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Abstract—In this paper, we investigate the joint resource
allocation and trajectory design for a multi-user, multi-target
unmanned aerial vehicle (UAV)-enabled integrated sensing and
communication (ISAC) system, where the link capacity between
a ground base station (BS) and the UAV is limited. The UAV con-
ducts target sensing and information transmission in orthogonal
time slots to prevent interference. As is common in practical
systems, sensing is performed while the UAV hovers, allowing
the UAV to acquire high-quality sensing data. Subsequently,
the acquired sensing data is offloaded to the ground BS for
further processing. We jointly optimize the UAV trajectory,
UAV velocity, beamforming for the communication users, power
allocated to the sensing beam, and time of hovering for sensing to
minimize the power consumption of the UAV while ensuring the
communication quality of service (QoS) and successful sensing.
Due to the prohibitively high complexity of the resulting non-
convex mixed integer non-linear program (MINLP), we employ a
series of transformations and optimization techniques, including
semidefinite relaxation, big-M method, penalty approach, and
successive convex approximation, to obtain a low-complexity
suboptimal solution. Our simulation results reveal that 1) the
proposed design achieves significant power savings compared to
two baseline schemes; 2) stricter sensing requirements lead to
longer sensing times, highlighting the challenge of efficiently man-
aging both sensing accuracy and sensing time; 3) the optimized
trajectory design ensures precise hovering directly above the
targets during sensing, enhancing sensing quality and enabling
the application of energy-focused beams; and 4) the proposed
trajectory design balances the capacity of the backhaul link and
the downlink rate of the communication users.

Index Terms—Resource allocation, trajectory design, UAV,
ISAC, hovering, radar pulse sensing, backhaul link, MINLP.

I. INTRODUCTION

With the rapid development of new services for future
wireless networks, the sixth generation (6G) of wireless commu-
nication systems is expected to become a fully intelligent net-
work enabling a multitude of environment-and location-aware
applications such as autonomous driving, remote healthcare,
and smart industry. To support these applications, a seamless
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6G wireless network is needed, providing both high-precision
sensing capabilities and wireless information transmission.
To this end, integrated sensing and communication (ISAC)
has recently drawn significant attention from academia and
industry. ISAC is capable of increasing spectrum efficiency and
facilitating the sharing of the physical infrastructure for sensing
and communications [2]. Motivated by these advantages, the
authors in [3], [4] considered ISAC networks with a specific
focus on terrestrial systems. However, terrestrial ISAC systems,
despite their potential, are often hindered by obstacles on the
ground that may obstruct the line of sight (LoS) to sensing
targets.

Compared to conventional cellular systems which are based
on a fixed terrestrial infrastructure, unmanned aerial vehicle
(UAV)-enabled communication systems can support on-demand
connectivity by flexibly deploying UAV-enabled wireless
transceivers in a target area. For example, in the case of
natural disasters and major accidents, UAVs can be utilized as
aerial base stations to establish temporary communication links
in a timely and cost-effective manner. Moreover, UAV-aided
wireless communication, capitalizing on the flexible deployment
[5], [6], can exploit LoS links. These LoS connections cannot
only enhance communication performance but also serve as
a critical element for accurate target sensing. This is because
target detection and parameter estimation usually require LoS
links between the sensing transceivers and the sensing targets.
Furthermore, due to their high maneuverability, UAVs can
quickly approach a desired target, which can significantly
reduce the transmit power required for sensing [7], [8]. Despite
these promising features, only few works in the existing
literature have studied UAV-enabled ISAC [9]–[13]. The authors
in [9] optimized the trajectory, transmit beamforming, and
radar signals of a UAV-enabled ISAC system to improve the
communication data rate while ensuring a required sensing
beam pattern gain. In [10], [11], a periodic sensing and
communication scheme for UAV-enabled ISAC systems was
introduced and the achievable rate was maximized by jointly
optimizing the UAV’s trajectory, transmit precoder, and sensing
start time subject to sensing frequency and beam pattern gain
constraints. The authors in [12] proposed a novel integrated
sensing, jamming, and communication framework for UAV-
enabled downlink communications to maximize the number of
securely served users while considering a tracking performance
constraint. In [13], the authors considered single-antenna UAV-
enabled integrated sensing, computing, and communication,
where the UAV sensed a target and offloaded computational
tasks to the ground base station (BS).

Despite the comprehensiveness of the studies in [10]–[13],
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they did not consider the aerodynamic power consumption
and velocity optimization of the UAV, which is crucial for
overcoming the limited battery capacity of UAVs. Efficient and
prolonged UAV operation requires addressing these aspects via
resource allocation and trajectory design, enhancing overall
performance and mission time. Furthermore, the authors of
[9]–[13] primarily concentrated on optimizing the beam pattern
gain for target sensing, while ignoring the potential impact
of the sidelobes of the beam pattern. In fact, the presence of
sidelobes can result in energy wastage and cause interference,
which may have adverse effects on the overall performance
of ISAC systems [3], [4]. Moreover, these studies did not
consider the signal-to-noise ratio (SNR) of the received radar
echoes as a performance metric for sensing. However, the
reliable detection of radar echoes is essential for successful
sensing in practice. Therefore, in this paper, we consider the
SNR of the received radar echoes as a performance metric for
sensing. Besides, the ISAC systems considered in [1], [10]–
[13] may experience significant self-interference (SI) as the
radar echoes may be received while data is being transmitted.
Although conventional full-duplex communication systems use
SI cancellation techniques to mitigate such interference, these
methods may not be sufficient to suppress the SI below the
level required for sensing due to the low received echo powers.
This is primarily due to the high attenuation of the echo signal
caused by the round-trip path-loss, which makes it challenging
to achieve sufficient SI suppression. To address this issue, we
propose to perform sensing and communication in orthogonal
time slots, coupled with the adoption of pulse radar technology,
which enables flexible adjustment of the sensing range [14].
Besides, in [9]–[13], sensing was performed while the UAV
was moving, which can potentially degrade sensing accuracy. In
contrast, practical UAV-based sensing systems typically perform
sensing while the UAV is hovering [15]. Therefore, in this
paper, we incorporate this feature into our problem formulation
to leverage the following advantages. Firstly, when the UAV
hovers above the target, a predetermined fixed beam pattern can
be used for sensing. This eliminates the need for continuous
adjustment of the beam pattern based on the UAV’s flight
path, which significantly reduces design complexity. Secondly,
hovering during sensing circumvents the UAV-induced Doppler
shift, simplifying sensing data signal processing. Thirdly, this
positioning strategy also ensures a direct LoS link to the target,
which is crucial for reliable sensing. Furthermore, in [1], [10]–
[12], it was assumed that the processing of the received sensing
signals is done locally at the UAV, which can be challenging
due to the UAV’s limited computational capabilities and battery
resources. In fact, signal processing and analysis of sensing
data require significant computing resources and energy, which
creates a bottleneck for UAV-enabled sensing. To address this
challenge, we propose to forward the received sensing echo
signals to a ground BS via backhaul links for processing.
Offloading the sensing data alleviates the computational burden
for the UAV, enabling higher accuracy and lower latency in
obtaining sensing results at the BS.

In summary existing studies did not account for critical
aspects of practical ISAC systems such as aerodynamic power
consumption, velocity optimization, received echo SNR as

performance metric for sensing, synthesizing a focused beam,
hovering during sensing, and the impact of a limited backhaul
link capacity on system performance. This paper addresses
these critical aspects and introduces a novel design framework
for minimization of the average UAV power consumption while
meeting the quality of service (QoS) requirements of both
the communication users and the sensing tasks. The main
contributions of this paper can be summarized as follows:

‚ We consider a multi-user multi-target UAV-enabled ISAC
system where the link capacity between the ground BS and
the UAV is limited. We aim to minimize the average power
consumption of the UAV, which involves optimizing not
only the resource allocation and UAV trajectory but also
the time when the UAV hovers for sensing, resulting in a
non-convex mixed integer non-linear program (MINLP).

‚ We introduce an innovative design strategy for the UAV’s
radar beam, comprising the offline pre-design of its shape
and online power allocation for sensing. This approach
significantly reduces computational complexity, as the
system focuses exclusively on optimizing the scaling factor
during the online phase. Particularly, for sensing, our
emphasis is on synthesizing a concentrated beam with
minimal sidelobes in the offline phase and guaranteeing
a required accumulated SNR, facilitated by precise UAV
hovering directly above the target, during sensing.

‚ We develop an alternating optimization (AO) based
resource allocation algorithm to solve the formulated
non-convex MINLP optimization problem. In particular,
we obtain a low-complexity sub-optimal solution by
exploiting semi-definite relaxation, big-M method, and
successive convex approximation (SCA). Moreover, we
utilize the penalty approach for penalizing the objective
function to ensure the equality constraint introduced
by the required hovering of the UAV precisely above
the target during sensing and for recovering the binary
sensing indicator variables, enhancing the efficiency of
the solution.

