
Native Support for Federated Learning
Hyper-Parameter Optimization in 6G Networks

Mohammad Bariq Khan∗†, Xueli An∗, and Falko Dressler†
∗AWTL, Munich Research Center, Huawei Technologies, Munich, Germany

†School for Electrical Engineering and Computer Science, Technische Universität Berlin, Berlin, Germany
mohammad.bariq.khan1@huawei.com, xueli.an@huawei.com, dressler@ccs-labs.org

Abstract—6G mobile communication networks are envisioned
to be AI-native, that is, the provision of AI services to users as well
as the network itself would be one of the most essential aspect for
its system architecture and design. To provide these services and in
order to make correct design decisions, deep understanding of the
relationship between the wireless networks and the different AI
paradigms along with their various functional aspects is needed. In
this paper, we explore the relationship in one such AI paradigm,
namely federated learning (FL). More specifically, we aim to
look at the problem of hyper-parameter optimization (HPO) for
hierarchical federated learning by exploring two design scenarios:
(1) HPO is carried out at intermediary aggregators which are
implemented at edge servers and (2) HPO is realized by a global
server such as a cloud-based approach. Empirical results show that
although offloading the HPO algorithm completely to the edge-
servers does lower the costs, the hybridized approach whereby
the global server realizes the HPO algorithm and the edge-server
offers some assistance, can provide at least twice as much savings
on training costs. We further discuss the two approaches for
providing FL as a native service from the mobile communication
network and the implications on the network architecture in light
of the discussed design scenarios.

Index Terms—AI-native Networks, Hierarchical Federated
Learning, Hyper-Parameter Optimization

I. INTRODUCTION

As the mobile communication networks continue to evolve
toward 6G, they are expected to become more intelligent with
the integration of new state-of-the-art artificial intelligence
(AI) technologies [1]. The next generation of networks are
envisioned to enable the transfer of intelligence from the central
cloud to the mobile communication system [2], thereby leading
to what is referred to as AI-native networks. The term AI-
native network covers two broad areas: First referred to as
AI for communication network (AI4Net), that is, the use of
machine learning techniques to automate network operations
and enhance performance. The other aspect, communication
network for AI (Net4AI), focuses on enabling the network
system with built-in AI capabilities to facilitate distributed
learning and inference [3]. This would require integrating
communication and computation capabilities to facilitate the
shift from cloud-based centralized learning to distributed
network infrastructure [4], which is in line with the edge
support in 6G networks [5].

Federated learning (FL) is a prominent distributed learning
paradigm that was introduced by Google researchers as a
privacy-preserving distributed machine learning framework [6].

In FL, the data-owners or clients train local models on their
private data and share only the model parameters with a central
server, which in turn aggregates these parameters from all the
clients and disseminates the aggregated model back to clients,
thereby eliminating the need to share private data.

The implementation of federated learning over the mobile
communications networks faces several challenges ranging
from efficiency and effectiveness to security issues. These have
been widely studied in the literature and various proposals
have been put forward to address these issues [7]–[9]. The
communication network plays a pivotal role with regards to the
communication efficiency of FL. While most of the focus in the
current literature is on how to improve the FL algorithm to suit
the current networks, we aim to look at the requirements on
the mobile communication networks to aid the implementation
of FL as well as provide it as a service from the network
itself. A rather obvious but not necessarily simple solution
is to increase network capacity. While that remains one of
the core motivations for every generation of mobile networks,
we aim to look at other aspects of AI in general, and FL in
particular, to make the networks AI-native.

In this paper we are concerned with the issue of hyper-
parameter optimization (HPO) for hierarchical federated learn-
ing (HFL). Our contributions can be summarized as follows:

• We explore the problem of HPO in a hierarchical federated
learning scenario for 6G edge-enabled networks;

• We integrate an HPO algorithm in the HFL framework
and use it to optimize three hyper-parameters: number of
participating clients, number of local epochs at the clients,
and the number of epochs between the clients and the
intermediary servers; and

• We empirically evaluate and compare local optimization
of hyper-parameters at the edge servers and global
optimization at the cloud server in terms of training costs.

