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Abstract

Neighbor discovery is a fundamental task for wireless networks deployment. It is essential
for setup and maintenance of networks and is typically a precondition for further commu-
nication. In this work we focus on passive discovery of networks operating in multi-channel
environments, performed by listening for periodically transmitted beaconing messages. It is
well-known that performance of such discovery approaches strongly depends on the structure
of the adopted Beacon Interval (BI) set, that is, set of intervals between individual beaconing
messages. However, although imposing constraints on this set has the potential to make the
discovery process more efficient, there is demand for high-performance discovery strategies
for BI sets that are as general as possible. They would allow to cover a broad range of wireless
technologies and deployment scenarios, and enable network operators to select BI’s that are
best suited for the targeted application and/or device characteristics.

In the present work, we introduce a family of novel low-complexity discovery algorithms
that minimize both the Expected Mean Discovery Time (EMDT) and the makespan, for
a quite general family of BI sets. Notably, this family of BI sets completely includes BI’s
supported by IEEE 802.15.4 and a large part of BI’s supported by IEEE 802.11. Furthermore,
we present another novel discovery algorithm, based on an Integer Linear Program (ILP),
that minimizes EMDT for arbitrary BI sets.

In addition to analytically proving optimality, we numerically evaluate the proposed al-
gorithms using different families of BI sets and compare their performance with the passive
scan of IEEE 802.15.4 w.r.t. various performance metrics, such as makespan, EMDT, energy
usage, etc.
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Chapter 1

Introduction

We are currently at the brink of a new era of computing driven by rapid augmentation
of physical objects around us with computational and wireless communication capabilities.
The resulting network of smart objects that interact and exchange information without direct
human intervention, the so-called Internet of Things (IoT), can offer deep real-time awareness
and control of the physical environment and serve as foundation for novel applications in a
wide range of domains. It is estimated that 25 [1] to 50 [4] billion devices and objects
will be connected to the Internet by 2020. Since the vast majority of these devices will
communicate wirelessly, this development raise the demand for efficient neighbor discovery
approaches. Discovering neighbor networks in a wireless network environment is typically
the first step of communication initialization. In addition, if performed periodically, it helps
avoiding conflicts by, e.g., selecting a less occupied channel. Note that since most devices will
be battery powered, neighbor discovery must be performed in an energy-efficient way.

This paper focuses on the problem of discovering neighbors in a fast and energy-efficient
manner by passively listening to periodically transmitted beaconing messages of neighbors
that are agnostic to the discovery process. Neighbors may operate on different channels
using various BI’s based on their targeted application, used hardware, and operational state
(e.g., dynamically adapting BI’s to current battery level). Since devices are typically not
synchronized and have no a priori knowledge about their environment, designing schedules
determining when to listen, on which channel, and for how long, that allow for a fast discovery
of all neighbors, is a challenging task.

State-of-the-art beacon-enabled wireless network technologies include, e.g., IEEE 802.11 [3]
and IEEE 802.15.4 [2]. With these technologies, beacon messages are transmitted periodically
for management and time synchronization purposes. The idea of the presented discovery
approaches is to use periodic transmission of beacon frames for the discovery process. In
contrast, discovery approaches requiring control over the transmission of discovery messages
might be in conflict with the deployed Media Access Control (MAC) protocol, while reusing
beacon messages allows for more flexibility in working with a broad range of technologies.

It is well-known that performance of discovery approaches strongly depends on the structure
of the BI set. Although restricting the latter facilitates the discovery process, it is necessary
to develop discovery strategies that are as nonrestrictive as possible, in order to cover a broad
range of existing wireless technologies, and to allow network operators to select BI’s that are
best suited for the targeted application and/or device characteristics.

Our previous work [6, 7] focused on discovery of IEEE 802.15.4 networks, where BI’s are
restricted to the form τ ·2BO, where τ is the duration of a superframe, and Beacon Order (BO)
is a parameter taking values between 0 and 14. In contrast, in the present work, we focus
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on developing efficient algorithms for broader families of BI sets, including arbitrary BI sets
that do not have any restrictions.

In particular, we develop a family of novel low-complexity algorithms that ”greedily” max-
imize the number of discovered networks independently in each subsequent time slot. We
identify an important family of BI sets, where each BI is an integer multiple of all smaller
BI’s, and prove that for BI sets from this family, greedy algorithms are optimal w.r.t. the
EMDT and the makespan. Notably, the identified family completely includes BI sets sup-
ported by IEEE 802.15.4 and a large part of BI sets supported by IEEE 802.11.

In addition, we present a novel discovery approach, based on an ILP, that minimizes EMDT
for arbitrary BI sets. Although quite attractive due to the broad range of supported BI’s, this
approach has high computational complexity and memory consumption, such that its usage
is restricted to offline computations, and to network environments with a limited number of
channels and small BI’s.

In addition to analytically proving optimality of the proposed discovery algorithms, we
numerically evaluated them using different families of BI sets, and compare their perfor-
mance with the passive scan, specified as part of the IEEE 802.15.4 standard, w.r.t. various
performance metrics, such as makespan, EMDT, energy usage, etc.

Finally, we discuss the strong impact the structure of permitted BI sets has on the perfor-
mance of discovery approaches, and provide recommendations for BI selection that supports
efficient neighbor discovery. This recommendation might be useful, on the one hand, for the
development of novel wireless communication based technologies using periodic beacon frames
for management or synchronization purposes, and, on the other hand, for the deployment of
existing technologies that support a wide range of BI’s, such as, e.g., IEEE 802.11.

In summary, our main contributions are as follows.

• A family of low-complexity discovery algorithms that minimize EMDT and makespan
for the broad family of BI sets where each BI is an integer multiple of all smaller BI’s.
Notably, this family completely includes BI’s supported by the standard IEEE 802.15.4
and a large part of BI sets supported by IEEE 802.11.

• An ILP-based approach to computing listening schedules minimizing EMDT for arbi-
trary sets of BI’s.

• A recommendation on the selection of BI sets to support the discovery process.

The rest of this paper is structured as follows. Section 2 presents our system model, accom-
panied by basic definitions and preliminary results. In Section 3 we present the families of BI
sets studied in the present work. Section 4 introduces the notion of EMDT and establishes
an upper bound on the time required to minimize it. Section 5 introduces the developed dis-
covery strategies, accompanied by analytical results on their optimality. Section 6 presents
evaluation settings and results. In Section 7, we provide recommendations on the selection
of BI’s supporting the discovery process. Finally, Section 8 concludes this paper and outlines
future work.
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Chapter 2

System Model and Basic Definitions

We consider a set of networks N , operating on a set of channels C. Each network ν ∈ N
is assigned a fixed channel cν ∈ C. Each network announces its presence using beacon sig-
naling messages (beacons, in the following) that, e.g., are sent by a selected device acting as
network coordinator. We assume that beacons are sent periodically with a fixed interval of
bν · τ seconds, bν ∈ B, where B ⊂ N+ is a finite set of beacon intervals, and τ is a technology
dependent parameter. The set of BI’s B might be determined by, e.g., the choice of commu-
nication technology or by specifications provided by network operators. A characterization
of BI sets studied in the present work will be provided in Chapter 3.

We divide time into slots of length τ , and number them starting with 1, such that i-th
time slot contains the time period [(i− 1)τ, iτ ]. The parameter τ is typically determined by
the choice of technology. For IEEE 802.15.4, τ might be the duration of a base superframe,
which is approximately 15.36 ms (960 symbols) when operating in the 2.4 GHz frequency
band. In case of IEEE 802.11, τ might be the duration of a Time Unit (TU), which equals
1024 µs. We assume that the maximum beacon transmission time (time required to send one
beacon) is smaller than τ . We denote the offset, that is, the first time slot, in which network
ν sends a beacon, by δν ≤ bν . We denote the set of beaconing time slots of a network ν by
Tν = {δν + i · bν}i≥0. We call the resulting set of (channel, time slot) pairs, Bν = {cν} × Tν ,
the beacon schedule of network ν.

With the given notation, each network ν is assigned a tuple (cν , bν , δν), which we call a
network configuration. Note that assigning multiple networks the same network configuration
does not necessarily lead to beacon collisions due to the assumption that the maximum
beacon transmission time is shorter than τ . With IEEE 802.15.4, e.g., default beacon size
when operating in the 2.4 GHz frequency band is 38 symbols, as compared to the time slot
duration τ = 960 symbols.

