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Abstract—The emergence of AI-native 6G networks introduces
an agentic architectural paradigm where intelligent network
entities can actively coordinate distributed systems. We leverage
this capability to address scalability limitations in vision-and-
language navigation (VLN) for robotic agents. Unlike existing
VLN approaches designed for isolated operation, we propose a
collaborative framework where a network agent orchestrates data
collection from distributed robotic agents to construct a shared,
query-able semantic map of the environment. By offloading com-
putationally intensive mapping tasks from resource-constrained
robots to the network, the framework improves operational effi-
ciency. It also reduces redundancy and exploration cost by limiting
each agent’s search area. Furthermore, because semantic mapping
is highly sensitive to data distortion, the network agent leverages
its intrinsic access to communication metrics to guide robotic
agents during data collection, minimizing transmission errors and
ensuring robust map generation. Simulation results demonstrate
that our off-board collaborative framework achieves mapping
accuracy comparable to on-board individualistic methods, with
negligible time overhead for participating robotic agents. Notably,
it significantly lowers exploration costs for newly deployed agents,
facilitating efficient adaptation to dynamic environments without
compromising performance.

Index Terms—AI-Native networks, Embodied AI, Large
Language Models, Vision-Language Navigation, Collaborative
Agents

I. INTRODUCTION

The emergence of AI-native 6G networks, characterized by
an agentic architectural paradigm [1], redefines communication
networks as dynamic ecosystems of intelligent agents – au-
tonomous entities that monitor network states and environmen-
tal conditions, optimize resource allocation through distributed
decision-making, and coordinate with other agents for optimal
service delivery. This paradigm shift transcends conventional
connectivity, enabling networks to deliver advanced services
to user terminals, which may themselves consist of intelli-
gent agents. A key target application of this architecture is
embodied AI systems, particularly networked robotics, where
interconnected robotic agents execute coordinated operations.
Such systems hold transformative potential across industries,
enabling intelligent, collaborative, and context-aware task
execution. Among the critical challenges in this domain
is enabling robust autonomous navigation – a foundational
capability for deploying scalable robotic solutions.

Traditionally, robotic navigation systems relied on determin-
istic algorithms for localization, mapping, and path planning
[2], [3]. While these techniques work well for navigation

tasks in static environments, they are far from creating
truly intelligent systems that can learn through experience
by interacting with the physical world, making decisions,
and adapting to dynamic environments. Vision-and-language
navigation (VLN) has emerged as a key enabling paradigm
that aims to bridge this gap by integrating vision, language,
and navigation into end-to-end systems [4]. More specifically,
VLN tasks involve processing visual data and natural language
instructions to generate navigational actions, enabling effective
navigation through complex environments. A line of research
in VLN involves simultaneous semantic mapping of the
environment and grounding language to visual observations [5],
[6]. These utilize pre-trained visual and language encoders to
fuse visual-language features with a 3D reconstruction of the
physical world, thereby generating a semantic map, commonly
referred to as a Vision-Language Map. While state-of-the-art
VLN frameworks excel in single agent operation, they impose
significant limitations in practical deployments: each robot
must independently explore environments, construct semantic
maps, and execute navigation tasks – an inefficient paradigm
for resource-constrained robots operating at scale.

A naive solution would offload compute-intensive semantic
mapping, which usually involves 3D reconstruction, to edge
servers but this introduces a critical vulnerability: the mapping
process is highly sensitive to sensor data distortions (e.g.,
corrupted depth maps or point clouds) caused by transmission
errors. The agentic, compute-native architecture of 6G net-
works fundamentally addresses this challenge by transforming
the network itself into an intelligent mediator. Unlike passive
edge servers, the network agent can leverage its intrinsic
access to real-time network metrics, such as coverage maps
and quality of service (QoS) profiles, to actively optimize
robotic data collection and guarantee transmission reliability.