II. RELATED WORK

Although hyper-parameter optimization for centralized learn-
ing has been widely studied [10], there has been quite limited
research on HPO for federated learning. Nevertheless, a few
studies already have explored this problem. For example,
Khodak, Tu, Li, Li, Balcan, Smith, and Talwalkar [11] proposed
to use weight sharing to improve the round-to-accuracy
performance of FL. Their method, called FedEx, manages to
achieve higher accuracy than the baselines within a same budget.

Another approach called FLORA [12] has been proposed in
which the authors create a set of global hyper-parameters from
the ones that work the best for the clients individually and
then select the best of these using four proposed techniques.
The authors in [13] propose a genetic algorithm-based tuning
framework for clustered federated setup, where they use
a combined density and hyper-parameter based clustering
and optimize the hyper-parameters using the evolutionary
genetic algorithm. In [14], the authors proposed a particle
swarm optimization approach for tuning the FL parameters
which accelerates the training process as compared to the
genetic algorithm based tuning. Zhang, Zhang, Liu, Mohapatra,
and DeLucia [15] proposed a light-weight automatic HPO
tuning framework for FL, named FedTune, which takes into
consideration the diverse training preferences of applications
in terms of computational and transmission times and loads
achieving an improvement of about 8-26% over considered
baselines. However, all these works consider the classical two-
layer FL scenario with a number of clients and a global server.
To extend the work to a more generic framework, we assume
a three layer FL scenario whereby a set of clients is associated
with an edge-server and a number of such edge servers are
connected to a global server.

III. PROBLEM STATEMENT AND SYSTEM MODEL

To provide native support for federated learning within the
mobile communication network, we need to understand the
dependency of various aspects of FL on the communication
networks. While throughput capacity remains a core commu-
nication factor that determines FL convergence, the selection
of optimized hyper-parameters for FL plays a critical role.
As such, it is interesting to investigate how to design a HPO
framework for FL and its implications on the mobile network
architecture. The result of these investigations can then be used
to make design decisions and add new services/interfaces in the
mobile network architecture. In an HFL scenario, the choice of
whether the optimization occurs at the global or intermediate
edge-servers would thereby determine the interactions between
the FL and network entities. As such, we first need to determine
which of the two cases mentioned above reap the maximum
performance benefits. In this work we try to answer the
following question: How does the hyper-parameter optimization
at the edge-servers impact the training costs for federated
learning in comparison to global optimization?

A. System Model

We first define the analytical models used for evaluating the
system costs. Table I summarizes the different symbols used
in the system model.

1) Hierarchical Federated Learning Model: We consider the
hierarchical model for federated learning whereby N clients
are split among s intermediary edge-servers. Indexed by l ,
each edge-server has a disjoint subset with a total of n l clients
associated with it. The edge-servers aggregate the parameters
from these clients and transmit them to a central server (e.g.
cloud-based) for further aggregation and are then disseminated

TABLE I
SYMBOLS USED IN THE SYSTEM MODEL

Symbol Description

N The total number of clients available for participation
Pt The client set selected for a particular epoch
K Number of clients in Pt

Dj Data-set at client j
Ec Number of local epochs or SGD iterations at each client
Eb Number of edge epochs or averaging iterations at edge server
rj Transmission rate at client j
B Total bandwidth at each base station
z Size of the learned model at the client or edge server
pj Uploading power at client j
aj Proportion of bandwidth allocated to client j
hj Wireless channel gain of client j
fj Processor frequency at client j
α, β Computation and transmission time co-efficients
γ, δ Computation and transmission load co-efficients

back to the clients through the edge servers. Due to space
limitation we skip the analytical description here and refer the
reader to our previous work with a similar model [16].

2) Communication Model: The transmission rate of commu-
nication of j th client with its associated edge-server is given
by

rj = ajBlog2(1 +
pjhj

ajBN0
), (1)

where B is the total bandwidth, hj is the channel gain, N0

is the noise power density and aj is the proportion of the
bandwidth allocated to client j . With z as the size of the
transmitted model, the time cost of uploading, tu , for the j th

client of the l th server would be

tlu,j =
z

rj
=

z

ajBlog2(1 +
pjhj

ajBN0
)
. (2)

Assuming that there is a fixed rate connection between each
base station and the cloud with a rate rl, the time cost for
uploading is given by

tu,l =
z

rl
. (3)

For one global epoch the transmission time can then be
defined as

TransmissionT ime =
s

max
l=1

[El
b ·

nl

max
j=1

(tlu,j)] +

s∑
l=1

tu,l + td,

(4)
where E l

b is the number of rounds between the l th edge server
and it’s associated clients. For simplicity, we assume a constant
download time, td for the whole epoch.

