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Abstract

The accelerating penetration of physical environments by objects with information processing and
wireless communication capabilities requires approaches to find potential communication partners
and discover services. In the present work, we focus on passive discovery approaches in multi-channel
wireless networks based on overhearing periodic beacon transmissions of neighboring devices which
are otherwise agnostic to the discovery process. We propose a family of low-complexity algorithms
that generate listening schedules guaranteed to discover all neighbors. The presented approaches
simultaneously depending on the beacon periods optimize the worst case discovery time, the mean
discovery time, and the mean number of neighbors discovered until any arbitrary in time. The pre-
sented algorithms are fully compatible with technologies such as IEEE 802.11 and IEEE 802.15.4.
Complementing the proposed low-complexity algorithms, we formulate the problem of computing
discovery schedules that minimize the mean discovery time for arbitrary beacon periods as an integer
linear problem. We study the performance of the proposed approaches analytically, by means of nu-
merical experiments, and by extensively simulating them under realistic conditions. We observe that
the generated listening schedules significantly – by up to factor 4 for the mean discovery time, and
by up to 300% for the mean number of neighbors discovered until each point in time – outperform
the Passive Scan, a discovery approach defined in the IEEE 802.15.4 standard. Based on the gained
insights, we discuss how the selection of the beacon periods influences the efficiency of the discovery
process, and provide recommendations for the design of systems and protocols.
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1 Introduction

We are currently observing a rapid augmentation of physical objects surrounding us with information
processing and wireless communication capabilities. It is estimated that by 2020 25 [1] up to 50 [2]
billion objects will be connected to the Internet. This development is leading us to a new era of
computing. The resulting network of “smart” objects that interact with each other and exchange
information without a direct human intervention, the so-called Internet of Things (IoT), will serve as
a foundation for novel applications in a wide range of domains.

In order to discover services of interest devices will need to detect other entities within communi-
cation range that are able to use common communication technology—the so called neighbors.

Neighbor discovery can be done in two fundamentally different ways. For an active discovery, the
discoverer broadcasts probe requests that must be answered by the neighbors. An active discovery is
fast but has the drawback that all neighbors have to consume energy by (continuously) listening to
potential inquiries even though they might only be interested in being detected but not in discovering
their own neighborhood. In contrast, passive schemes perform the discovery by overhearing beacon-
ing messages that are periodically broadcasted (with a specific Beacon Period (BP)) by neighbors
interested in being discovered. The beaconing neighbors themselves are hereby agnostic to the dis-
covery process. Let us emphasize that periodic beaconing is already used in many widely deployed
technologies such as IEEE 802.11 [3] and IEEE 802.15.4 [4]. In order to be compatible with current
state-of-the-art technologies, such as IEEE 802.11 and IEEE 802.15.4, neighbor discovery must sup-
port multi-channel environments. Finally, we assume lack of time synchronization among the devices
involved in the discovery process.

A frequently adopted objective for the design of discovery approaches is the minimization of the
Worst-Case Discovery Time (WDT)—time required to detect all potential neighbors. A complete
discovery is desirable, e.g., in order to avoid interference with neighbors when establishing a new
network. In addition, minimizing the WDT has the advantage of implicitly minimizing the consumed
energy. Other applications are interested in the maximization of the number of discoveries until a
given point in time, which we call the Number of Discoveries over Time (NDoT), as, e.g., in the case
of identifying potential forwarders in Delay Tolerant Networks. Yet other applications benefit from
discovering the individual neighbors as early as possible, e.g., emergency services. Their objective is
thus the minimization of the Mean Discovery Time (MDT). Since many devices in IoT environments
will be battery powered, and will have limited computational resources, neighbor discovery should
be performed in an energy-efficient way with low to moderate computational requirements.

The publication [5] associated with this report presents several novel contributions providing sim-
ple and efficient discovery algorithms applicable under realistic conditions:

We provide for the first time a full characterization of the class of listening schedules that are
guaranteed to discover all neighbors (we call such schedules complete), and that pointwise maximize
the Cumulative Distribution Function (CDF) of the discovery times. The latter feature implies that
they optimize all three mentioned performance metrics simultaneously: WDT, MDT, and the NDoT.
We call these schedules recursive, due to their specific structure.

Our second, practically most relevant, contribution consists of several approaches to construct lis-
tening schedules that, under certain assumptions, are recursive (and thus inherit the corresponding
optimality properties). We define a family of low-complexity algorithms that we call GREEDY, due
to their operation mode [6]. Further, we define an algorithm called CHAN TRAIN which is an exten-
sion of the GREEDY family, aiming at a reduction of the number of channel switches.
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In general, the performance of discovery algorithms is strongly dependent on the allowed set of
BP’s, i.e. periods with which beacons are transmitted. To this point - incompatible with the state-
of-the-art wireless protocols - assumptions about the beacon transmission patterns have been made
so far in the literature. In this paper, we consider on one hand the most general case F1, a family
containing all possible BP sets, but introduce in addition also two other practically important families
of BP sets—F2 and F3. They include all BP sets supported by IEEE 802.15.4 and a large part of the
BI sets supported by IEEE 802.11—two widely adopted standards for wireless communication.

We prove that for BP sets from F3 the listening schedules computed by GREEDY and CHAN
TRAIN are recursive (and thus complete, and optimal w.r.t. the three targeted performance metrics).
Moreover, for BP sets from F2 the computed schedules are complete and WDT-optimal, while they
are close-to-optimal w.r.t. the MDT. Finally, we show that even for the most general case of F1
the computed schedule are complete, close-to-optimal w.r.t. the MDT, and still within 30% of the
optimum for the WDT, while this gap decreases for an increasing number of channels.

