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Abstract—This paper introduces an adaptive transceiver
scheme for bio-nano things (NTs) situated within blood ves-
sels communicating through a time-varying molecular channel.
The proposed scheme employs a Q-learning-based adaptive
transceiver (a so-called QL-ADT), wherein an agent gradually
learns how to adapt the transmission parameters to the current
state of the channel. A real heart rate dataset is used to estimate
the blood flow velocities over time, based on which a time-varying
molecular channel is modelled. In the practical implementation of
the QL-ADT, an external gateway, situated on the skin, monitors
the body’s heart rate over time and interfaces with the NTs
through implantable nano devices. The gateway dynamically
adjusts the communication parameters of the NTs based on
the measured heart rate and what it has learned during the
training phase. The proposed QL-ADT scheme showed significant
improvement in the achievable raw bit rate (RBR) and error
performance for a real heart rate dataset.

Index Terms—Internet of Bio-Nano Things, Reinforcement
Learning, Molecular Communications, Adaptive Transceivers.

I. INTRODUCTION

THE internet of bio-nano things (IoBNT) is envisioned
as a heterogeneous communication network, extending

connectivity and control to unconventional domains like the
human body with innovative applications in smart drug de-
livery and continuous health monitoring [1], [2]. There are
mainly three types of devices involved in the IoBNT networks,
namely biological or synthetic nano-things (NT), implantable
nano-devices (IND) and nano-micro interfaces or gateways
(GW). The NTs are resource-limited sensors and actuators
located inside the human body communicating inside the
human circulatory system (HCS) using molecular communi-
cation (MC). INDs are also located inside the human body
and not only communicate with the NTs using MC, but
they can also communicate with GWs through conventional
electromagnetic waves (EM) such as THz signals. The more
advanced devices in the IoBNT network are gateways, located
outside the body but usually attached to the skin. Gateways
are almost boundless-resource devices communicating through
EM signals and transferring data inside and outside the human
body [3].

Fig. 1: The proposed system model for adaptive transceivers.

Concentration-based MC is commonly employed for com-
munication between the NTs within the HCS, where infor-
mation is encoded in the concentration levels of molecules
which propagate through the blood vessels. The dispersion
and transport of signalling molecules through the blood vessels
are affected by time-varying blood flow velocity in the HCS,
influencing not only molecules’ concentration profiles (by
making a shift in the peak of the concentration profile, called
advection effect) but also the likelihood of overlap between
successive symbols resulting in inter-symbol interference (ISI),
called diffusion effect. In practice, the blood flow velocity
within the HCS varies over time, particularly with changes
in heart rate due to physical activities [4]. Communication
performance degradation is the direct result of time-varying
changes in the blood vessels as communication channels, and
adaptive transmission is a promising solution for maintaining
a required performance in time-varying channels.

Adaptive receiver (Rx) techniques, such as adaptive thresh-
olding, have been vastly investigated for MC, like in [5],
[6]. An adaptive transmission rate for binary signalling is
also proposed in [7], where the knowledge of the prior
transmitted symbols is used at the transmitter (Tx) to adjust the
current symbol duration time. In these studies, the computation
complexity of adaptive schemes is imposed on resource-
constrained NTs, overlooking the potential for offloading this
complexity to more sophisticated devices involved in the
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network, like GWs. Therefore, this paper addresses a critical
question: How can we leverage the advantages of adaptive
transmission techniques without overloading resource-limited
NTs with additional computational complexity, and instead
offloading the complexity to an external GW?

We introduce an adaptive transceiver scheme for MC be-
tween NTs through a time-varying molecular channel caused
by variations in blood flow velocities. The proposed scheme
leverages the Q-learning (QL) algorithm, which is a particular
reinforcement learning (RL) technique [8], wherein an agent
stored in a GW interacts with the environment and learns
through trial and error how to adjusts the transmission param-
eters to the fluctuating conditions of the molecular channel.
To facilitate the practical implementation of the proposed
approach, we have divided it into two distinct phases, namely
the offline phase and the online phase.