We denote the set of possible network configurations for a given BI set B and a given
set of channels C by KBC = {(c, b, δ) | c ∈ C, b ∈ B, δ ∈ {1, . . . , b}}. We define a network
environment to be a function E : N 7→ KBC assigning each network a network configuration.
Slightly abusing notation, in the following, we use index ν to refer to a particular network,
and index κ to refer to a particular network configuration. Thus, we denote a network
configuration κ ∈ KBC by κ = (cκ, bκ, δκ). Analogously, we define Tκ and Bκ as the set of
beaconing time slots and the beacon schedule of any network using network configuration κ.

For a time slot t and a BI b, δb(t) = (tmod b) + 1 shall denote the unique offset such that
a network with configuration (c, b, δb(t)), c ∈ C, transmits its beacon in time slot t. Observe
that δb(t) has periodicity b, that is, δb(t) = δb(t + b) for each t, b. Consequently, vector
function δ(t) = (δb(t), b ∈ B) has periodicity LCM(B), that is, δ(t) = δ (t+ LCM(B)) for
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each t.
We assume that initially each device knows its own network configuration, the set of avail-

able BI’s B and the set of channels C. In addition, it might know probabilities (pκ, κ ∈ KBC)
that a neighbor network might use configuration κ. Equipped with this knowledge, in order to
detect neighbor networks, a device performs neighbor discovery by selecting time slots during
which it listens on particular channels in order to overhear beacons transmitted by neighbors,
starting with time slot 1. We call the resulting set of (channel, time slot) pairs a listening
schedule, denoted by L ⊂ C ×N. Since we assume that devices cannot simultaneously listen
on multiple channels, we demand c 6= c′ ⇒ t 6= t′ for all (c, t) , (c′, t′) ∈ L.

In a typical network environment, not all configurations will be used, while, at the same
time, some configurations might be used by more than one network. We call an environment
complete, if each configuration is used by exactly one network.

Definition 1 (Complete environment). For a BI set B ⊂ N+ and a set of channels C, an
environment E : N 7→ KBC is called complete if and only if E is bijective (for each κ ∈ KBC

there exists exactly one ν ∈ N with κ = (cν , bν , δν)).

Under ideal conditions, when beacons are never lost and devices are not mobile, if a schedule
L contains at least one element from the beacon schedule Bκ for each configuration κ ∈ KBC ,
it allows to discover all neighbor networks in a complete environment. We call such a schedule
complete.

Definition 2 (Complete schedule). For a BI set B ⊂ N+ and a set of channels C, a schedule
L ⊂ C × N is called complete if and only if L ∩ Bκ 6= ∅, ∀κ ∈ KBC .

For a complete schedule L, we denote by Tν (L) = min {t ∈ Tν | (cν , t) ∈ L} the discovery
time of network ν. Similarly, we denote by Tκ (L) = min {t ∈ Tκ | (cκ, t) ∈ L} the discovery
time of all networks operating with configuration κ. Whenever the considered schedule is
clear from the context, we might simply write Tν or Tκ. An important performance metric
for a listening schedule is the time it requires to detect all neighbor networks. We call this
time the makespan of a schedule.

Definition 3 (Makespan of a schedule). For a BI set B ⊂ N+, and a set of channels C, we
call the time slot of a complete schedule L during which the last configuration is detected the
makespan of L and denote it by TL. That is, TL = maxκ∈KBC Tκ (L).

The following proposition and corollary establish a lower bound on the makespan.

Proposition 4. For a BI b ∈ B ⊂ N+, an offset δ ∈ {1, . . . , b}, a set of channels C, and a
complete schedule L, the earliest time slot until which all configurations {(c, b, δ) | c ∈ C} can
be discovered is b (|C| − 1) + δ.

Proof. Note that |{(c, b, δ) | c ∈ C}| = |C|. Since each configuration in this set has its beacons
on a different channel, the number of time slots that have to be scanned cannot be smaller
than |C|. Observe that the earliest time slot when this number of corresponding time slots
can be reached is b (|C| − 1) + δ, proving the claim.
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Corollary 5. For an arbitrary set of BI’s B ⊂ N+, a set of channels C, and a complete
schedule L, it holds TL ≥ max(B)·|C|. We call complete schedules with makespan max(B)·|C|
makespan-optimal.

Proof. The claim is a direct consequence of Proposition 4, with b = δ = max(B).

In addition to minimizing makespan, it is often desirable to minimize the Mean Discovery
Time (MDT) of a schedule, defined in the following.

Definition 6 (MDT of a schedule). For a set of networks N , a BI set B ⊂ N+, a set of
channels C, and a network environment E, the MDT of a complete schedule L is given by

1

|N |
∑
ν∈N

Tν (L) .

For a complete environment, MDT can also be computed as

1

|N |
∑
ν∈N

Tν (L) =
1

|KBC |
∑

κ∈KBC

Tκ (L) =
1

|C||B|
∑

b∈B b

∑
κ∈KBC

Tκ (L) .

Typically, however, a device does not know its network environment (otherwise, it would
not have to perform a discovery) so that MDT cannot be computed and optimized a priori.
Nevertheless, a device still can minimize the expected value of the MDT given probabilities
that a neighbor network is using configuration κ ∈ KBC . We will address this question in
Chapter 4.

For complete environments, we define a special type of schedules that we call recursive
and that we will use to prove optimality of the proposed discovery strategies in the following
chapters.

Definition 7 (Recursive schedule). In a complete environment with BI set B ⊂ N+, and a
set of channels C, a schedule L ⊂ C × N is called recursive if and only if

• for any t ∈ [1, max(B) · |C|] there exists a c ∈ C such that (c, t) ∈ L (no idle slots)

• for any b ∈ B, and for any t, t′ ∈ [1, b · |C|] with δb(t) = δb(t
′), if (c, t), (c′, t′) ∈ L then

c 6= c′ (no redundant scans)

The following proposition provides a characterizing property of recursive schedules.

Proposition 8. In a complete environment with a BI set B = {b1, . . . , bn} ⊂ N+, bi < bj for
i < j, and a set of channels C, a schedule L ⊂ C×N is called recursive if and only if each scan
(c, t) ∈ L, with t ∈ [1, b · |C|], results in the discovery of network configuration (c, b, δb(t)).
Alternatively, a schedule is recursive if and only if in each time slot t ∈ [1, bi · |C|], for a
bi ∈ B, it discovers at least n− i+ 1 configurations.

Proof. Follows directly from the definition of a recursive schedule.

Recursive schedules have a compelling property that they are always complete, makespan-
optimal, and MDT-optimal, as stated in the following Corollary. In the following chapters, we
will define families of BI sets where recursive schedules always exist, and present algorithms
for their efficient computation.
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Figure 2.1: Example of the non-existence of a structured schedule showing the beginning of
the listening schedule depicted by gray boxes for B = {1, 2, 3} and |C| = 2.

Corollary 9. In a complete environment with a BI set B ⊂ N+, a recursive schedule is com-
plete, makespan-optimal, MDT-optimal, and maximizes the number of configurations detected
until each time slot, for each B′ ⊂ B.

Proof. Follows from Proposition 8.

It is worth noting that a recursive schedule does not always exist. Consider the example
illustrated in Figure 2.1, with B = {1, 2, 3} and |C| = 2. Vertical dashed lines indicate the
time slots until all configurations (c, bi, δ) for a BI bi have to be completely discovery on each
channel c ∈ C in order for the schedule to be recursive. Consequently, gray boxes indicate
channels that have to be scanned during the first 4 time slots (uniquely determined up to
swapping channel 0 and 1). Observe that a recursive listening schedule for this example does
not exist due to the fact that it would have to discover all remaining network configura-
tions using BI b3 during only two time slots 5 and 6. However, there are three remaining
configurations: (0, 3, 1), (1, 3, 2), and (1, 3, 3).

Finally, we would like to remark that the analytical optimality results in the following are
obtained under three idealizing assumptions.

• Switching between channels is performed instantaneously (switching time is 0).

• Beacon transmission/reception time is 0.

• There are no beacon losses.

It is ongoing work to evaluate the performance of the proposed algorithms by means of
simulations and experiments in real network environments.