The transmission load for each global epoch depends on
the number of client-edge rounds, Eb and the total number of
participating clients K as

TranmissionLoad = C

s∑
l=1

E l
b ·Kl, (5)

where C is a constant corresponding to the model size or the
number of model parameters.

3) Computation Model: For the computation model, we first
note that the computation latency is directly proportional to
the number of local epochs that are executed, Ec and the size
of the data that is available at a particular client. Therefore,

we define the computation latency, tn , for client j of the l th

server as
tln,j =

α0

fj
El

c|Dj |, (6)

where fj is the processor frequency, |Dj | is the number of data
points at the given client and α0 is an empirical parameter that
depends on the model being trained and the software running
on the client.

Thus, for one global epoch, the total computation time is

ComputationT ime =
s

max
l=1

[El
b ·

nl

max
j=1

(tln,j)]. (7)

Note that in federated learning most of the compute intensive
work is carried out at the local clients and the edge-servers
execute only the averaging computation which is relatively
lightweight. Hence for simplicity, we ignore the computation
at the edge servers in the computation model.

The computation load in each global epoch is the sum of all
the computation load at the clients and depends on the number
of data points at each client and the number of edge-client
rounds. It can thus be formulated as

ComputationLoad = α0 ·
s∑

l=1

E l
b · El

c

nl∑
j=1

|Dj |. (8)

IV. HIERARCHICAL FEDERATED LEARNING WITH
HYPER-PARAMETER OPTIMIZATION

Federated learning can be expensive both in terms of
computation as well as communication. Besides the commonly
known hyper-parameters in deep learning training, like number
of training epochs and learning rate, hierarchical federated
learning introduces a few more hyper-parameters like the
number of participating clients, number of local epochs at
the clients, and the number of iterations between the clients
and edge servers. The choice of these parameters significantly
affects the training costs. As such, we integrate a HPO
algorithm with HFL to design and explore the three hyper-
parameter optimization strategies that we describe in the
following sections.

Algorithm 1 HFL with Local HPO
1: Initialize the model on the cloud server
2: while Global model accuracy lower than target accuracy do
3: At each edge server l = 1,2 . . . , s in parallel
4: Set the edge model same as server
5: Initialize K & Ec

6: while Edge model accuracy lower than target accuracy do
7: Pt ← ClientSelection(K)
8: for i ϵ Pt clients in parallel do
9: Set the client model same as associated edge server

10: for t1 = 1,2 . . . ,El do
11: local training at client
12: Upload model to associated edge server
13: Aggregation at Edge servers
14: K, Ec ← HPO()
15: Upload model to cloud server
16: Aggregation at cloud server

A. Optimization at the Edge Server

The first strategy is to implement the HPO at the edge
servers, where each server optimizes the hyper-parameters for
its associated set of clients independently (local optimization).
Here, we consider the optimization of two FL hyper-parameters:
total number of clients selected K and number of local
epochs Ec . The pseudo-code for the algorithm is described
in Algorithm 1. Both HPO as well as client selection is
implemented at the edge servers.

In this scenario, we first initialize the two hyper-parameters
with some baseline values at each edge server in parallel.
The servers then select a random set of clients among their
associated clients. Next, the training rounds between the edge
servers and clients are executed and the hyper-parameters are
updated based on the HPO decision after each edge-client
round. This continues until the target accuracy is reached at
all the edge-server models, following which the models are
aggregated at the global server. The global epochs are executed
until the target accuracy is reached for the global model.

B. Optimization at the Global Server

The second approach is to implement both client selection
and HPO at the global server. The pseudocode for this scenario
is described in Algorithm 2. Here, in addition to total number
of clients selected K and number of local epochs Ec , we also
optimize for the number of communication rounds between
the edge-servers and the clients, Eb .