‚ Our simulation results highlight the benefits of positioning
the BS in close proximity to the sensing targets, facilitating
efficient data offloading and accurate sensing. Additionally,
our results affirm the effectiveness of the proposed
algorithm in ensuring precise hovering directly above
the targets during sensing, benefiting accurate and reliable
target detection.

Notations: In this paper, matrices and vectors are denoted by
boldface capital letters A and lowercase letters a, respectively.
RNˆM and CNˆM denote the spaces of N ˆM real-valued
and complex-valued matrices, respectively. AT , AH , RankpAq,
and TrpAq are the transpose, Hermitian, rank, and trace of
matrix A, respectively. A ľ 0 indicates a positive semidefinite
matrix. IN is the N -by-N identity matrix. | ¨ | and || ¨ ||2 denote
the absolute value of a complex scalar and the l2-norm of
a vector, respectively. Er¨s denotes statistical expectation. „
and ∆

“ stand for “distributed as” and “defined as”, respectively.
The distribution of a circularly symmetric complex Gaussian
random variable with mean µ and variance σ2 is denoted by
CN pµ, σ2q. The gradient vector of function fpxq with respect



3

Fig. 1: Joint communication and sensing in UAV-assisted network
comprising E “ 2 sensing targets and K “ 2 communication users.

to x is denoted by ∇xfpxq.

II. SYSTEM MODEL

In this paper, we consider a rotary-wing UAV-assisted ISAC
system, which provides downlink communication services for
K communication users and senses E potential targets, as
depicted in Fig. 1. To cater to the limited computational
capabilities of the UAV, ensure low latency data processing,
and enable real-time mission monitoring, the UAV offloads
the sensing data to a ground BS for further processing [8].
The operation of the system follows a two-step process. The
communication data is transmitted from the BS to the UAV, and
subsequently, the UAV relays this data to the users. In certain
time slots, the UAV switches to the sensing mode, receiving
echo signals reflected by the sensing target. These echo signals
are first compressed locally at the UAV, reducing the amount
of data that needs to be offloaded to the BS. The compressed
radar data are then transmitted to the ground BS. Finally, the
BS performs central processing for target recognition based on
the received compressed sensing data.

The UAV’s total flying time T is divided into N time
slots of duration δt “

T
N . Each time slot is assumed to

be sufficiently small, such that the location of the UAV is
approximately constant during a time slot to facilitate efficient
trajectory and beamforming design for ISAC. In the subsequent
subsections, we present the proposed ISAC framework in
detail. We start by explaining the proposed frame structure.
Then, we describe the signal model, including its radar and
communication components, before modeling the backhaul
links. Finally, we address the power consumption of the UAV,
including the power required for local processing, offloading,
and flying.

A. ISAC Frame Structure for UAV

In the proposed UAV-ISAC frame structure, separate and
dedicated time slots are employed for sensing and communica-
tion, as shown in Fig. 2. This strategy minimizes interference,
ensuring the UAV’s efficient execution of both operations

Fig. 2: Proposed ISAC frame structure where T is the total flying
time.

.
without compromising quality. The UAV communicates with
the communication users in the non-sensing time slots, while
it senses the target during dedicated sensing time slots, whose
number is limited to Nmax

s to allow for enough time for
communication. During sensing, one target is sensed at a
time to maximize sensing performance by focusing the beam
pattern on the target. The specific time slots in which sensing
is performed are determined as part of the optimization process.
To this end, we introduce the sensing indicator αe,n for target
e, e P t1, ..., Eu. If αe,n “ 1, target e is sensed in the n-
th time slot; otherwise, αe,n “ 0. Here, we force the UAV
to hover above the sensing target. This choice offers several
advantages. First, with the UAV hovering above the target, a
fixed beam pattern can be designed, eliminating the need for
continuous adjustment based on the UAV’s flight path, which
simplifies the design process. Second, hovering during sensing
helps mitigate UAV-induced Doppler shifts, simplifying the
signal processing of the sensing data. Third, it minimizes the
impact of interference and multi-path effects, resulting in higher
sensing performance which allows the UAV to focus the beam
pattern with maximum accuracy on the target, enabling the
system to extract vital information with optimal efficiency. The
assumption of UAV hovering above the target during sensing
is justified by its applicability in various real-world scenarios,
including vital sign detection through radar technology, where
precise UAV positioning is crucial for reliable measurements.
These benefits make hovering during sensing preferable in
practical UAV-based radar systems [15]. After sensing, the
sensing data is offloaded to the ground BS via a backhaul link
to leverage the ground BS’s computational capabilities. This
offloading reduces latency and enhances sensing precision.

Remark 1: The proposed UAV-enabled ISAC system employs
separate beams for sensing and communication. This approach
avoids the complexity that would arise from a joint beam opti-
mization for sensing and communication, which is particularly
challenging for the dynamic conditions associated with UAVs.
By assigning separate beams for each task, we can tailor the
beam characteristics such as beamwidth, directionality, and
allocated power to meet the unique demands of sensing and
communication, respectively [2]. This not only simplifies the
system design but also enhances overall efficiency by reducing
the interference between both tasks [16]. Separate optimization
allows for precise targeting during sensing and broad coverage
for communication, avoiding the compromises required in a
single-beam design and ensuring better resource utilization.



4

This strategy is particularly effective in mitigating SI, a
significant challenge in systems where ongoing communication
may impair the received radar echoes [16].

Remark 2: The proposed UAV-enabled ISAC system employs
single-target sensing as the UAV is required to hover directly
above the target during sensing. Compared to multi-target
sensing, where multiple targets are sensed concurrently, this
approach enhances detection accuracy and reduces interference
as a more focused sensing beam can be employed [17],
[18]. Furthermore, for widely-spaced targets, the design of
efficient multi-target beams becomes challenging and single-
target sensing is preferable.

B. Radar Signal

The UAV is equipped with a uniform linear array (ULA)
with M antennas for communication and sensing. We adopt
a three-dimensional (3D) Cartesian coordinate system where
the horizontal location of the UAV in time slot n and the
location of the potential target on the ground are denoted
by qrns “

“

qxrns, qyrns
‰T

and de “
“

dxe , dye
‰T
P R2ˆ1,

respectively. The value of de, e P t1, ..., Eu, is predetermined
based on the specific sensing tasks1. While having initial
knowledge of the target’s location is valuable, the complete
sensing data acquisition involves a two-step process. Initially,
the UAV acquires rough information to initiate the sensing
process. Subsequently, it performs detailed sensing to gather
sufficient data on the target which is then offloaded to the
BS for further processing. In the considered system, the
UAV’s initial knowledge guides the sensing process, ensuring
efficient and accurate data acquisition. The offloading to the BS
facilitates in-depth analysis and contributes to a comprehensive
understanding of the target including the target’s location, angle,
shape, velocity, size, and parameters. Moreover, it is assumed
that the UAV flies in the x´y plane at fixed altitude H . While
hovering over a given target, the UAV emits a narrow beam
toward the direction of the target to extract information from
the target. The radar signal s0 P CMˆ1 with covariance matrix
Rrns “ Ers0rnss

H
0 rnss ľ 0 is transmitted towards the given

target in a sensing slot. The transmit beam pattern gain from
the UAV in the direction of target e is given by

PpR,qrns,deq “ aHpqrns,deq Rrns apqrns,deq, (1)

where

apqrns,deq “
“

1, ej2π
d̂
λ cospθpqrns,deqq, ..., ej2π

d̂
λ pM´1q cospθpqrns,deqq

‰T

(2)

is the steering vector of the ULA equipped at the UAV,
θpqrns,deq “ arccos

`

H?
}qrns´de}2`H2

˘

is the angle of

departure corresponding to target e, λ is the carrier wavelength,
and d̂ denotes the spacing between two adjacent UAV antennas.

We adopt a two-phase strategy to optimize the design of the
beam pattern and to maximize the quality of sensing.

1The value of de could be set based on an estimated location for target
tracking or it could be a fixed location in the region of interest for target
detection [10], [11].

1) Shape of the Sensing Beam: In the offline phase, a
highly directional sensing beam pattern is designed, efficiently
catering to specific constraints required for optimal sensing.
To facilitate high-quality sensing during the UAV’s hovering
phase, the desired sensing location has to be illuminated by an
energy-focused beam with low side lobe leakage, facilitating
the separation of the desired echoes and clutter. The UAV
employs a pre-designed highly directional sensing beam pattern
characterized by a specific covariance matrix that defines the
desired waveform. To this end, we discretize the angular domain
r´π

2 ,
π
2 s into L directions and generate the ideal beam pattern

tDpθlquLl“1, where Dpθlq denotes the beam pattern power in
direction l, which is given by

Dpθlq “

#

1, θe ´∆ ď θl ď θe `∆,

0, otherwise,

where 2∆ is the beamwidth used to sense one target2 [19],
and θe is the angle of departure corresponding to target e. In
the hovering state, the horizontal distance between the UAV
and the target is zero, resulting in an angle of zero degrees
between the UAV and the target, i.e., θe “ 0. Consequently, to
shape the beam, we adopt the minimum square error (MSE)
criterion, which is given by [19]

minimize
ρ0,Rd

1

L

L
ÿ

l“1

ˇ

ˇ

ˇ

ˇ

ρ0Dpθlq ´ aHpθlqRdapθlq

ˇ

ˇ

ˇ

ˇ

2

(3)

s.t. TrpRdq “ 1,

Rd “ RH
d , Rd ľ 0,

where ρ0 is a scaling factor. Problem (3) is a semi-definite
quadratic programming problem and can be efficiently solved
in polynomial time by CVX.