Our third contribution demonstrates that even for arbitrary BP sets from F1 complete and MDT-
optimal schedules are achievable, albeit only by solving an Integer Linear Program (ILP). We prove
that computed schedules are also WDT-optimal for BP sets from F2 and NDoT-optimal for BP sets
from F3. This approach is attractive due to the broad range of supported BP sets. However, it has
a high computational complexity and memory consumption, restricting its usage to offline computa-
tions, and to scenarios with a moderate number of channels and size of the used BP’s.

As additional contribution, we define an algorithm called OPTB2 that computes recursive schedules
for scenarios, in which the cardinality of the BP set is restricted to two entries.

Unfortunately performing of such discovery in real multi-channel environments suffers under an
implementation impact: non-negligible deaf periods occur during the execution of a channel switch
resulting in potentially missing some beacons transmitted during such deaf periods. Due to this
effect even algorithms provably generating complete schedules will, in reality, miss some neighbors
- the percentage of missed neighbors can reasonably be expected to increase with the increase of
the number of channel switches required by a given algorithm. In order to quantify this impact, we
perform simulations using a realistic wireless model and device behavior expressing the results in
the form of an additional performance metric — the success rate, which is the fraction of neighbors
discovered under this realistic conditions by any algorithm under consideration. Using this additional
performance metric we have derived our next contribution: We suggest two instances of the GREEDY
family of algorithms designed to reduce the number of channel switches and perform their simulative
performance evaluation w.r.t achievable fraction of discovered neighbors.

In all evaluations, in addition to comparing the performance with the optimum, we perform a
comparison against Passive Scan (PSV), a discovery scheme defined by the IEEE 802.15.4 standard.
We observe that GREEDY algorithms significantly (by up to several hundreds percent) outperform
PSV w.r.t. the MDT and the NDoT in all studied scenarios.

As our final contribution we discuss the strong impact the structure of allowed BP sets has on the
performance of discovery approaches, and provide recommendations for a BP selection that supports
efficient neighbor discovery. These recommendations may be useful, on the one hand, for the devel-
opment of novel wireless communication based technologies that use periodic beaconing messages
for management or synchronization purposes, and, on the other hand, for the BP selection for existing
technologies that support a wide range of BP’s, such as IEEE 802.11.

This report is a supplement to [5] and is structured as follows. In Section 2 additional examples of
the properties of the developed discovery strategies are provided. Section 3 provides a proof on the
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optimal duration of a complete discovery. Properties of recursive schedules regarding the optimality
relating to the analyzed performance metrics are described in Section 4. A performance analysis for
the GREEDY algorithms is provided in Section 5, for the CHAN TRAIN algorithm in Section 6 and
for the OPTB2 algorithm in Section 7. Section 8 provides a proof on the WDT of MDT-optimal
schedules. The relation between schedules being NDoT-optimal and WDT-optimal as well as MDT-
optimal is discussed in Section 9. The computational complexity and memory requirements of a
possible GREEDY implementation is presented in Section 10. Finally, Section 11 provides additional
simulation results.

2 Examples

In the following figures gray squares represent the scanned channels, while the numbers in each
square represent the expected value of the fraction of neighbors that can be discovered by scanning
a particular channel during a particular time slot. In addition to the assumptions on the uniform
distribution of channels and beacon offsets described in Section III in [5], in the following examples
we also assume a uniform distribution of BP’s. That is, the configuration probabilities are assumed
to be Pκ = 1

bκ |B||C| , for each κ ∈ KBC. Finally, we remark that while the presented examples consider
very small scenarios, the illustrated performance gaps may become arbitrarily large if larger scenarios
are considered.

Example 1 (A recursive schedule does not always exist). Consider the setting depicted in Figure 1,
with B = {1,2,3} /∈ F2 and |C| = 2. Vertical dashed lines mark time instants until which all config-
urations (c,bi,δ ) for a BP bi have to be discovered on each channel c ∈C in order for the schedule
to be recursive. Consequently, gray boxes indicate channels that have to be scanned during the first
4 time slots (uniquely determined up to swapping the channels). Observe that a recursive listening
schedule for this example does not exist due to the fact that it would have to discover all remain-
ing neighbor configurations with b = 3 during the two time slots 5 and 6. However, the number of
remaining configurations is 3: (0,3,0), (1,3,1), and (1,3,2).

Figure 1: Illustration for Example 1. With B = {1,2,3} /∈ F2 and |C|= 2, a recursive schedule does
not exist.

Example 2 (GREEDY is not optimal for arbitrary BP sets). For arbitrary BP sets, a GREEDY al-
gorithm does not necessarily generate MDT-optimal or WDT-optimal schedules. Consider a setting
with B = {1,2,3} ∈ F1 \F2 and |C| = 3. Figure 2a shows a GREEDY listening schedule, which is
neither WDT-optimal nor MDT-optimal, while Figure 2b depicts a schedule, which is both WDT-
optimal and MDT-optimal but not GREEDY. In particular, optimal value for the WDT in this example
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constitutes 9 time slots, while optimal value for MDT is 2.61 time slots, in contrast to 2.72 time slots
achieved by the schedule computed by GREEDY . Another example using B = {2,3,4,6,12} ∈ F2 \F3
and |C| = 2 is depicted in Figure 3. The listening schedule generated by GREEDY is WDT-optimal
but only achieves a MDT of 5.3 time slots in comparison with the optimal value of 5.1 time slots.

(a) GREEDY

(b) MDT-optimal schedule

Figure 2: Illustration for Example 2 showing a schedule generated by GREEDY for
B = {1,2,3} 6∈ F2 and |C|= 3 that is neither MDT-optimal nor WDT-optimal.

Example 3 (CHAN TRAIN is not GREEDY for general BP sets). For a BP set B 6∈ F3 Proposition 8
is no longer true. Figure 4 shows an example setting with B = {1,2,3,6} ∈ F2 \F3 and |C| = 3, in
which this is the case.