The HPO decision is carried out after each global epoch
following which the three hyper-parameters are updated. As
such, the entire client set is selected at the global server which
remains constant for the whole global epoch.

C. Hybrid Optimization

In addition to the two cases above, we can adopt another
approach which is essentially a hybridized variant of the above
two cases. Here, both the global as well as the edge server
take part in the optimization. The number of clients selected K
and number of local epochs Ec are determined by the global
server at the beginning of the local epoch, while the number of
edge-client iterations Eb are determined by the edge-servers

Algorithm 2 HFL with Global HPO
1: Initialize the model on the cloud server
2: Initialize K, Ec & Eb

3: Pt ← ClientSelection(K)
4: while accuracy lower than target accuracy do
5: for l = 1,2 . . . , s edge servers in parallel do
6: Set the edge model same as server
7: for t2 = 1,2 . . . ,Eb do
8: Set the client model same as associated edge server
9: for t1 = 1,2 . . . ,Ec do

10: local training at client
11: Upload model to associated edge server
12: Aggregation at Edge servers
13: Upload model to cloud server
14: Aggregation at cloud server
15: K, Ec , Eb ← HPO()

independently. As in the edge-optimization scenario, the servers
stop the edge-client training iterations as soon as the target
accuracy is achieved for the edge-model. This decoupling could
potentially allow to avail the benefits of heterogeneity in the
training resources at different locations while reducing the
complexity of the HPO algorithm at the global server.

V. PERFORMANCE EVALUATION

We evaluate the performance of the three algorithms on two
standard image classification data-sets: MNIST and CIFAR-10.
For MNIST, we use a CNN with two convolution layers and
two fully connected layers and for CIFAR-10 data set, we train
a standard ResNet-18 model. The data is split among N = 100
clients and these clients are then randomly split into 4 groups,
each associated with one edge server. For these experiments,
the clients are assumed to have the same computation capacity,
and the clients are selected randomly. The bandwidth at each
base station is assumed to be B = 20MHz and N0 = 5 ×
10−20. The channel gains are generated from an exponential
distribution, hj = g0(d0/d)

θexp(1) with g0 = 10−4, d0 = 1,
θ = 4 and d = 200. The model is implemented using Python
3.8 with simulations running on an Intel i7-8650U CPU. For
the HPO, we integrate FedTune [15] in Steps 14 and 15 in
Algorithm 1 and Algorithm 2 respectively.

A. FedTune Preliminaries

FedTune is a hyper-parameter tuning algorithm that automat-
ically adjusts the hyper-parameters for federated learning to
cater to the specific requirements of different FL applications.
It aims to optimize the system overhead for FL by reducing
computation and/or communication loads and times. For a
specific application, FedTune takes into consideration the
training preferences in terms of the four metrics: Computa-
tion Time (α), Transmission Time (β), Computation Load
(γ), and Transmission Load (δ), as described above, where
α + β + γ + δ = 1. The higher the co-efficient for a metric
means the application is more concerned about that particular
metric.

Given two sets of parameters, Scur & Snxt and the cor-
responding training metrics of computation time(tcur , tnxt),
transmission time (qcur , qnxt), computation load(zcur , znxt),
and transmission load (vcur , vnxt), FedTune minimizes the
following objective function:

G(Snxt) = α× tnxt − tcur
tcur

+ β × qnxt − qcur
qcur

+ γ × znxt − zcur
zcur

+ δ × vnxt − vcur
vcur

(9)

FedTune finds the next set of optimal parameters by
calculating the derivative of Equation (9) over the candidate
hyper-parameters. Based on the signs of these derivatives,
it determines whether to increase or decrease the candidate
hyper-parameters. Given its light-weight nature and the feature
of tuning the parameters during training while considering
different training preferences for different applications, we
choose FedTune as the optimizer in our algorithms.

B. Relative Performance Improvement

In the first set of experiments, we evaluate the relative
performance gain in the three optimization scenarios over
the baseline for a set of training preferences. For the baseline
measurements, we set arbitrary values for the candidate hyper-
parameters and measure the four metrics required to achieve
a set accuracy target. Then, for each training preference, we
enable FedTune with local, hybrid and global optimization
and measure the relative performance improvement over the
baseline using Equation (9).

