
TKN
Telecommunication

Networks Group

Technical University Berlin

Telecommunication Networks Group

Self-learning and adaptive scheme for Supporting
periodic Multi-flows in Wireless Sensor Networks

Osama Khader⋆, Andreas Willig•, and
Adam Wolisz⋆

⋆ Telecommunication Networks Group
Technische Universitat Berlin
Berlin, Germany
Email:khader@tu-berlin.de
Email:awo@ieee.org

• Department of Computer Science and
Software Engineering
University of Canterbury
Christchurch, New Zealand
Email: andreas.willig@canterbury.ac.nz

Berlin, March 2013

TKN Technical Report TKN-13-002

TKN Technical Reports Series

Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

In this research report we propose a novel decentralized and self-learning framework to sup-
port both communication reliability and energy-efficiency for periodic traffic applications in
WSNs. Our autonomous approach comprises there main components: estimation and iden-
tification of the flows, asynchronous channel hopping and local dynamic multiple sleep states
scheduling. We also propose a light and efficient controller to eliminate the collision caused
by multi-flow overlap. We present detailed design, implementation, and evaluation of our au-
tonomous framework using real-life measurements, and realistic trace-based simulation. The
results show that our asynchronous channel hopping solution improves the packet reception
rate without the need of an expensive signalling and time synchronization overhead. We also
show that with this scheme the average energy consumption yields a ≈ 50% lower than the
single channel solution. This work is to the best our knowledge, the first to explore channel
hopping without maintaining a tight time synchronization protocol.

TU Berlin

Contents

1 Introduction 2

2 Autonomous Framework Overview 5
2.1 Flow Estimation and Identification . 5
2.2 Node States . 6

3 Experimental Jitter Distribution Measurements 8
3.1 Experimental Setup . 8
3.2 Discussion and Result for Jitter Measurements 9
3.3 Estimation of Quasi-Periodic Traffic . 9

3.3.1 Mean Estimator . 10
3.3.2 Variance Estimator . 11

4 Asynchronous Channel Hopping 12
4.1 Handling Transmission Errors . 13
4.2 Multi-flow Overlapping Mechanism . 14

5 Local Dynamic Sleep State Scheduling 15
5.1 Dynamic Multiple Sleep States Scheduling (DM3S) 16

6 Methodology and Experimental Setting 18
6.1 Connectivity Traces . 18
6.2 Simulation Setup . 19
6.3 Network Topology and Traffic . 19
6.4 Major Performance Measure . 21

7 Result 22
7.1 Packet Delivery Ratio . 22
7.2 Energy Consumption . 22
7.3 Impact of the Multi-flow Overlap . 24
7.4 Length of Learning Phase . 25
7.5 Length of Wakeup Window . 25

8 Related Work 29

9 Conclusions and Future Research 31

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 1

TU Berlin

Chapter 1

Introduction

In many application areas of embedded wireless networks, for instance in building automation
or industrial control, source nodes send data packets periodically to a gateway or sink node
across a set of forwarder nodes [24], [25], [9]. For cost-effective, quick and scalable deployment,
sensor nodes often run on batteries, and therefore have only a limited amount of energy. The
sensed data should be transmitted reliably and in a timely fashion to the sink. At the same
time the operation of the whole network and of individual nodes should be energy-efficient.
Therefore, reporting the sensed data reliably while consuming the minimum amount of energy
is of great concern.

One of the key approaches to achieve energy-saving is to let the forwarding nodes switch
to an energy-conserving sleep state whenever possible. In this sleep state parts of the node
hardware, especially the wireless transceiver, are switched off. This disables the communica-
tion ability of a node but leads to significant energy savings, since for most of the currently
available sensor node platforms the wireless transceiver is the dominant source of energy
consumption. The fraction of time where the node is awake is called its duty cycle, and from
the perspective of energy-efficiency this duty cycle should be kept as small as possible. For
a source node generating the periodic data there is no problem: the node wakes up, sam-
ples its sensor, transmits a packet and returns to sleep mode until time for next sampling
has come. In a multi-hop network other nodes are needed to forward the packet to a sink
node. To be most energy-efficient, a forwarder should wake-up just before a periodic packet
arrives, do the necessary forwarding work and enter sleep mode again. However, in general
the time differences between packet arrival times seen by a forwarder are not ideally regular,
but have a random component, for example due to the usage of randomized MAC protocols,
time-varying cross-traffic (resulting in queueing effects), or operating system imperfections
(i.e. interrupts handling). The deviation from perfect periodicity is also referred to as jitter.
Intuitively, one might expect that the amount of jitter is a function of the number of hops a
packet traverses.

On the other hand, reliability in WSNs is challenged by multi-path fading and narrow band
interference. Low communication reliability causes packets to be lost, and therefore retrans-
mission of lost packets is usually needed, which in turns leads to higher energy-consumption.
One important approach to improve reliability is to exploit frequency diversity by channel
hopping, i.e. periodically changing the communication channel. Channel hopping is known
to substantially improve communication reliability in WSNs [5], and therefore it has been

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 2

TU Berlin

adopted in recent standards for industrial wireless sensor networks, for example Wireless-
HART and ISA100.11a, see [19], [13], [16] [3]. Both Wireless-HART and ISA100.11a rest on
a TDMA approach with slow-hopping, i.e. slot-by-slot frequency hopping. These protocols
use an explicit time synchronization protocol in order to be able to switch between different
channels and communicate. They also require to have a centralized coordinator and extensive
signaling overhead. Moreover, because these protocols require communication schedules to
be computed and distributed in advance, it is relatively expensive (energy-wise) to adapt the
network to new topologies or load situations.

The key motivation for this work is the observation that the full TDMA operation in-
cluding time synchronization, maintenance and schedule dissemination represents too much
overhead for lightly loaded networks. Nonetheless we want to support periodic transmissions
and we want to leverage frequency hopping. In order to address these challenges, we have
developed a distributed and self-learning framework integrating asynchronous channel hop-
ping, estimation of periods and dynamic multi-flow wakeup scheduling. Two key ideas are
used. First, there is no explicit time synchronization, but instead each forwarder learns the
traffic period and jitter distribution from observing the traffic in distributed manner. Based
on this information a forwarder determines suitable times for sleeping and for waking up to
receive the next packet – this approach has been introduced in an earlier publication of ours
(see [18]), however in this research report we extend the work to multi-flow and multi-channel
scenarios. Secondly – and this is the novel contribution of this work – the source nodes and all
forwarders switch channels for each new periodic packet, and source nodes are independent
of each other, i.e. they choose their own transmission periods and channels autonomously.
We assume that the physical layer offers a number of different orthogonal frequency channels
– the prime example (being adopted in this technical report) are transceivers following the
IEEE 802.15.4 physical layer in the 2.4 GHz ISM band. A forwarder thus uses the estimated
traffic periods also for figuring out the times when it needs to switch the channel. In order to
integrate these approaches, some significant challenges have to be addressed. First, enabling
nodes to switch between different channels without maintaining a time synchronization pro-
tocol is difficult, and to the best of our knowledge this has not been addressed in the WSN
literature so far. Secondly, period estimation and the scheduling of wakeup times will have
to deal with jitter in the packet inter-arrival times. If a packet arrives before the forwarder
wakes up or after it has returned to sleep, it is lost. This opens up a trade-off between loss
rates and the sleeping activities of the forwarder: when the forwarder wakes up “early”, the
packet loss rate will be low but the forwarder spends more energy, and vice versa. Thirdly,
certain forwarders might be placed on the routes for several distinct sources and must adapt
both its sleep/wakeup windows and also the frequency, especially in situations where pack-
ets of different source flows “collide” at a forwarder. To the best of our knowledge, this
research report is the first attempt of proposing a distributed and self-learning asynchronous
multi-channel hopping for supporting both energy-efficiency and communication reliability.