Motivated by this paradigm, we propose a collaborative
mapping framework where multiple robotic agents collaborate
with a network entity to construct a shared semantic map of
the environment (Figure 1). Each robot performs distributed
exploration while maintaining minimal onboard localization
(2D position awareness), streaming its sensor observations
(RGB-D, LiDAR) to the network entity for integration. The
network entity – conceptually an autonomous AI agent but
implemented here as an advanced network function operating
across both control and data planes – fuses these multi-agent
observations into a globally consistent semantic map. This



Fig. 1: Framework overview: The network agent generates
a shared semantic map through multi-robot data fusion and
optimizes data collection by directing robots to high QoS
locations based on its QoS map. The shared map can then be
queried for object locations (e.g. "fridge", "sofa").

allows robotic agents to dynamically query object locations,
including those not yet observed in their individual exploration.
While this framework can theoretically enable dynamic QoS
negotiation where the robotic agents can request tailored QoS
parameters (e.g., high throughput for sensor streaming or low
latency for urgent queries), this study focuses primarily on
validating the feasibility of the core collaborative mapping
capability. The proposed framework offers three key advan-
tages: (1) enhanced resource efficiency through offloading of
compute-intensive semantic mapping to the network entity; (2)
scalable mapping via distributed data collection that prevents
redundant exploration by robotic-agents; and (3) improved
robustness through optimized data transmission that minimizes
sensor data distortion.

The key contributions of this work are threefold:
• We propose a novel network-assisted collaborative map-

ping framework where a network agent fuses multi-robot
sensor data into a unified vision-language map, enabling
robotic agents to query unseen object locations through
coordinated language interactions.

• We develop a QoS-guided data collection protocol that
leverages the network agent’s global awareness of cover-
age conditions to optimize transmission reliability.

• We implement and evaluate the system in simulated
environments, demonstrating its viability and potential
benefits over individualistic and network-agnostic ap-
proaches.

II. RELATED WORK

Recent breakthroughs in robotic navigation tasks have been
significantly propelled by the use of pre-trained foundation
models [4], largely due to their ability to provide rich spatial
representations, transfer learning and multi-modal integration.
For example, Clip-on-Wheels [7] leverages open-vocabulary
models such as CLIP to propose a language-driven zero-shot
object navigation (L-ZSON) task, which benchmarks the ability
of agents to search for objects in unfamiliar environments.

Recent work has focused on creating open-vocabulary semantic
maps that allow natural language indexing, enabling more
intuitive interaction with the environment [5], [6]. For instance,
VLMaps [5] constructs environment maps using pre-collected
offline datasets, while OVL-Maps [6] performs mapping
during navigation, offering real-time adaptability. Despite these
advancements, these approaches are designed for standalone
single robot systems, leaving the potential of multi-robot
collaboration largely unexplored.

A number of works have considered the problem of
communication-aware navigation [8]–[11]. For example,
Lindhe et al. [8] consider a robot with a predefined trajectory,
and propose a periodic and controlled stopping policy based
on measured SNR, to increase the average throughput. Luo
et al. [10] introduce a system designed to maximize long-
term throughput by concurrently optimizing the downlink
transmission power at the access point (AP) and the motion
trajectories of the robots. However, this approach primarily
operates by steering robots away from regions of low communi-
cation quality, making it less suitable for dynamic exploration
and map-building tasks. A more closely related study to our
approach is ACHORD [11], wherein the authors propose a
sophisticated multi-layer networking solution that intricately
couples network architecture with high-level decision-making
processes to enhance communication performance. ACHORD
employs bandwidth prioritization and supports timely data
transmission even in scenarios characterized by intermittent
connectivity. In contrast to these prior works, our approach
uniquely integrates network-guided data collection with dy-
namic semantic mapping of the unexplored environment,
enabling the creation of a queryable, semantic map through
seamless multi-robot collaboration.