For MNIST, the baseline measurements were taken with
K = 60 , Ec = 20, Eb = 8, and the target model accuracy
was set to 0.8. For CIFAR-10, the baseline was set at K =
60, Ec = 50, Eb = 8 with a target accuracy of 0.4. The
performance of the three scenarios on CIFAR-10 and MNIST
is shown in Tables II and III, respectively. The first row shows
the baseline measurement and the remaining ten rows depict
the performance for the different training preferences. The
rounded average values of the candidate hyper-parameters are
also shown. Note that, in the local scenario, K’ is the round
up average value at each edge server (so total K = 4 × K’).

From the two tables we clearly observe that local and
hybrid optimization performs significantly better than the global
optimization achieving an improvement between 11-50% for
both the data sets. On the contrary, in the case of global
optimization the improvement is of much lower order, between
0.5-16%. The hybrid optimization case, although of the same
order as the local one, generally outperforms the other two.

C. Cost Evaluation

In the following sections, we study the variation of the
training costs across a range of different accuracy targets. First,
we set the training preferences so as to favor each of the
four cost metrics individually by setting the corresponding
co-efficient to one, and then measure the said cost for
different accuracy targets in the three optimization scenarios.
Furthermore, we compare the three with the baseline cost
measured with fixed hyper-parameters as before.

The results are depicted in Figure 1. Clearly, the general
observation from all the four cases is that the hybrid and local
optimization outperforms the global one across the entire range
of accuracy targets for both the data-sets. The performance
between the local and hybrid optimization is comparable
particularly in the higher accuracy regions.

The two most commonly referred to performance indica-
tors for the evaluation of federated training are (i) service
response latency, which is determined by computation and
communication time, and (ii) service energy efficiency, which
is determined by the computation and communication energy
expenditure. In terms of the four metrics we have defined, it
is easy to see that service response latency is proportional to
computation and transmission time while the service energy
efficiency is proportional to computation and communication
load. Therefore, to evaluate the overall performance, we use
the combined values of these defined metrics. However, as
the order of the magnitude varies significantly among these

TABLE II
TRACE FOR CIFAR10 DATASET

α β γ δ Final K′,E′
c Local Optimization Gain(%) Final K,E′

c Hybrid Optimization Gain(%) Final K,E′
c ,E

′
b Global Optimization Gain(%)

CompT TransT CompL TransL CompT TransT CompL TransL CompT TransT CompL TransL

0 0 0 0 60, 50, 8 12000 9.75 720000 1440
0.25 0.25 0.25 0.25 16, 50 9797 7.25 542930 1075 +23.5 60, 50 6020 5.33 362220 722 +48.7 60, 50, 6 11067 8.84 667400 1326 +8.1

1 0 0 0 19, 41 8363 8.24 572580 1269 +30.3 62, 48 5980 6.57 351780 706 +50.2 62, 48, 6 10933 8.64 659267 1326 +8.9
0 1 0 0 19, 59 10267 8.63 691323 1252 +11.5 62, 52 7060 5.3 403200 799 +45.6 62, 52, 6 11067 8.97 667400 1327 +8.0
0 0 1 0 5, 40 11913 5.37 355146 777 +50.7 59, 49 5980 5.3 351320 705 +51.2 59, 49, 6 10685 8.06 637915 1283 +11.4
0 0 0 1 4, 60 19513 4.86 406340 745 +48.3 58, 52 7020 4.5 357680 713 +50.5 58, 52, 7 10815 8.41 645585 1283 +10.9

0.5 0.5 0 0 19, 51 9840 8.64 624606 1237 +14.7 63, 51 6020 4.9 362220 722 +49.8 63, 51, 5 11815 9.12 745215 1482 +4.0
0 0 0.5 0.5 4, 49 13265 5.68 385290 790 +45.8 58, 50 7020 5.1 373180 744 +48.2 58, 50, 6 12065 9.27 718085 1428 +0.5

0.5 0 0 0.5 17, 51 10197 7.24 523903 1033 +21.6 60, 50 8020 6.1 430720 812 +38.4 60, 50, 6 10815 9.47 652215 1295 +9.9
0 0.5 0.5 0 16, 51 9197 6.58 534713 1083 +29.1 60, 50 7020 5.3 407220 859 +44.5 60, 50, 7 10060 8.13 606660 1206 +16.2