2) Scaling Power of the Sensing Beam: In the online phase,
we scale and configure the beam pattern in real time. The
employed radar beam pattern, denoted as Rd, is obtained from
(3), and remains fixed and does not depend on time slot n. As
mentioned before, the beam pattern is specifically designed for
scenarios when the UAV hovers directly above the target. We
introduce scaling factor pRadrns, which is applied to the desired
radar beam pattern matrix Rd yielding Rrns “ pRadrnsRd for
the covariance matrix used for sensing. This scaling factor
allows for dynamic adjustment of the beam power during
sensing.

We adopt pulse radar for sensing to ensure reliable echo
detection at the transmitter and to provide flexibility in adjusting
the sensing range. According to pulse radar theory, the sensing
range is contingent upon the duration of the sensing pulse and
the time taken to listen for the received echo [20]. Consequently,
the system designer meticulously divides the available sensing
time into two components to ensure dependable echo detection
at the transmitter. As a result, each sensing slot comprises
multiple scan rounds, within each of which the UAV transmits
a scanning pulse lasting for a duration of tp, as shown in

2 In practice, the beamwidth 2∆ has to be carefully chosen as a larger ∆,
on the one hand, increases coverage and tolerance with respect to uncertainties
regarding the target position, while on the other hand, it also compromises
the radar’s sensitivity and accuracy by increasing the amount clutter captured
alongside the desired signals [3], [19].
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Fig 2. Following this transmission, the UAV switches to the
listening mode to receive the target’s echo corresponding to the
transmitted pulse. Consequently, each sensing round operates
at a specific pulse repetition frequency (PRF). In particular,
Ts “ tp ` to represents the duration of each sensing round,
where to corresponds to the duration of the listening mode
(reception duration of the received radar echo). The number of
sensing rounds per sensing time slot is then given by Ns “ δt

Ts
.

Furthermore, we assume that the same sensing signal s0rns is
used in each sensing round within a given time slot and that
the channel remains constant in each sensing round in a given
time slot. The latter assumption is justified as the UAV hovers
and the considered targets are stationary. In each sensing round,
the radar transmits a pulse of duration tp. As a result, the echo
signal received from target e at the UAV in sensing round ns,
1 ď ns ď Ns, of time slot n is given by

rern, nss “

c

tp
δt

Hernss0rns ` zrn, nss, (4)

where zrn, nss „ CN p0, σ2
eIM q is the received additive white

Gaussian noise (AWGN) at the UAV in sensing round ns
of time slot n. Furthermore, Herns is the round-trip channel
matrix in time slot n, which is given by

Herns“
εernsβ0

2Ψerns
apqrns,deqa

Hpqrns,deq, (5)

where β0 denotes the channel power gain at the reference

distance of d0 “ 1 m and Ψerns “

b

}qrns ´ de}
2
`H2.

Moreover, εerns“
b

ϑe
4πΨ2

erns
denotes the reflection coefficient

of target e, and ϑe is the radar cross-section of target e
[21]. Fraction tp

δt
represents the proportion of time each pulse

occupies within a time slot. To combine the signals received at
the different antennas, the UAV applies receive beamforming
vector urns “ apqrns,deq

}apqrns,deq}2
. Consequently, the combined echo

signal at the UAV is given by yern, nss “ uH rnsrern, nss.
Signal yern, nss is then forwarded to the ground BS. At the
BS, the signals received in all the sensing rounds of a single
time slot are coherently combined to enhance the SNR. The
resulting combined signal in time slot n is given by

yerns “
Ns
ÿ

ns“1

yern, nss “Ns

c

tp
δt

uH rnsHernss0rns
looooooooooooooomooooooooooooooon

firrns

`

Ns
ÿ

ns“1

uH rnszrn, nss

loooooooooomoooooooooon

fizeffrns

. (6)

Consequently, in time slot n, the radar output SNR for detection
of target e at the BS is given by

γerns “
Ns

tp
δt

uH rnsHernsRrnsH
H
e rnsurns

σ2
eu

H rnsurns
, (7)

which can be further simplified to

γerns “
ϑeβ

2
0Ns

tp
δt

aHpqrns,deqRrnsapqrns,deq

16πΨ4
ernsσ

2
e

. (8)

To further improve the SNR, accumulation across multiple time
slots is beneficial to average out variations in channel quality,
interference, and noise characteristics [22], [23]. The combined
signal for detection of target e can be represented as ye,total “
řN
n“1 bnyerns “

řN
n“1 bnrrns `

řN
n“1 bnzeffrns, where bn is

the combining weight. Here, rrns represents the signal obtained
in time slot n after the accumulation of all echoes, while zeffrns
denotes the resulting effective noise. In order to maximize the
SNR across the N time slots, while taking into account that
sensing is performed only in the dedicated sensing time slots,
we choose the combining weights as bn “ αe,nr

˚rns. This
can be interpreted as maximum ratio combining (MRC) with
additional selection. For given s0rns, the resulting accumulated
sensing SNR can be obtained as ĂΓe “

1
Nsσ2

e

řN
n“1 αe,n|rrns|

2.
Then, after taking the expectation with respect to s0rns, we
obtain for the accumulated sensing SNR

Γe “
N
ÿ

n“1

αe,n
ϑeβ

2
0Ns

tp
δt

aHpqrns,deqRrnsapqrns,deq

16πΨ4
ernsσ

2
e

.

(9)

To achieve satisfactory sensing performance3, we require the
accumulated sensing SNR of target e to be higher than a
pre-defined minimum threshold, denoted by SNRth

e , i.e.,

Γe ě SNRth
e . (10)

Remark 3: The proposed UAV-based ISAC system employs
pulse radar due to its superior echo detection capabilities
compared to continuous wave (CW) radar [21], [24]. Pulse radar
systems excel in measuring distances accurately by calculating
the time delay between pulse emission and echo reception,
ensuring precise target detection [21]. Additionally, by adjusting
pulse duration and pulse repetition frequency the peak power
can be enhanced which is beneficial for detecting distant or low-
reflectivity targets [23], [24]. By emitting signals intermittently,
pulse radar systems avoid the continuous background noise
and interference from other systems, achieving high sensitivity
for detection [23], [24]. In comparison, CW radar systems
continuously transmit signals, which can lead to challenges in
distinguishing between transmitted and received signals due to
SI. CW radar is typically used for measuring velocity rather
than distance, as it does not provide direct range information
without additional modulation [25], [26]. Nevertheless, extend-
ing the proposed UAV-based sensing framework to CW radar
and velocity estimation is an interesting topic for future work.

Remark 4: The proposed ISAC system utilizes the accumu-
lated sensing SNR in (9) as performance metric for sensing.
Accumulating the SNR over multiple sensing cycles provides
robustness against transient noise spikes and interference,
ensuring more reliable detection [22], [23]. The use of MRC
for combining samples yerns maximizes the accumulated SNR

3In the considered ISAC system, the UAV focuses solely on collecting
and transmitting high-quality sensing data, while detection is handled by the
ground BS. Increasing the accumulated sensing SNR is beneficial for both the
probability of detection and the probability of false alarm. Therefore, in this
paper, we aim to guarantee a minimum accumulated sensing SNR. Depending
on the sensing objective, the BS can set a proper decision threshold to adjust
the tradeoff between the probability of detection and the probability of false
alarm.
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and serves as an upper bound for other combining schemes. If
a different combining scheme is used, (9) and (10) may still
be used but the predefined threshold SNRth

e has to be increased
to account for the less efficient combining. Alternatively,
the accumulated sensing SNR for the employed suboptimal
combining scheme could be derived and used instead of Γe in
(10).