In the offline phase, an agent learns how to select the
transmission parameters for different molecular channel con-
ditions by maximizing the rewards it gets for the selected
parameters. This reward is designed to be proportional to the
obtained performance of the current transmission in terms of
error and data rate. Heart rate is the parameter that shows the
channel condition for each transmission block. An electric-
circuit model (referred to as a digital twin (DT)) replica of the
HCS is used, enabling real-time estimation of corresponding
blood flow velocity for each heart rate value, resulting in es-
timation of the current channel impulse response (CIR). Once
the CIR is available, the transmission can be simulated on a
computer and the performance parameters are evaluated and
the corresponding reward is calculated. The agent gradually
learns how to select the optimal transmission parameters (i.e.
modulation order and symbol duration time) at each heart rate
(or equivalently each CIR) to achieve the maximum reward
(or equivalently maximum raw bit rate (RBR) while keeping
the symbol error ratio (SER) within an acceptable range). The
output of the offline phase is a Q-table showing the learned
optimum transmission parameters for each heart-rate value. In
the online phase, an external GW measures the current heart
rate based on which the agent selects optimal transmission
parameters using the trained model from the offline phase.
The selected parameters for the current transmission are then
fed back from the GW to the IND EM signals [9] and from
the IND to the NTs using MC (see Fig. 1). Since both Rx
and Tx dynamically adjust their parameters to the current
transmission, we refer to the proposed scheme as an adaptive
transceiver.

The main contributions of this study are summarized as
follows:

• We propose a QL-based adaptive transmission for time-
varying molecular communication.

• The proposed adaptive transmission offloads computa-
tional complexity to an external gateway, enhancing fea-
sibility by alleviating the computational load on resource-
limited nano-devices within the human body.

• We use a real heart rate dataset to validate the perfor-

mance of the proposed scheme.

II. SYSTEM MODEL

A concentration-based MC between a pair of NTs located
within an artery is considered. Using the EM signals and
through an IND, a GW outside the human body, which is
attached to the human skin, transmits signals to these NTs.
This GW has a sensor to monitor the heart rate in real-time,
based on which an agent stored in the GW can be trained to
select optimal parameters for current transmission between the
NTs to maximize the possible transmission rate while keeping
SER in an acceptable range. Fig. 1 illustrates the proposed
system model.

Having access to the heart rate, a DT replica of the HCS is
trained using the method in [4]. The obtained DT model then
is used to estimate the blood flow velocities in real-time. At
each transmission block of τ , the GW measures the heart rate
and passes it to the DT model to estimate the corresponding
blood flow velocity v(τ)[ms−1] at a specific position in the
artery. It is assumed that during each transmission block, the
heart rate does not change significantly. Considering that the
two NTs are placed at a fixed distance d from each other, the
corresponding time-varying CIR at the τ th transmission block
is given by

h(t, τ) =
1√

4πDefft
e

−(d−v(τ)t)2

4Defft , (1)

with Deff = D + r2v(τ)2

48D , with the diffusion coefficient [10]
D = 2.75 × 10−9 m2s−1, the distance d = 10−1 m and
the artery diameter [11] r = 10−4 m. It is also assumed
that the Tx uses adaptive M-ary concentration shift keying
(CSK) modulation with adjustable symbol duration time. The
molecules then pass through the molecular channel with the
described CIR and are received at the Rx. To keep the
computational complexities at the NTs as low as possible, a
simple threshold detection is used at the Rx.

It is worth mentioning that the reason why modulation order
and symbol duration time are chosen for adaptation is that
both parameters contribute to communication performance in
molecular channels with diffusion and advection characteris-
tics. It means they directly influence the ability to differentiate
symbols and mitigate the effects of overlapping signals passing
through a channel with memory (diffusion effect) and varying
peak arrival time of the received signal (advection effect).
Hence, we expect to achieve higher transmission rates under
conditions where the spread and delay of the signal in the
channel are minimal, or equivalently when the heart rate is
higher, as will be shown in Section IV.

III. THE PROPOSED REINFORCEMENT LEARNING BASED
ADAPTIVE TRANSCEIVER

The proposed method is based on the RL technique, wherein
an agent learns optimal behaviour through interaction with its
environment. In this letter, we utilize an off-policy temporal
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difference algorithm called the QL algorithm. The QL is a
model-free algorithm, meaning that it does not rely on an
explicit model of the environment. This characteristic makes
it a particularly suitable choice for addressing adaptive trans-
mission problems [12].