0.5 0 0.5 0 15, 41 9373 7.84 500626 115 +26.2 61, 49 5520 5.5 374780 752 +50.9 61, 49, 8 12125 9.78 730686 1476 -1.2
0 0.5 0 0.5 13, 59 10430 6.29 509240 937 +35.2 60, 52 6480 4.9 332220 662 +51.9 60, 52, 6 10815 8.62 652215 1296 +10.8

TABLE III
TRACE FOR MNIST DATASET

α β γ δ Final K′,E′
c Local Optimization Gain(%) Final K,E′

c Hybrid Optimization Gain(%) Final K,E′
c ,E

′
b Global Optimization Gain(%)

CompT TransT CompL TransL CompT TransT CompL TransL CompT TransT CompL TransL

0 0 0 0 60, 20, 8 4800 65 288000 1440
0.25 0.25 0.25 0.25 17, 22 3820 47 222033 1067 +24.2 61, 21 2800 36 155000 775 +44.7 61, 21, 7 4670 61 281670 1387 +3.6

1 0 0 0 25, 7 3035 93 234810 2013 +36.7 62, 18 2980 41 161580 814 +38.0 62, 18, 6 4530 71 273130 1511 +5.6
0 1 0 0 25, 30 4273 58 345300 1302 +10.7 62, 22 3020 38 166020 824 +41.5 62, 22, 6 5110 61 308950 1151 +6.1
0 0 1 0 2, 6 7583 40 123203 991 +57.2 58, 18 2780 38 163020 821 +43.4 58, 18, 6 4890 71 270470 1489 +6.0
0 0 0 1 5, 30 6886 27 156126 634 +55.9 59, 21 3220 40 170380 846 +41.2 58, 22, 6 5110 70 304250 1373 +4.6

0.5 0.5 0 0 25, 20 3480 61 269510 1337 +16.8 62, 20 3020 44 172420 856 +34.7 61, 21, 7 4670 62 281670 1387 +3.6
0 0 0.5 0.5 5, 21 4187 27 131920 652 +54.4 58, 20 3020 45 171380 851 +40.7 58, 20, 6 4670 60 278730 1373 +3.9

0.5 0 0 0.5 17, 22 3790 47 211323 1016 +25.6 60, 20 2820 42 163020 809 +42.5 60, 20, 6 4670 64 281670 1387 +3.2
0 0.5 0.5 0 16, 23 3680 48 215360 1036 +25.6 60, 20 2820 42 166620 827 +38.8 60, 20, 6 4670 66 281670 1387 +0.3

0.5 0 0.5 0 16, 7 3083 65 178786 1455 +36.8 61, 19 2980 40 167180 842 +39.9 60, 18, 6 4530 70 273130 1507 +5.4
0 0.5 0 0.5 16, 30 3850 46 230946 913 +32.9 60, 22 2820 37 160220 795 +43.9 60, 22, 6 5110 65 281670 1387 +1.8

metrics, we first use min-max normalization for each of them
to scale the values to [0, 1], and then add computation time to
communication time and computation load to communication
load, respectively. Thus, we have an indirect measure of total
training time and energy expenditure. Then we set the training
preference to optimize the two added metrics together for a
range of accuracy targets. The results are depicted in Figure 2.
As before, we can observe that the overall performance for
both time and load metrics is the better in the case of hybrid
and local optimization cases in comparison the global case for
both the data-sets.

(a) α = 1 (b) β = 1

(c) γ = 1 (d) δ = 1

Fig. 1. Cost metrics across a range of accuracy targets for both scenarios. For
each metric, the corresponding training preference co-efficient was set to 1.