Example 4 (MDTOPT is in general not WDT-optimal). Listening schedules generated by MDTOPT
might not be WDT-optimal. Figure 5 depicts an example using B = {1,2,4,5} and |C|= 2, for which
a MDT-optimal listening schedule cannot be constructed within max(B)|C| time slots. Figure 5a
shows a MDT-optimal listening schedule with the additional constraint of using at most max(B)|C|
time slots. Observe that its MDT is 2.875 time slots as compared to the optimal value of 2.75 time
slots of the schedule shown in Figure 5b.

3 Optimal WDT

In this section, we prove that the optimum duration of a complete discovery is max(B)|C| time slots
for arbitrary BP sets and channel sets. This allows us to define a WDT-optimal listening schedule as
a schedule which requires max(B)|C| for a complete discovery.

Copyright at Technische Universität Berlin.
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(a) GREEDY

(b) MDT-optimal schedule

Figure 3: Illustration for Example 2 showing a schedule generated by GREEDY for
B = {2,3,4,6,12} ∈ F2 \F3 and |C|= 2 that is WDT-optimal but not MDT-optimal.

(a) CHAN TRAIN

(b) GREEDY

Figure 4: Illustration for Example 3 showing the non-greedy behavior of the CHAN TRAIN strategy
for the BI set B = {1,2,3,6} ∈ F2 \F3 and |C|= 3.

Copyright at Technische Universität Berlin.
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(a) WDT constrained by the optimum value max(B)|C|

(b) WDT constrained by LCM(B)|C|

Figure 5: Illustration for Example 4, with BP set B = {1,2,4,5} ∈ F1 \F2 and |C|= 2. In this
example, no schedule exists which is both MDT-optimal and WDT-optimal.

Proposition 1 (WDT-optimality). For an arbitrary set of BP’s B, and a set of channels C, the optimum
duration of a complete discovery is max(B) |C| time slots.

Proof. Observe that the complete discovery can always be performed within max(B)|C| time slots
by listening on each channel for max(B) consecutive time slots. More precisely, channel c j, j ∈
{0, . . . , |C|−1} is scanned during the time slots { jbmax, . . . ,( j+1)bmax−1}, where bmax = max(B).
Thus, configuration (c j,b,δ ), b∈ B, δ ∈ {0, . . . ,b−1}, is discovered during the time slot t = jbmax+
δ . Consequently, all configurations from KBC are discovered during the time slots {0, . . . ,bmax|C|−
1}.

To see that a complete discovery cannot be performed faster than max(B)|C|, consider the configu-
rations {(c,bmax,bmax−1) | c ∈C} ⊆ KBC. To discover them, it is necessary to scan at least the time
slots {ibmax +bmax−1}i∈{0,...,|C|−1}, proving the claim.

Consequently, we define a WDT-optimal schedule as follows.

Definition 2 (WDT-optimal schedule). We call a listening schedule for a BP set B and a channel set
C WDT-optimal if it discovers all neighbors within max(B)|C| time slots.

Note that WDT-optimal schedules do not have idle time slots as stated in the following proposition.

Proposition 3 (WDT-optimality implies no idle slots). WDT-optimal schedules have no idle time
slots.

Proof. Assume that a time slot t ∈ {0, . . . ,bmax|C|− 1}, where bmax = max(B), B is the set of BP’s,
and C is the set of channels, is idle. Then, since the schedule is WDT-optimal, there remain |C|− 1
time slots { ibmax + t mod bmax | i ∈ {0, . . . , |C|−1}}\{t}, during which a configuration from the set
{(c,bmax, t mod bmax) | c ∈C} can be discovered. Since the latter set of configurations has size |C|,
we obtain a contradiction.

Copyright at Technische Universität Berlin.
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4 Recursive Schedules

Recursive schedules have a number of compelling properties that are stated in the following proposi-
tion.

Proposition 4 (Properties of recursive schedules). A recursive schedule for a BP set B⊂ N+ is com-
plete, WDT-optimal, MDT-optimal, and NDoT-optimal.

Proof. Note that recursive schedules are complete and WDT-optimal by definition (see Definition 1
in [5]).

Further, note that a schedule L that maximizes the NDoT is also MDT-optimal since it pointwise
maximizes the CDF of discovery times

∑
κ∈KBC:Tκ (L )≤t

Pκ ≥ ∑
κ∈KBC:Tκ (L ′)≤t

Pκ

for all L ′ ⊂C×N, t ∈ N .

Consequently, it is sufficient to show NDoT-optimality. To prove it, we show that for a recursive
schedule L , each scan (c, t) ∈L with t ∈ {0, . . . ,b|C|−1} results in the discovery of the configura-
tion (c,b, t mod b). This implies that for each b ∈ B, the number of configurations detected until each
time slot is maximized since it is not possible to discover more than one configuration with a certain
BP b ∈ B per time slot. Due to the assumption that the channels and the beacon offsets for each BP
are uniformly distributed, it also implies that the sum of the discovery probabilities is maximized in
each time slot, proving the claim.

Observe that for a t ∈ {0, . . . ,b|C|−1}, there are |C| configurations with a BP b and an offset t mod
b, namely the configurations {(c,b, t mod b) | c ∈C}. At the same time, within the first b|C| time
slots there are exactly |C| time slots where these configurations can be discovered, namely the time
slots { ib+ t mod b | i ∈ {0, . . . , |C|−1}}. Consequently, since a recursive schedule per definition
detects all configurations with the BP b during the first b|C| time slots, it has to scan a different
channel during each of the time slots { ib+ t mod b | i ∈ {0, . . . , |C|−1}}. It is thus detecting one
configuration with the BP b and offset t mod b in each of these time slots.

Unfortunately, not each scenario admits a recursive schedule, see Example 1 in Section 2. However,
for BP sets from F3 recursive schedules always exist, as shown by the following proposition.