At each training step n of the QL algorithm, the agent
observes the state sn ∈ S of the environment and selects an
action an ∈ A. As a consequence of this action, the agent
receives a reward rn ∈ R and perceives a new state sn+1. The
primary objective of the RL agent is to identify actions that
yield a high reward. The agent determines the best actions for
each observation by considering the value of an action-value
function, denoted as Q(sn, an), or Q-function. This function
represents the cumulative expected reward for taking an action
in state sn and subsequently following a policy. At each step,
the estimation of the action-value function is updated by

Q(sn, an)← (1− α)Q(sn, an)+ (2)

α
[
rn + γ max

an+1∈A
Q(sn+1, an+1)

]
,

where 0 ≤ α ≤ 1 and 0 ≤ γ ≤ 1 are learning rate and discount
factor respectively which should be designed correctly for
each optimization task [8]. Therefore, a Q-table where the Q-
values for each state-action pair are represented is also updated
iteratively.

A. State Space

The state space in our problem consists of the heart rate
values measured at the GW. Considering integer values for
the heart rate, the state space, therefore, is discrete. The state
at the training step n is denoted as sn, which is equal to the
corresponding heart rate for the current transmission interval.

B. Action Space

The action space consists of all the transmission parameters
that can be adapted at each transmission interval and is denoted
by

A = {(M1, T1), (M2, T1), . . . , (MK , TJ)}, (3)

where Mk, k = 1, . . . ,K are the different available CSK
modulation orders and Tj , j = 1, . . . , J are available symbol
times. At step n, the taken action is an = (Mn, Tn) with
Mn ∈M1, . . .MK and Tn ∈ T1, . . . TJ .

C. Reward

The reward function considered in this study is a non-linear
function of the achievable RBR and error performance of the
communication. The highest RBR, i.e. the highest modulation
order and lowest symbol duration time, gets the highest reward,
but only if the communication error is acceptable by the
application. If the error performance of the chosen action
is not acceptable, the reward would be negative. The error

performance is measured based on the SER, and then the
reward function at step n is defined as:

rn =

{
10 log2 Mn

Tn (1− SERn) if SERn < thr

−10 SERn else.
(4)

where thr is the acceptable threshold for error performance at
the Rx. Thus, with this reward function, the agent will try to
maximize the RBR while ensuring error performance remains
below a threshold and minimizing errors wherever feasible.

D. QL-based Adaptive Transmission Algorithm (QL-ADT)
The proposed approach is referred to as QL-based adaptive

transmission or QL-ADT. The QL-ADT approach is divided
into two phases: the offline phase and the online phase.

1) Offline Phase: In the offline phase, the agent is expected
to explore the environment and learn how to obtain the greatest
possible reward at each state (for each heart rate). In other
words, in the offline phase, we train the agent iteratively, using
a heart rate dataset. At each iteration, the agent gets a sample
from the heart rate dataset as the current state sn, and takes
a step by selecting a proper action an, i.e. modulation order
and symbol time, using its policy, and then updates its Q-
table based on the obtained reward. Each step corresponds to
an action chosen from the action space following a policy.
An ϵ-greedy policy is used for this task which balances
exploration and exploitation by selecting the best action with
high probability and exploring with a smaller probability
ϵ [13]. The approach fine-tunes the balance between exploring
new possibilities and exploiting learned knowledge, enhancing
decision-making in uncertain environments. The parameter ϵ
will be initialized with ϵmax which is some value close to one
and then decays over time until it reaches ϵmin which is a value
close to zero.

Each iteration terminates if either the agent takes nmax steps
or it receives the maximum expected reward rmax. By defining
nmax, we encourage the agent to explore the environment
more and take actions which might lead to higher rewards.
On the other hand, rmax prevents the agent from becoming
overwhelmed by excessive searching, which reduces the com-
plexity of the training phase. The final output of the offline
phase is a Q-table, showing the value of the actions for each
state. A pseudo-code of the offline phase of the proposed QL-
ADT algorithm is provided in Algorithm 1.

2) Online Phase: In the online phase, a GW attached to the
human skin measures the heart rate for the current transmission
block as sτ and selects a proper action using the trained Q-
table during the offline phase. These selected actions, i.e. a∗τ =
(Mτ , T τ ), then are transmitted from the GW to the NTs (both
Tx and Rx) using the EM communications. The Tx and Rx
then adapt their parameters for the current transmission block.