The remainder of the report is structured as follows. Chapter 2 presents an overview of
the general autonomous framework of wake-up times scheduling approach and algorithms.
Subsequently, in Chapter 3 we describe the experimental jitter distribution measurements,
experiment set-up, and results. The asynchronous channel hopping mechanism is presented
in Chapter 4. In this Chapter we also introduce the multi-flow overlapping mechanism. In
Chapter 5 we analyze the transceivers energy-consumption when the sleeping capabilities are

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 3

TU Berlin

more fully exploited. The methodology, performance metrics, and experimental setting are
explained in Chapter 6. Chapter 7 presents the result of the autonomous framework. Related
work is discussed in Chapter 8 and finally, Chapter 9 concludes the research report with some
future works.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 4

TU Berlin

Chapter 2

Autonomous Framework Overview

In this chapter we propose to develop an autonomous framework which capable of satisfying
and supporting communication reliability and energy consumption for period traffic applica-
tions. Our distributed and self-learning framework includes, flow estimation algorithm, asyn-
chronous channel hopping, overlapping controller, and dynamic multi-flow wakeup scheduling
(see figure 2.1). Please note that our autonomous framework is independent from the main
MAC functionalities. In the following sections we describe in detail the components of the
autonomous framework.

Figure 2.1: Autonomous components

2.1 Flow Estimation and Identification

The first building block of our scheduling approach is the design of appropriate estimators.
Let us focus on one particular forwarder node. It receives multi-flow periodic traffic. Thus,
the first estimator is the period estimator p̂i(n), which returns an estimate of the traffic
period per-flow. However, the knowledge of traffic period alone is not really sufficient to
schedule the node wakeup/sleep times. This is due to the imprecise time (clock drift and
offset), and the activities of the previous sources or forwarders (random access, cross-traffic,
etc.), there is inevitably some jitter; i.e. the actual arrival times of the packets deviate from
their nominal arrival times determined by the packet generation period. It is therefore of
paramount importance for the forwarder node to acquire knowledge not only of the nominal

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 5

TU Berlin

traffic period, but also of the jitter quantiles. Therefore, the second important estimator is
the quantile estimator which returns the estimate α-quantile of the jitter distribution. This
knowledge shall be used to schedule the sleep and wake-up times of the forwarder so that not
too many packets are lost because the forwarder sleeps at their arrival. Instead of assuming a
particular distribution of the jitter we intend to measure it, and check whether we can model
it or not. Another important estimator is the loss-rate estimator l̂(n), which computes the
local loss rate between the forwarder and its successor. It mainly operates on the sequence
numbers, but since the sequence number space is in general finite and ambiguities might
occur, the packet arrival timestamps are also taken into account. Please note that, these
estimation are explained in Chapter 3. For identification of flows, we exploit the flows IDs
generated by the source nodes. We then use these IDs for the identification process within
the estimation algorithms.

2.2 Node States

The second major building block is the introduction of two separate node operations: the
learning phase and the operational phase.

• In the learning phase each forwarder node does not sleep but unconditionally tries to
capture enough packets in order to obtain reliable first estimates of the period and
jitter for each flow. This state is entered after the node has been switched on or too
many losses have been incurred during the operational state. The latter can occur
for example when the cross-traffic situation, and therefore the actual jitter variance
changes. All existing historical data is dropped upon entering the learning phase, and
each individual node initially starts listen on a any of the available channel. It selects
a random channel and then waits for a packet. Upon reception of the first packet the
forwarder switches to the next channel, and waits for the next packet. We assume that
each source node transmits its data packet using channel hopping (per-packet base).
The channel switching mechanism is discussed in more detail in Chapter 4. Please also
note that, in our solution each forwarder node can also start listening on a particular
channel (default channel) in the learning phase. This default channel might decrease
the joining time (to get the first sample) in case more that one node switch to the
learning phase at the same time. The end of the learning phase is determined by a
stopping rule, which in general can take the achieved accuracy of the period and jitter
into account or can simply stop after recording a prescribed number of packets.

• In the operational phase the dynamic multiple sleep states scheduling is applied. The
forwarder alternates between sleep phase and activity phase.

– The forwarder maintains three main predicted times for each flow (see Figure 2.2):

∗ tw(n) refers to the wakeup time of the n-th activity phase (i.e. it denotes the
start of the activity phase)

∗ ts(n) refers to the sleep time (denoting the maximum end time of the n-th
activity phase), and

∗ ta(n) is the nominal packet arrival time for the n-th activity phase.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 6

TU Berlin

For the n-th activity phase, the forwarder schedules wakeup for the time tw(n). The
forwarder remains awake until either a packet is received and forwarded, or until sleep
time ts(n) is triggered. At the end of the activity phase the forwarder updates its
estimates of the period p̂i(n) , jitter q̂(k) and loss rate l̂(n). From the updated jitter
the quantiles q̂(k) of the jitter distribution are updated. Based on this, the times for
the n+ 1-st activity period are calculated as follows :

ta(n+ 1) = ta(n) + p̂(n)

tw(n+ 1) = ta(n+ 1)− q̂(n)

ts(n+ 1) = ta(n+ 1) + q̂(n)

Figure 2.2: The figure shows the three predicted timers ta(n), tw(n), and ts(n) for the wakeup
and sleep scheduling algorithm

As the second major action at the end of the activity phase, the forwarder decides about
a possible state transition back into the learning phase. We refer to the rule used for this as
the transition rule. Please note that, in this approach the forwarder continuously updates its
period, packet loss and jitter estimates in the operational state.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 7

TU Berlin

Chapter 3

Experimental Jitter Distribution
Measurements

In this Chapter we study and analyze the characteristics of the jitter distribution under
general and realistic scenarios. Rather than making strong assumptions about the nature of
the jitter distribution, we attempt to measure it and check if we can fit the jitter distribution
to a theoretical one.