Table 2.1 provides a summary of all defined parameters.
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Table 2.1: Summary of the defined parameters

Name Description

General
τ Time slot duration
C ⊂ N+ Set of channels
B ⊂ N+ Set of BI’s
LCM(B) Least common multiple of a set B

Network
N Set of networks
ν ∈ N Network ν
cν ∈ C Fixed operating channel of network ν
bν ∈ B BI of network ν
δν ∈ {1, . . . , bν} Beacon offset of network ν
(cν , bν , δν) Configuration of network ν
Tν = {δν + i · bν}i≥0 Set of beaconing time slots of network ν

Bν = {cν} × Tν Beacon schedule of network ν
Tν (L) = min {t ∈ Tν |

(cν , t) ∈ L}
Discovery time of network ν, given listen-
ing schedule L

Network configuration
KBC = {(c, b, δ) | c ∈ C,

b ∈ B, δ ∈ {1, . . . , b}}
Set of possible network configurations for
a given BI set B and a given set of chan-
nels C

κ = (cκ, bκ, δκ) ∈ KBC Network configuration κ using BI bκ,
channel cκ and offset δκ

Tκ = {δκ + i · bκ}i≥0 Set of beaconing time slots of networks op-
erating with configuration κ

Bκ = {cκ} × Tκ Beacon schedule of networks operating
with configuration κ

Tκ (L) = min {t ∈ Tκ |
(cκ, t) ∈ L}

Discovery time of all networks operating
with configuration κ

Listening schedule
L ⊂ C × N Listening schedule consisting of a sequence

of (channel, time slot) pairs
TL = maxκ∈KBC Tκ (L) Makespan of a listening schedule L

Copyright at Technische Universität Berlin.
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Chapter 3

Families of Beacon Interval Sets

In this section we define several families of BI sets, studied in the present work. They allow us
to formulate properties of developed discovery strategies as functions of BI sets. The defined
families are characterized in the following table and illustrated in Figure 3.1.

F1
This is the most general family of BI sets that contains any finite subset
of N+.

F2

Family F2 ⊂ F1 includes all BI sets, for which the maximum element
equals the LCM of the set: max(B) = LCM(B), that is, the maximum
beacon interval is an integer multiple of all other beacon intervals in the
set.

F3

For any BI set B ∈ F3 ⊂ F2, we demand that max(B′) = LCM(B′)
holds for any subset B′ ⊆ B. An equivalent formulation is that for any
b, b′ ∈ B ∈ F3 with b < b′ there exists an α ∈ N+ such that b′ = α · b.
That is, any beacon interval is an integer multiple of any smaller beacon
interval in the set.

F4

Family F4 ⊂ F3 includes all sets whose elements are powers of the same
base, potentially multiplied by an common coefficient. That is, for a B =
{b1, . . . , bn} ∈ F4 we demand that there exist k, c ∈ N+ and e1, . . . , en ∈ N
such that bi = kcei , ∀ i ∈ {1, . . . , n}.

FIEEE 802.15.4

This family contains all sets defined by the IEEE 802.15.4 standard. All
elements b ∈ B ∈ FIEEE 802.15.4 must have the form b = 2BO, where BO is
a network parameter called the beacon order that can be assigned a value
between 0 and 14. Possible intervals lie in the range between approx.
15.36 ms and 252 s.

FIEEE 802.11

The family of BI sets allowed by the IEEE 802.11 standard contains arbi-
trary sets such that each element b ∈ B ∈ FIEEE 802.11 can be represented
by a 16 bit field, that is, b ∈

[
1, 216 − 1

]
.

An important property of the family of BI sets F3 is that in complete network environments
using BI sets from F3 there always exists a recursive schedule, as shown by the following
proposition.

Proposition 10. In a complete environment with a BI set B ∈ F3, and a set of channels C,
a recursive schedule always exists.
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Figure 3.1: Studied families of BI sets.

Proof. To prove the claim we will use the characteristic property of recursive schedules from
Proposition 8. Assume w.l.o.g. B = {b1, . . . , bn} with bi < bj for i < j. Observe that it is
possible to discover one configuration (c, b1, δb1(t)) in each time slot t ∈ [1, b1 · |C|], since for
each offset δ ∈ {1, . . . , b1} there are |C| time slots in the interval [1, b1 · |C|] where this offset
occurs, and since the sets of time slots for individual offsets to not intersect.

Further, observe that in F3, each discovery of a configuration (c, bi, δbi(t)) results in a
discovery of

(
c, bj , δbj (t)

)
for each j ∈ {i + 1, . . . , n}. Consequently, by induction, for each

bi ∈ B, one configuration (c, bi, δ) can be discovered in each time slot t ∈ [1, bi−1 · |C|],
while, analogously to the argumentation above, one of the remaining configurations can be
discovered in each of the time slots t ∈ [bi−1 · |C|+ 1, bi · |C|].

In the following, w.l.o.g., we only consider BI sets whose Greatest Common Divisor (GCD)
is 1. Indeed, please observe that a listening schedule for a BI set with GCD d 6= 1 is equivalent
to a listening schedule for the transformed BI set where each element is divided by d, and τ is
substituted by τ ′ = τ ·d. This transformation allows to reduce the computational complexity,
especially for ILP-based approaches.
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Chapter 4

Preliminaries

A desired goal for a discovery strategy is to minimize the Mean Discovery Time (MDT), where
mean is taken over all networks in a particular environment. Since, however, a device does
not a priori know which network configurations are present in its environment, this problem
is not solvable. Nevertheless, it is possible to minimize the expected value for MDT, called
Expected Mean Discovery Time (EMDT) in the following, given the assumption that certain
network configurations are picked by individual networks with certain probabilities. In the
following, we assume uniform probabilities for channels, BI’s, and BI offsets. In the next two
sections we establish a formula for EMDT under the assumption of a uniform distribution. We
then proceed to establishing an upper bound on the makespan of EMDT-optimal schedules,
which will help us to evaluate performance of discovery algorithms proposed in Chapter 5.

4.1 Expected Mean Discovery Time (EMDT)

Since a device does not a priori know which network configurations are used by its neighbors,
it is not possible to design a listening schedule that minimizes MDT. However, in the absence
of this information, a reasonable assumption for a device performing a discovery is that of a
uniform distribution of configurations. It can then follow a discovery strategy that allows to
minimize the expected value for MDT, the EMDT. Note that while mean value and expected
value are synonyms, to improve readability, we use the term Mean Discovery Time (MDT)
to refer to the mean value taken over neighbor networks in a particular environment (see
Definition 6), while we use the term Expected Mean Discovery Time (EMDT) to refer to the
expected value of MDT’s taken over instances of network environments.

To be more precise, we assume probabilities P = (pκ, κ ∈ KBC) that a particular combi-
nation of channel, BI, and offset are used by a neighbor network, where pκ are defined as
follows. We assume that each channel and each BI have equal probability to be selected
by a neighboring network, and that all offsets feasible for a particular BI have equal prob-
ability to be selected by a network using this BI. Thus, a network configuration κ ∈ KBC ,
κ = (cκ, bκ, δκ), has probability pκ = 1

bκ|B||C| to be used by a neighbor network ν ∈ N .
In the following proposition, we compute EMDT and show that for uniform probabilities,

EMDT equals MDT given a complete environment.

Proposition 11. For a set of networks N , a set of BI’s B ∈ F1, a set of channels C, a
complete listening schedule L, and probabilities pκ = 1

bκ|B||C| that a network configuration
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κ ∈ KBC is used by a network ν ∈ N , EMDT is given by

E

[
1

|N |
∑
ν∈N

Tν (L)

]
=

1

|B| |C|
∑

κ∈KBC

1

bκ
Tκ (L) .

Note that EMDT equals MDT for a complete environment

Proof. First, assume that the number of networks |N | is fixed. Let Nκ ⊆ N be the subset of
networks using configuration κ ∈ KBC . Observe that

E

[
1

|N |
∑
ν∈N

Tν (L)

]
= E

 ∑
κ∈KBC

|Nκ|
|N |

Tκ (L)

 =
∑

κ∈KBC

E [|Nκ|]
|N |

Tκ (L) .

In order to calculate E [|Nκ|], we have to calculate P [|Nκ| = n]. Since we assumed pκ =
1

bκ|B||C| , we have

P [|Nκ| = n] =

(
|N |
n

)
1

(bκ |B| |C|)n
·
(

1− 1

bκ |B| |C|

)|N |−n
=

(
|N |
n

)
(bκ |B| |C| − 1)|N |−n

(bκ |B| |C|)|N |
.

