
TKN
Telecommunication

Networks Group

��������� 	��
����
� ������

�������������
��� ��
����� �����

���������	
 �� �
� ��� �������������

������� ����

��

���	�� ����

���������	
�����
���

������� ������ � �

��� �������	
 ���
�� ���������

��� ��������� �����
� ������

���
��� ���� !� "#�$ %��� &����'

January 8-9, 2002
Technical University Berlin

Berlin, Germany

January 8-9, 2002
Technical University Berlin

Berlin, Germany

ndnd

Technische Universität
Berlin

TKNTKN
TelecommunicationTelecommunication

Networks GroupNetworks Group

Technische Universität
Berlin

TKNTKN
TelecommunicationTelecommunication

Networks GroupNetworks Group

Preface

The second International OMNeT++ Workshop took place on January 8 & 9, 2002 at
the Technische Universität Berlin. Its target was to bring together active users and de-
velopers of the OMNeT++ simulation tool in true tradition of a workshop: to provide a
forum for discussions, interactions, exchange of ideas, users’ wishes and hopes for the
future development of OMNeT++. At this time, OMNeT++ enjoys growing popularity
among a wide range of scientific communities and it competes well in these communi-
ties with established tools. It is the hope of this workshop and its organizers to foster
this success story even further.

Contained within these proceedings you will find the papers and (partially) slides
that were presented at the workshop. Unfortunately, you will not find the discussions
that take place during the two days — plenty of time has been set aside for them, and I
am sure that they will be both interesting and challenging.

I hope that you will enjoy the workshop and your stay here in Berlin!

January 2002 Holger Karl

Organization

The second International OMNeT++ Workshop was jointly organized by the Telecom-
munication Networks Group, Technische Universität Berlin and by the Institut für Nachrich-
tentechnik, Universität Karlsruhe (TH).

Executive Committee

Ulrich Kaage Universität Karls-
ruhe (TH)

kaage@int.uni-karlsruhe.de

Holger Karl Technische Univer-
sität Berlin

karl@ee.tu-berlin.de

Guenter Schaefer Technische Univer-
sität Berlin

schaefer@ee.tu-berlin.de

Andras Varga Budapest University
of Technology and
Economics

andras@whale.hit.bme.hu

An on-line version of these proceedings can be found at the website of the Telecommu-
nication Networks Group, TU Berlin at http://www-tkn.ee.tu-berlin.de.

Table of Contents

Simulating Large and Specific Networks

A Simulation Suite for Accurate Modeling of IPv6 Networks : : : : : : : : : : : : : : : : 2
Johnny Lai, Eric Wu (Monash University), Andras Varga (Budapest University
of Technology and Economics), Y. Ahmet Sekercioglu, Gregory K. Egan
(Monash University)

A simulational study of multiexchange circuit switching networks (with
dynamic routing) using OMNeT++ : 13
Luisa Jorga (Polytechnic Institute of Baraganca) and Paulo Melo (University
of Coimbra)

Using realistic topology data for large scale network simulations in OMNeT++ : 18
Roland Bless (Universität Karlsruhe (TH))

Parallel and Distributed Simulation

Parallel Simulation with OMNeT++ using the Statistical Synchronization Method 24
Gabor Lencse (Szechenyi Istvan University)

A Networked Remote Simulation Architecture and its Remote OMNeT++
Implementation : 33
Mark Erdei and Katalin Soja and Ambrus Wagner (Budapest University of
Technology and Economics)

Using Akaroa with OMNeT++ : 43
Steffen Sroka, Holger Karl (Technische Universität Berlin)

Simulating Wireless and Mobile Networks

A Discrete Model of the Mobile Radio Channel in OMNeT++ : : : : : : : : : : : : : : : 52
Timo Weiss (Universität Karlsruhe (TH))

A HiperLAN/2 simulation model in OMNeT++ : 61
Daniel Hollos, Holger Karl (Technische Universität Berlin)

Future OMNeT++

Java: Future Tools Platform for OMNeT++? : 72
Andras Varga (Budapest University of Technology and Economics)

Second Generation NED : 77
Andras Varga (Budapest University of Technology and Economics)

OMNeT++ Model Convergence: Aspects and Solutions : 83
Ulrich Kaage (Universität Karlsruhe (TH))

Planning New Features for the OMNeT++ Simulation Kernel : : : : : : : : : : : : : : : 89
Andras Varga (Budapest University of Technology and Economics)

Last minute presentations (without documents)

Simulated-KIDS — A flexible simulation suite for individual Quality of
Service mechanisms : 93
Klaus Wehrle (Universität Karlsruhe (TH))