III. PROBLEM FORMULATION

We consider the challenge of scalable collaborative mapping
for networked robotic systems operating under communication
constraints. It involves N robotic agents {R1, . . . ,RN}
exploring an unknown environment which presents three core
challenges:

Data Transmission Vulnerability: High-dimensional sensor
streams (RGB-D/LiDAR) are susceptible to distortion when
transmitted from regions of poor network quality, compromis-
ing map integrity.

Semantic Query Requirement: Agents must locate objects
specified via textual descriptors (e.g., "fridge", "sofa") by
querying a shared map, including objects not yet observed
during their individual exploration trajectories.

Exploration Redundancy: Independent mapping by mul-
tiple agents leads to inefficient overlapping coverage and
resource waste.

The goal is to enable: (1) reliable construction of a
globally consistent semantic map M through multi-agent
collaboration; and (2) accurate resolution of language queries
for object coordinates gc = (xg , yg), despite dynamic network
conditions. Crucially, the solution must ensure that language-



based navigation tasks remain viable when target objects fall
outside an agent’s local observation range.

IV. METHODOLOGY

The proposed system centers on network-mediated collabo-
ration between robotic agents and the network agent which can
be formalized through two components: (i) Network-guided
data collection where it coordinates with robotic agents to
ensure reliable sensor data transmission by directing them to
high-QoS zones. (ii) Centralized map fusion where it integrates
observations from multiple robotic-agents into a unified vision-
language map.

The communication link quality between the network and
robotic agents is characterized by key QoS metrics. In our
proposed system, we assume that the network has initial
knowledge of the environment’s communication characteristics
and maintains a coverage map, based on historical data and
predictive models from NWDAF [12] or even estimates based
on environmental features (e.g., open spaces are likely to have
better signal strength). Furthermore, as the robots explore the
environment, the coverage map can be continuously updated
using the real-time QoS data shared by the robots. As such,
the centralized QoS coordination by the network agent offers a
critical advantage over terminal-only measurement by enabling
predictive identification of optimal zones beyond a single
robot’s local perspective. By coordinating robotic agents
through the network, the framework eliminates redundant
exploration: each agent focuses on distinct sub-regions guided
by the network’s global perspective, collectively covering
the environment without overlap. This spatial division of
labor reduces per-agent exploration costs compared to single-
agent systems. Furthermore, newly deployed agents inherit
the network’s shared map, bypassing solo exploration entirely
and enabling immediate task execution.

A. QoS-Guided Data Collection
Each robot Ri is assigned an exploration region Si based

on its initial position pinit
i . A transmission event is triggered

when the robot satisfies either a temporal threshold (T seconds
elapsed since last transmission) or a data-volume threshold
(e.g, F RGB-D frames acquired). Upon triggering, Ri requests
the network agent for the optimal transmission positions:

1) Trigger Condition: For robot Ri at position pcurr
i :

Transmit if |I(i)t | ≥ F or t− t
(i)
last ≥ T (1)

2) QoS Target Selection: The network agent constructs
a Voronoi tessellation V over all high-QoS points
{p∗1, . . . , p∗n} satisfying Q(p∗k) ≥ θQoS. Each Voronoi
cell Ci is defined as:

Ci =
{
p ∈ E

∣∣ ∥p− p∗i ∥2 ≤ ∥p− p∗j∥2, ∀j ̸= i
}
,

where E represents the entire exploration area (2)

For an agent at position pcurr
i , the target point p∗i is:

p∗i = argmin
p∈P
∥pcurr

i − p∥2,

where P = {p ∈ E |Q(p) ≥ θQoS} (3)

3) Navigation: Robot Ri plans path Pi to p∗i :

Pi = argmin
P
∥P∥2 s.t. P ⊂ Si (4)

Exploration terminates when the visual language map M
achieves coverage ratio:

|Mcovered|
|M|

≥ γ (5)

After the initial map construction, robotic agents continue to
transmit incremental updates to maintain the global map’s
accuracy in dynamic environments. The update frequency can
be adaptively adjusted based on environmental dynamics or
operational requirements.