Consequently,

E [|Nκ|]
|N |

=
1

|N |

|N |∑
n=0

n · P [|Nκ| = n]

=
1

|N |

|N |∑
n=0

n

(
|N |
n

)
(bκ |B| |C| − 1)|N |−n

(bκ |B| |C|)|N |

=
1

|N |

(
bκ |B| |C| − 1

bκ |B| |C|

)|N | |N |∑
n=0

n

(
|N |
n

)
1

(bκ |B| |C| − 1)n

=
1

|N |

(
bκ |B| |C| − 1

bκ |B| |C|

)|N |
|N | (bκ |B| |C|)|N |−1

(bκ |B| |C| − 1)|N |

=
1

bκ |B| |C|
.

Since the resulting expression does not depend on |N |, the assumption of fixed |N | can be
relaxed, and thus, the claim is proved.

In the following section, we will use this proposition to study the number of time slots
required to minimize EMDT.

4.2 Upper Bound on Makespan of EMDT-Optimal Schedules

In this section, we will show that for an arbitrary set of BI’s, EMDT can be minimized
within LCM(B) · |C| time slots, and that, consequently, for BI sets in F2, EMDT can be
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minimized within max(B) · |C| time slots, implying that in F2, EMDT-optimal schedules are
also makespan-optimal. The following proposition establishes an upper bound on the number
of time slots required to minimize an arbitrary strictly increasing function of discovery times.
The idea for the proof is to show that any schedule that results in a network being detected
after time slot LCM(B) · |C| can be modified such that the network in question is detected
before time slot LCM(B) · |C|, without increasing the discovery times of other networks.

Proposition 12. For an arbitrary set of BI’s B ∈ F1, a set of channels C, and a function
f : N|KBC | → R, which is strictly increasing in each argument, complete schedules L∗ that

minimize f
(

(Tκ (L))κ∈KBC

)
have a makespan TL∗ ≤ LCM(B) · |C|.

Proof. Assume schedule L minimizes f and TL > LCM(B) · |C|. Consequently, there is
at least one configuration κ = (c, b, δ) with discovery time Tκ (L) = TL > LCM(B) · |C|.
Consider time slots T̃κ = {δ + i · LCM(B)}i∈{0,...,|C|−1}. Observe that

(
{c} × T̃κ

)
∩ L = ∅

since otherwise κ would have been detected during one of the time slots in T̃κ. Consequently,
there either exists an idle time slot t̃ ∈ T̃κ, or, since |T̃κ| = |C|, there exist time slots t′, t′′ ∈ T̃κ
and a channel c′ 6= c such that (c′, t′) , (c′, t′′) ∈ T̃κ.

In the first case, we construct a new schedule L′ = L \ {(c, TL)} ∪
{(
c, t̃
)}

, such that
κ is detected during t̃ and none of the discovery times of other network configurations are
increased.

In the second case, we construct a new schedule L′ = L \ {(c, TL) , (c′, t′′)} ∪ {(c, t′′)}.
With the new schedule, configuration κ is detected during time slot t′′. In order to show that
the discovery times of other networks do not increase, consider the function δ(t), defined in
Chapter 2, providing for each time slot t a vector of offsets that can be detected in t. Since
periodicity of δ(t) is LCM(B), we conclude that δ(t′) = δ(t′′), and thus no discoveries are
performed during time slot t′′ with the schedule L. Consequently, none of the discovery times
are increased with the new schedule.

Repeating the above procedure for each κ with discovery time Tκ (L) > LCM(B) · |C|
results in a schedule L∗ with makespan TL∗ ≤ LCM(B) · |C| with f

(
(Tκ (L∗))κ∈KBC

)
<

f
(

(Tκ (L))κ∈KBC

)
, proving the claim.

The following Corollary presents a notable consequence from Proposition 12 for BI sets
from F2.

Corollary 13. For a BI set B ∈ F2, a set of channels C, and a function f : N|KBC | → R,
which is strictly increasing in each argument, complete schedules L∗ that minimize

f
(

(Tκ (L))κ∈KBC

)
are makespan-optimal.

Proof. The claim follows directly from Corollary 5, Proposition 12, and the defining property
of B ∈ F2 that LCM(B) = max(B).

Please observe that Proposition 11 implies that the upper bounds established in Proposi-
tion 12 and Corollary 13 also apply to schedules minimizing EMDT.

Corollary 14. For an arbitrary set of BI’s B ∈ F1, and a set of channels C, EMDT-optimal
listening schedules L∗ have a makespan TL∗ ≤ LCM(B) · |C|.
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Proof. From Proposition 11 we obtain an expression for EMDT, which is strictly increasing
in each configuration detection time Tκ. Applying Proposition 12 we obtain the claim.

Corollary 15. For a set of BI’s B ∈ F2, and a set of channels C, EMDT-optimal listening
schedules are also makespan-optimal.

Proof. From Proposition 11 we obtain an expression for EMDT, which is strictly increasing
in each configuration detection time Tκ. Applying Corollary 13 we obtain the claim.

In the following Chapter we will propose efficient approaches to computing listening sched-
ules that are both EMDT-optimal and makespan-optimal.
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Chapter 5

Discovery Strategies

In this section we present several novel discovery algorithms for multichannel environments,
that are Expected Mean Discovery Time (EMDT)-optimal and makespan-optimal for the
family of BI sets F3 (see Chapter 3 for a definition). Note that F3 contains a broad spectrum
of BI sets, completely including BI sets defined by the IEEE 802.15.4 standard, and a large
fraction of BI sets defined by the IEEE 802.11 standard. In addition, we develop an ILP-
based approach, denoted GENOPT, that computes EMDT-optimal discovery schedules for
arbitrary BI sets in F1.

Note that all presented strategies operate by passively listening to periodically transmitted
beacon messages of neighbors that are agnostic to the discovery process. Moreover, due to
their optimality for quite general sets of BI’s, such as F1, F2, or F3, they can be deployed
without conflicting with existing MAC layer technologies, allowing network operators to select
BI sets suited best for the targeted application and/or device characteristics, such as, e.g.,
energy constraints. In particular, our results apply to BI sets used by technologies such as
IEEE 802.11 and IEEE 802.15.4.

The rest of this chapter is structured as follows. In Section 5.1, we briefly present discovery
strategies specified by the IEEE 802.15.4 standard as well as our previous work on optimized
IEEE 802.15.4 discovery. In Section 5.2, we define the family of algorithms GREEDY, prove
their optimality, and study their complexity. In Section 5.3, we describe a strategy named
CHAN TRAIN, which is a modification of the GREEDY approach attempting at reducing the
number of channel switches. An ILP-based approach to computing EMDT-optimal listening
schedules for arbitrary BI sets is presented in Section 5.4. Finally, in Section 5.5 we describe
a discovery strategy for the special case of BI sets with two elements.

5.1 Discovery Strategies for IEEE 802.15.4 Networks

In the following we will describe discovery strategies for IEEE 802.15.4 networks. First,
we will explain the different scanning techniques offered in the IEEE 802.15.4 standard and
then we will give a brief overview of our previous work on optimized discovery strategies for
IEEE 802.15.4 networks.

5.1.1 PSV - Passive Scan in IEEE 802.15.4

The IEEE 802.15.4 standard supports BI’s that are multiple of powers of 2. We denote the
corresponding family of BI sets by FIEEE 802.15.4 (see also Chapter 3). The IEEE 802.15.4
standard defines four types of scanning techniques [2]. When performing an active or an
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orphan scan, devices transmit beacon requests or orphan notifications on each selected chan-
nel. With the passive scan and the energy detection scan, a device only listens on channels
without any transmission. Frames are only decoded in the passive scan while the result of
an energy scan is the peak energy per channel.

In our work we focus on passive discovery techniques and therefore compare our strategies
to the passive scan of IEEE 802.15.4, denoted by PSV. PSV proceeds by sequentially listening
on each channel c ∈ C for max(B) time slots. Note that listening schedules generated by PSV
are optimal w.r.t. the makespan and the number of channel switches for arbitrary BI sets
B ∈ F1. Still, they fail to minimize EMDT, meaning that although the time when the last
network is detected is minimized, the time of discovery of other network can be significantly
worse than its optimal value, as shown in the following example. Consider a setting with
B = {1, 2} and |C| = 2. The schedule generated by PSV has an EMDT of 2.25, while
minimum EMDT is 2 (scanning channel 1 during time slots 1 and 4, and channel 2 during
time slots 2 and 3). The optimality gap further increases for larger scenarios.