C. Communication Signal

The horizontal location of the K communication users is
denoted by dk “

“

dxk , dyk
‰T

. Consequently, the channel vector
between the UAV and user k is denoted by hk, and given by

hkrns “
β0apqrns,dkrnsq

b

}qrns ´ dk}
2
`H2

, (11)

based on the free space channel model. In the non-sensing slots,
the UAV transmits simultaneously information symbols ckrns,
ck „ CN p0, 1q, k P t1, ...,Ku, to the K communication users.
Then, the received signal at user k can be written as

ykrns “ hHk rns
K
ÿ

j“1

wjrnscjrns ` zkrns, (12)

where wjrns P CMˆ1 denotes the transmit beamforming vector
and zk „ CN p0, σ2

kq is the AWGN at user k. As a result, the
received SINR at user k in time slot n is given by

γkrns “

ˇ

ˇhHk rnswkrns
ˇ

ˇ

2

ř

i‰k

ˇ

ˇhHk rnswirns
ˇ

ˇ

2
` σ2

k

. (13)

D. Backhaul Model

1) Radar pulse: Based on the PRF, the minimum and
maximum sensing ranges, for which the UAV can detect a
target, are given by [21]

Rmin “
ctp
2

and Rmax “
cto
2
. (14)

2) UAV-BS: In each sensing time slot, the UAV has to first
sample and quantize the received echo signal based on the
desired sensing resolution, and then forward the quantized
data to the BS. Consequently, we model the backhaul capacity
required for conveying the sampled and quantized echoes from
the UAV to the BS during each time slot, as follows [27]

RPr “
NsNbpRmax ´Rminq

∆R δt Wf
, (15)

where Nb is the number of bits needed to characterize a
quantized value of the echo signal, ∆R is the resolution of the
radar in meters determined by the pulse width, type of target,
and efficiency of the radar [21], and Wf is the bandwidth of the
backhaul link. By neglecting the effect of quantization errors,
we simplify the analysis and assume that the quantization
process introduces negligible distortion.After compression of
the radar data at the UAV, the compressed data are offloaded
to the BS for further processing and analysis. We model the

achievable data rate between the UAV and the BS based on an
equivalent single-input single-output (SISO) link as follows4

RU-Brns “ log2

´

1`
αe,np

Offrnsλ2
1rns

σ2
B

¯

, (16)

where λ1rns “
?
β0GT?

}qrns´qb}
2`H2

b

, and GT is the antenna gain

for the backhaul link. Also, Hb “ H ´HBS, where HBS is the
height of the BS. pOffrns is the transmission power needed for
offloading the radar data from the UAV to the BS and σ2

B is
the variance of the noise at the BS. To guarantee successful
real-time communication between the UAV and the BS, the
production rate (the rate at which sampled and quantized echoes
are conveyed from the UAV to the BS) should be smaller than
the achievable rate of the backhaul link. Thus, the following
inequality must hold in the sensing slots

C4 : RU-Brns ě αe,nιRPr, (17)

where ι, 0 ă ι ă 1, denotes the data compression factor
resulting from the local compression carried out by the UAV.

3) BS-UAV: Besides, the backhaul constraint required for
offloading of sensing data, the link between the BS to the
UAV must also satisfy a minimum QoS requirement to ensure
successful data transmission to the users

C5 : RB-Urns “ log2

´

1`
pBSrnsλ

2
1rns

σ2

¯

ě

K
ÿ

k“1

Rkmin

´

1´
E
ÿ

e“1

αe,n

¯

, (18)

where Rkmin is a minimum QoS requirement for communication
user k, and σ2 is the AWGN variance at the UAV.

E. Power Consumption Model

Besides, the power consumption incurred for data transmis-
sion and sensing, the UAV also consumes power for offloading,
local data processing, and flying.

1) Offloading Power Consumption of the UAV: In the context
of our system, offloading is a critical strategy to manage the
significant amount of radar data generated during the sensing
phase. The UAV needs to efficiently transmit this data to the
BS with transmit power pOffrns for further processing.

2) Local Power Consumption of the UAV: We model the
power consumption required for local data processing, i.e., for
data compression at the UAV, as follows [28]

PLoc “ a f3
Loc, (19)

where a is a constant related to the hardware architecture of the
UAV and fLoc (cycles/sec) is the local computation resource
of the UAV.

4Since the channel between the UAV and the BS is LoS, only one spatial
degree of freedom is available. Accordingly, the backhaul channel matrix is
rank-one with a unique non-zero singular value.
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TABLE I: Parameters in the power consumption model [29].

Notations Definitions
Ω “ 300 Blade angular velocity in radians/second
r “ 0.4 Rotor radius in meter
ρ “ 1.225 Air density in kg{m3

s “ 0.05 Rotor solidity in m3

Ar “ 0.503 Rotor disc area in m2

Po “ 80 Blade profile power during hovering in Watt
Pi “ 88.6 Induced power during hovering in Watt
v0 “ 4.03 Mean rotor induced velocity in forward flight in m/s
r0 “ 0.6 Fuselage drag ratio

Pstatic “ 0.3 W Circuit power consumption of RF chain

3) Aerodynamic Power Consumption of the UAV: The
propulsion power consumption depends on the flying mode
of the UAV [6], [29]. In particular, the aerodynamic power
consumption for rotary-wing UAVs is a function of the flight
velocity vrns P R2ˆ1 [29]. The total power consumption in
time slot n can be written as

Paeropvrnsq “
E
ÿ

e“1

αe,nPhoverrns `
´

1´
E
ÿ

e“1

αe,n

¯

Pflypvrnsq,

(20)

where Phover “ Po ` Pi and Pfly=Po

ˆ

3}vrns}2

Ω2r2

˙

`

Pi

„

´b

1` }vrns}4

4v40
´
}vrns}2

2v20

¯1{2

´1



` 1
2r0ρsAr}vrns}

3. The

parameters of the power consumption model are defined in
Table I [29].

III. PROBLEM FORMULATION

In this paper, we aim to minimize the average power
consumption of the UAV which includes the transmission power,
aerodynamic power consumption, and power consumption
for offloading by jointly optimizing the beamforming for
communication, the power for sensing (pRadrns), the UAV’s
trajectory (q), the velocity (v), and the sensing indicator while
guaranteeing the QoS of the communication users as well as
the sensing targets. As a result, the optimization problem is
mathematically formulated as follows:

P1 : min
Ξ

Obj fi 1

N

N
ÿ

n“1

ˆ

ηp
K
ÿ

k“1

}wkrns}
2 `Ns

tp
δt

TrpRrnsqq`

Paeropvrnsq `M Pstatic `

E
ÿ

e“1

αe,nPLocrns `
E
ÿ

e“1

αe,np
Offrns

˙

s.t. C1 :
´

1´
E
ÿ

e“1

αe,n

¯

K
ÿ

k“1

}wkrns}
2`

E
ÿ

e“1

αe,nNs
tp
δt

TrpRrnsq `
E
ÿ

e“1

αe,np
Offrns ď Pmax,@n,

C2 :
1

N

N
ÿ

n“1

´

1´
E
ÿ

e“1

αe,n

¯

log2p1` γkrnsq ě Rkmin,@k,

C3 :
N
ÿ

n“1

αe,n
ϑeβ

2
0aHpθeqNs

tp
δt

Rrnsapθeq

16πΨ4
ernsσ

2
e

ě SNRth
e ,@e,

C4 : RU-Brns ě αe,nιRPr, @e, n,

C5 : RB-Urns ě
K
ÿ

k“1

Rkmin

´

1´
E
ÿ

e“1

αe,n

¯

, @n,

C6 :
E
ÿ

e“1

αe,n ď 1,@n, C7 :
N
ÿ

n“1

αe,n ď Nmax
s ,@e,

C8 : qrn` 1s ´ qrns “
´

1´
E
ÿ

e“1

αe,n

¯

vrnsδt,@n,

C9 :
›

›vrn` 1s ´ vrns
›

› ď amaxδt,@n,

C10 :
›

›vrns
›

› ď

´

1´
E
ÿ

e“1

αe,n

¯

vmax,@n,

C11 : αe,n P t0, 1u,@e, n, C12 : αe,n
›

›qrns ´ de
›

›

2
“ 0,

(21)

where η ą 1 and Pstatic denote the power amplifier efficiency
and the circuit power consumption of the radio frequency (RF)
chain of one antenna element, respectively. In optimization
problem P1, Ξ fi twkrns, p

Radrns, pOffrns, αe,n,qrns,vrnsu
is the set of optimization variables. C1 limits the transmit
power of the UAV, where Pmax is the maximum transmit
power. C2 guarantees that the average achievable data rate of
the communication users in non-sensing slots does not fall
below Rkmin. C3 ensures that the accumulated sensing SNR
at the UAV exceeds a specified minimum threshold, denoted
by SNRth

e , necessary for effective target sensing. C4 indicates
that the rate of production must not exceed the achievable
rate of the backhaul link to ensure real-time communication
between UAV and BS. C5 guarantees that the communication
link between the BS and the UAV satisfies the minimum QoS
that the UAV has to provide to the users. C6 ensures that
at most one target is sensed in each time slot. C7 limits the
maximum number of time slots used for sensing of each target
to Nmax

s . C8 models the evolution of the trajectory of the UAV
based on its flight velocity. Furthermore, C9 and C10 limit the
maximum acceleration and velocity of the UAV to amax and
vmax, respectively. C11 specifies that the sensing indicator is
an integer variable. Finally, controlled by the sensing indicator
αe,n, constraint C12 ensures precise UAV positioning during
sensing. When αe,n “ 1, C12 guarantees that the UAV hovers
directly above the target, eliminating any horizontal distance
between the UAV and the target. Conversely, when αe,n “ 0,
the constraint does not apply, allowing the UAV to maneuver
freely for communications with the ground users.