3.1 Experimental Setup

We carry out our experiments on the TWIST testbed (TKN Wireless Sensor Networks
Testbed) [11]. It has approximately 102 Tmote sky nodes spread over three floors of our
FT building at the TU Berlin campus, resulting in more than 1500 m2 of instrumented office
space. Each mote integrated with the popular IEEE 802.15.4-compliant ChipCon CC2420
radio transceiver [4] which operates in the 2.4 GHz ISM band and has a data rate of 256kbps.
In its 2.4 GHz, it has 16 channels (from 11 to 26), with a center frequency separation of
5 MHz for adjacent channels. There are some obstacles in the TWIST testbed area that
could impede RF communication and cause multi-path reflections. In addition, the building
is occupied with some WiFi access points which may introduce external interference to the
TWIST network. We use the TinyOS version 2.0 operating system [14], [8] and its default
protocol stacks. We also used the well known TinyOS CTP routing protocol [10] to construct
routes connectivity between the sources and the sink. For the measurements each sensor
samples the temperature sensor periodically. The generation period was varied, ranging from
1 to 30 to 60 seconds. During each experiment-run, each source transmits 5000 packets in
each channel to the sink via a set of forwarders path. MAC-layer acknowledgement is enabled
and if the packet is lost the node tries to retransmit the packet for a maximum of two re-
tires. Each forwarder records the timestamps of the received packets, source and destination
addresses, flow ID, packet sequence, RSSI, LQI, and the frequency channel. In our experi-
ments data packet size is set to 80 bytes (not including packet overheads). The number of
sources is set to 10 and we allow for each source and forwarder to have up to 5 neighbours
and communicate on all of the available channels (16 channels). Th minimum, average and
maximum number hops from any source to the sink node was, 3, 6 and 8, respectively.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 8

TU Berlin

3.2 Discussion and Result for Jitter Measurements

We conducted several experimental runs, measuring the jitter under various scenarios, includ-
ing different channels, random topology, multiple flows, cross traffics, varying the number of
hops and the packet generation period. As a matter of fact, in general the jitter distribu-
tion depends on a multitude of factors: the MAC protocol, the local load situation, and the
position of a particular forwarder in the network topology.

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Jitter [ms]

D
en

si
ty

 fu
nc

tio
n

hop1:jitter

 µ=0.006, σ2= 1.5
hop2 jitter

 µ=0.006, σ2=3.05
hop3 jitter

 µ=0.006, σ2=4.5
hop4 jitter

 µ=0.007, σ2=5.85
hop5 jitter

 µ=0.007, σ2=7.2
hop6 jitter

 µ=0.007, σ2=8.75
hop7 jitter

 µ=0.007, σ2= 10.3
hop8 jitter

 µ=0.007, σ2=12.02

Figure 3.1: Multi-hop jitter PDF for channel 11

For all the scenarios we find that the per-flow jitter distribution is well modelled by a
normal distribution. For brevity we only show the PDF and the quantile-quantile plots for
channel 11 as shown in Figures 3.1 and 3.2, respectively. Please note that this finding was
also conformed in our previous paper [18], which is limited to a singe source scenario with a
common single channel solution.

However, here we extend the work to a more general scenario with multiple channels
solution. Please also note that similar trends are observed also for scenarios with 30 and 60
seconds traffic generation period and for different channels.

3.3 Estimation of Quasi-Periodic Traffic

Direct estimation of quantiles is non-trivial and relatively memory-intensive [20, Sec. 9.5]
as compared to the estimation of simple averages. In order to handle this issue we apply
parametric approach, the class of distribution functions for the jitter distribution is known a
priori (for example from measurements) and the task reduces to the problem of estimating
the actual parameters of the distribution and the subsequent computation of adjusting proper
window for sleeping activities. It turns out that even for the parametric case considered in

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 9

TU Berlin

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

Standard Normal Quantiles

Jit
te

r q
ua

nt
ile

s
Empirical Jitter and Normal Distribution Quantile−Quantile Plot

Figure 3.2: Quantile of empirical jitter against quantile of normal distribution for channels 11 using
TWIST testbed

this research report nothing more than a variance estimate for the jitter is required (Based
on our measurements, see Section 3.2);

Since in our measurements, we want to compute the current estimate from the previous
estimate and the current measurement, we use recursive estimators for the traffic period and
the jitter variance. The mean period for any independent flow f can be computed as:

X̂f,k+1 = X̂f,k +
1

k + 1

(
Xf,k+1 − X̂f,k

)
(3.1)

where X̂k refers to the estimated mean packet inter-arrival time after the k-th packet
and Xk is the k-th actual interarrival time – interarrival times are only obtained for two
successively received packets. For any independent flow f , a recursive method can be found
to compute for the jitter variance as:

σ̂2
f,k+1 = σ2

f,k +
1

k + 1

[
k

k + 1
(Xf,k+1 − X̂f,k)

2 − σ2
f,k

]
(3.2)

where σ2
k denotes the estimated jitter variance after observing the k-th interarrival time

per flow f .

3.3.1 Mean Estimator

Given k measurements of packet inter-arriving time Xi the sample mean is

X̂k =
1

k

k∑
i=1

Xi (3.3)

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 10

TU Berlin

Suppose that X̂k has been computed based on measurements Now one more measurement
Xk+1 is made. The new sample mean is computed as :

X̂k+1 =
1

k + 1

k+1∑
i=1

Xi (3.4)

X̂k+1 can be computed in terms of X̂k and Xk+1 by proceeding as follows.

X̂k+1 =
k

k + 1

(
1

k

k∑
i=1

Xi

)
+

1

k + 1
Xk+1

=
k

k + 1
X̂k +

1

k + 1
Xk+1

So that the estimator for the mean for any independent flow f is:

X̂f,k+1 = X̂f,k +
1

k + 1

(
Xf,k+1 − X̂f,k

)
(3.5)

The random variable (packet inter-arrival time) is denoted by x(k) and its estimated value
of the mean is denoted by x̂(k).

3.3.2 Variance Estimator

For any independent flow f , a recursive method can be found to computer an estimator for
the variance:

σ̂2
f,k+1 = σ2

f,k +
1

k + 1

[
k

k + 1
(Xf,k+1 − X̂f,k)

2 − σ2
f,k

]
(3.6)

Where is σ2
f,k represents the kth estimate of variance per flow f .

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 11

TU Berlin

Chapter 4

Asynchronous Channel Hopping

Our asynchronous channel hopping approach is not synchronized to any external time refer-
ence. Instead, channel hopping is synchronized to the period with which a source node sends
its data packets. Our approach distinguishes itself from existing channel hopping protocols,
such as WirelessHART [6] and ISA100.11a [16], by scheduling the whole network activities
in a distributed manner and without maintaining an explicit time synchronization protocol,
thus reducing the signaling load and saving overall system complexity. We first explain our
approach for a single flow and then extend to the case with multiple flows in a network.

There are two main approaches to channel hopping: (synchronized) blind channel hopping
and adaptive channel hopping. Blind channel hopping (as used in WirelessHART) might use
all 16 channels independent of their current quality and hops on a per-time-slot basis (which
in WirelessHART amounts to a per-packet basis). In contrast, adaptive hopping aims to
use a subset of the best channels (white-listing). Adaptive hopping is more complex to
implement, as it first requires a mechanism to frequently scan and rank all the channels for
their quality for each link. Second, each node has to keep statistics of channel qualities for
each link. Third, each pair of nodes needs to achieve consistent rankings of the individual
channels, otherwise they will may end up communicating using different channels. This
requires additional signaling. For these reasons we base our asynchronous blind channel
hopping (ABCH) on the blind hopping approach.

