACM 31:10, Oct. 88, pp. 1192-1201.

*

* The algorithm implemented is: Sn = (a*s) mod m.

* The modulus m can be approximately factored as: m = a*q + r,

* where q = m div a and r = m mod a.

*

* Then Sn = g(s) + m*d(s)

* where g(s) = a(s mod q) - r(s div q)

* and d(s) = (s div q) - ((a*s) div m)

*

* Observations:

* - d(s) is either 0 or 1.

* - both terms of g(s) are in 0, 1, 2, . . ., m - 1.

* - |g(s)| <= m - 1.

* - if g(s) > 0, d(s) = 0, else d(s) = 1.

* - s mod q = s - k*q, where k = s div q.

*

* Thus Sn = a(s - k*q) - r*k,

* if (Sn <= 0), then Sn += m.

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 19

TU Berlin

*

* To test an implementation for A = 16807, M = 2^31-1, you should

* get the following sequences for the given starting seeds:

*

* s0, s1, s2, s3, . . . , s10000, . . . , s551246

* 1, 16807, 282475249, 1622650073, . . . , 1043618065, . . . , 1003

* 1973272912, 1207871363, 531082850, 967423018

*

* It is important to check for s10000 and s551246 with s0=1, to guard

* against overflow.

*/

/*

* The sparc assembly code [no longer here] is based on Carta, D.G., "Two Fast

* Implementations of the ’Minimal Standard’ Random Number

* Generator," CACM 33:1, Jan. 90, pp. 87-88.

*

* ASSUME that "the product of two [signed 32-bit] integers (a, sn)

* will occupy two [32-bit] registers (p, q)."

* Thus: a*s = (2^31)p + q

*

* From the observation that: x = y mod z is but

* x = z * the fraction part of (y/z),

* Let: sn = m * Frac(as/m)

*

* For m = 2^31 - 1,

* sn = (2^31 - 1) * Frac[as/(2^31 -1)]

* = (2^31 - 1) * Frac[as(2^-31 + 2^-2(31) + 2^-3(31) + . . .)]

* = (2^31 - 1) * Frac{[(2^31)p + q] [2^-31 + 2^-2(31) + 2^-3(31) + . .

.]}

* = (2^31 - 1) * Frac[p+(p+q)2^-31+(p+q)2^-2(31)+(p+q)3^(-31)+ . . .]

*

* if p+q < 2^31:

* sn = (2^31 - 1) * Frac[p + a fraction + a fraction + a fraction + . . .]

* = (2^31 - 1) * [(p+q)2^-31 + (p+q)2^-2(31) + (p+q)3^(-31) + . . .]

* = p + q

*

* otherwise:

* sn = (2^31 - 1) * Frac[p + 1.frac . . .]

* = (2^31 - 1) * (-1 + 1.frac . . .)

* = (2^31 - 1) * [-1 + (p+q)2^-31 + (p+q)2^-2(31) + (p+q)3^(-31) + . . .]

* = p + q - 2^31 + 1

*/

#define A 16807L /* multiplier, 7**5 */

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 20

TU Berlin

#define M 2147483647L /* modulus, 2**31 - 1; both used in random */

#define INVERSE M ((double)4.656612875e-10) /* (1.0/(double)M) */

long

RNGImplementation::next()

{

long L, H;

L = A * (seed & 0xffff);

H = A * (seed >> 16);

seed = ((H & 0x7fff) << 16) + L;

seed -= 0x7fffffff;

seed += H >> 15;

if (seed <= 0) {

seed += 0x7fffffff;

}

return(seed);

}

double

RNGImplementation::next double()

{

long i = next();

return i * INVERSE M;

}

/*

* RNG implements a nice front-end around RNGImplementation

*/

#ifndef stand alone

static class RNGClass : public TclClass {

public:

RNGClass() : TclClass("RNG") {}

TclObject* create(int, const char*const*) {

return(new RNG());

}

} class rng;

#endif /* stand alone */

/* default RNG */

RNG* RNG::default = NULL;

RNGImplementation *RNG::stream = 0;