Remark 5: In the objective function of P1, sensing indicator
αe,n is not explicitly included in the communication and
sensing transmit power. This is not needed as for the optimal
solution of P1, if αe,n “ 1, no transmission power is allocated
for communication in time slot n, i.e., ||wkrns|| “ 0, as
this time slot does not contribute to meeting C2. Similarly,
if αe,n “ 0, no transmit power is allocated to sensing i.e.,
||Rrns|| “ 0, as in this case, time slot n does not contribute
to meeting C3.

Remark 6: In the proposed UAV-based ISAC system, en-
forcing the UAV to hover directly above the target during
sensing simplifies system design. In particular, the need for
beam pattern adjustments during sensing, which would be
necessary if the UAV was moving, is avoided [17]. In addition,
by maintaining a fixed position directly above the target,
interference and multipath effects are minimized [18].
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IV. SOLUTION OF THE OPTIMIZATION PROBLEM

Optimization problem P1 is challenging to solve. The
challenge primarily stems from the intricate interplay of
various system parameters and the non-convexity introduced
by constraints C1´C5, C11, C12, and the UAV’s power
consumption model in the objective function. Moreover, the
inclusion of binary sensing indicator αe,n in C1-C5, C8,
C11, and C12 transforms the optimization problem into an
MINLP problem, further enhancing its complexity. Additionally,
satisfying the equality constraint C12 poses a significant
challenge in efficiently solving the formulated problem. The
presence of UAV trajectory variables in the exponential
functions in the steering vectors aggravates the difficulty of the
joint UAV trajectory and beamforming optimization problem.
Consequently, finding a globally optimal solution in polynomial
time for this problem is a formidable task. The problem involves
multiple variables and constraints, making it inherently complex.
By decomposing it into two sub-problems, we break down
the complexity, promoting a manageable and efficient solution.
Thus, to strike a balance between computational complexity and
performance, we propose a suboptimal solution approach using
an iterative algorithm based on the AO technique. Beamforming
for the communication users, the power of the sensing beam,
the power for offloading along with binary sensing indicators
are primarily related to communication and sensing aspects.
These variables can be optimized relatively independently of
the UAV’s trajectory and velocity. Separating these aspects
into a sub-problem enables parallelization, potentially speeding
up the overall optimization process. Therefore, in a first step,
we jointly optimize the communication and sensing variables,
using a combination of semi-definite programming (SDP),
Big-M method, SCA, and the penalty approach. Then, in
a second step, we jointly optimize the UAV trajectory and
velocity, utilizing SCA, Big-M, and the penalty approaches.
Despite being suboptimal, this approach simplifies the problem
and allows us to significantly reduce power consumption
while meeting the prescribed communication and sensing
performance requirements. The key steps for finding the
solution to the considered overall optimization problem P1

are illustrated in Figure 3.

A. First Sub-Problem

First, we assume that the position and velocity of the UAV
are fixed, and we aim to optimize the remaining variables.
To do so, we employ SDP and define Wk “ wkw

H
k , Ak “

apqrns,dkqaHpqrns,dkq, where Wk ľ 0 and RankpWkq ď 1.
One obstacle to solving optimization problem P1 is the
coupling of αe,n with Wkrns, Rrns, and pOffrns in C1-
C4. In order to overcome this difficulty, we adopt the big-M
formulation. In particular, we define the new optimization
variables, W̃k,erns “ αe,nWkrns, p̃Rad

e rns “ αe,np
Radrns,

p̃Off
e rns “ pOffrnsαe,n, and add the following additional

constraints to the optimization problem:

C13 : p̃Off
e rns ĺ αe,n Pmax, C14 : p̃Off

e rns ď pOffrns, (22)
C15 : p̃Off

e rns ě 0, C16 : p̃Off
e rns ě pOffrns ´ p1´ αe,nq Pmax,

(23)

Original problem (      )

Alternating optimization 
approach

Sub-problem (1) Sub-problem (2)

1-SDP
2-Big-M

3- Defining auxilary variable to 
bound the SINR 

4-SCA
5-Penalty appraoch

Iteration

1- Defining auxilary variable to 
bound the SINR 

2-SCA
3-Big-M 

4-Penalty appraoch

Fig. 3: A flow chart of the proposed solution.

C17 : W̃k,erns ĺ αe,n Pmax IM , (24)

C18 : W̃k,erns ĺ Wkrns, C19 : W̃k,erns ľ 0, (25)

C20 : W̃k,erns ľ Wkrns ´ p1´ αe,nq Pmax IM , (26)

C21 : p̃Rad
e rns ď αe,n Pmax,C22 : p̃Rad

e rns ď pRadrns, (27)
C23 : p̃Rad

e rns ě 0, C24 : p̃Rad
e rns ď pRadrns ´ p1´ αe,nq Pmax.

(28)

Besides, we introduce a set of auxiliary optimization variables
µkrns to bound the SINR from below [30], [31]

0 ď µkrns ď
Tr
`

WkrnsAkrns
˘

ř

i‰k Tr
`

WirnsAkrns
˘

`
σ2
k

β2
0

`

}qrns ´ dk}
2
`H2

˘

.

(29)
However, (29) is still non-convex. To overcome this issue, by
introducing auxiliary variable φkrns, we can rewrite C2 as
follows:

C2a : Tr
`

WkrnsAkrns
˘

ě µkrnsφkrns, (30)

C2b :
ÿ

i‰k

Tr
`

WirnsAkrns
˘

`
σ2
k

β2
0

`

}qrns ´ dk}
2
`H2

˘

ď φkrns.

(31)

The left-hand side of (30) is convex. However, the right-hand
side is a product of two terms and is not convex. Nevertheless,
we can rewrite the product of the two terms as

µkrnsφkrns “
1

2

”

`

µkrns ` φkrns
˘2
´
`

µ2
krns ` φ

2
krns

˘

ı

.

(32)

Note that (32) is a difference of convex (DC) functions [32]. As
a result, the first-order Taylor approximation can be adopted
to obtain a convex function and µkrnsφkrns can be bounded
as follows:

µkrnsφkrns ě 0.5
`

µkrns ` φkrns
˘2
´ µ

ptq
k

`

µkrns ´ µ
ptq
k rns

˘

´ φ
ptq
k rns

`

φkrns ´ φ
ptq
k rns

˘

fi νkrns, (33)
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where t denotes the iteration index for SCA. Next, we relax
the integer constraint and rewrite C11 as follows:

C11a : 0 ď αe,n ď 1, C11b :
E
ÿ

e“1

N
ÿ

n“1

αe,n ´ α
2
e,n ď 0. (34)

Constraint C11b is a DC function, and we use first-order
Taylor approximation to convert the non-convex constraint to
the following convex constraint

C11b :
E
ÿ

e“1

N
ÿ

n“1

`

αe,n ´ α
ptq
e,np2αe,n ´ α

ptq
e,nq

˘

ď 0. (35)

Now, we introduce a penalty factor τ1 to move constraint C11b
to the objective function. τ1 represents the relative importance
of recovering binary values for αe,n. For a sufficiently large
value of τ1, optimization problem P1 is equivalent to the
following optimization problem [33]:

P2 : min
Ξ

1

N

N
ÿ

n“1

ˆ

ηp
K
ÿ

k“1

TrpWkrnsq `Ns
tp
δt

TrpRrnsqq

` Paeropvrnsq `M Pstatic `

E
ÿ

e“1

αe,nPLoc `

E
ÿ

e“1

αe,np
Offrns

looooomooooon

p̃Off
e rns

˙

` τ1

ˆ E
ÿ

e“1

N
ÿ

n“1

`

αe,n ´ α
ptq
e,np2αe,n ´ α

ptq
e,nq

˘

˙

¸

s.t. C1 :
K
ÿ

k“1

TrpWkrnsq ´
E
ÿ

e“1

K
ÿ

k“1

TrpW̃k,ernsq`

E
ÿ

e“1

Ns
tp
δt

TrpR̃ernsq `
E
ÿ

e“1

p̃Off
e rns ď Pmax,

C2c :
1

N

N
ÿ

n“1

log2p1` µkrnsq´

1

N

N
ÿ

n“1

E
ÿ

e“1

αe,n log2p1` µkrnsq ě Rkmin,

C2a : Tr
`

WkrnsAkrns
˘

ě νkrns,

C2b :
ÿ

i‰k

Tr
`

WirnsAkrns
˘

`
σ2
k

β2
0

`

}qrns ´ dk}
2
`H2

˘

ď φk,n,

C3 :
N
ÿ

n“1

p̃Rad
e rnsϑeβ

2
0aHpθeqNs

tp
δt

Rdapθeq

16πΨ4
ernsσ

2
e

ě SNRth
e ,

C4´ C8,C11a,C13´ C24, (36)

where Ξ fi twkrns, p
Radrns, p̃Rad

e rns, pOffrns, p̃Off
e rns, αe,n,

µkrns, φkrnsu. Constraint C2c is still non-convex. The non-
convexity in constraint C2c is due to the multiplicative integer
variable with continuous value on the left-hand side of the
second part of this constraint i.e., αe,n log2p1 ` µkrnsq and
the difference between two logarithm functions. To tackle this
constraint, we define

0 ď µk,erns ď
Tr
`

W̃k,ernsAkrns
˘

ř

i‰k Tr
`

WirnsAkrns
˘

`
σ2
krns

β2
0

`

}qrns ´ dk}
2
`H2

˘

.