ABCH exploits the characteristics of a single periodic traffic flow and estimates the next
channel to be used based on the sequence number of the packet. Each source node starts
hopping blindly on a per-packet basis, using available channels. The source includes sequence
numbers into its packets, and the next channel to use depends on the sequence number as
follows:

NextChannel = (SQ+ chOffset) mod chNum (4.1)

where SQ is the next sequence number, chOffset is the channel offset and chNum is the
number of channels being used. In the learning phase, each forwarder starts by listening
for a packet on some random channel. Upon receiving the first packet on this channel,
the forwarder retrieves the sequence number and determines the next channel according to
Equation 4.1. As an example, if chOffset = 1, chNum = 16 and a forwarder received packet
with SQ = 8, then the current channel index is 9 and the next one is 10 (Note that here the
channels are numbered from 0 to 15 instead of 11 to 16, but translation is straightforward).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 12

TU Berlin

Please note that each forwarder applies the ABCH mechanism after receiving the first packet
– specifically, a forwarder also uses the determined channels for its own transmissions of the
packet. In the next section we examine the synchronization of two neighbors in the presence
of transmission errors.

4.1 Handling Transmission Errors

Figure 4.1 shows the interaction between a pair of nodes for exchanging packets. We assume
that the nodes have learned the flow period and are ready to communicate. Figure 4.1
illustrates three sequences, the first sequence shows a simple error-free transmission. In this
sequence a sender transmits packet p1 on channel 11 and waits for an ACK for a predefined
time-out on the same channel. Upon reception of the packet the receiver sends an ACK back
to the sender indicating the next expected sequence number to be received and performs a
statistics update. If the transmitter receives the ACK, it also performs a statistics update
and removes that packet from its buffer, otherwise a copy of the transmitted packet is kept
in the buffer.

The second sequence illustrates the interaction in case of a data packet loss. When the
receiver wakes up on channel 12 to receive a packet, it waits for its wakeup window and
remains awake until either a packet is received or until the upper α/2 quantile has passed,
as explained in Section 2.2. In this example the receiver does not get a packet and assumes
that the packet is lost and updates its statistics. However, it computes the next channel
frequency as if it received packet p2 (the lost packet). This is important as we will explain
in the third sequence (ACK loss). Similar actions are taken at the sender side. Once the
ACK time-out is triggered, the sender assumes that packet p2 or its associated ACK is lost.
However, it computes the next channel as if it received a successful ACK for packet p2 and
then updates its statistics. In the next wakeup-window it transmits packet p3 on channel
13. Upon receiving p3, the receiver node sends back an ACK indicating the next expected
packet to receive. In this case the receiver returns the sequence number of packet p2 and
it stays awake1 to receive packet p2 on the same channel (channel 13). The sender then
retransmits packet p2 on channel 13. Please note that, the recovery process of the lost
packet p2 immediately follows the previous successful transmission of p3, leveraging the good
conditions on the current channel.

The third sequence shows the packet exchanges in case of ACK packet loss. When the
sender transmits p5 on channel 15 and its timer expires before the packet is acknowledged,
it assumes that either the data packet or the ACK packet is lost. In either case, it computes
the next channel as if it got a successful ACK for p5. It also updates its statistics and goes
to sleep. In the next wakeup window, the sender transmits p6 on channel 16 and waits for
an ACK. If it receives a successfully ACK then it knows that the previous packet (p5) was
correctly received, because the receiver indicates in its ACK that the next expected sequence
number is that of p7, otherwise the ACK would have included the sequence number of the
lost packet. Please note that our scheme prevents duplicate packets caused by ACK packet

1Please note, that in this circumstance, the forwarder increase its wakeup-window temporary to accounts
for the retransmission. Upon receiving the missing packet, the forwarder may go to sleep (depends on how
much time left for the next activity).

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 13

TU Berlin

loss, thus more energy-efficient.

Figure 4.1: Autonomous channel hopping transition diagram

4.2 Multi-flow Overlapping Mechanism

We finally consider the operation of our scheme in the multi-flow case, focusing on a forwarder
through which two or more flows of possibly different period and from different sources pass.
For such a forwarder it might happen that two upstream nodes want to send packets at
nearly the same time but possibly on different frequencies – we refer to this as a collision.
To deal with this, we propose to exploit the traffic estimation values to detect and resolve
a potential collision beforehand. Specifically, after receiving a packet a forwarder checks all
flows going through it whether there is a collision for the next packet. If so, it notifies the
upstream node (by setting a special flag in the ACK packet) to randomly back-off longer in
the next transmission cycle. Also the forwarder readjusts its corresponding wakeup window
temporarily. We assume that there is no overlap in the first cycle of the transmissions. This
is a realistic assumption since each node usually starts with a random offset.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 14

TU Berlin

Chapter 5

Local Dynamic Sleep State
Scheduling

In this Chapter we analyze how an improved usage of the transceiver sleep states can sub-
stantially reduce the overall energy-consumption, thereby increasing the autonomous system
energy-efficiency.

Modern radios have built-in support for several sleeping states of operation with each
state consuming a different amount of power. The radio also requires some time to switch
into and out of different sleep states. For example, the CC2420 has three sleeping states:
the idle-sleep-state, the power-down-state, and voltage-regulator-off-state, hereafter referred
to as sleep-mode-1, sleep-mode-2, and sleep-mode-3, respectively. These sleep modes and
their possible transitions are illustrated in Figure 5.1. In sleep-mode-1, both the voltage
regulator and the crystal oscillator are enabled. The energy-saving in sleep-mode-1 state is
obtained by disabling the radio frequency synthesizer which controls the channel selection
and up/down RF conversion. Sleep-mode-1 has the fastest transition time of around 0.192 ms
and consumes 1.4 mW of power, which is the highest among the sleep modes. In sleep-mode-
2, the voltage regulator is enabled and the crystal oscillator is disabled. This mode consumes
0.07 mW of power. In sleep-mode-3, both the voltage regulator and the crystal oscillator are
disabled. This mode has the slowest transition time and lowest power-consumption (6.6 ·10−5

mW). In general this mode switches off the radio chip completely, including radio RAM. As
a result any packet waiting in the receiving or transmitting buffer is lost. Despite the fact
that most (if not all) energy-efficient WSNs MAC protocols use the popular CC2420 Radio
chip or similar Radio chip that support multiple sleep modes, they only use one single-fixed
sleep mode. Moreover, they usually control and use the lightest sleep mode (sleep-mode-1)
which calls in CC2420 datasheet ”idle” mode. For example B-MAC [22] and X-MAC [2] uses
sleep-mode-1. According to X-MAC paper: (when X-MAC sleeps the radio, in fact it puts
the radio into idle mode, as sleep mode turns off the oscillator and requires a longer time
to transition back to receive mode. [2]). To the best of our knowledge there is no a MAC
protocol in WSNs that utilizes the multiple radio sleep states and thus provide a dynamic
assignment of multiple sleep modes. According to our previous study we showed that about
40% of the total energy-consumption is due to the sleeping activity thus, we believe that our
approach elegantly copes with the issues raised above, and it will become commonplace for

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 15

TU Berlin

Figure 5.1: Sleep transition states for CC2420 Radio.

the energy-saving mechanisms in WSNs MAC protocols under variant periodic traffic rates.
In the remainder of this Chapter we propose a generic simple approach that may runs on

top of any MAC layer protocols and in which each node can apply individually, based on its
current traffic rate.