The above procedure is summarized in Algorithm 1.

Algorithm 1 QoS-Guided Visual Language Mapping

1: Input: Robots R1, ...,RN , QoS map Q(p), thresholds
F, T, γ

2: Output: Visual language map M
3: for each robot Ri ∈ {R1, ...,RN} do
4: Initialize region Si
5: t

(i)
last ← 0, I(i)t ← ∅

6: while |Mcovered|
|M| < γ do

7: for each robot Ri do
8: Collect RGB-D frame (I

(i)
r , I

(i)
d ) at position pcurr

i

9: I(i)t ← I
(i)
t ∪ {(I

(i)
r , I

(i)
d , pcurr

i )}
10: if |I(i)t | ≥ F or t− t

(i)
last ≥ T then

11: Network agent computes:
12: p∗i ← arg max

p∈B(pcurr
i ,Rs)

Q(p)

13: Send p∗i to Ri

14: Ri navigates to p∗i via Pi ← arg min
P⊂Si

∥P∥2

15: Transmit I(i)t to network agent
16: M←M∪ I(i)t

17: I(i)t ← ∅, t
(i)
last ← t

18: Network agent updates Mcovered

19: Return M

B. Dynamic VLMap Construction

The VLMap framework constructs a globally consistent 3D
visual-language map by incrementally fusing asynchronous,
frame-wise RGB-D (RGB frames with depth) observations
from distributed agents into a unified representation. The
system processes each input frame by first reconstructing
3D points in the camera coordinate system via depth back-
projection and intrinsic calibration. These points are then
transformed into a shared global frame using estimated camera
pose data transmitted along with the RGB-D data, enabling
multi-agent data integration. The global map is structured
as a dynamically expandable voxel grid, where each voxel
stores semantic features (extracted via a visual-language
encoder), RGB color values, and a confidence weight to
quantify observation reliability. The voxel grid is updated
incrementally per frame, enabling real-time adaptation to new



observations without global recomputation. The framework’s
modular design supports scalable deployment across multi-
agent systems, as each agent independently processes its sensor
stream while contributing to the shared global map through
pose-synchronized transformations. We denote the RGB frame
at time step t as Ft ∈ Rm×n×3, and the corresponding depth
map as Dt ∈ Rm×n, where m and n represent the image
height and width, respectively. For each pixel (u, v) in the
image, the depth value Dt(u, v) is used to back-project the
3D point pcam

t = (x, y, z)⊤ in the camera coordinate system
through the inverse projection model:

pcam
t = K−1

u ·Dt(u, v)
v ·Dt(u, v)
Dt(u, v)

 (6)

where K ∈ R3×3 is the camera intrinsic matrix, and (u, v)
are the pixel coordinates of the depth map. The global map
M is represented as a voxel grid with cell size cs, where each
grid cell gijk ∈M at coordinates (i, j, k) contains: Semantic
feature vector fijk ∈ Rd obtained from the LSeg encoder, RGB
color cijk ∈ {0, . . . , 255}3, Confidence weight wijk ∈ R+.
The map is updated using an incremental fusion strategy. Let
Tbase←cam

t ∈ SE(3) denote the camera pose transformation
matrix at time t. The observed 3D point pcam

t is transformed
into the global base frame using:

pbase
t = Tbase←cam

t pcam
t (7)

The corresponding grid cell indices (i, j, k) are computed as:

(i, j, k) =

⌊
pbase
t − pmin

cs

⌋
(8)

where pmin represents the origin of the map. A height map
H ∈ Rm×n is maintained to track the maximum observed
z-coordinate per ground grid cell, which helps in handling
occlusions. The height map is updated as:

H(i, k) = max(H(i, k), j) (9)

where j represents the vertical grid index, ensuring that higher
objects or obstacles are prioritized.