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 21

TU Berlin

int RNG::refCount = 0;

RNG::RNG()

{

if((refCount++ == 0) && (stream == 0))

stream = new RNGImplementation(1L);

};

double

RNG::normal(double avg, double std)

{

static int parity = 0;

static double nextresult;

double sam1, sam2, rad;

if (std == 0) return avg;

if (parity == 0) {

sam1 = 2*uniform() - 1;

sam2 = 2*uniform() - 1;

while ((rad = sam1*sam1 + sam2*sam2) >= 1) {

sam1 = 2*uniform() - 1;

sam2 = 2*uniform() - 1;

}

rad = sqrt((-2*log(rad))/rad);

nextresult = sam2 * rad;

parity = 1;

return (sam1 * rad * std + avg);

}

else {

parity = 0;

return (nextresult * std + avg);

}

}

#ifndef stand alone

int

RNG::command(int argc, const char*const* argv)

{

Tcl& tcl = Tcl::instance();

if (argc == 3) {

if (strcmp(argv[1], "testint") == 0) {

int n = atoi(argv[2]);

tcl.resultf("%d", uniform(n));

return (TCL OK);

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 22

TU Berlin

}

if (strcmp(argv[1], "testdouble") == 0) {

double d = atof(argv[2]);

tcl.resultf("%6e", uniform(d));

return (TCL OK);

}

if (strcmp(argv[1], "seed") == 0) {

int s = atoi(argv[2]);

// NEEDSWORK: should be a way to set seed to PRDEF SEED SORUCE
if (s) {

if (s <= 0 || (unsigned int)s >= MAXINT) {

tcl.resultf("Setting random number seed to known bad value.");

return TCL ERROR;

};

set seed(RAW SEED SOURCE, s);

} else set seed(HEURISTIC SEED SOURCE, 0);

return(TCL OK);

}

} else if (argc == 2) {

if (strcmp(argv[1], "next-random") == 0) {

tcl.resultf("%u", uniform positive int());

return(TCL OK);

}

if (strcmp(argv[1], "seed") == 0) {

tcl.resultf("%u", stream ->seed());

return(TCL OK);

}

if (strcmp(argv[1], "default") == 0) {

default = this;

return(TCL OK);

}

#if 0

if (strcmp(argv[1], "test") == 0) {

if (test())

tcl.resultf("RNG test failed");

else

tcl.resultf("RNG test passed");

return(TCL OK);

}

#endif

} else if (argc == 4) {

if (strcmp(argv[1], "seed") == 0) {

int s = atoi(argv[3]);

if (strcmp(argv[2], "raw") == 0) {

set seed(RNG::RAW SEED SOURCE, s);

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 23

TU Berlin

} else if (strcmp(argv[2], "predef") == 0) {

set seed(RNG::PREDEF SEED SOURCE, s);

// s is the index in predefined seed array
// 0 <= s < 64

} else if (strcmp(argv[2], "heuristic") == 0) {

set seed(RNG::HEURISTIC SEED SOURCE, 0);

}

return(TCL OK);

}

if (strcmp(argv[1], "normal") == 0) {

double avg = strtod(argv[2], NULL);

double std = strtod(argv[3], NULL);

tcl.resultf("%g", normal(avg, std));

return (TCL OK);

}

if (strcmp(argv[1], "lognormal") == 0) {

double avg = strtod(argv[2], NULL);

double std = strtod(argv[3], NULL);

tcl.resultf("%g", lognormal(avg, std));

return (TCL OK);

}

}

return(TclObject::command(argc, argv));

}

#endif /* stand alone */

void

RNG::set seed(RNGSources source, int seed)

{

/* The following predefined seeds are evenly spaced around
* the 2^31 cycle. Each is approximately 33,000,000 elements
* apart.
*/