5.1.2 (SW)OPT - Previous Work on Optimized IEEE 802.15.4 Discovery Strategies

In our previous work [6, 7] we developed discovery strategies for IEEE 802.15.4 networks,
the OPTimzed (OPT) and the SWitched OPTimized (SWOPT) strategy. Both strategies
are based on solving ILP minimizing the EMDT and showed significant improvement as
compared to PSV as well as the SWEEP strategy [8]. OPT and SWOPT use the same
ILP, however, SWOPT additionally performs the preprocessing on the BI set described in
Section 3 (dividing all BI’s by their GCD), resulting in listening schedules with fewer channel
switches. Note that OPT and SWOPT generate recursive listening schedules.

Even though (SW)OPT was developed for BI sets from FIEEE 802.15.4, it can be adapted to
support BI sets from F3. However, due to a grouping of time slots in the formulation of the
ILP that allows to compute the discovery probability of individual network configurations,
(SW)OPT cannot be extended to support BI sets from F2.

5.2 GREEDY Discovery Algorithms

In the following, we show that for the family of BI sets F3, schedules that are both EMDT-
optimal and makespan-optimal can be computed in a very efficient way by greedily maximiz-
ing the number of discovered configurations in each time slot. In particular, we will show
that for B ∈ F3 the computational complexity required by a straightforward implementa-

tion is O
(
|C|2 |B|max(B)

)
, while memory consumption is O

(
|C| |B|

∑
b∈B b

)
. We start by

formally defining the family of algorithms GREEDY.

Definition 16 (GREEDY). The family of algorithms GREEDY contains all algorithms that
greedily maximize the number of detected configurations in each time slot. More precisely,
for an arbitrary BI set B ∈ F1 and channel set C, in every time slot t, an algorithm
A ∈ GREEDY scans channel c ∈ C that maximizes the number of configurations from
KBC discovered in time slot t, given the configurations discovered in previous time slots
{1, . . . , t− 1}.
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In the following, we will say ”GREEDY listening schedule” to refer to a schedule generated
by GREEDY algorithm.

Note that for arbitrary BI sets, a GREEDY algorithm does not necessarily generate EMDT-
optimal or makespan-optimal schedules. Consider an example using B = {1, 2, 3, 5} ∈ F1 \F2

and |C| = 3. Figure 5.1a shows a GREEDY listening schedule, which is neither makespan-
optimal nor EMDT-optimal, as can be seen from a comparison with the listening schedule in
Figure 5.1b, which is both makespan-optimal and EMDT-optimal. The number in each square
represents the number of configurations that can be discovered by scanning a particular chan-
nel during a particular time slot. Gray squares represent channels scanned by the illustrated
listening schedule. In particular, optimal value for the makespan in this example constitutes
15 time slots, while optimal value for EMDT is 4.875 time slots, in contrast to 5.125 time
slots achieved by the GREEDY schedule. Another example using B = {2, 3, 4, 6, 12} ∈ F2\F3

and |C| = 2 is depicted in Figure 5.2. The GREEDY listening schedule achieves a EMDT of
6.3 time slots in comparison with the optimal value of 6.1 time slots.

In the following, however, we will show that for the family of BI sets F3, GREEDY al-
gorithms always result in EMDT-optimal and makespan-optimal schedules. We prove this
claim by showing that GREEDY algorithms generate recursive schedules (see Definition 7).
Afterwards, we will discuss computational complexity of GREEDY algorithms.

Proposition 17. In network environments using BI sets from F3, a schedule is GREEDY if
and only if it is recursive.

Proof. W.l.o.g. we assume B = {b1, . . . , bn} with bi < bj for i < j. From Proposition 8
we know that a schedule is recursive if and only if in each time slot t ∈ [1, bi · |C|], for
a bi ∈ B, it discovers at least n − i + 1 configurations, which is the maximum number
of discoverable configurations in each time slot. From Proposition 10 we know that in a
complete environment with a BI set B ∈ F3 a recursive schedule exists. Consequently, since
by definition, GREEDY schedules maximize the number of configurations discovered in each
time slot, GREEDY schedules are recursive. The claim that a recursive schedule is GREEDY
follows directly from Corollary 9.

From this result we are able to derive the following conclusions.

Corollary 18. In a network environment with a BI set B ∈ F3, GREEDY schedules are
complete, makespan-optimal, EMDT-optimal, and maximize the number of configurations
detected until each time slot, for each B′ ⊂ B.

Proof. This is a direct consequence of Corollary 9, and Propositions 11 and 17.

As shown in the example above, the assumption of a BI set from F3 is crucial to prove
EMDT-optimality of GREEDY schedules. However, relaxing the assumption on the used BI
set, we still can show that for the family of BI sets F2, GREEDY schedules are makespan-
optimal, as stated in the following Proposition.

Proposition 19. In a network environment with a BI set B ∈ F2, GREEDY schedules are
makespan-optimal.
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(a) GREEDY

(b) EMDT-optimal schedule

Figure 5.1: Example for a GREEDY listening schedule depicted by gray boxes that is neither
EMDT nor makespan optimal using BI set B = {1, 2, 3, 5} 6∈ F2 and |C| = 3.
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(a) GREEDY

(b) EMDT-optimal schedule

Figure 5.2: Example for a GREEDY listening schedule depicted by gray boxes that is not
EMDT optimal using BI set B = {2, 3, 4, 6, 12} ∈ F2 \ F3 and |C| = 2.

Proof. Consider BI set B = {b1, . . . , bn} ∈ F2, with bi < bj for i < j, and a channel set
C. Consider a GREEDY listening schedule L. We first show that in each time slot t ≤
max(B) · |C|, L detects exactly one configuration (c, bn, δbn(t)), for a c ∈ C. Assume that
this is not the case, that is, at time slot t, L scans channel c such that (c, bn, δbn(t)) have
already been detected earlier in a time slot t − ` · bn for an ` > 0. Then, however, all other
configurations {(c, bi, δbi(t))}i∈{1,...,n} has been detected earlier as well, since in F2, periodicity

of δbn(t) is an integer multiple of periodicity of δbi(t) for i ∈ {1, . . . , n − 1}. Thus, L would
scan a time slot resulting in 0 detected configurations or this time slot would be idle. On the
other hand, however, we know from Corollary 5 that for each time slot t ≤ bn · |C| there exists
a channel c ∈ C such that a configuration (c, bn, δbn(t)) can be detected. This contradicts the
assumption that L is GREEDY, proving the claim.

Note that GREEDY algorithms have a compelling property of low complexity. A straight-
forward example implementation proceeds as follows. It iterates over time slots until all
configurations are discovered. For each configuration it stores a binary variable indicating if
it has been discovered or not, resulting in |C| |B|

∑
b∈B b bits of required memory space. At

each time slot t, it iterates over all channels c ∈ C, computing for each channel, which of
configurations {(c, b, δb(t)) | b ∈ B} are not yet discovered. Finally, it selects a channel, for
which this number is highest. Consequently, computational complexity at each time slot is
O (|C| |B|). The overall computational complexity depends on the number of time slots re-
quired to discover all configurations. Since for complete environments with B ∈ F2 GREEDY
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algorithms are makespan-optimal, the number of time slots is max(B) |C|, resulting in total

complexity of O
(
|C|2 |B|max(B)

)
. In F1, we only know that GREEDY algorithms termi-

nate at latest in time slot LCM(B)|C|. (Proof is similar to proof of Proposition 19.) That

is, an upper bound for the computational complexity over F1 is O
(
|C|2 |B|LCM(B)

)
.

Please note that if the assumption made in our system model in Section 2 that the GCD of
considered BI sets is 1 does not hold, the complexity can be further reduced by replacing B

by B′ =
{

b
GCD(B)

}
b∈B

. This preprocessing step allows to reduce computational complexity

over F2 to O
(
|C|2 |B| max(B)

GCD(B)

)
, over F1 the upper bound becomes O

(
|C|2 |B| LCM(B)

GCD(B)

)
.

Note that in general, in each time slot, there might exist several channels whose selection
maximizes the number of discovered configurations. Therefore, GREEDY is a family of
algorithms and not a single algorithm. The difference between them is the tiebreaking rule
that, in each time slot, selects one channel to be scanned from the set of channels maximizing
the number of discovered configurations. In the following we describe two deterministic and
two probabilistic tiebreaking rules.

GREEDY RND randomly selects a channel among the channels maximizing the number
of discovered configurations.

GREEDY DTR selects the channel with the highest identifier among the channels max-
imizing the number of discovered configurations.