The explanation for the above results lies in the general
trend that can be observed from the plots in Figures 1 and 2,

(a) α = 0.5, β = 0.5 (b) γ = 0.5, δ = 0.5

Fig. 2. Total time and total load joint optimization in both scenarios.

that is, a large performance gap between the local and global
optimization which tends to decrease as the required number
of global epochs increases for higher accuracy targets. In
Algorithm 1, Step 6 inherently optimizes the number of edge-
client iterations by stopping as soon as the target accuracy is
reached. This means, if the local algorithm is run even with
fixed hyper-parameters, it would still get better performance
than the other one. Because in the global scenario, even for
lower accuracy targets, it adds unnecessary iterations. Even
though this parameter has been added as an hyper-parameter for
FedTune, the global target is already reached before FedTune
could converge to the optimum number. With higher accuracy
targets, the required number of (edge-client and global) epochs
are relatively higher and as such the performance gap narrows
as the effect of this inherent optimization in the local algorithm
vanishes. When this feature of local optimization is combined
with the the HPO running at the global server, the best results
are achieved in the hybrid optimization case. This leads to
the conclusion that running the HPO for the all the hyper-
parameters independently at the edge-servers is not of much
benefit in itself. However, optimization for certain hyper-
parameters, like in this case edge-client training iterations,
Eb at the edge-servers can help to maximize the benefits of
the Global HPO.

VI. IMPLICATIONS AND VISION FOR THE FL-NATIVE
ARCHITECTURE

With the above HFL-HPO framework in consideration,
the mobile communication network can play two roles: (i)
assistance to third party FL applications in terms of exposing
networking related analytics for the hyper-parameter optimiza-
tion or (ii) provisioning FL training as native service.

The first approach could be thought of as a first step
towards AI-Native networks. For example, Network Data
Analytics Function (NWDAF) has recently been introduced
in 5G to provide network performance-related analytics [17].
The service of this network function can be extended to assist
third party distributed learning applications that reside on the
data-networks. In the case of FL, the application can request
the network and UE-related metrics collected by NWDAF to
optimize its training hyper-parameters. One such metric could
be average packet loss rate, which could be used to determine
the number of clients that are selected in each round of the
FL algorithm as shown in [16]. Additionally, as suggested by
the experiments above, the HPO algorithm can benefit from
the UE computation related metrics like computation load and
time. In the case where the global server is running in the
data network, the UE can expose these metrics directly to the
server via the application layer. In such a case, no new data
collection capability needs to be added to the NWDAF and the
only requirement is to define the standardized interface to the
application server to enable the exposure of NWDAF services.

However, for a true native service, we envision a new core
network function, Federated Learning Service Function (FLSF),
that is capable of provisioning the federated learning services
to third party clients. In such a case, the global FL server
would be realized by this network function while the edge-
servers would be realized at the base-stations. As we have
observed in this work, for the hyper-parameter optimization,
this FL service provisioning network function would also need
to realize the HPO algorithm, while at the base-stations, a
lightweight optimizer function could bring additional cost
savings. In addition, the Data Collection and Coordination
Function (DCCF) that manages the collection of data within
the network for NWDAF, could be extended to have distributed
instances that are deployed in the access network. This would
enable the network to collect and expose non-network related
metrics (e.g., computation-related metrics) from the UE to the
network.

VII. CONCLUSIONS

In this paper, we integrated a hyper-parameter optimization
algorithm, FedTune, with hierarchical federated learning in the
context of providing native FL support in the next generation
of mobile networks. We devised three strategies such that the
optimization can be carried out either at the base stations,
the global server or both. From the experiments on standard
classification data-sets, it was observed that, implementing the
HPO at the global server with some aid from the optimization
at the edge-servers, in general, produces the best results in
terms of saving the overhead training costs, with an average

improvement between 40-48% as compared to 30-34% and
4-8% in the local and global scenarios respectively. We also
discussed the two approaches for providing native support
for FL in the mobile communication network and the broad
requirements for new features in the network architecture.

REFERENCES

[1] C.-X. Wang, X. You, X. Gao, X. Zhu, Z. Li, C. Zhang, H. Wang, Y.
Huang, Y. Chen, H. Haas, J. S. Thompson, E. G. Larsson, M. D. Renzo,
W. Tong, P. Zhu, X. Shen, H. V. Poor, and L. Hanzo, “On the Road
to 6G: Visions, Requirements, Key Technologies and Testbeds,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 2, pp. 905–974, Feb.
2023.

[2] J. Wu, R. Li, X. An, C. Peng, Z. Liu, J. Crowcroft, and H. Zhang,
“Toward Native Artificial Intelligence in 6G Networks: System Design,
Architectures, and Paradigms,” arXiv, cs.NI 2103.02823, Mar. 2021.