Proposition 5. For a BP set B ∈ F3 a recursive schedule always exists.

Proof. We prove the claim by induction. First, we show that a recursive schedule exists for a BP set
containing just one element. Then, we show that a recursive schedule for a BP set B′ ∈ F3 can be
extended to a recursive schedule for a BP set B′′ ∈ F3, with B′ ⊂ B′′, and |B′′|= |B′|+1.

To see that a recursive schedule for a BP set B = {b} exists, consider the schedule that scans
channel c j, j ∈ {0, . . . , |C|−1}, during the time slots { jb, . . . ,( j+1)b−1}. This schedule discovers
all configurations during the time slots {0, . . . , |C|b−1}, and is thus recursive.

Now, assume that we are given a recursive schedule for a BP set B′. We show that it can be extended
to a recursive schedule for B′′. We denote b′max = max(B′) and b′′max = max(B′′). W.l.o.g. we assume
b′′ > b′. Observe that B′′ ∈ F3 implies b′′ = αb′, for an α ∈ N+.

Observe that any complete and WDT-optimal schedule for a BP set B can be written in form of
a matrix A ∈ N|C|×bmax , bmax = max(B), where each element Acδ indicates that channel c is scanned

Copyright at Technische Universität Berlin.
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during the time slot Acδ bmax+δ , and thus the configuration (c,bmax,δ ) is discovered during this time
slot. For a matrix A to be a valid representation of a complete schedule, it must hold Acδ 6= Ac′δ , for
c 6= c′, δ ∈ {0, . . . ,bmax−1}, since otherwise two different channels would have to be scanned during
the same time slot. Furthermore, it must hold Acδ ∈ {0, . . . , |C|− 1} since a WDT-optimal schedule
only uses time slots t ∈ {0, . . . ,bmax|C|−1}.

Assume that the given recursive schedule for the BP set B′ is represented by the matrix A′ ∈
N|C|×b′max . We need to show that A′ can be transformed to a new matrix A′′ ∈ N|C|×b′′max , such that
A′′ is a valid representation of a complete and WDT-optimal schedule, and such that the channels
scanned during the time slots t ∈ {0, . . . ,b′max|C|−1} by the schedule A′ are also scanned during the
same time slots by the schedule A′′.

We claim that such a transformation is obtained by mapping each element A′cδ ′ to an element A′′cδ ′′

as follows: {
δ ′′ = (A′cδ ′b

′
max +δ ′) mod b′′max

A′′cδ ′′ =
(A′cδ ′b

′
max+δ ′)−δ ′′

b′′max

.

Observe that since the numerator is an integer multiple of the denominator, the expression on the
right-hand side evaluates to an integer.

This mapping retains the channels scanned by A′ since

A′′cδ ′′b
′′
max +δ

′′ = (A′cδ ′b
′
max +δ

′)−δ
′′+δ

′′

= A′cδ ′b
′
max +δ

′ .

Moreover, this mapping is injective, such that no two elements from A′ are mapped to the same
element of A′′. This is due to the fact that δ ′′ = (A′cδ ′b

′
max + δ ′) mod b′′max is an injective function of

δ ′, since b′′max = αb′max, α ∈ N+ \{1}.
To show that A′′cδ ′′ < |C|, we need to show that A′cδ ′b

′
max +δ ′ < |C|b′′max. Observe that

A′cδ ′b
′
max +δ

′ < |C|b′max +δ
′

< |C|b′max +b′max = (|C|+1)b′max

≤ |C|αb′max

< |C|b′′max .

Finally, we have to show that A′′cδ ′′ 6= A′′c′δ ′′ for c 6= c′. To see that, observe that if two elements
from the matrix A′ are transformed onto the same column in the matrix A′′, they must have been in
the same column already in A′, since, as already mentioned earlier, δ ′′ = (A′cδ ′b

′
max + δ ′) mod b′′max

is an injective function of δ ′. Consequently, for their preimages must hold A′cδ ′ 6= A′c′δ ′ . But then we
obtain

A′cδ ′ 6= A′c′δ ′

⇔
(A′cδ ′b

′
max +δ ′)−δ ′′

b′′max
6=

(A′c′δ ′b
′
max +δ ′)−δ ′′

b′′max

A′′cδ ′′ 6= A′′c′δ ′′ .

Finally, the remaining empty rows in each column of A′′ can be filled arbitrarily, but such that for
the added elements the two properties of a matrix representation still hold: A′′cδ ′′ 6= A′′c′δ ′′ for c 6= c′,
and A′′cδ ′′ ∈ {0, . . . , |C|−1}.

Copyright at Technische Universität Berlin.
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5 Performance Analysis for GREEDY Algorithms

In this section, we formulate and prove two results on the optimality of the GREEDY algorithms. The
first claim that we prove is that GREEDY algorithms generate listening schedules which are WDT-
optimal (and consequently also complete) for BP sets from F2. This result is stated in the following
proposition.

Proposition 6. For a BP set B ∈ F2, schedules generated by GREEDY are WDT-optimal.

Proof. The idea for the proof is as follows. We first show that scanning a channel c ∈ C in a time
slot t ∈ {0, . . . ,bmax|C|−1} either results in the discovery of at least the configuration (c,bmax, t mod
bmax), or it results in the discovery of 0 configurations. We then show that this implies that a GREEDY
algorithm discovers all configurations {(c,bmax,δ ) | c ∈C, δ ∈ {0, . . . ,bmax−1}} during the first
bmax|C| time slots. Finally, we show that in F2, this implies that all configurations are discovered.