GREEDY RND-SWT tests if the channel scanned in the previous time slot is within
the set of channels maximizing the number of discovered configurations. If yes, it is selected.
If no, it proceeds as GREEDY RND. By prioritizing the most recently selected channel,
GREEDY RND-SWT tries to reduce the number of channel switches by creating a channel
train.

GREEDY DTR-SWT is similar to GREEDY RND-SWT but without a random com-
ponent. It tests if the channel scanned in the previous time slot is within the set of channels
maximizing the number of discovered configurations. If yes, it is selected. If no, it proceeds
as GREEDY DTR.

5.3 CHAN TRAIN - Reducing the Number of Channel Switches

In this section, we propose an algorithm, which, similar to the GREEDY SWT algorithms
in the previous section, in addition to minimizing EMDT, tries to minimize the number of
channel switches. While GREEDY RND-SWT and GREEDY DTR-SWT do that by taking
into account the most recently scanned channel, the CHAN TRAIN strategy goes one step
further and also takes into account channels that will be scanned in future time slots.

To be more precise, in time slot t = 1, CHAN TRAIN computes the set of channels
maximizing the number of detected configurations in t. Out of those, it than selects the
channel maximizing the sum of consecutive future time slots t′ where at least the same
number of configurations can be detected and of the number of previous consecutive time
slots allocated on this channel. In case multiple channels achieve the same maximum sum,
it selects the channel with the lowest identifier. It then jumps to t + t′ and repeats the
procedure.
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(a) CHAN TRAIN (b) GREEDY

Figure 5.3: Example showing the non-greedy behavior of the CHAN TRAIN strategy for the
BI set B = {1, 2, 3, 6} ∈ F2 \ F3 and |C| = 3

Proposition 20. In an environment with a BI set B ∈ F3, CHAN TRAIN is GREEDY.

Proof. From Proposition 8 and the definition of CHAN TRAIN we conclude that CHAN
TRAIN generates recursive schedules for BI sets from F3. Propositions 11 and 17 then
implies the claim.

Note that for a BI set B 6∈ F3 Proposition 20 is no longer true, as illustrated by the example
in Figure 5.3.

5.4 GENOPT - Minimizing Mean Discovery Time for Arbitrary Beacon
Interval Sets

In the previous sections, we presented a family of low-complexity algorithms that are EMDT-
optimal for the broad family of BI sets F3. Still, those algorithms might fail to achieve
optimality for BI sets in F1 \ F3, as shown in examples in Figures 5.1 and 5.2.

In this section, we formulate a set of linear constraints describing a complete listening
schedule for arbitrary BI sets B ∈ F1. We use this set to develop a discovery strategy
GENOPT that minimizes EMDT, by complementing it with an appropriate linear objective
function. Note that this set of constraints might be used to generate schedules optimized w.r.t.
other metrics. Since GENOPT involves solving an ILP, it suffers from high computational
complexity and memory consumption, and should only be performed offline and for network
environments that are limited in size.

Note that listening schedules generated by GENOPT might not be makespan-optimal as
shown in following example. Figure 5.4 depicts an example using B = {1, 2, 4, 5} and |C| = 2
for which an EMDT-optimal listening schedule cannot be constructed within max(B)·|C| time
slots. Figure 5.4a shows an EMDT-optimal listening schedule with the additional constraint
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(a) Makespan constrained by the optimum value max(B) · |C|

(b) Makespan constrained by LCM(B) · |C|

Figure 5.4: Example for a listening schedule generated by GENOPT, using BI set B =
{1, 2, 4, 5} ∈ F1 \ F2 and |C| = 2. Observe that imposing an upper bound on
the makespan of the generated schedule increases EMDT. Therefore, in this ex-
ample, no schedule exists which is both EMDT-optimal and makespan-optimal.

of using at most max(B) · |C| time slots. Observe that its EMDT is 3.875 time slots as
compared to the optimal value of 3.75 time slots of the schedule shown in Figure 5.4b.

To formulate GENOPT, we define the following variables.

xc,t,b =

{
1 , if configuration (c, b, δt(b)) is detected during scan of channel c in time slot t
0 , otherwise

hc,t =

{
1 , if a scan is performed on channel c at time slot t
0 , otherwise

GENOPT can be formulated as follows.
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min
1

|C| |B|
∑
c∈C

∑
b∈B

LCM(B)|C|∑
t=1

xc,t,b · t ·
1

b

s.t.

LCM(B)·|C|
b

−1∑
m=0

xc,mb+δ,b = 1 for all c ∈ C, b ∈ B, δ ∈ {1, . . . , b} (C1)

xc,b,t ≤ hc,t for all c ∈ C, b ∈ B, t ∈ {1, . . . , LCM(B) |C|} (C2)∑
c∈C

hc,t ≤ 1 for all t ∈ {1, . . . , LCM(B) |C|} . (C3)

In this formulation, constraint (C1) ensures that each configuration is detected, (C2) en-
sures that a configuration (c, b, δt(b)) can only be detected if channel c is scanned during time
slot t, (C3) makes sure that only one channel is scanned during a time slot.

5.5 OPTB2 - Special case: |B| = 2

In this section, we describe the discovery strategy OPTB2 for the special case where the BI
set contains two elements, B = {b1, b2}, b1 < b2, which is EMDT-optimal for any B ∈ F1

with |B| = 2. The number of channels can be arbitrarily large.

Definition 21 (OPTB2). We are given a BI set B = {b1, b2}, with b1 < b2, and a set of
channels C = {c1, . . . , cm}. Discovery strategy OPTB2 generates a listening schedule, where
channel j ∈ {1, . . . ,m} is scanned during time slots [(j − 1)b1 + 1, jb1] and
[mb1 + (m− j)(b2 − b1) + 1, mb1 + (m− j + 1)(b2 − b1)].

Proposition 22. In network environments with BI sets B = {b1, b2}, OPTB2 is EMDT-
optimal and makespan-optimal.

Proof. Observe that OPTB2 generates recursive schedules. The claim then follows from
Corollary 9 and Proposition 11.

5.6 Results Overview

Table 5.1 provides an overview of optimality results for studied discovery strategies w.r.t.
EMDT, makespan and number of channel switches, for different BI families, accompanied
by computational complexity. Note that if a discovery strategy is makespan-optimal the
generated listening schedules are also energy-optimal, since they do not contain idle time
slots or redundant scans. The performance metrics we use for evaluation are described in
detail in Section 6.2.

Copyright at Technische Universität Berlin.
All rights reserved.

TKN-15-002 Page 25



TU Berlin

Strategy Makespan EMDT Channel Switches Complexity

PSV F1 F1 O (C)
(SW)OPT F3 F3 High (ILP)

GREEDY F2 F3 O
(
|C|2 |B|LCM(B)

)
GENOPT F2 F1 High (ILP)
OPTB2 (only |B| = 2) F1 F1 O (C)

Table 5.1: Overview of discovery strategies and their optimality w.r.t. the makespan, EMDT,
and number of channel switches, for different families of BI sets.
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Chapter 6

Evaluation

In the following we present a numerical evaluation of the proposed discovery strategies. Com-
plementing optimality results w.r.t. EMDT and makespan for BI sets from F3, presented in
Chapter 5, we evaluate the proposed algorithms over BI sets for which EMDT-optimality
and/or makespan-optimality is not guaranteed, also considering performance metrics such as
number of channel switches, and energy consumption. We will show that the performance of
GREEDY algorithms is very close to the optimum in most settings. Given their low com-
plexity, they thus represent an attractive solution to the problem of neighbor discovery for a
broad range of deployment scenarios.

We will describe the evaluation setting in Section 6.1, the performance metrics in Sec-
tion 6.2, and the results of the evaluation in Section 6.3.

6.1 Evaluation Setting

In the following, we evaluate and compare GREEDY discovery algorithms with PSV, CHAN
TRAIN, and GENOPT strategies. In order to evaluate the proposed algorithms over BI sets
from F1 and F2 we draw random samples from these families of BI sets until the confidence
intervals for the studied performance metrics are sufficiently small. Note, however, that in
order to include GENOPT, which is based on solving an ILP, into the evaluation, we have
to restrict the size of the studied scenarios, to keep the computational effort feasible. The
number of decision variables of GENOPT depends mainly on the LCM(B) and the number
of channels |C|. Consequently, we have to restrict the maximum number of channels, as
well as the number of elements in studied BI sets, and their size. In particular, we vary the
number of channels between 2 and 12. The minimum size of BI sets is set to |B| = 3, since
the special case |B| = 2 can be solved in an EMDT-optimal and makespan-optimal way for
arbitrary BI sets from F1, as show in Section 5.5. Please note that due to the fact that a
listening schedule for a BI set B = {b1, . . . , bn} can be transformed into a schedule for a BI
set B′ = {c · b1, . . . , c · bn}, substituting τ ′ = c·τ , we only consider BI sets with GCD(B) = 1.
Still, the results of the evaluation are valid for a much broader range of BI sets, including all
sets obtained by multiplying individual BI’s with a constant factor.