To integrate new features, we follow the same strategy as
in [5] and apply an exponentially decaying weight based on
the radial distance from the sensor. The semantic features fijk
and color values cijk are updated via weighted averaging.

C. Communication Model

We obtain the wireless network coverage map for our
simulated environment (Section V-A) using the ray-tracing
capabilities of Sionna for an operating of frequency of 2.14
GHz. The generated coverage map, depicted in Figure 2b
predicts the path loss at different grid locations in the given
environment, which is subsequently used to estimate metrics
such as Signal-to-Noise Ratio (SNR), Bit Error Rate (BER),
and Packet Error Rate (PER). The received power at a given
location is given by:

Prx(dBm) = PTx +Gchannel

(a) Simulated office
scene in gazebo

(b) Network coverage
map (coverage zones
highlighted in purple)

Fig. 2: Simulated environment and coverage map.

Fig. 3: Baseline (On-Board)
VLMap.

Fig. 4: VLMap in network-
agnostic scenario.

where Gchannel is the path gain obtained from the radio map.
The SNRDL and SNRUL would then be:

SNRDL(dB) = Prx −Nfloor

SNRUL = SNRDL + (PTx,UL − PTx,DL) + δG,

where δG is a random variable modelling the difference in
channel gain. For 256-QAM, the BER can be approximated
as:

BER ≈ 4

log2(M)
Q

(
3 · SNRlinear

M − 1

)
, with M = 256

where SNRlinear = 10
SNR (dB)

10 and Q(x) is the Gaussian Q-
function. The Packet Error Rate (PER) is then computed as:

PER = 1− (1− BER)Lpacket×8

V. EXPERIMENTS

A. Experiment Setup

We evaluate the framework in a Gazebo-simulated office
environment (17m × 30m × 2m) featuring corridors and
six rooms. Two TurtleBot3 agents perform collaborative
exploration with manually partitioned regions for experimental
consistency. The QoS threshold θQoS is set to -70dB and the



(a) Buffer Size 20 MB (b) Buffer Size 40 MB

Fig. 5: Terminal agent determined transmission points and
corresponding VLMaps for two buffer sizes.

mapping phase terminates when each robotic agent has fully
covered its assigned region. We compare four approaches:

1) On-Board Mapping: Each robot independently maps
the entire environment (baseline).

2) Network-Agnostic: The robots immediately transmit
all available sensor data without considering current
network conditions at their location.

3) Terminal-Agent-Controlled: Robots monitor local net-
work quality and buffer sensor data during exploration,
transmitting it upon reaching high-QoS areas. If the
buffer reaches capacity, data is sent immediately, regard-
less of network conditions.

4) Network-Agent-Optimized: Proposed QoS-guided
transmission.

B. Evaluation Metrics

Performance is quantified using:

• Task Success Rate: To evaluate the semantic accuracy of
the generated VLmaps, we test the maps on 9 navigation
tasks: agents parse language instructions, query candidate
object coordinates from the network agent, and navigate
to these locations. A navigation task is deemed successful
if at least one of the returned locations aligns with the
ground-truth position of the target object.

(a) Buffer Size 20 MB (b) Buffer Size 40 MB

Fig. 6: Network agent determined transmission points and
corresponding VLMaps for two buffer sizes.

TABLE I: Performance metrics for the four scenarios with
different buffer sizes.

Task Success Rate (%) Normalized Map Coverage Average Exploration
Time per Robot (Minutes)

Buffer Size (MB) 0 20 40 0 20 40 0 20 40

On-Board (Baseline) 77.8 - - 1.0 - - 24.2 - -
Network-Agnostic 22.2 - - 0.53 - - 12.5 - -
Terminal-Agent-Controlled - 33.3 33.3 - 0.31 0.22 - 12.5 12.5
Network-Agent-Optimized - 77.8 77.8 - 1.0 1.0 - 29.7 21.6

• Normalized Map Coverage: The proportion of the envi-
ronment’s total area that has been successfully mapped,
quantified by the fraction of grid cells containing at least
one semantic feature. Min-max normalization relative to
the best-performing on-board baseline is applied, scaling
the coverage metric between 0 (no coverage) and 1
(coverage equivalent to the baseline).