Assume that scanning a channel c ∈ C in a time slot t ∈ {0, . . . ,bmax|C| − 1} does not result in
the discovery of the configuration (c,bmax, t mod bmax). This implies that channel c has already
been scanned during a time slot t ′ ∈ {ibmax + t mod bmax}i∈{0,...,bt/bmaxc−1}, so that the configuration
(c,bmax, t mod bmax) has been discovered prior to the time slot t. However, this would imply that all
other configurations {(c,b, t mod b) | b ∈ B\{bmax}} have been discovered prior to the time slot t as
well. This is because they also send their beacons during the time slot t ′, since bmax is an integer mul-
tiple of any b ∈ B. Consequently, if scanning a channel c ∈C in a time slot t ∈ {0, . . . ,bmax|C|− 1}
does not result in the discovery of the configuration (c,bmax, t mod bmax), it does not result in any
discoveries.

At the same time, for each time slot t ∈ {0, . . . ,bmax|C|−1} there is at least one channel c ∈C that
results in the discovery of a configuration (c,bmax, t mod bmax). If this would not be the case, all |C|
configurations {(c,bmax, t mod bmax) | c ∈C} would have had to be discovered prior to time slot t,
that is, during one of the time slots {ibmax + t mod bmax}i∈{0,...,bt/bmaxc−1}. The number of such time
slots, however, is strictly less than |C|, leading to a contradiction.

Thus, since a GREEDY algorithm maximizes the expected number of discoveries in each time slot,
it would not select a channel that results in 0 discoveries if it can select a channel that results in at
least one discoverable configuration. Consequently, in each time slot t it discovers one configuration
from the set {(c,bmax, t mod bmax) | c ∈C}. Since this set contains bmax|C| configurations, it implies
that it takes bmax|C| time slots in order to discover all of them.

Note, however, that in F2, a configuration (c,b,δ ), c ∈C, b ∈ B, δ ∈ {0, . . . ,b−1}, is discovered
if the configuration (c,bmax,δ ) is discovered, since in each time slot during which the configuration
(c,bmax,δ ) sends its beacons, also the configuration (c,b,δ ) sends its beacons.

We remark that the assumption that the considered BP set is in F2 is crucial to prove the WDT-
optimality, as shown by a counterexample in Example 2.

For the family of BP sets F3 ⊂ F2 we show the much stronger result that schedules generated by
GREEDY are not only complete and WDT-optimal, but that they are recursive, and thus also MDT-
optimal and NDoT-optimal. This result is formulated in the following proposition.

Proposition 7. For BP sets from F3, a schedule is GREEDY if and only if it is recursive. Con-
sequently, for BP sets B ∈ F3 GREEDY schedules are complete, WDT-optimal, MDT-optimal, and
NDoT-optimal.

Copyright at Technische Universität Berlin.
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Proof. The claim that a recursive schedule is GREEDY for BP sets from F3 follows from Proposi-
tion 4, demonstrating that recursive schedules maximize the number of configurations detected until
each time slot.

It remains to show that a GREEDY schedule is recursive. More precisely, we need to show that
maximizing the expected number of discoveries in each time slot leads to discovering all configura-
tions (c,b,δ ), δ ∈ {0, . . . ,b−1}, during the time slots t ∈ {0, . . . ,b|C|−1}.

Assume that this is not the case and that a configuration (c,b,δ ), c ∈C, b ∈ B, δ ∈ {0, . . . ,b−1},
is discovered in a time slot T(c,b,δ ) ≥ b|C|. This implies that channel c was not scanned during any
of the time slots { ib+δ | i ∈ {0, . . . ,b−1}}. Since there are |C| such slots, this implies that there
exists a different channel c′ ∈ C which was scanned during at least two of these time slots: t ′, t ′′ ∈
{ ib+δ | i ∈ {0, . . . ,b−1}}. W.l.o.g., assume t ′ < t ′′.

Consider the two subsets B′,B′′ ⊆ B, with B′ = {b′ ∈ B | b′ ≤ b}, and B′′ = {b′′ ∈ B | b′′ > b}. Ob-
serve that by scanning channel c during the time slot t ′′ at least the configurations {(c,b′′, t ′′ mod b′′) | b′′ ∈ B′′ }
and the configuration (c,b, t ′′ mod b) are detected. However, by scanning channel c′ during the time
slot t ′′, at most the configurations {(c′,b′′, t ′′ mod b′′) | b′′ ∈ B′′ } are detected. The reason that none
of the configurations with a BP b ∈ B′ are detected during the time slot t ′′ is that they are all detected
during the time slot t ′, since b is an integer multiple of each b′ ∈ B′.

Consequently, scanning channel c during time slot t ′′ would have resulted in larger expected number
of discoveries than scanning channel c′. This leads to a contradiction since a GREEDY algorithm
maximizes the expected number of discoveries in each time slot.

We remark that the assumption that the considered BP set is in F3 is necessary to prove the MDT-
optimality of schedules generated by GREEDY, as shown by a counterexample in Example 2.

6 Performance Analysis for CHAN TRAIN

Proposition 8. For a BP set B ∈ F3, CHAN TRAIN is GREEDY.

Proof. Note that CHAN TRAIN does not perform a channel selection in each time slot but that it may
skip several time slots if during those time slots the expected number of discoveries on the selected
channel does not decrease. This may lead to a schedule that does not maximize the expected number
of discoveries in each time slot, since it is possible that scanning a different channel during one of
the skipped time slots would result in a higher value. This, however, would imply that the expected
number of discoveries on that other channel has increased since the time slot when the current channel
was selected. In the following, however, we show that for BP sets from F3, the expected number of
discoveries is monotonically decreasing over time.