5.1 Dynamic Multiple Sleep States Scheduling (DM3S)

In what follows, we propose a practical and effective dynamic multiple sleep states scheduling
scheme, abbreviated as DM3S. It exploits the multiple sleep states of the CC2420 radio and
utilizes them based on the estimation of the next packet arrival. This approach is independent
of the underlying link scheduling algorithm, but a node uses its given schedule to determine
the right sleep states. For ease of presentation, we called the scheduled activity window (Tx
or Rx interval time) as a time slot. Generally speaking, a nodes activities are constrained
to certain slots (whether these are exclusive or shared does not matter for the following
presentation), whereas in all other slots they can sleep. We call the slots that a node might
be involved in its active slots. There will generally be some active slots in which a node
will have to wake up unconditionally, for example those slots in which the node is scheduled
to receive, or those transmit slots where a packet is transmitted the first time. On the other
hand, retransmission slots are only used when a transmission in a previous transmit slot has
failed (i.e. the sender has not received an acknowledgement). A key observation is that at
the end of a transmit slot the sender will know if it has to utilize a retransmission slot or not.
More generally, based on its schedule and the transmission outcomes in the current active
slot, at the end of the current slot a node can determine how much time will elapse before
its next active slot starts.

The second key ingredient is borrowed from a technique used in dynamic power manage-
ment to control the device’s operational states, see [15] and [1]. Specifically, since the number

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 16

TU Berlin

of transceiver states and their switching time is known a-priori, it is possible to construct a
function ϕ(·), which takes a non-negative time duration τ as a parameter and which returns
a sleeping schedule that: (i) ensures that after τ seconds the node transceiver is ready to
transmit or receive, (ii) sends the transceiver through a “monotone” sequence of sleep states
(the deepest state at the beginning and the lightest state at the end), and that (iii) ensures
that the chosen sequence of states (and the times being spent in each visited state) has the
smallest energy-consumption over the time horizon of τ seconds. For the CC2420 transceiver
this function ϕ(·) is straightforward to construct. Specifically, we need to determine three
threshold values: (i) a duration τ1 that is minimally needed to make sleep-state-1 more
energy-efficient than to stay awake; (ii) a duration τ2 > τ1 that is minimally needed to make
an initial choice of sleep-state-2, followed by a transition through sleep-state-1 and subsequent
wakeup more energy-efficient than to start initially with sleep-state-1; and (iii) a duration
τ3 > τ2 that is minimally needed to make an initial choice of sleep-state-3, followed by a
transition through sleep-state-2, sleep-state-1 and subsequent wakeup more energy-efficient
than to initially start with sleep-state-2. When at the end of an active slot it takes a time τ
before the next active slot starts, it is a simple matter of comparing τ to the three thresholds
τ1, τ2 and τ3 to figure out which sleep state (if any) should be entered next. The run-time
overhead caused by this computation is only moderate.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 17

TU Berlin

Chapter 6

Methodology and Experimental
Setting

The study of selecting the right methodology for evaluating the above schemes is non-trivial.
On one hand, theoretical channel models usually do not capture complex phenomena such
as multi-path fading, or the impact of a dynamic environment. On the other hand, real-life
experiment does not provide the ability to evaluate different schemes or algorithms under
the exact same condition as the RF environment is time-varying in nature. In this work we
decided to combine these two methods and use a connectivity traces gathered from a real
world deployment as an input to the simulation. We believe that combining the two methods
is essential for evaluating such complex environment.

6.1 Connectivity Traces

We evaluate our approach under both single channel and multiple channel using a connec-
tivity traces gathered in a real world deployment. The connectivity traces are collected by
DUST networks group [5]. The network deployed was conducted in a printing factory in
Berkeley, California, and data was collected over 26 days. The building has a rectangular
footprint, measuring 250 feet x 225 feet. There are many obstacles in the work area that
could impede RF communication and cause multi-path reflections. As shown in Figure 6.1
(as example), 45 sensor nodes were deployed in an indoor printing facility in a relatively
uniform distribution. Each node occupies with ChipCon CC2420 radio chip [4]. For this
experiment, the data consisted of periodic reports on the quality of the communication path,
where a path represents all transmission between a pair of nodes. Each node allows to have
up to 8 neighbours and communicates on all of the 16 channels of the IEEE802.15.4. The
trace contains all path-channels reports. Each report contains the following statistics for a
path-channel: path ID, channel ID, number of transmit attempts, number of transmit fails,
number of transmits without ACK reception, and the mean RSSI and LQI. The link quality
was evaluated based on the packet reception ratio, the ratio between the number of success-
fully received packets and the number of transmission attempt. For more details about the
setup of the experiment please refer to [5].

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 18

TU Berlin

Figure 6.1: An example of multi-hop network topology

6.2 Simulation Setup

In order to realize a simulation model to study the performance of autonomous framework
over a wireless multi-hop network, we have chosen connectivity traces, and the well-known
OMNeT++ [28] simulation environment together with the Castalia WSNs framework [21].
OMNet++ is an open-source discrete-event simulator, Castalia is an OMNet++ based frame-
work. We have modified the radio and channel models of the simulator to support not only
the gathered traces but also the 16 channels of the IEEE 802.15.4 standard. We have also
modelled the time required for channel switching. Table 6.2 summarizes the main power con-
sumption parameters of a CC2420 transceiver and of a MSP430 microcontroller, assuming a
3.3V supply voltage. The main parameters of the autonomous framework is listed in Table
6.1.

For the channel error model we use (unless otherwise specified) the traces introduced
above. Specifically, for each link and each channel we change every 15 (simulated) minutes
the packet delivery ratio by reading the next value for the packet delivery ratio for this link
and channel from the trace files.

6.3 Network Topology and Traffic

We have generated 150 random topologies and for each setting of simulation parameters we
correspondingly perform 150 replications. For each random topology we have placed 45 nodes
in an area of size 225 × 225feet, using a uniform distribution for node positions. The sink
node is placed in the upper right corner of the nodes. Out of the 45 nodes we randomly
pick five nodes as source nodes. Each of these sources periodically generates packets with a
payload of 80 bytes (not including PHY and MAC overhead). Unless otherwise specified, all

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 19

TU Berlin

Table 6.1: Main Autonomous Framework Parameters

Parameter Value

Data packet size 128 bytes

Ack packet size 12 bytes

Number of retry 2 times

Length of learning phase Varying

Number of flows Varying

Data packet rate Varying

Number of neighbor 5 nodes

Allowable packet loss rate α Varying

Loss threshold 3 packets

Channel switching time 192 µs

Table 6.2: Main CC2420 Power Consumption Parameters

Main power consumption parameters of CC2420 radio

Notation Parameters I(mA) Power(mW)

PTx Transmit power (0dBm) 17.4 57.42

PRx Receive power 18.8 62.04

PL Listen power 18.8 62.04

PS−m1 Sleep-mode-1 power 0.426 1.406

CPUA CPU active power 1.8 6

CPUS CPU sleep power 0.045 0.148

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 20

TU Berlin

the sources transmit with the same period, however, the starting phase is set randomly. The
generation period was varied, ranging from 1 to 30 to 60 seconds. During each simulation
run, each source transmits packets based on its periodicity and then forwards these packets
to the sink node via some forwarders. MAC-layer acknowledgements are enabled and the
size of the ACK packet is 12 bytes. If the packet is lost then the sender tries to transmit the
packet for a maximum of two retries.