• Average Exploration Time: The duration required for
each robot to traverse its assigned exploration region.

C. Results

a) Mapping Performance: The baseline vision-language
map constructed by individual robotic agents, shown in
Figure 3, achieves 85% environment coverage with an av-
erage exploration time of 24.2 minutes. As demonstrated in
Table I, the network-assisted approach matches this coverage
performance while enabling collaborative mapping, whereas
the network-agnostic method suffers nearly 50% coverage



degradation evidenced by impaired reconstruction in Figure 4.
Terminal-controlled transmission performs even worse, with
large unmapped areas visible in Figure 5 due to substantial
data loss in poor-coverage zones; a problem exacerbated by
increased buffer sizes as shown in the transmission plots
of Figure 5. However, the terminal-controlled method does
observe lower distortion in successfully reconstructed areas
compared to the network-agnostic approach.

b) Navigation Accuracy: As quantified in Table I, the
network-assisted framework achieves 77.8% success rate
on language-guided navigation tasks, matching the baseline
performance and confirming minimal transmission-induced
semantic distortion. This contrasts sharply with uncoordi-
nated approaches where data loss and feature mislocalization
cause significant degradation in query resolution accuracy.
The results validate that network awareness is essential for
maintaining both map coverage and semantic fidelity required
for reliable resolution of language-based object queries.

c) Exploration Efficiency: In terms of the exploration
costs, even two agents reduce exploration time considerably
in comparison to the baseline, though residual overhead
persists from the network agent’s structural unawareness
(e.g., undetected walls causing suboptimal transmission points
in Figure 6). This overhead remains marginal versus solo
mapping. Critically, any newly deployed agents can benefit
from near-zero exploration costs, as they may directly query
pre-existing maps from the network agent.

VI. LIMITATIONS AND FUTURE WORK

This work presents a simulation-based proof-of-concept for
network-assisted multi-robot vision-language mapping under
simplified communication assumptions. The primary limitation
lies in the use of a static signal strength map as the sole QoS
indicator. While signal strength effectively captures spatial
variations in link quality and allows us to model the essential
communication effects (sensor data loss or distortion), it does
not account for dynamic network phenomena such as link-
layer contention or traffic-driven congestion. These factors are
particularly relevant under high traffic conditions, but are not
modeled in our current setup. Additionally, the total mission
time is not directly reported due to the sequential simulation of
each robot’s trajectory. Although BER and PER simulate the
impact of packet loss, delays due to queuing and processing
latency at the network agent remain unaccounted for.

To address these gaps, we plan to validate our approach
on a physical multi-robot setup over a 5G testbed. This
setup will enable empirical measurement of latency and
throughput, and allow us to evaluate system performance under
realistic wireless conditions as well as account for additional
uncertainties such as actuation drift and localization errors.

On the algorithmic front, future work will focus on designing
a centralized coordination algorithm that jointly optimizes
communication and exploration. Specifically, we aim to assign
exploration regions to robots in a way that maximizes overall
coverage while simultaneously minimizing time overhead due
to transmission detours.

VII. CONCLUSIONS

This paper presented a network-assisted collaborative frame-
work for vision-language navigation that addresses the scala-
bility limitations of individual robotic mapping. By leveraging
a network agent with global awareness of communication
conditions, our approach enables reliable construction of
shared semantic maps through QoS-guided data collection,
while supporting language-based object queries for unseen
targets. Experimental validation in simulated environments
demonstrated that the framework achieves map coverage and
task navigation accuracy parity with on-board mapping, in
contrast to the uncoordinated baselines, thus confirming the
viability of network-mediated collaboration for scalable VLN
systems.
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