(37)
Now, by exploiting auxiliary variable φkrns, we can rewrite
(37) as follows:

C2d : Tr
`

W̃k,ernsAkrns
˘

ě µk,ernsφkrns. (38)

The left-hand side of (38) is convex. However, the right-hand
side is a product of two terms and is not convex. We treat
this constraint in a similar way as (32) and (33). As a result,
constraint C2c can be rewritten as

1

N

N
ÿ

n“1

log2p1` µkrnsq ´
1

N

N
ÿ

n“1

E
ÿ

e“1

log2p1` µk,ernsq ě Rkmin.

(39)

The left-hand side of (39) is a difference of two concave
functions which is not generally concave. Hence, we employ a
first order Taylor approximation to obtain a concave function,
i.e., log2p1` µk,ernsq is bounded as follows:

fpµk,ernsq fi log2p1` µk,ernsq ď log2p1` µ
ptq
k,ernsq

`
Bfpµk,ernsq

Bµk,erns

`

µk,erns ´ µ
ptq
k,erns

˘

fi f̃pµk,ernsq. (40)

The next challenge is addressing the requirements of equality
constraint C12. C12 enforces the exact alignment between the
UAV and the specified target position, which may slow down
the speed of convergence of the proposed iterative algorithm.
To overcome this limitation, we introduce a penalty function to
relax the strictness of the constraint during the iterative process,
making it more flexible and facilitating convergence. Following
the principles of the penalty method, we modify C12 to C12,
i.e., C12 : αe,n

›

›qrns ´ de
›

›

2
ď 0 and introduce a penalty

function into the objective function, penalizing constraint
violations with a coefficient τ2 ą 0 [33]. As a result, the
optimization problem at hand can be rewritten as

P3 : min
rΞ

1

N

N
ÿ

n“1

ˆ

ηp
K
ÿ

k“1

TrpWkrnsq `Ns
tp
δt
pRadrns`

Paeropvrnsq `M Pstatic `

E
ÿ

e“1

αe,nPLocrns `
E
ÿ

e“1

αe,npOffrns
looooomooooon

p̃eOffrns

˙

`

τ1

ˆ E
ÿ

e“1

N
ÿ

n“1

`

αe,n ´ α
ptq
e,np2αe,n ´ α

ptq
e,nq

˘

˙

¸

`

τ2

ˆ E
ÿ

e“1

N
ÿ

n“1

αe,n
›

›qrns ´ de
›

›

2
˙

s.t. C1 :
K
ÿ

k“1

TrpWkrnsq ´
E
ÿ

e“1

K
ÿ

k“1

TrpW̃k,ernsq`

E
ÿ

e“1

Ns
tp
δt
p̃Rad
e rns `

E
ÿ

e“1

p̃Off
e rns ď Pmax,

C2c :
1

N

N
ÿ

n“1

log2p1` µkrnsq ´
1

N

N
ÿ

n“1

E
ÿ

e“1

f̃pµk,ernsq ě Rkmin,

C2a : Tr
`

WkrnsAkrns
˘

ě νkrns, C2b,

C2d : Tr
`

W̃k,ernsAkrns
˘

ě νk,erns,

C3 :
N
ÿ

n“1

p̃Rad
e rnsϑeβ

2
0aHpθeqNs

tp
δt

Rdapθeq

16πΨ4
ernsσ

2
e

ě SNRth
e ,

C4´ C8,C11a,C13´ C24, (41)
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where rΞ “ tWkrns,W̃k,erns, p
Radrns, p̃Rad

e rns, p̃Off
e rns, p

Offrns,
αe,n, µkrns, µk,erns, φkrnsu is the new set of optimization
variables. Now, by dropping the rank-one constraint on Wkrns
and adopting SDP relaxation, problem P3 becomes a convex
optimization problem and can be efficiently solved by CVX.
The tightness of the SDP relaxation can be proved following
similar steps as in [34, Appendix A]. We omit the proof here
due to lack of space.

B. Second Sub-Problem

In the subsequent step of our proposed solution, the trajectory
and velocity of the UAV are designed. Optimal trajectory design
poses a challenge as the UAV’s position affects the steering
verctor, rendering the problem intractable. Additionally, the
complexity is increased by the non-convex nature of the data
rate constraint in C2, a pivotal component of our optimization
problem. Despite these challenges, we derive a high-quality
suboptimal solution. To this end, we introduce new auxiliary
optimization variables βkrns and µ1krns to effectively bound
the SINR. This transformation allows us to reframe C2 into a
set of equivalent constraints. Consequently, C2 is equivalently
replaced by the following constraints

yC2a : Tr
`

Wkrns rHkrns
˘

ě µ1krnsβkrns, (42)

yC2b :
ÿ

i‰k

Tr
`

Wirns rHkrns
˘

` σ2
kp}qrns ´ dk}

2 `H2q ď βkrns,

(43)

where rHkrns “ β2
0Akrns. The right-hand side of (42) is not a

convex function. Similarly as in (33), by adopting the first-order
Taylor approximation we obtain a convex function as χkrns fi
0.5

`

µ1krns`βkrns
˘2
´µ

1ptq
k

`

µ1krns´µ
1ptq
k rns

˘

´β
ptq
k rns

`

βkrns´

β
ptq
k rns

˘

, where t denotes again the SCA iteration index. The
left-hand side of (42) is also a non-convex function of the
UAV’s position qrns. Nevertheless, we can rewrite the left-
hand side of (42) as follows

Tr
`

WkrnsrHkrns
˘

“ β2
0

M
ÿ

m“1

M
ÿ

m1“1

Wk
m,m1rnse

j2π d̂
λ
Hpm1´mq

?
}qrns´dk}2`H2

“β2
0

M
ÿ

m“1

Wk
m,mrns

looooooooomooooooooon

fiUkrnspWkq

`β2
0

M
ÿ

m“1

M
ÿ

m1“m`1

|Wk
m,m1rns|

cos

ˆ

2π
d̂

λ
pm1 ´mq

H
a

}qrns ´ dk}2 `H2
` φWk

m,m1rns

˙

fi

UkrnspWkq ` JkrnspWk,qq, (44)

where Wk
m,m1rns is the element in the mth row and m1th

column of Wkrns. Besides, |Wk
m,m1rns| and φWk

m,m1rns denote
the magnitude and phase of Wk

m,m1rns, respectively. Note that
since the right-hand side of (42) is convex, we need to find
an affine approximation of Jkrns to convexify the underlying
optimization problem, which is done via a first-order Taylor
approximation as follows

J̃krnspWk,qq fi J
ptq
k rnspWk,qq `∇H

Jkrns

`

qrns ´ qptqrns
˘

,
(45)

where gradient ∇Jkrns is given by

∇Jkrns “
´4β2

0πd̂Hpm
1 ´mq

λ
`

b

}qptqrns ´ dk}2 `H2
˘

3

M
ÿ

m“1

M
ÿ

m1“m`1

|Wk
m,m1rns|

sin

ˆ

2π
d̂

λ
pm1 ´mq

H
a

}qptqrns ´ dk}2 `H2
` φWk

m,m1rns

˙

pqptqrns ´ dkq. (46)

By substituting (45), (42) can be restated as follows

yC2a : UkrnspWkq ` J̃krnspWk,qq ě χkrns. (47)

Similarly, the left-hand side of (43) can be approximated by
its first-order Taylor series. As a result, the inequality in (43)
can be restated as

yC2b :
ÿ

i‰k

`

UirnspWiq ` J̃irnspWi,qq
˘

`

σ2
kp}qrns ´ dk}

2 `H2q ď βkrns. (48)

Finally, we deal with the non-convexity of the power
consumption of a moving UAV. To do so, we introduce the
auxiliary variable yrns ě 0, such that

y2rns “

d

1`
}vrns}4

4v4
0

´
}vrns}2

2v2
0

, (49)

which can be rewritten as
1

y2rns
“ y2rns `

}vrns}2

v2
0

. (50)

Consequently, the second term in the aerodynamic power
consumption during UAV flight can be restated as Pi