6.4 Major Performance Measure

The simulation time is fixed to 168 hours (one week) and the two main performance measure
are the total energy spent by the radio transceiver of a node over this period, and the end-
to-end packet delivery ratio (PDR), i.e. the fraction of all packets sent by the sources that
reach the destination. At one or two occasions we also use the end-to-end packet loss rate,
which is just the complement of the packet delivery ratio, as a performance measure.

The simulation records the amount of time spent in various states (transmit, receive,
listen, sleep and turnover) and calculates from this the total energy consumption of a node
over a span of 168 simulated hours. We also take into consideration the energy consumed
by the nodes microcontroller. We split the microcontroller energy consumption in two main
states, active state and sleep state. The microcontroller is active at the same time as the
radio. At the end of each run, the simulation computes the total energy consumed for all
nodes in the network using the amount of energy consumed by the radio and microcontroller
in each state.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 21

TU Berlin

Chapter 7

Result

In order to study the performance of our autonomous framework, we compare the same set-
up as described in Section 6.2 using the asynchronous channel hopping and single channel
solutions. We first investigate the packet delivery ratio and the total energy-consumption.
Then we study the impact of the multi-flow overlap to the energy-consumption and packet loss
rate. We also investigate the impact of the length of the learning phase on the performance
of the autonomous framework.

7.1 Packet Delivery Ratio

Figure 7.1, shows the average packet delivery ratio when using single channel vs. using all
16 channels in case of 1sec data rate. The results are averaged over all runs. This graph
confirms that our framework is able to reap the benefits of channel hopping, the single channel
scenario has a lower packet reception rate that varies across the channels. This is due to the
fact that there is usually no single channel which is persistently reliable most of the time.
On the other hand, the ABCH mechanism increases the reception rate because if the current
channel is bad the next retransmission will be done on a different channel, thus increasing
the probability of successful transmission. Similar trends are observed also for scenarios with
30s and 60 seconds traffic generation period.

7.2 Energy Consumption

Figure 7.2 shows the average per-node energy-consumption for both the ABCH mechanism
and the single channel solutions (for all channels), where the average is only taken among the
nodes being on the path of any source flow. We can observe from the figure that the energy
consumption of the single channel solution is much higher than with all 16 channels available.
This is due to the higher number of retransmissions carried out on lossy channels. It is worth
noting that our framework may reduce the energy consumption by about 50%. This is due
to the fact that our ABCH mechanism is performed on a per-packet basis. For instance, if
packet p is lost in chi, then the retransmission will be performed in the next channel chi+1.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 22

TU Berlin

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

84

86

88

90

92

94

96

98

100

IEEE802.15.4 channels

Pa
ck

et
 D

el
iv

er
y

R
at

io
 [%

]

single channel channel hopping (average over all channels)

Figure 7.1: Average PRR: Single channel vs blind channel hopping

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.01

0.02

0.03

0.04

0.05

0.06

IEEE802.15.4 channels

Av
er

ag
e

po
w

er
 [J

/S
]

single channel
channel hopping

Figure 7.2: Average energy: Single channel vs blind channel hopping

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 23

TU Berlin

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

Number of flows

Pa
ck

et
 lo

ss
 ra

te
 [%

]

w/o overlapping mechanism
with overlapping mechanism

Figure 7.3: Impact of multi-flow overlap in packet loss

7.3 Impact of the Multi-flow Overlap

We study the performance of the multi-flow overlapping mechanism in terms of both energy-
consumption and end-to-end packet loss rate under multi-flow traffic. For this we use the
same setting as explained in Section 6.2, but without channel errors. This ensures that packet
loss are due to flow collisions at forwarders and not due the channel errors. We have varied
the number of paths sharing one forwarder from one to five. Specifically, within a single
run, each source picks a random period ranging from 1 sec to 60 sec. The long simulated
time of one week / 168 hours guarantees the occurrence of collisions. In Figure 7.3 we
show the impact of the number of flows on the packet loss rate with and without applying
the overlapping mechanism. The confidence intervals are very tight, the 95% confidence
intervals for the packet loss rate is within ±0.06% and ±0.12% with and without applying
the overlapping mechanism, respectively. For the energy consumption the 95% confidence
intervals are within ±0.003 Joules. The figure shows that without applying the overlapping
mechanism the packet loss rate increases steeply as the number of flows increases. However,
when applying our overlapping mechanism the packet loss rate increases much slower. In
Figure 7.4 we show the relationship between number of flows and the energy consumption
for the same simulations. This figure shows that the energy consumption increases with the
number of flows, presumably due to retransmissions after collisions. Furthermore, it can be
seen that the overlapping mechanism has a modest additional cost over the case without the
overlapping mechanism, coming from additional times that the forwarder has to be awake.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 24

TU Berlin

1 2 3 4 5
0.008

0.009

0.01

0.011

0.012

0.013

0.014

Number of flows

Av
er

ag
e

po
we

r [
J/

S]

w/o overlapping mechanism

with overlapping mechanism

Figure 7.4: Impact of multi-flow overlap in energy consumption

7.4 Length of Learning Phase

Our autonomous framework depends on obtaining good estimates of the period and the
relevant quantiles (which for the assumed normal distribution boils down to finding the
average and variance of the interarrival time). The quality of these estimates can be expected
to depend on the length of the learning phase. To get more insight into this, we vary the
length of the learning phase (expressed as number of packets to be observed) and observe
both the energy consumption and packet loss rate in an otherwise error-free channel. Figures
7.5 and 7.6 show the impact of the length of the learning phase on both measures. For this
result, the 95% confidence intervals are within ±0.011% for the loss rate, and ±0.002 Joules
for the energy consumption. It is interesting to find that the packet loss rate or the energy
consumption is more or less constant regardless of the length of the learning period. So
the length of the learning phase does not really affect the performance. This is because the
system continues to improve the estimators based on all arrivals and reacts in a adaptive
manner.