In the following we describe the procedure used to sample families of BI sets F1 and F2 as
well as the approach to computing ILP-based listening schedule for the GENOPT strategy.

Copyright at Technische Universität Berlin.
All rights reserved.

TKN-15-002 Page 27



TU Berlin

6.1.1 Sampling F1

We draw random samples B ∈ F1 as follows. We first draw |B| from a uniform distribution
over [3, 6]. We then draw individual BI’s from a uniform distribution over [1, 10]. The selected
BI’s are then divided by their GCD. If the resulting BI set is new, it is used for evaluation.
In total, this approach results in 775 unique BI sets.

6.1.2 Sampling F2

We draw random samples B ∈ F2 as follows. For each number from [1, 256] we first compute
the power set of its factors. From the computed power sets, we select subsets whose cardinality
is between 3 and 8, that contain the number itself, and whose GCD is one. In total, we obtain
259286 unique BI sets.

6.1.3 Computing GENOPT

The computational complexity of GENOPT strongly depends on the maximum number of
time slots allowed for the solution. Corollary 14 states that the makespan of EMDT-optimal
schedules is bounded from above by LCM(B) · |C|. Note that LCM(B) is O (max(B)!)
and thefore computing solutions over such a higher number of time slots can be extremely
time consuming. However, we observed that in the vast majority of cases, optimal solutions
can be found within 2 · max(B) time slots. Therefore, in order to reduce solving time, we
execute GENOPT iteratively, increasing the upper bound on the maximum time slots. More
precisely, we initialize the Gurobi solver [5] with the best solution found by executing the
GREEDY RND strategy multiple times (1000 times for B ∈ F1, 50 times for B ∈ F2, because
of higher complexity due to larger considered max(B)) and restrict the maximum number
of time slots to the number of time slots required by this solution. In the second step, the
number of slots is doubled, while in the final third step, it is set to LCM(B) · |C|. For the
first and second iteration the time limit for the optimization is set to 1800 seconds, while for
the final iteration it is set to 7200 seconds. If, however, after the time limit is exceeded the
optimality gap is still greater than 3% for B ∈ F1 and 1% for B ∈ F2, the optimization is
resumed until the optimality gap is sufficiently small.

6.2 Performance Metrics

The discovery strategies have been compared w.r.t. the performance metrics described in the
following.

EMDT The EMDT is the expected mean detection time of all neighbor networks, given
that all channels, BI’s, and offsets have an equal probability to be selected by a network (see
Chapter 4 for more details). Here expected value is over all possible network environments
for a given set of channels and set of BI’s, while mean is over the neighbor networks in a
particular environment (see Section 4.1 for more details). In the following, EMDT results
are depicted normalized by their optimal value, or, to be more precise, by the objective
boundary obtained while generating the listening schedule for GENOPT (which is within 1%
to 3% from the optimum, see Section 6.1.3).
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The EMDT is an important metric in scenarios in which a device has to discover a subset
of its neighbors, e.g. in Delay Tolerant Networks (DTN’s) in which devices have to detect
suitable forwarders.

Number of channel switches This metric refers to the number of times a device has to
change the listening channel when executing a complete listening schedule. In the following,
it is depicted normalized by the minimum number of switches for a complete schedule, which
is (|C| − 1). When devices perform a channel switch they are in a deaf period in which
they are not able to receive any frames, which might lead to losing beacons. A low number
of channel switches is especially important if the ratio of the channel switching time to the
duration of the time slot τ is large. In [6, 7] it has been shown that listening schedules with
higher number of channel switches result in higher discovery times when being executed in
a realistic environment on IEEE 802.15.4 devices, even though under ideal conditions, when
the duration of a channel switch is assumed to be 0, they exhibit identical performance.

Makespan The makespan is the total number of time slots required by a listening schedule
to detect all networks that are using any configuration κ ∈ KBC (see Definition 3). In other
words, it is the number of time slots required by the schedule to detect all neighbors in a
complete environment. Note that in environments that are not complete, makespan does not
equal the detection time of the last neighbor. Still, the device performing the discovery cannot
know when all neighbors are detected and, therefore, has to execute the schedule until all
potential neighbors using a configuration κ ∈ KBC are detected. In the following, makespan
is depicted normalized to the optimum makespan max(B) · |C|, established by Corollary 5.

Number of active time slots The number of active slots of a schedule is the number of time
slots during which a device is actually listening on any channel. It is proportional to the
amount of energy required to execute a schedule. The number of active time slots is always
less or equal than the makespan due to the fact that a listening schedule might contain idle
time slots during which no scan is allocated on any channel. In particular, makespan-optimal
schedules are also optimal w.r.t. the number of active time slots. In the following, the number
of active time slots is depicted normalized to its optimum value max(B) · |C|.

6.3 Evaluation Results

In the following, we extend the analytical optimality results established in Chapter 5 by
numerical evaluations over sets of BI’s for which optimality cannot be proven. Moreover, in
addition to EMDT and makespan considered in Chapter 5, we extend the set of considered
performance metrics by the number of channel switches and number of active time slots. As
described in more details in Section 6.1, we randomly sample the families of BI’s F1 and F2,
and vary the number of channels |C| between 2 and 12. For each |C| ∈ [2, 12] we repeat the
evaluation for 150 different BI sets. The values depicted in the following are mean values
computed over 150 iterations with different BI sets, accompanied by the confidence intervals
for the confidence level 95%.
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6.3.1 Family of BI Sets F2

In Chapter 5 we showed that GREEDY algorithms are makespan-optimal for BI sets from F2.
Moreover, the results of the numerical evaluation revealed that CHAN TRAIN is makespan-
optimal over the evaluated BI sets from F2. Therefore, in the following, we only show results
for the EMDT and the number of channel switches. (Note that the number of active time
slots is also optimal for makespan-optimal schedules.)

Figure 6.1a depicts the normalized EMDT of the evaluated discovery strategies. We observe
that GREEDY algorithms are within 2% of the optimum and approximate the optimum even
further when the number of channels increases. CHAN TRAIN has a slightly higher EMDT,
which is, however, still within 3% of the optimum. In contrast, PSV has a significantly
larger EMDT, reaching 400% of the optimum, and diverging when the number of channels
increases. Note that the 4 studied GREEDY algorithms are almost indistinguishable w.r.t.
to their EMDT at the given confidence level.

Figure 6.1 shows the number of channel switches normalized to the minimum value |C|−1.
We can observe that the design of CHAN TRAIN aiming at reducing the number channel
switches is successful at achieving its goal. It results in the second lowest number of channel
switches with about 30 times the number of switches as compared to optimum achieved by
PSV. Furthermore the distance to the optimum number is constant with increasing num-
ber of channels. Further we observe that GREEDY algorithms GREEDY RND-SWT and
GREEDY DTR-SWT, that prioritize the channel allocated on the previous time slot if pos-
sible, allow to reduce the number of channel switches w.r.t. their versions that do not do
the prioritization. We also observe that GENOPT and GREEDY RND have relatively poor
performance, requiring up to a factor of 200 more switches than the optimum value achieved
by PSV.

6.3.2 Family of BI Sets F1

Figure 6.2a shows the normalized EMDT for the family of BI sets F1. We observe that the
performance of the individual discovery algorithms, realative to each other, did not signif-
icantly change. We also observe that their normalized EMDT slightly improved. On the
one hand, a potential explanation for this is the less regular structure of BI sets in F1. As
shown in Corollary 14, the upper bound for the makespan of EMDT-optimal shedules is
LCM(B) · |C|, while in F2 it is max(B) · |C| (as shown in Corollary 15). On the other hand,
the evaluation for BI sets from F1 was performed with considerably smaller BI’s, in order to
make the evaluation of GENOPT computationally feasible. Still, while EMDT of GREEDY
strategies are within 1% of the optimum, EMDT of PSV reaches 160% of the optimum is is
increasing with the number of channels.