`

ypnq ´
1
˘

. Hence, the total aerodynamic power consumption during

UAV flight can be restated as P̃fly=Po

ˆ

3}vrns}2

Ω2r2

˙

`Pi
`

ypnq´

1
˘

` 1
2r0ρsAr}vrns}

3. With the above manipulations, the
optimization problem is recast as follows

P5 : min
q,v,y,µ1k,βk

F fi
1

N

N
ÿ

n“1

ˆ E
ÿ

e“1

αe,nPhoverrns`

p1´
E
ÿ

e“1

αe,nqP̃flypvrnsq

˙

` τ2

ˆ E
ÿ

e“1

N
ÿ

n“1

αe,n
›

›qrns ´ de
›

›

2
˙

s.t. C2c :
1

N

N
ÿ

n“1

log2p1` µ
1
krnsq ´

1

N

N
ÿ

n“1

E
ÿ

e“1

log2p1` µ
1
k,ernsq ě Rkmin,

C4 : log2

´

1`
αe,np

Offrnsβ2
0GT

p}qrns ´ qb}2 `H2
b qσ

2
B

¯

ě αe,nιRPr,

C5 : log2

´

1`
pBSrnsβ

2
0GT

p}qrns ´ qb}2 `H2
b qσ

2

¯

ě

K
ÿ

k“1

Rkminp1´
E
ÿ

e“1

αe,nq,

C26 :
1

y2rns
ď y2rns `

}vrns}2

v2
0

,

yC2a,yC2b,C9´ C11. (51)

Problem P5 is still non-convex due to non-convex constraints
C2c, C4, C5, and C26. We address C2c by applying a similar



11

approach as in (40). Moving on to C4, this constraint can be
equivalently restated as follows:

C4 : }qrns ´ qb}
2 `H2

b ď

pOffrnsβ2
0GT

σ2
B

„

αe,n
2pιRPrq ´ 1

` p1´ αe,nqM


, (52)

where M represents a sufficiently large value. The value of
M should be chosen large enough to ensure that the constraint
is always fulfilled for αe,n “ 0. Finally, SCA can be used to
effectively handle constraint C26 by deriving a corresponding
global lower bound at a given local point. As a result, based
on the first-order Taylor approximation of the right-hand side
of C26, the following global lower bound can be obtained

y2rns `
}vrns}2

v2
0

ě yptq2rns `
}vptqrns}2

v2
0

`

2yptqrnspyrns ´ yptqrnsq `
2vptqrns

v2
0

pvrns ´ vptqrnsq

fi gpyrns,vrnsq, (53)

where yptqrns and vptqrns are the values obtained in the
t-th iteration of SCA. This leads to the following convex
optimization problem

P6 : min
q,v,y,µ1k,βk

F

s.t. ĄC26 :
1

y2rns
ď gpyrns,vrnsq,

C4 : }qrns ´ qb}
2 `H2

b ď

pOffrnsβ2
0GT

σ2
B

„

αe,n
2pιRPrq ´ 1

` p1´ αe,nqM


,

C5 : }qrns ´ qb}
2 `H2

b ď

pBSrnsβ
2
0GT

ˆ

2

`

řK
k“1 R

k
minp1´

řE
e“1 αe,nq

˘

´ 1

˙

σ2

,

C2c,yC2a,yC2b,C9´ C11. (54)

In each iteration t, we update the solution set and efficiently
solve P6 via CVX.

C. Overall Algorithm

The proposed solution based on AO is summarized in
Algorithm 1. In the following, we analyze the convergence
and complexity of the proposed algorithm.

1) Convergence: The proposed AO algorithm opti-
mizes two sets of variables iteratively: (i) Π fi

twkrns, p
Radrns, pOffrns, αe,nu encompassing the beamform-

ing vectors, radar power, offloading power, and sensing
indicator variables, and (ii) tv,qu representing the UAV’s
velocity and trajectory. The algorithm employs SCA and
SDR to overcome the non-convexity of the formulated
optimization problem. Specifically, when set Π is up-
dated while v and q are fixed, we solve P3 that en-
sures ObjpΠpt`1q, vptq,qptqq ď ObjpΠptq,vptq,qptqq. Sim-
ilarly, updating v and q while fixing Πpt`1q results in
ObjpΠpt`1q,vpt`1q,qpt`1qq ď ObjpΠpt`1q,vptq,qptqq. More-
over, for sufficiently large penalty factors τi, i P t1, 2u, in

Algorithm 1 Proposed resource allocation framework.

1. Initialize αptqe,n, vptqrns, qptqrns , µptqk , φptqk , βptqk , µ1ptqk , τ1,2 " 1,
t (iteration index), εAO.
Repeat
2. Solve P3 for given vrns “ vptqrns, qrns “ qptqrns and obtain
W
pt`1q
k rns, Rpt`1qrns, pOff pt`1qrns and αpt`1q

e,n .
3. Solve P6 for given Wkrns “ W

pt`1q
k rns, Rrns “ Rpt`1qrns,

α
pt`1q
e,n , and obtain vpt`1qrns, qpt`1qrns.

5. Set t “ t` 1

6. until Objptq´Objpt´1q

Objpt´1q ď εAO.

TABLE II: System simulation parameters.

σ2
e “ σ2

k Noise power ´110 dBm
T Time horizon 70 s
δt Duration of one time slot 1 s
Pmax Maximum transmit power at the UAV 40 dBm
Rmin Required achievable rate of users 1 bits/s/Hz
ϑe RCS 0.1 m2

SNRth
e Minimum long-term sensing SNR at the UAV 5 dB

M Number of antennas at the UAV 6
GT Antenna gain 10 dBi
RPr Fronthaul link capacity (rate of production) 4 bits/s/Hz
Nb Number of bits for quantizing echoes 4
Ns Number of rounds in sensing phase 4400
∆R Sensing resolution 15 m [37]
WF Fronthaul link bandwidth 10 MHz [37]
tp Pulse width 0.6 µs
to Listening time 2.26 ˚ 10´4s
2∆ Beamwidth of the ideal beam pattern π

6
εAO Convergence tolerance 10´3

τt1,2u Penalty factors 105

amax UAV maximum acceleration 5 m/s2

PRF Pulse repetition frequency 4.4 kHz [37]
a Hardware architecture 10´28 [38]
fLoc Local computation resource at the UAV 3 GHz [38]

problems P3 and P6, the objective function of P1 is non-
increasing in each iteration of Algorithm 1 [35], [36] and
converges to a stationary value of the objective function in P1,
producing a high-quality suboptimal solution [14].

2) Computational Complexity: The computational complex-
ity of Algorithm 1 is given by O

´

logp1{εAOq
`

p3N ` K `

3NK ` 4EKN ` 10EN ` 2EqM3 ` p3N ` K ` 3NK `

4EKN`10EN`2Eq2M2`p5N`3NK`K`2NEqpMq3`

p5N ` 3NK ` K ` 2NEq2M2
¯

, where O p¨q is the big-O
notation and εAO is the convergence tolerance of Algorithm
1. V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
algorithm via computer simulations. We consider an area of
0.3 km ˆ 0.3 km with K “ 3 communication users and
E “ 3 sensing targets. The UAV is equipped with M “ 6
antennas and we set the minimum long-term sensing SNR
at the UAV to SNRth

e “ 5 dB [11]. Furthermore, the UAV
operates at an altitude of H “ 100 meters5 with a maximum

5Operating at an altitude of 100 meters enhances the probability that the
UAV maintains an LoS connection to the communication user, as illustrated
by the relationship between the altitude and the LoS probability in [39]. We
note that, in practice, if a reliable LoS link cannot be established due to
blockages or unfavorable user locations the affected users are not admitted
into the system. Admission control is handled by a corresponding protocol
[40]. This protocol is crucial for maintaining system integrity and operational
efficiency but falls outside the scope of this paper. Thus, in this paper, we
consider only users, which have been admitted into the system to participate
in communication.
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Fig. 4: Trajectory, velocity, and aerodynamic power consumption of the UAV.

flight speed of vmax “ 15 m/s. Additionally, the channel power
gain at the reference distance of d0 “ 1 meter is β0 “ ´30
dB. The adopted simulation parameters are given in Table
II. To investigate the power saving achieved by the proposed
scheme, we compare it with two baseline schemes. For baseline
scheme 1, we adopt a heuristic trajectory design for the UAV.
In particular, the UAV visits each communication user and
sensing target along the shortest path while the beamformers,
sensing power, sensing indicator, and velocity are optimized.
For baseline scheme 2, we adopt zero-forcing beamforming
for information transmission and a fixed velocity i.e., vfixed “

13 m/s, omitting constraint C9. Then, we jointly optimize
the communication and sensing power, sensing indicator, and
trajectory using a modified version of P1.