7.5 Length of Wakeup Window

In this section we evaluate the influence of the length of wakeup window on the performance
of the system. As customary when dealing with normal distributions, we express the wakeup
window as multiples of one standard deviation, σ. Figures 7.7 and 7.8 show the impact
of the wakeup window length (as multiples of σ) on the loss rate and energy consumption,
respectively. For these graphs, the 95% confidence intervals are within ±0.17% loss rate and
±0.0035 Joules for the energy consumption. The packet loss rate behaves as one would expect:

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 25

TU Berlin

10 20 30 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of packets

Lo
ss

 ra
te

 [%
]

learning length: 2pkt
learning length: 5pkt
learning length: 10pkt

Figure 7.5: Length of learning phase vs packet loss rate

10 20 30 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

Number of packets

Av
er

ag
e

po
w

er
 [J

/S
]

learning length: 2pkt
learning length: 5pkt
learning length: 10pkt

Figure 7.6: Length of learning phase vs average energy consumption

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 26

TU Berlin

1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

0.3

Number of hops

Lo
ss

 ra
te

 [%
]

1σ 1.5σ 2σ 2.5σ 3σ

Figure 7.7: Length of wakeup window vs packet loss rate

smaller values of σ lead to higher packet loss rates (please note that the default value of α is
2). The behaviour for the energy consumption is less straightforward: Figure 7.8 shows that
the energy consumption for sigma = 1 is much higher than for larger values of σ. To explain
this, we recall from Chapter 2 that a forwarder goes back from the operational state into the
(much more energy-consuming) learning state after having observed too many packet losses.
With σ = 1 the probability that this transition rule is triggered (after retransmissions failed)
is substantially higher than for the larger values of σ. The differences in energy consumption
for the larger values of σ are smaller, but for σ = 3 it is noticeably larger than for σ = 2.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 27

TU Berlin

1 2 3 4 5 6 7 8
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of hops

Av
er

ag
e

po
we

r [
J/S

]

1σ 1.5σ 2 σ 2.5σ 3σ

Figure 7.8: Length of wakeup window vs average energy consumption

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 28

TU Berlin

Chapter 8

Related Work

In this Chapter we discuss related work in the of power-saving and communication reliability
schemes operated at the MAC layer for both single and multi-channel solutions. One of the
main concerns of low-power MAC protocols is to switch the radio into sleep mode as much
as possible, otherwise energy would be wasted. For low traffic scenarios the main factor
contributing to the energy dissipation is idle listening (nodes listening on the channel in
expectation of incoming packets). Other factors contributing to MAC energy-consumption
are: collisions, overhearing, control packets such as clock synchronization and management
packets, and other protocol overheads. Energy-aware sensor network MAC protocols may be
broadly classified into three main categories: asynchronous contention-based, synchronous
contention-based, and schedule-based. An important example of asynchronous contention-
based protocols are low-power listening protocols such as B-MAC [22], WiseMAC [7]. These
protocols are asynchronous, i.e. there is no need for nodes to coordinate their wakeup cycles
and therefore there is no need for clock synchronization. Each node periodically wakes up
and checks the channel activity for short time without receiving any data. If the channel
is idle it goes to sleep, otherwise it stays awake to receive the packet. To rendezvous with
receivers, senders send a long preamble before the actual message (longer than the checking
interval).

In synchronous contention-based access protocols such as S-MAC [29] and T-MAC [26],
nodes sleep and wake up in a synchronized fashion, and use a contention-based access protocol
to transmit data in the awake periods. Time is organized into cycles of equal size. Each cycle is
divided into two time intervals. In the first time interval nodes can exchange synchronization
information. In the second interval nodes may send or receive, using a CSMA approach with
RTS-CTS signaling. A general problem shared by all such synchronized protocols is that
communication is grouped at the beginning of each slot, raising the chances on collisions,
hence limiting their dynamic range to low traffic rates only.

In schedule-based access protocols (TDMA protocols), time is sub-divided into time slots,
and time slots are exclusively allocated to one specific pair of nodes, a transmitting and a
receiving node. In these protocols slot assignment algorithms and tight clock synchronization
are of great concern. LMAC [27] uses a simple random slot assignment algorithm that
ensures that nodes at 2-hop distance do not use the same slot number. It assumes a global
time synchronization. Similar to LMAC, TRAMA [23] uses a distributed election scheme to
determine particular time slots, however it uses more complicated policies that take traffic

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 29

TU Berlin

load into account, and which require relatively large amounts of memory for maintaining
scheduling information among neighbors. All these protocols are restricted to work in a
single channel solutions.

Our work is most closely related to multi-channel MAC protocols. Several researchers
have explored the possibility of using multiple channels to overcome the limitation of single
channel MAC protocols [19],[3], and [30].

Our approach is different than the synchronized protocols such as WirelessHART [12],
ISA [16]. These protocols need to be tightly synchronized in order to be able to switch be-
tween channels and communicate. They are also required to have a centralized coordinator.
Some of the drawbacks of such protocols are: (1) need an expensive hardware, (2) an ex-
tensive signalling overheads thus more energy-consumption. For instance and according to
the WirelessHART standard [13], nodes need to resynchronize every 30s, even if there is no
need to send packets in the near future [17]. Moreover, because nodes set-up schedules to
communicate between each other in advance, adaptivity of network topology is usually not
handled in such protocols.

A state-of-the-art solution for multi-channel system is WirelessHART [12]. WirelessHART
is a TDMA-based system which uses a centralized scheduling mechanism. WirelessHART and
all the propose multi-channel MACs protocols in WSNs require a tight time synchronization
and extensive signalling overhead to communicate and be able to keep the switching of chan-
nels coherent even when there is no need for communication in the near future. Some of the
drawbacks of such protocols are: (1) need an expensive hardware, (2) an extensive signalling
overheads thus more energy-consumption. For instance and according to the WirelessHART
standard [13], nodes need to resynchronize every 30s, even if there is no need to send packets
in the near future. Moreover, because nodes set-up schedules to communicate between each
other in advance, adaptivity of network topology is usually not handled in such protocols. In
order to address these challenges, in this work we focus on supporting for both communica-
tion reliability and energy-efficient through the development of a distributed framework that
integrates: asynchronous channel hopping, estimation and adaptation of multi-flows traffics,
and local dynamic multiple sleep states scheduling.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 30

TU Berlin

Chapter 9

Conclusions and Future Research

In many applications in wireless sensor network source nodes generate and send periodic
traffics to the sink node through a number of forwarder nodes. In such multi-hop networks
forwarders have forwarding duties but should on the other hand support for both commu-
nication reliability and energy-efficiency. To this end, we explore a novel an asynchronous
channel hopping for multi-flow periodic traffics in WSNs. Each sensor node acquires knowl-
edge of the traffic period and its jitter in a distributed way. We then use this knowledge
to let a node control its wakeup and sleep window in an efficient manner. Each individual
node hops between different channels without maintaining and explicit time synchronization
protocol or a centralized components. The main contributions of this research report are: (a)
we propose an asynchronous channel hopping for WSNs that improves the communication
reliability and energy-consumption, thus is robust to implement in distributed network. (b)
We design and implement a local estimators for multi-flow traffic in which a node locally
decides when to sleep and when to wakeup. (c) we propose a dynamic multiple sleep states
scheduling that substantially reduce the overall energy-consumption. (d) we also propose a
light and efficient overlapping resolution mechanism that reduce the packet loss due to the
overlapping. We evaluate our proposed schemes using real-world experiments and realistic
trace-based simulation. The results show that in multi-flow period traffic, it is possible to
estimate the characteristics of traffics and adapt the node activities accordantly. Our decen-
tralized and self-learning approach works without a prior knowledge of the traffics periodicity.
We also show that asynchronous channel hopping improves the packet reception rate without
an expensive signalling and and explicit time synchronization overhead. Thus, more energy-
saving. This research report is, to the best our knowledge, the first to address and propose
channel hopping without maintaining a tight time synchronization.