IV. SIMULATION RESULTS

A. Digital Twin Model
For the DT model, we use the electric circuit representation

of the HCS, as given in our previous work in [4]. This model
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Algorithm 1 QL-ADT Algorithm

Initialization Q(sn, an)← 0 for all sn and an
Input Heart-rate dataset
Output Optimal Q-table
Loop for each iteration:

- Agent gets a sample from the heart-rate dataset as s.
- n← 1.
While rn ≤ rmax and n ≤ nmax:

- For sn = s, the GW chooses an from A based
on ϵ-greedy policy and the available Q-table.

- Tx transmits the signal using an.
- Rx detects the received signal using an and calculates
SERn.

- Agent calculates the reward and updates the
Q-table using Eq. (4) and Eq. (2).

- n← n+ 1.
- go to the next iteration.
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Fig. 2: The measured heart rate over a day, from 6 to 23.

allows us to evaluate the pressure as a function of time at
different vessel segments for an arbitrary heartbeat frequency.
Specifically, with this model, we evaluate the pressure in
the wrists and use [4, Eq. (7)] to later evaluate the blood
flow velocity at an arbitrary vessel stream. In other words,
the input of the DT model is the heart rate value and its
output is the corresponding estimated blood flow velocity in
the considered artery in the wrist, with diameter mentioned
in Section II. Based on the obtained velocity, we can estimate
the corresponding CIR. It should be mentioned that estimating
the blood flow velocity for each single heart rate value using
the DT model is time-consuming. Therefore, we utilized the
DT model to obtain flow velocities for selected values of the
heart rate and then estimated the missing values using linear
interpolation.

B. Simulation Parameters

Table I presents an overview of the main simulation parame-
ters. It is assumed that the transceiver supports four modulation
orders as 2-CSK, 4-CSK, 8-CSK and 16-CSK, along with
five symbol duration time as 1s, 0.9s, 0.8s, 0.7s, and 0.6s 1.
Figure 3 illustrates examples of estimated blood flow velocities

1The symbol durations are strategically selected in accordance with the
CIRs illustrated in Fig. 3

TABLE I: Simulation parameters

Parameter Value
Mk, k = 1, . . . , 4 2-CSK, 4-CSK, 8-CSK, 16-CSK
Tj , j = 1, . . . , 5 1 s, 0.9 s, 0.8 s, 0.7 s, 0.6 s
learning rate α 0.05
discount factor γ 0.1
SER threshold (thr) 5× 10−2

maximum exploration rate (ϵmax) 1
minimum exploration rate (ϵmin) 0.001
nmax 10
rmax 40
Iterations 5× 105

time [s]
N
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Fig. 3: The estimated CIRs for four different heart rate values, where v =
0.035, 0.04, 0.05 and 0.051 respectively corresponds to the heart rate values
87, 100, 160 and 180.

from the DT model, i.e. v, alongside their corresponding CIRs
for four different heart rate values, which are normalized in
power. The figure clearly illustrates the impact of varying
flow velocities on both diffusion and advection processes,
as evidenced by the extended duration of the CIRs and the
noticeable shift in peak arrival times with different velocities.
A real heart rate data set measured from a test person who
wore a Garmin Fenix x5 smartwatch on his left wrist over a
day from 6 to 23 is used for evaluation. The corresponding
data is depicted in Fig. 2.

C. Results Analysis

Fig. 4 shows the total reward the agent earns at each iteration
during the training. At the beginning of the training process,
the received reward varies significantly, because the agent
explores more and takes more random actions in the current
state to avoid getting stuck in local optima. However, the agent
gradually learns the association between states and actions
after a sufficient number of iterations.

To assess the performance of the proposed QL-ADT algo-
rithm, we evaluated the obtained SER and RBR (in bits per
second [bps]) for the heart rate dataset illustrated in Fig. 2.
In Fig. 5, the instantaneous achieved RBR by QL-ADT is
compared with that of various fixed transmission schemes.
As we expected, it is evident from this figure that the higher
transmission rates are achieved by the proposed algorithm
where the heart rate rises. Specifically, at around time 14 : 28,
when there is a significant peak in the heart rate, the QL-ADT
algorithm shows a sharp peak in the achieved RBR. It should
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Fig. 4: Total Reward per iteration in QL-ADT algorithm.
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Fig. 5: The achieved RBR by QL-ADT for the heart rates in Fig. 2 compared
to fixed-transmission schemes.

be noticed that adjusting symbol duration downward and/or
boosting modulation order can both elevate the achieved RBR;
however, escalating the modulation order again intensifies
interference. Thus, the agent is expected to find the optimal
balance for each observation, i.e. heart rate value.