[3] W. Tong and G. Y. Li, “Nine Challenges in Artificial Intelligence and
Wireless Communications for 6G,” IEEE Wireless Communications,
vol. 29, no. 4, pp. 140–145, Aug. 2022.

[4] X. Li, H. Zhang, C. Peng, Z. Liu, and F. Wang, “NET4AI: Supporting
AI as a Service in 6G,” Huawei Research, Communications of HUAWEI
RESEARCH, Sep. 2022, pp. 26–39.

[5] F. Dressler, C. F. Chiasserini, F. H. P. Fitzek, H. Karl, R. Lo Cigno,
A. Capone, C. E. Casetti, F. Malandrino, V. Mancuso, F. Klingler, and
G. A. Rizzo, “V-Edge: Virtual Edge Computing as an Enabler for Novel
Microservices and Cooperative Computing,” IEEE Network, vol. 36,
no. 3, pp. 24–31, May 2022.

[6] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, PMLR, 2017, pp. 1273–
1282.

[7] T. Nishio and R. Yonetani, “Client Selection for Federated Learning
with Heterogeneous Resources in Mobile Edge,” in IEEE International
Conference on Communications (ICC 2019), Shanghai, China: IEEE,
May 2019.

[8] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous Federated Optimiza-
tion,” arXiv, cs.DC 1903.03934, Mar. 2019.

[9] C. Ma, J. Li, M. Ding, H. H. Yang, F. Shu, T. Q. S. Quek, and H. V. Poor,
“On Safeguarding Privacy and Security in the Framework of Federated
Learning,” IEEE Network, vol. 34, no. 4, pp. 242–248, Jul. 2020.

[10] L. Yang and A. Shami, “On hyperparameter optimization of machine
learning algorithms: Theory and practice,” Neurocomputing, vol. 415,
pp. 295–316, Nov. 2020.

[11] M. Khodak, R. Tu, T. Li, L. Li, M.-F. F. Balcan, V. Smith, and A.
Talwalkar, “Federated Hyperparameter Tuning: Challenges, Baselines,
and Connections to Weight-Sharing,” in Advances in Neural Information
Processing Systems (NeurIPS 2021), M. Ranzato, A. Beygelzimer, Y.
Dauphin, P. Liang, and J. W. Vaughan, Eds., vol. 34, Virtual Conference:
Curran Associates Inc., Dec. 2021, pp. 19 184–19 197.

[12] Y. Zhou, P. Ram, T. Salonidis, N. Baracaldo, H. Samulowitz, and
H. Ludwig, “FLoRA: Single-shot Hyper-parameter Optimization for
Federated Learning,” arXiv, cs.LG 2112.08524, Dec. 2021.

[13] S. Agrawal, S. Sarkar, M. Alazab, P. K. R. Maddikunta, T. R. Gadekallu,
and Q.-V. Pham, “Genetic CFL: Hyperparameter Optimization in
Clustered Federated Learning,” Computational Intelligence and Neuro-
science, vol. 2021, pp. 1–10, Nov. 2021.

[14] Z. Li, H. Li, and M. Zhang, “Hyper-parameter Tuning of Federated
Learning Based on Particle Swarm Optimization,” in 7th IEEE
International Conference on Cloud Computing and Intelligent Systems
(CCIS 2021), Xi’an, China: IEEE, Nov. 2021.

[15] H. Zhang, M. Zhang, X. Liu, P. Mohapatra, and M. DeLucia, “FedTune:
Automatic Tuning of Federated Learning Hyper-Parameters from
System Perspective,” in IEEE Military Communications Conference
(MILCOM 2022), Rockville, MD: IEEE, Nov. 2022.

[16] M. B. Khan, X. An, and C. Peng, “Towards Native Support for
Federated Learning in 6G,” in 2023 IEEE Wireless Communications
and Networking Conference (WCNC), 2023, pp. 1–6.

[17] 3GPP, “Architecture enhancements for 5G System (5GS) to support
network data analytics services,” 3rd Generation Partnership Project
(3GPP), Technical Specification (TS) 23.288, version 18.2.0, Jun. 2023.