Figs. 4(a) and 4(b) depict the trajectory of the UAV during its
mission for different positions of the ground BS. In particular,
for the proposed scheme, the UAV starts flying from the initial
point towards the location of the first sensing target while
transmitting data to the communication users. Fig. 4(c) shows
that, during this time, the UAV also adjusts its velocity to
minimize power consumption. When approaching the first
sensing target, the UAV gradually reduces its velocity to zero
before hovering above the target for sensing. Subsequently,
the UAV proceeds to the second target, executing another

hover-and-sense operation. This pattern continues as the UAV
navigates to the third target. In the intervals between the
target locations, the UAV dynamically adjusts its trajectory
and beamforming vectors to ensure continuous communication,
while meeting the data rate requirements of the communication
users. As the mission nears completion, the UAV heads
towards its final destination while continuing to support the
communication users. It is worth noting that the UAV’s
trajectory exhibits curvature. This is because in order to save
power, the UAV aims to fly at the optimal velocity, while
properly adjusting its distance to both the users and the BS
for efficient information transmission. Figs. 4(a) and 4(b)
also include the trajectories of the UAV when there is no
sensing requirement. In this case, the UAV conserves power
by navigating between the users, while supporting multiple
users simultaneously. From Fig. 4(c), we can observe that
for baseline scheme 1, as the trajectory is not optimized,
the UAV needs to fly with a higher velocity to complete
its mission. This results in increased aerodynamic power
consumption, as illustrated in Fig. 4(d). Another interesting
observation is that the proposed algorithm leads to shorter
hovering times compared to baseline schemes 1 and 2. Because
of the joint optimization of the sensing indicator, beamformers
for information transmission, sensing power, trajectory, and
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UAV velocity, less time is needed to complete the sensing tasks.
Moreover, as the sensing requirements become more stringent,
the required UAV hovering time increases. This increase in
hovering time, in turn, leads to a corresponding rise in the
aerodynamic power consumption of the UAV. A comparison
of Figs. 4(a) and 4(b) reveals the influence of the location
of the ground BS on the UAV’s trajectory. In fact, the UAV
strives to maintain close proximity to the BS throughout its
mission. This behavior is caused by constraints C4 and C5,
which ensure real-time information exchange between the UAV
and BS. Consequently, during each time slot, the UAV flies as
close as possible to the ground BS, enhancing the reliability
of the connection.

Fig. 5 shows the average power consumption versus the
sensing SNR requirement. The average power consumption
of the UAV for both the proposed scheme and the baseline
schemes increases monotonically with the minimum SNR
threshold for sensing. This escalation occurs because, in order
to meet more stringent sensing requirements, the UAV must not
only transmit with higher power but also dedicate more time to
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Fig. 7: Average transmit power versus position of BS on the
x-axis for various UAV heights.

hovering. Furthermore, Fig. 5 highlights the longer impact of
the number of sensing targets on power consumption compared
to the number of communication users. This is primarily
attributed to two factors. Firstly, sensing tasks necessitate higher
transmission power because of the round-trip pathloss, thereby
increasing power consumption. Secondly, our proposed scheme
requires UAV hovering during sensing, which consumes more
power compared to the flight mode. These factors collectively
highlight the significant role of the sensing tasks on power
consumption. Nevertheless, the average power consumption
does increase with the number of communication users. This
increase can be attributed to the UAV-mounted transmitter
needing to allocate more degrees of freedom (DoFs) to mitigate
multi-user interference (MUI). However, this diminishes the
flexibility in trajectory and beamforming design, ultimately
resulting in performance degradation. The impact of velocity
and trajectory optimization on UAV power consumption is also
evident in Fig. 5. Specifically, the proposed scheme, leveraging
trajectory design to provide additional DoFs, consumes less
power compared to baseline scheme 1 with a fixed trajectory.
Likewise, baseline scheme 2 incurs a higher power consumption
due to both a fixed beamforming policy, leading to increased
transmit power, and a fixed UAV velocity leading to an
increased aerodynamic power consumption.

Fig. 6 shows the average power consumption versus the
number of antennas at the UAV for different minimum data
rate requirements, denoted as Rmin. As can be seen, the
average UAV power consumption decreases with increasing
number of transmit antennas. This is because the extra DoFs
offered by the additional antennas facilitate more precise
beamforming and can efficiently mitigate MUI. However, as the
number of antennas increases, the performance gains decreases,
suggesting reduced marginal benefits. In this context, it is
essential to note the impact of the circuit power consumption.
While additional antennas can improve beamforming, the
resulting reduction in power consumption are counteracted by
the additional circuit power required. This trade-off suggests
that, beyond a certain point, the increase in circuit power
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consumption may outweigh the beamforming gains achieved
with additional antennas. We also observe a notable difference
in power consumption between the proposed scheme and the
two baseline schemes. Specifically, in baseline scheme 2, the
fixed information beamforming policy leads to an increased
transmit power. This is because the scheme fails to fully exploit
the spatial DoFs. Moreover, a substantial amount of power
is consumed during the UAV’s flight in baseline scheme 2,
which is attributed to the fixed velocity of the UAV, resulting in
elevated aerodynamic power consumption. As a consequence,
baseline scheme 2 exhibits higher overall power consumption
compared to the proposed scheme. Additionally, Fig. 6 reveals
that the average power consumption increases as the minimum
quality of service requirement (Rmin) becomes more stringent.
This is because to satisfy a stricter minimum required data
rate, the UAV needs to increase its transmit power, resulting
in higher power consumption.

Fig. 7 shows the impact of the position of the BS on the
average power consumption, considering different heights of
the UAV. In particular, the BS is fixed on the y-axis at y “ 0 m,
while it is moved along the x-axis from x “ 50 m to x “ 350
m. As can be observed, the average power consumption of
the UAV decreases as the BS moves along the x-axis until it
reaches x “ 250 m. This reduction is attributed to the closer
proximity of the BS to the first and second sensing targets,
requiring less power for data offloading when the UAV visits
these targets. Notably, at x “ 200 m and x “ 250 m, where
the BS is close to the first and second targets, respectively,
the UAV can transmit with lower power during offloading.
Conversely, for x ą 250 m, where the distance to the first and
second targets is higher, more transmit power is required to
ensure successful data offloading. Furthermore, the proposed
algorithm demonstrates superior power efficiency compared to
both baseline schemes. Additionally, we observe from Fig. 7
that as the UAV’s altitude increases, two key effects come into
play: the vertical distance to the targets increases, demanding
more power for precise sensing, and the distance to both the
communication users and the BS also grows, requiring a higher
transmit power to meet the QoS constraints of the users and
successful offloading.

Fig. 8 reveals that the average power consumption is
monotonically non-decreasing with respect to the number
of bits Nb used for quantizing echoes. This is because as
Nb increases, the rate of production RPr in (15) also grows,
requiring additional power expenditure for data offloading to
meet constraint C4, underlining the impact of quantization
resolution on both energy efficiency and operational costs. The
relationship between bit resolution, data volume, and power
consumption is crucial, especially in scenarios where data
offloading becomes a bottleneck for system performance.

Fig. 9 depicts the impact of the RCS on the average power
consumption for the proposed scheme and the baseline schemes.
The RCS is expressed in decibels relative to one square meter
(dBsm) [23]. As the RCS increases, there is a notable decrease
in average power consumption for all considered schemes.
This inverse relationship is attributed to the enhanced radar
reflectivity provided by larger RCSs, which allows the UAV
to reduce the radar transmit power. The reduction in transmit
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power is possible because the enhanced reflectivity ensures
that the target remains detectable, as the required sensing SNR
threshold can be met with less energy expenditure.

VI. CONCLUSION AND FUTURE WORK

In this paper, we studied the joint resource allocation and
trajectory design for a multi-user, multi-target UAV-based
ISAC system, where we accounted the limited capacity of
the backhaul link, which is needed for offloading the sensing
data to the BS. To avoid interference between sensing and
communication, sensing and communication were performed
in orthogonal time slots, where the time of sensing was
optimized. To be compatible with practical UAV-based sensing
systems, pulse radar-based sensing was carried out during UAV
hovering. Taking into account the application of a focused
sensing beam with small sidelobes, a minimum required
accumulated sensing SNR, and UAV hovering during sensing,
we minimized the average power consumption of the UAV
while ensuring the QoS for both the communication users
and the sensing tasks. To solve the resulting challenging
non-convex MINLP, we developed a computationally efficient
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AO-based algorithm, which yielded a high-quality suboptimal
solution. Our simulation results revealed that 1) the proposed
design enables substantial power savings compared to two
baseline schemes; 2) more stringent sensing requirements lead
to longer sensing times, highlighting the trade-off between
sensing accuracy and sensing time; 3) the number of sensing
targets has a larger impact on power consumption than the
number of communication users; 4) larger RCSs enhance the
echo signal strength, thereby facilitating a reduction in radar
transmit power without compromising sensing performance; 5)
the average power consumption increases with the number of
bits Nb used for quantizing echoes; 6) data offloading can be
improved by positioning the BS closer to the sensing targets; 7)
the optimized trajectory design ensures precise hovering above
the target during sensing, facilitating high-quality sensing with
energy-focused beams; and 8) the designed UAV trajectory
balances the distance of the UAV to the communication users
and the BS.

An interesting topic for future research on UAV-enabled
ISAC systems is the investigation of multi-UAV sensing
strategies. The deployment of multiple UAVs might enable
simultaneous sensing of multiple targets, expanding operational
capabilities and enhancing the flexibility in sensing. However,
the related challenges, such as interference management,
trajectory optimization, and collision avoidance, have to be
carefully addressed. Additionally, adaptive beam pattern designs
that enable sensing from multiple angles around a target could
further enhance performance and flexibility. Furthermore, ad-
vanced dynamic beam steering techniques may be investigated
to adapt UAV sensing in real-time to environmental changes and
moving targets at the expense of a higher system complexity.
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