We compared the average performance of the proposed QL-
ADT method with fixed transmission schemes and summarized
them in Table II. It is evidence from the table that QL-ADT
archives higher average RBR compared to 2-CSK, (8-CSK,
T = 1 s) and (16-CSK, T = 1 s), but still remains the required
error performance (which is set to 5 × 10−2 Table I). In
addition, Table II reveals although (8-CSK, T = 0.6 s and (16-
CSK, T = 0.6 s can potentially convey higher data rate, they
cannot maintain the required SER for the entire transmission
(due to the intensified ISI effect in low-heart rate regimes).

These results confirm that using fixed transmission parame-
ters to communicate through a time-varying MC channel leads
to a compromise between a low bit rate and a high error ratio.
In contrast, the proposed QL-ADT effectively identifies the
optimal balance between bit rate and error ratio tailored to each
specific channel condition, thereby facilitating more reliable
communication.

V. CONCLUSION

In this letter, we proposed an adaptive transceiver design for
MC based on QL algorithm. An external agent monitors heart
rate and gradually learns to optimize transmission parameters
for efficient MC between NTs. Our simulations demonstrate

TABLE II: The average achievable SER and RBR by QL-ADT compared to
fixed-transmission schemes.

Scheme avg RBR [bps] avg SER
QL-ADT 4.54 2× 10−2

2-CSK, T = 1 s 1 0
2-CSK, T = 0.6 s 1.66 0
8-CSK, T = 1 s 3 0
8-CSK, T = 0.6 s 5 0.68
16-CSK, T = 1 s 4 0.27
16-CSK, T = 0.6 s 6.66 0.83

superior row bit rate and error performance when compared
to fixed transmission schemes. Future work could explore
extensions to incorporate the impact of NTs mobility within
the environment.

ACKNOWLEDGMENT

This work has been in part supported by the ”University
SAL Labs” initiative of Silicon Austria Labs (SAL) and its
Austrian partner universities for applied fundamental research
for electronic-based systems as well as by the project IoBNT,
funded by the Federal Ministry of Education and Research
(BMBF, Germany) under grant 16KIS1986K.

REFERENCES

[1] I. Akyildiz et al., “The Internet of Bio-Nano Things,” IEEE Communi-
cations Magazine, vol. 53, no. 3, pp. 32–40, Mar. 2015.

[2] F. Dressler and S. Fischer, “Connecting In-Body Nano Communication
with Body Area Networks: Challenges and Opportunities of the Internet
of Nano Things,” Elsevier Nano Communication Networks, vol. 6, pp.
29–38, 6 2015.

[3] K. Yang, D. Bi, Y. Deng, R. Zhang, M. M. U. Rahman, N. A. Ali, M. A.
Imran, J. M. Jornet, Q. H. Abbasi, and A. Alomainy, “A comprehensive
survey on hybrid communication in context of molecular communication
and terahertz communication for body-centric nanonetworks,” IEEE
Transactions on Molecular, Biological and Multi-Scale Communications,
vol. 6, no. 2, pp. 107–133, 2020.

[4] J. T. Gomez et al., “Fine-tuned circuit representation of human vessels
through reinforcement learning: A novel digital twin approach for hemo-
dynamics,” in Proceedings of the 10th ACM International Conference
on Nanoscale Computing and Communication, 2023, pp. 46–52.

[5] A. K. Shrivastava et al., “Adaptive threshold detection and isi mitigation
in mobile molecular communication,” in 2020 IEEE Wireless Commu-
nications and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.

[6] G. H. Alshammri et al., “Adaptive batch training rule-based detection
scheme for on-off-keying diffusion-based molecular communications,”
in 2018 IEEE 13th Nanotechnology Materials and Devices Conference
(NMDC). IEEE, 2018, pp. 1–4.

[7] M. Movahednasab et al., “Adaptive transmission rate with a fixed
threshold decoder for diffusion-based molecular communication,” IEEE
Transactions on Communications, vol. 64, no. 1, pp. 236–248, 2015.

[8] A. Zai et al., Deep reinforcement learning in action. Manning
Publications, 2020.
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