W.l.o.g. we assume B = {b0, . . . ,bn−1}, n ∈ N+, bi > b j for i > j.
Observe that since over F3 schedules obtained by GREEDY are recursive, they discover all con-

figurations with a BP b ∈ B during the first b|C| time slots. Note that since there are b|C| such
configurations and it is not possible to discover two of them during one time slot (they either have
different channels or different offsets), exactly one such configuration must be detected during each
of the first b|C| time slots. Consequently, the number of configurations discovered during each time
slot t ∈ {bi|C|, . . . ,bi+1|C|− 1} is n− (i+ 1). This means that the number of discoverable configu-
rations is monotonically decreasing over time. Furthermore, since we assume that a neighbor selects
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a certain channel c and beacon offset δ randomly according to a uniform distribution, it follows that
the expected number of discoveries is also monotonically decreasing over time.

Note that for a BP set B 6∈ F3 Proposition 8 no longer holds, as illustrated by Example 3. However,
CHAN TRAIN is still WDT-optimal on F2.

Proposition 9. For a BP set B ∈ F2, CHAN TRAIN is WDT-optimal.

Proof. The proof proceeds along the lines of the proof for Proposition 6 using the observation that,
analogously to GREEDY algorithms, CHAN TRAIN would never produce an idle slot as long as at
least one discovery can be made.

7 Performance Analysis for OPTB2

Proposition 10. For arbitrary BP sets with |B| = 2, OPTB2 generates recursive listening schedules.
Thus, they are complete, WDT-optimal, MDT-optimal, and NDoT-optimal.

Proof. The claim follows directly from the definitions of OPTB2 and recursive schedules.

8 The WDT of MDT-Optimal Schedules

In this section, we will show that for an arbitrary set of BP’s, a schedule minimizing the MDT uses at
most LCM(B) |C| time slots, and that, consequently, for BP sets in F2, any MDT-optimal schedule is
also WDT-optimal.

The following proposition establishes an upper bound on the number of time slots required to
minimize an arbitrary strictly increasing function of discovery times. The idea for the proof is to show
that any schedule that results in a configuration being detected after the time slot LCM(B)|C| can be
modified such that the configuration is detected before time slot LCM(B)|C|, without increasing the
discovery times of other configurations.

Proposition 11. For an arbitrary set of BP’s B ∈ F1, a set of channels C, and a function f : N|KBC|→
R, which is strictly increasing in each argument, complete schedules L ∗ that minimize f

(
(Tκ (L ))

κ∈KBC

)
have a WDT TL ∗ ≤ LCM(B)|C|.

Proof. Assume schedule L minimizes f and TL > LCM(B)|C|. Consequently, there is at least one
configuration κ = (c,b,δ ) with discovery time Tκ (L ) = TL > LCM(B)|C|. Consider time slots
T̃κ = {δ + iLCM(B)}i∈{0,...,|C|−1}. Observe that

(
{c}× T̃κ

)
∩L = /0 since otherwise κ would have

been detected during one of the time slots in T̃κ . Consequently, there either exists an idle time slot
t̃ ∈ T̃κ , or, since |T̃κ | = |C|, there exist time slots t ′, t ′′ ∈ T̃κ , t ′ 6= t ′′, and a channel c′ 6= c such that
(c′, t ′) ,(c′, t ′′) ∈ T̃κ .

In the first case, we construct a new schedule L ′=L \{(c, TL )}∪{(c, t̃)}, such that κ is detected
during t̃ and none of the discovery times of other neighbor configurations are increased.

In the second case, we construct a new schedule L ′ =L \{(c, TL ) ,(c′, t ′′)}∪{(c, t ′′)}. With the
new schedule, configuration κ is detected during time slot t ′′. In order to show that the discovery times
of other neighbors do not increase, consider the vector function δ (t) = (t mod b, b ∈ B), providing
for each time slot t a vector of offsets that can be detected in t. Since periodicity of δ (t) is LCM(B),
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we conclude that δ (t ′) = δ (t ′′), and thus no discoveries are performed during time slot t ′′ with the
schedule L . Consequently, none of the discovery times are increased with the new schedule.

Repeating the above procedure for each κ with discovery time Tκ (L ) > LCM(B)|C| results in a
schedule L ∗ with WDT TL ∗ ≤ LCM(B)|C| with f

(
(Tκ (L ∗))

κ∈KBC

)
< f

(
(Tκ (L ))

κ∈KBC

)
, proving

the claim.

The following Corollary presents a notable consequence from Proposition 11 for BP sets from F2.

Corollary 12. For a BP set B ∈ F2, a set of channels C, and a function f : N|KBC| → R, which is
strictly increasing in each argument, complete schedules L ∗ that minimize
f
(
(Tκ (L ))

κ∈KBC

)
are WDT-optimal.

Proof. The claim follows directly from the definition of WDT-optimality, Proposition 11, and the
defining property of B ∈ F2 that LCM(B) = max(B).

Please observe that the fact that MDT satisfies the conditions on the function f in Proposition 11
implies that the upper bounds established in Proposition 11 and Corollary 12 also apply to schedules
minimizing MDT.

Corollary 13. For an arbitrary set of BP’s B ∈ F1, and a set of channels C, MDT-optimal listening
schedules L ∗ have a WDT TL ∗ ≤ LCM(B)|C|.

Proof. Observe that MDT is strictly increasing in each configuration detection time Tκ . Applying
Proposition 11 we obtain the claim.

Corollary 14. For a set of BP’s B ∈ F2, and a set of channels C, MDT-optimal listening schedules
are also WDT-optimal.

Proof. Observe that MDT is strictly increasing in each configuration detection time Tκ . Applying
Corollary 12 we obtain the claim.

9 NDoT-Optimality

Proposition 15. A NDoT-optimal schedule L is also WDT-optimal.

Proof. Since a NDoT-optimal schedule pointwise maximizes the CDF of discovery times, the value
of the CDF for the normalized discovery time 1 is also maximized. Since there always exist schedules
that discover all neighbors at the normalized discovery time 1, and therefore whose CDF’s at normal-
ized time 1 have the value 1, we conclude that the CDF of a NDoT-optimal schedule also must have
the value 1 at the normalized time 1.