#define N SEEDS 64

static long predef seeds[N SEEDS] = {

1973272912L, 188312339L, 1072664641L, 694388766L,

2009044369L, 934100682L, 1972392646L, 1936856304L,

1598189534L, 1822174485L, 1871883252L, 558746720L,

605846893L, 1384311643L, 2081634991L, 1644999263L,

773370613L, 358485174L, 1996632795L, 1000004583L,

1769370802L, 1895218768L, 186872697L, 1859168769L,

349544396L, 1996610406L, 222735214L, 1334983095L,

144443207L, 720236707L, 762772169L, 437720306L,

939612284L, 425414105L, 1998078925L, 981631283L,

1024155645L, 822780843L, 701857417L, 960703545L,

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 24

TU Berlin

2101442385L, 2125204119L, 2041095833L, 89865291L,

898723423L, 1859531344L, 764283187L, 1349341884L,

678622600L, 778794064L, 1319566104L, 1277478588L,

538474442L, 683102175L, 999157082L, 985046914L,

722594620L, 1695858027L, 1700738670L, 1995749838L,

1147024708L, 346983590L, 565528207L, 513791680L

};

static long heuristic sequence = 0;

switch (source) {

case RAW SEED SOURCE:

if (seed <= 0 || (unsigned int)seed >= MAXINT) // Wei Ye
abort();

// use it as it is
break;

case PREDEF SEED SOURCE:

if (seed < 0 || seed >= N SEEDS)

abort();

seed = predef seeds[seed];

break;

case HEURISTIC SEED SOURCE:

timeval tv;

gettimeofday(&tv, 0);

heuristic sequence++; // Always make sure we’re different than last time.
seed = (tv.tv sec ^ tv.tv usec ^ (heuristic sequence << 8)) & 0x7fffffff;

break;

};

// set it
// NEEDSWORK: should we throw out known bad seeds?
// (are there any?)
if (seed < 0)

seed = -seed;

stream ->set seed(seed);

// Toss away the first few values of heuristic seed.
// In practice this makes sequential heuristic seeds
// generate different first values.
//

// How many values to throw away should be the subject
// of careful analysis. Until then, I just throw away
// “a bunch”. --johnh
if (source == HEURISTIC SEED SOURCE) {

int i;

for (i = 0; i < 128; i++) {

stream ->next();

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 25

TU Berlin

};

};

}

/*

* RNGTest:

* Make sure the RNG makes known values.

* Optionally, print out some stuff.

*

* Simple test program:

* #include "rng.h"

* void main() { RNGTest test; test.verbose(); }

*/

#ifdef rng test

RNGTest::RNGTest()

{

RNG rng(RNG::RAW SEED SOURCE, 1L);

int i;

long r;

for (i = 0; i < 10000; i++)

r = rng.uniform positive int();

if (r != 1043618065L)

abort();

for (i = 10000; i < 551246; i++)

r = rng.uniform positive int();

if (r != 1003L)

abort();

}

void

RNGTest::first n(RNG::RNGSources source, long seed, int n)

{

RNG rng(source, seed);

for (int i = 0; i < n; i++) {

int r = rng.uniform positive int();

printf("%10d ", r);

};

printf("\n");

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 26

TU Berlin

}

void

RNGTest::verbose()

{

printf ("default: ");

first n(RNG::RAW SEED SOURCE, 1L, 5);

int i;

for (i = 0; i < 64; i++) {

printf ("predef source %2d: ", i);

first n(RNG::PREDEF SEED SOURCE, i, 5);

};

printf("heuristic seeds should be different from each other and on each run.\n");

for (i = 0; i < 64; i++) {

printf ("heuristic source %2d: ", i);

first n(RNG::HEURISTIC SEED SOURCE, i, 5);

};

}

#endif /* rng test */

// Running simulations in parallel requires central

// place to deal with random numbers.

// This is done best using a central random number stream.

// So here is the function to replace the internal stream.

// akoepke 2000-12-15

void

RNG::setRNGImplementation(RNGImplementation* imp)

{

if((imp != 0) && (imp != stream))

{

if(stream) delete stream ;

stream = imp;

}

return;

};

RNG::~RNG()

{

if(--refCount == 0)

{

if(stream != 0) delete stream ;

stream = 0;

}

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 27

TU Berlin

}

Copyright at Technical University

Berlin. All Rights reserved.
TKN-01-008 Page 28