Figure 6.2b displays the number of channel switches. Similar to EMDT, we observe that
the relative performance of the discovery strategies remained similar as for F2. Also, the
distance to the optimum has decreased for all approaches, which, again, might be due to the
smaller BI’s used for evaluation.

Figure 6.3a shows the normalized makespan for the family of BI sets F1. For all strate-
gies the normalized makespan improves with the increasing number of channels. E.g., for
GENOPT the gap reduces from about 15% for two channels to about 1% for 12 channels.
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Figure 6.1: Evaluation results for the family of BI sets F2 (see Section 6.3.1 for details).
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Figure 6.2: Evaluation results for the family of BI sets F1 (see Section 6.3.2 for details).
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The listening schedules of the considered GREEDY approaches and CHAN TRAIN result in
similar makespan at the considered confidence level.

Since makespan is only providing a measure for the last discovery time but not the actual
energy usage, Figure 6.3b depicts the normalized number of active slots. The results for all
strategies are very similar to those for the makespan, except that they are shifted by about
5% meaning that the schedules of the GREEDY approaches, CHAN TRAIN and GENOPT
consist of about 5% idle slots in which no scan is scheduled on any channel due to the fact
that no new configurations will be discovered.
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Figure 6.3: Evaluation results for the family of BI sets F1 (see Section 6.3.2 for details).
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Chapter 7

Selection of Beacon Intervals to Support
Efficient Neighbor Discovery

In the preceding sections we presented and evaluated discovery strategies that support arbi-
trary finite BI sets from F1. However, the low-complexity GREEDY approaches are EMDT-
optimal only for BI sets from F3 and makespan-optimal for BI sets from F2. Although we also
presented an ILP-based approach GENOPT which is EMDT-optimal for BI sets from F1, it
suffers from high computational complexity and can only be applied offline and to network
environments limited in size.

In this section we discuss and provide intuition for problems arising when constructing
listening schedules for BI sets in F1 and F2, and provide a recommendation for the selection of
BI sets that support efficient neighbor discovery. This recommendation may be useful for the
development of new technologies and communication protocols for wireless communication
that use periodic beacon frames for management or synchronization purposes or in case
of deploying devices using existing technologies that support a wide range of BI’s, such as
IEEE 802.11. In particular, we identified two following issues that can arise when constructing
listening schedules.

• The makespan of the schedule is greater than max(B) · |C| time slots (i.e., it is not
makespan-optimal).

• The BI’s are not discovered in ascending order (i.e., the schedule is not recursive).

The first problem of listening schedules being not makespan-optimal is caused by idle slots
and redundant scans. During idle slots no scan is scheduled due to the fact that no new
configurations can be discovered on any channel. In contrast, during redundant slots, a part
of neighbors that send beacons during this time slot has already been discovered. Redundant
scans are caused by the fact that information acquired in previously scanned slots cannot be
completely reused for the discovery of other configurations on the same channel.

Figure 7.1a shows an optimized listening schedule generated by GENOPT for B = {1, 2, 3}
and |C| = 2 and is an example for a schedule containing redundant scans. Even though
max(B) = 3 there are four time slots scanned on channel c1. The reason for the redundant
scans is a conflict between the attempt to decrease the discovery time for smaller BI’s in
order to minimize EMDT and the missing possibility of reusing the information acquired by
scanning the time slot scheduled for smaller BI’s b1 and b2 for the discovery of neighbors
operating with the larger BI b3. From time slot t1 to t4, the schedule finishes the discovery of
neighbors using b1 and b2 with a minimum EMDT. However, the scan at t4 will not contribute
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to the discovery of neighbors operating with b3 on c1 since t1 was already scanned on c1.
Another listening schedule achieving equal EMDT is described by L = {(1, 1), (0, 3), (1, 2)}
(see Section 2 for definitions and notation). In total it requires one time slot less but also
increases the discovery time for neighbors using b2 on c1 while decreasing the discovery time
for b3 on c0. This schedule suffers from the second identified issue that will be discussed
further below.

Figure 7.1b depicts an example for a listening schedule generated by GENOPT for B =
{2, 3, 4} and |C| = 2 containing an idle slot. The schedule first completes the discovery of
neighbors with b2 on c1, then b2 and b3 on c0, and then b3 on c1 during time slot t6. Due to
the fact that scanning t6 on c1 does not result in any new information regarding neighbors
operating with b4, since t2 has already been scanned on c1, time slots t7 and t8 have to be
scanned to finish the discovery of all neighbors operating on c1. Time slot t9 is not assigned
to channel c0 because t5 has been already scanned and therefore the time slot will be idle.

Similar to the previous example illustrating redundant scans, there also exists an alternative
listening schedule L = {(1, 2), (0, 4), (1, 3)} for the given parameter set resulting in the same
EMDT. This schedule does not contain any idle time slots but, again, completes the discovery
of neighbors with larger BI’s before detecting all neighbors with lower BI’s. In this example
the discovery time of neighbors operating with b3 on c1 is increased while the discovery of
neighbors using b4 on c1 is speeded up.

The second identified issue relates to the order in which configurations with specific BI’s
are discovered. In order to reduce EMDT for a given BI set B and channel set C a listening
schedule shall discover neighbors in ascending order of their BI’s. We call such schedules
recursive (see Definition 7).

Examples of this issue were already mentioned in the description of the first issue regarding
alternative schedules to the solutions shown in Figures 7.1a and 7.1b. Another example is
shown in Figure 7.1c. The discovery of neighbors using b1 or b2 is completed on channel c1
even before a time slot has been scanned on channel c2. Due to the composition of BI’s in
set B a recursive listening schedule does not exist.

In the following we will give a recommendation on the selection of BI’s sets that help
avoiding the issues described above. To support efficient neighbor discovery by eliminating
idle time slots as well as redundant scans, and to enable generation of recursive listening
schedules, we recommend to prefer BI sets from F3 over those from F1 and F2. Note that for
the family of BI sets F3 our low-complexity GREEDY algorithms generate recursive listening
schedules that result in optimal EMDT and optimal makespan.

Nevertheless, if a higher diversity of BI’s is required, we recommend to select F2. For this
family GREEDY algorithms and CHAN TRAIN generate listening schedules with optimal
makespan and a slightly higher EMDT than the optimal value. Depending on whether EMDT
or the number of channel switches shall be prioritized, we recommend to use either one of
the GREEDY approaches or, alternatively, the CHAN TRAIN strategy.

In case a scenario requires using a BI set from F1, we suggest to use either a GREEDY
algorithm or the CHAN TRAIN strategy. Both options allow to generate listening schedules
with an EMDT that is within 5% of the optimal value for the evaluated BI sets. If a dynamic
computation of listening schedules directly on the devices themselves is not required and the
BI set B and channel set C are static, GENOPT can be used to compute a schedule offline
and store it on the devices.
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(a) Redundant scans
B = {1, 2, 3} |C| = 2

(b) Idle slots
B = {2, 3, 4} |C| = 2

(c) Order of BI discovery
B = {1, 2, 3} |C| = 3

Figure 7.1: Issues arising when using arbitrary BI sets.
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Chapter 8

Conclusion

This paper extends our previous work on asynchronous passive multi-channel discovery. It
presents novel discovery strategies that are not limited to BI’s defined in the IEEE 802.15.4
standard but support a broad range of BI sets. In particular, we characterizes a family of
low-complexity algorithms, named GREEDY, minimizing makespan and EMDT for the broad
family of BI sets F3, where each BI is an integer multiple of all smaller BI’s. Notably, this
family completely includes and significantly extends BI sets supported by the IEEE 802.15.4
standard. In addition, we develop an ILP-based approach minimizing EMDT for arbitrary BI
sets that, however, exhibits high computational complexity and memory consumption and is,
therefore, only applicable for offline computation and for network environments with limited
size.

In addition to analytically proving optimality for the developed approaches for BI sets
from F3, we performed an extensive numerical evaluation on two more general families of
BI including the most general ones. We compared our strategies with the passive discovery
strategy defined by the IEEE 802.15.4 standard and showed that our approaches exhibit su-
perior performance w.r.t. several performance metrics. Finally, we provide recommendations
on the selection of the BI sets that are as nonrestrictive as possible, at the same time allowing
for an efficient neighbor discovery.

Our future work will focus on collaboration between devices by sharing gossip information
about discovered neighbors in their beacon messages. By including this information into
listening schedules computation, devices will be able to speed up the discovery of their neigh-
bors. In addition, we will evaluate the developed approaches in realistic environments using
simulations and experiments.
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