Proposition 16. If for a set of BP’s B ∈ F1 and a set of channels C a NDoT-optimal schedule L ∗

exists, it follows that any MDT-optimal schedule L is also NDoT-optimal.
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Proof. The proof is constructed by contradiction. Assume that schedule L ∗ is NDoT-optimal. It
implies that L ∗ is also MDT-optimal. Furthermore, assume that another schedule L is MDT-optimal
but not NDoT-optimal. The CDF’s of normalized discovery times of L and L ∗ shall be denoted by
f ∗ and f , respectively. Since both schedules are MDT-optimal we obtain:∫ T ∗

0
x f ∗

′
(x)dx =

∫ T

0
x f
′
(x)dx ,

where T ∗,T ≥ 1 denote the respective WDT’s.
Applying partial integration and using (i) the fact that T ∗ = 1 and f ∗(1) = 1 due to the WDT-

optimality of L ∗, and (ii) the fact that f (0) = f ∗(0) = 0, we obtain

x f ∗(x)
∣∣∣∣1
0
−
∫ 1

0
f ∗(x)dx− x f (x)

∣∣∣∣b
0
+
∫ b

0
f (x)dx = 0

1−
∫ 1

0
f ∗(x)dx−b+

∫ b

0
f (x)dx = 0

⇒1−b−
∫ 1

0
f ∗(x)dx+

∫ 1

0
f (x)dx+

∫ b

1
f (x)dx = 0

⇒(b−1)+
[∫ 1

0
f ∗(x)dx−

∫ 1

0
f (x)dx

]
−
∫ b

1
f (x)dx = 0

On the other hand, since L is not NDoT-optimal:
∫ 1

0 f ∗(x)dx−
∫ 1

0 f (x)dx > 0. Furthermore,
observe that

∫ b
1 f (x)dx≤ b−1. We obtain a contradiction proving the original claim.

10 Computational Complexity and Memory Requirements

Note that GREEDY algorithms have a compelling property of low complexity. A possible implemen-
tation of pseudo code in Algorithm 1 presented in [5] proceeds as follows. For each configuration
it stores a binary variable indicating if it has been covered or not, resulting in |C| |B|∑b∈B b bits of
required memory space. At each time slot t, it iterates over all channels c ∈ C, computing for each
channel, which of configurations {(c,b, t mod b) | b ∈ B} are not yet considered. Finally, it selects a
channel, for which the sum of probabilities of these configurations to be selected by a neighbor is the
highest. Consequently, computational complexity at each time slot is O (|C| |B|). It iterates over time
slots until all configurations are covered.

The overall computational complexity depends on the number of time slots required to consider
all configurations. Since GREEDY algorithms are WDT-optimal for B ∈ F2, the number of required
time slots is max(B)|C|, resulting in a total complexity of O

(
|C|2|B|max(B)

)
. For BP sets from F1,

GREEDY algorithms require at most LCM(B)|C|. A proof of this claim is similar to the proof of
Proposition 6 and is omitted for brevity.) Thus, an upper bound for the computational complexity
over F1 is O

(
|C|2|B|LCM(B)

)
.

Please note that if the assumption made in our system model in Section III in [5] that the Greatest
Common Divisor (GCD) of the considered BP sets is 1 does not hold, the complexity can be further
reduced by replacing B by B′=

{
b

GCD(B)

}
b∈B

. This preprocessing step allows to reduce computational

complexity over F2 to O
(
|C|2 |B| max(B)

GCD(B)

)
, over F1 the upper bound becomes O

(
|C|2 |B| LCM(B)

GCD(B)

)
.

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-18-0003 Page 15



TU BERLIN

 0

 5

 10

 15

 20

 25

 30

 35

 2  4  6  8  10  12

N
or

m
al

iz
ed

 S
M

D
T

Number of channels

GREEDY RND
GREEDY DTR

GREEDY RND-SWT
GREEDY DTR-SWT

CHAN TRAIN
PSV

(a) Sample Mean Discovery Time (SMDT) F2

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2  5  10  15  20  25  30  35

N
or

m
al

iz
ed

 S
M

D
T

Number of neighbors

GREEDY RND
GREEDY DTR

GREEDY RND-SWT
GREEDY DTR-SWT

CHAN TRAIN
PSV

(b) Sample Mean Discovery Time (SMDT) F2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.0 0.2 0.4 0.6 0.8 1.0

C
D

F

Normalized discovery time

GREEDY RND
GREEDY DTR

GREEDY RND-SWT
GREEDY DTR-SWT

CHAN TRAIN
PSV

(c) Sample Number of Discoveries over Time (SNDoT) F2

Figure 6: Evaluation results obtained by simulation for the family of BP sets F2 (see Section 11.2).
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Figure 7: Evaluation results obtained by simulation for the family of BP sets F2 (see Section 11.2).

Copyright at Technische Universität Berlin.
All Rights reserved. TKN-18-0003 Page 16



TU BERLIN

11 Additional simulation results

In the following we present supplementary simulation results evaluating three performance metrics
that are only defined for specific instances of the studied problem, and are therefore named Sample
Mean Discovery Time (SMDT), Sample Number of Discoveries over Time (SNDoT) and Sample
Worst-Case Discovery Time (SWDT). These metrics are more precisely specified in the following.
The setting is described in Section IX-A in [5].