We plan to conduct a comparison study of centralized approach and our decentralized
approach. Moreover we also plan to further investigate different channel hopping pattern
such as white-listing channel hopping in which a dynamic estimate of the channel evaluated
on-line.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 31

TU Berlin

Bibliography

[1] Luca Benini, Alessandro Bogliolo, and Giovanni De Micheli. A survey of design tech-
niques for system-level dynamic power management. In Proc. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 2000,, volume vol.8, NO. 3, pages pp.
299–316, NJ, USA, June 2000.

[2] Michael Buettner, Gary Yee, Eric Anderson, and Richard Han. X-mac: A short preamble
mac protocol for duty-cycled wireless sensor networks. In Proceeding ACM SenSys ’06
Proceedings of the 4th international conference on Embedded networked sensor systems,
2006, pages 307–320, New York, USA, November 2006.

[3] Xun Chen, Peng Han, Qiu-Sheng He, Shi-Liang Tu, and Zhang-Long Chen. A multi-
channel mac protocol for wireless sensor networks. In Proc. of Computer and Information
Technology, 2006. CIT ’06. The Sixth IEEE International Conference, pages 224 – 230,
Fudan University, China, September 2006.

[4] Chipcon. CC2420 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver Available:
http://www.chipcon.com., 2004.

[5] Lance Doherty, William Lindsay, and Jonathan Simon. Channel-specific wireless sensor
network path data,. In IEEE 16th Internatioanl Conference on Computer Communica-
tions and Networks (ICCCN), 2007, pages 89 – 94, Turtle Bay Resort, Honolulu, Hawaii,
USA, August 13-16 2007.

[6] Dust Networks. Wirelesshart technical data sheet. White paper, Dust Networks, Septem-
ber 2007.

[7] A. El-Hoiydi, J.-D. Decotignie, C. Enz, and E. Le Roux. Poster abstract: Wisemac, an
ultra low power mac protocol for the wisenet wireless sensor network. In Proc. ACM
SenSys 03, Los Angeles, California, November 2003. Poster Abstract.

[8] D. Gay, P. Levis, R. V. Behren, M. Welsh, E. Brewer, and D. Culler. The nesC Language:
A Holistic Approach to Networked Embedded Systems. In Proc. ACM SIGPLAN 2003
Conference on Programming Language Design and Implementation (PLDI), San Diego,
California, USA., June 2003.

[9] Steven D. Glaser. Some real-world applications of wireless sensor nodes. In Proc.
(SPIE) Symposium on Smart Structures and Materials/ NDE 2004, San Diego, Cali-
fornia, March 2004.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 32

TU Berlin

[10] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip Levis.
Collection tree protocol. In In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys 2009), pages 1 – 13, Berkeley, CA, USA,, November
2009.

[11] Vlado Handziski, Andreas Kpke, Andreas Willig, and Adam Wolisz. Twist: A scalable
and reconfigurable testbed for wireless indoor experiments with sensor network. In Proc.
of the 2nd Intl. Workshop on Multi-hop Ad Hoc Networks: from Theory to Reality,
(RealMAN 2006), pages 63–70, Florence, Italy, May 2006.

[12] HART Communication Foundation. HART Communication Protocol Specification, HCF
SPEC 13 Revision 7.1, 05 June, 2008.

[13] HART Communication Foundation. TDMA Data Link Layer Specification, HCF SPEC
075 Revision 1.1, 17 May, 2008.

[14] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for networked sensors. In Proc. ACM of the 9th Intl. Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS),, pages
83–104, 2000.

[15] Chi-Hong Hwang and Allen C.-H. WU. A predictive system shutdown method for energy
saving of event-driven computaion. In Proc. ACM Transactions on Design Automation
of Electronic Systems 2000, volume vol.5, pages pp. 226–241, New York, USA, April
2000.

[16] ISA. ISA 100: wireless system for automation. Available: http:// isa.zigbee.org.

[17] Osama Khader and Andreas Willig. An Energy Consumption Analy-
sis of the WirelessHART TDMA Protocol. Comput. Commun. (2013).
http://dx.doi.org/10.1016/j.comcom.2012.12.008.

[18] Osama Khader, Andreas Willig, and Adam Wolisz. Distributed Wakeup Scheduling
Scheme for Supporting Periodic Traffic in WSNs. In Proc. European Wireless (EW
2009), pages 287–292, Aalborg, Denmark, May 2009.

[19] Youngmin Kim, Hyojeong Shin, and Hojung Cha. Y-mac: An energy-efficient multi-
channel mac protocol for dense wireless sensor networks. In Proc. of IPSN ’08, Proceed-
ings of the 7th international conference on Information processing in sensor networks,
pages 53 – 63, Washington, DC, USA, April 2008.

[20] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis. McGraw-Hill,
third edition, 2000.

[21] NICTA. The Castalia simulator for Wireless Sensor Networks. Available:
http://castalia.npc.nicta.com.au.

[22] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for
wireless sensor networks. In Proc. 2nd international conference on Embedded networked
sensor systems (ACM SenSys), Baltimore, MD, November 2004.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 33

TU Berlin

[23] Venkatesh Rajendran, Katia Obraczka, and J. J. Garcia-Luna-Aceves. Energy-efficient,
collision-free medium access control for wireless sensor networks. In Proc. ACM SenSys
03, Los Angeles, California, November 2003.

[24] Robert Szewczyk, Alan Mainwaring, Joseph Polastre, John Anderson, and David Culler.
An analysis of a large scale habitat monitoring application. In Proc. ASM SenSys ’04,
pages 214–226, 2004.

[25] Gilman Tolle, Joseph Polastre, Robert Szewczyk, David Culler, Neil Turner, Kevin Tu,
Stephen Burgess, Todd Dawson, Phil Buonadonna, David Gay, and Wei Hong. A macro-
scope in the redwoods. In Proc. ACM SenSys ’05, pages 51–63, 2005.

[26] T. van and D. K. Langendoen. An adaptive energy-efficient mac protocol for wireless
sensor networks. In Proc. ACM SenSys ’03’, Los Angeles, California, USA., November.
2003.

[27] L.F.W. van Hoesel and P.J.M. Havinga. A lightweight medium access protocol for wire-
less sensor networks. In Proc. INSS, 2004, 2004.

[28] A. Varga. OMNeT++ Discrete Event Simulation System. Available:
http://www.omnetpp.org.

[29] Wei Ye, John Heidemann, and Deborah Estrin. An energy-efficient mac protocol for
wireless sensor networks. In Proc. INFOCOM 2002, New York, June 2002. IEEE.

[30] Gang Zhou, Chengdu Huang, Ting Yan, Tian He, and John A. Stankovic. Mmsn: Multi-
frequency media access control for wireless sensor networks. In Proc. of INFOCOM
2006. 25th IEEE International Conference on Computer Communications., pages 1 –
13, Barcelona, Catalunya, Spain, April 2006.

Copyright at Technical University
Berlin. All Rights reserved.

TKN-13-002 Page 34