11.1 Performance Metrics

In the following we evaluate three performance metrics: SNDoT, SMDT, and SWDT. The SMDT
is defined as 1

|N| ∑ν∈N Tν(L ). It relates to the MDT in the way a sample mean relates to the ’true’
mean. Since a sampled mean is an unbiased estimator, the expected value of the SMDT is the MDT.
The SWDT is defined as maxν∈N Tν(L ). It is the analogon of the WDT in a specific network envi-
ronment, where only a subset of possible configurations is present. However, while the SMDT can
be interpreted as an estimation of MDT, SWDT has no such relationship with the WDT. In fact, the
WDT is a more important property of a listening schedule, since it determines the required execution
time in scenarios, where a complete discovery is desired. The SWDT, on the other hand, cannot be
used as an indicator for the discoverer to stop the discovery process, since the discoverer cannot know
if all neighbors have been discovered or not, before it has probed for all potential configurations,
which requires an execution time equal to the WDT. Still, when the number of neighbors increases,
SWDT converges to the WDT due to the law of large numbers. Finally, SNDoT is the number of
discovered neighbors divided by the total number of neighbors as a function of the execution time
of the schedule. Also for the SNDoT the law of large numbers implies convergence to the CDF of
discovery times for large numbers of neighbors.

The discovery times used in SNDoT are normalized as described in Section IV in [5]. SMDT and
SWDT are normalized w.r.t. their corresponding optimum values obtained by solving an ILP similar
to MDTOPT but with a different objective function. For each scenario with a given set of neighbors
and their configurations two ILP’s are solved that generate listening schedule minimizing the SMDT
and SWDT among those neighbors. We use the following optimization variables.

yiν =


1 , if neighbor ν ∈ N is detected during time slot

ibν +δν

0 , otherwise

hct =

{
1 , if channel c is scanned during time slot t
0 , otherwise

We use the following constraints.
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Figure 8: Evaluation results obtained by simulation for the family of BP sets F1 (see Section 11.2).
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Figure 9: Evaluation results obtained by simulation for the family of BP sets F1 (see Section 11.2).
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b tmax−δν
bν

c

∑
i=0

yiν = 1 for all ν ∈ N (C̃1)

yiν ≤ hcν ,δν+ibν
for all ν ∈ N,

i ∈
{

0, . . . ,b tmax−δν

bν

c
}

(C̃2)

∑
c∈C

hct ≤ 1 for all t ∈ {0, . . . , tmax} (C̃3)

Constraint C̃1 ensures that for each neighbor ν ∈N a scan is scheduled in exactly one of the beacon
time slots Tν . The last two constraints C̃2 and C̃3 make sure that during each time slot not more than
one channel is scanned. In comparison to the numerical evaluation we allow for much larger BP’s
from B ∈ F1. Therefore, to keep the ILP’s computationally feasible, the maximum time slot used in
the optimization problems is limited to tmax = min(1000max(B)|C|−1,LCM(B)|C|−1).

We use the following objective function to find the optimum SMDT for a given network environ-
ment.

min
1
|N| ∑

ν∈N

b tmax−δν
bν

c

∑
i=0

yiν (ibν +δν) .

We use the following objective function, together with an additional constraint, to find the optimum
SWDT for a given network environment.

min z

s.t. yiν (ibν +δν)≤ z

for all ν ∈ N, i ∈
{

0, . . . ,b tmax−δν

bν

c
}
.

Note that the results for the SMDT and SWDT presented in the following cannot be directly com-
pared with the numerical results of the MDT and WDT presented in Section VIII-B in [5] due to
different methods of normalization.

11.2 Results

In the following, we present simulations results for BP families F1 and F2 accompanied by confidence
intervals for a confidence level of 95%.

Results for F2

Figures 6a and 6b depict the results for the normalized SMDT, as a function of the number of channels
and of the number of neighbors, respectively. For two channels the PSV strategy results in a SMDT
which is about twice as high as the results of the GREEDY approaches and CHAN TRAIN. However,
the gap is increasing with larger number of channels. For twelve channels the SMDT of PSV is more
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than 350% higher compared to the results of GREEDY / CHAN TRAIN. For all analyzed number
of neighbors PSV results again in a MDT which is at least 350% higher than the results achieved by
GREEDY and CHAN TRAIN. In addition, all strategies diverge from the optimum with an increasing
number of channels, while they approach the optimum with an increased number of neighbors.

Figure 6c shows the results for SNDoT. GREEDY and CHAN TRAIN discover up to 50% more
neighbors in average at certain points in time without having an impact on the discovery time of the
last percentage of discovered neighbors.

Figures 7a and 7b display the normalized SWDTs. With two channels all strategies result in similar
values. However, for larger number of channels, and even more so for low numbers of neighbors, the
PSV strategy results in a significantly larger SWDT. Again, we remark that the SWDT is of a lower
importance than the WDT studied in Section VIII in [5] (see also Section IV).

Results for F1

Figures 8 and 9 show the results for the family of BP sets F1. The findings are qualitatively mostly
similar to those for BP sets from F2.

The normalized SMDT as a function of the number of channels is depicted in Figures 8a and 8b.
Similar to the results for F2 our approaches significantly outperform PSV. However, the gap between
them has decreased.

Figure 8c shows the results of the SNDoT. The majority of neighbors is discovered faster by the
GREEDY strategies and CHAN TRAIN. However, about 10% of neighbors are discovered later by
GREEDY and CHAN TRAIN as compared to PSV.

The normalized SWDT is shown in Figures 9a and 9b. In contrast to the results for F2 the PSV
strategy achieves similar results as our strategies for all analyzed number of channels.

11.3 Summary

The simulation results reveal that even under realistic conditions the proposed algorithms significantly
outperform the PSV strategy regarding the SMDT for the family of BP sets F2 as well as F1 and
SWDT for F2 for different number of channels and number of neighbors. The results for SNDoT
are similar to the numerical results presented in Section VIII-B in [5]. For the family of BP sets
F2 our strategies discover up to 50% more neighbors compared to PSV at certain points in time
without penalizing the discovery of the last neighbors. However, for the family of BP sets F1 the gap
decreases and the discovery of the last 10% of neighbors requires additional time by our approaches
in comparison with PSV.
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