Adaptation of a router simulation to realistic delays : 93
Eckehardt Luhm (Universität Karlsruhe (TH))

A flexible traffic generator for realistic Internet traffic : 93
Stefan Sellschopp, Milena Neumann (Universität Karlsruhe (TH))

Session 1:
Simulating Large and

Specific Networks

A Simulation Suite for Accurate Modeling of IPv6
Protocols

Johnny Lai1, Eric Wu1 Andràs Varga2, Y. Ahmet Şekerciŏglu1, and Gregory K. Egan1

1 Centre for Telecommunications and Information Engineering, Monash University,
Melbourne, Australia

2 Department of Telecommunications, Technical University of Budapest, Budapest, Hungary

Abstract. As part of our ongoing research program on performance analysis of
protocols for mobility management in IPv6 networks, we have developed a set of
OMNeT++ models for accurate simulation of IPv6 protocols. Our simulation set
models the functionality of the RFC 2373IP Version 6 Addressing Architecture
[5], RFC 2460Internet Protocol, Version 6 (IPv6) Specification[3], RFC 2461
Neighbor Discovery for IP Version 6 (IPv6)[7], RFC 2462 IPv6Stateless Address
Autoconfiguration[10], RFC 2463Internet Control Message Protocol (ICMPv6)
for the Internet Protocol Version 6 (IPv6) Specification[2], and RFC 2472IP
Version 6 over PPP[4].

1 Introduction

Inevitably, telecommunication networks are increasingly becoming more complex as
the trend towards the integration of telephony and data networks into integrated ser-
vices networks gains momentum. It is expected that these integrated services networks
will include wireless and mobile environments as well as wired ones. As a consequence
of the rapid development and fusion of communication technologies, understanding the
dynamic interaction of protocols and performance analysis are becoming much more
complex to be investigated in small-scale experimental testbeds. Analytical analysis is
also not feasible for similar reasons. Simulation is now considered as a tool of equal
importance (as complementary to the analytical and experimental studies) for investi-
gating and understanding the behavior of complex systems.

As part of our ongoing research programs on analysis of protocol performance on
mobile IPv6 networks, we have developed a set of OMNeT++ models for accurate
simulation of IPv6 protocols. We have chosen OMNeT++ as the simulation framework
because of the following reasons: (a) It allows the design of modular simulation models,
which can be combined and reused flexibly; (b) It is possible to compose models with
any granular hierarchy; (c) OMNeT++ is open-source, free for non-profit use, and has
a fairly large and active user community; (d) It has support for parallel simulation; and
(e) Its performance is comparable to commercial simulation tools. Section2 presents a
brief summary of the features of OMNeT++.

Our IPv6 simulation model suite consists of several functional blocks. There is also
dual-stack support for analysis of protocol interactions in mixed IPv4-IPv6 networking
environments. The accuracy of the simulation is ensured because of the fine-grained

level of details in the simulation. Realistically formatted protocol data units (PDUs) are
passed between simulated network entities and service data units (SDUs) exchanged be-
tween the adjacent protocol layers. The IPv6 datagram format currently includes most
of the extension headers except the ones related to Authentication and Encapsulating
Security Payload. Real data from our network testbed is used to calibrate the model,
and simulated processing delays are introduced where necessary to account for the dif-
ferences without sacrificing performance. The structural breakdown of the model and
module descriptions can be found in Section3.

Currently we are working on mobility support, and future enhancements in the
pipeline include profiling the model for very large scale network simulations (i.e. 10,000+
network entities) and dynamic creation of network topologies through XML (extensible
markup language) based configuration files.

2 OMNeT++ Simulation Framework

OMNeT++ is a C++-based discrete event simulation package developed at the Tech-
nical University of Budapest by András Varga [8,12]. The primary application area of
OMNeT++ is the simulation of computer networks and other distributed systems. It is
open-source, free for non-profit use, and has a fairly large and active user community.
It also allows the design of modular simulation models, which can be combined and
reused flexibly. Additionally, OMNeT++ allows the composition of models with any
granular hierarchy. It has been shown that this simulation framework is suitable for
simulation of complex systems like Internet nodes and dynamics of TCP/IP protocols
realistically [6,14].

Simulated models are composed of hierarchically nested modules. In OMNeT++,
there are two types of modules: simple and compound modules. Simple modules form
the lowest hierarchy level and implement the activity of a module, and they can arbi-
trarily be combined to form compound modules. Modules communicate with message
passing. Messages can be sent either through connections that span between modules,
or directly to their destination modules. The user defines the structure of the model (the
modules and their interconnection) by using the topology description language (NED)
of OMNeT++ [11].

Simple modules are implemented in C++, using the simulation kernel system calls
and the simulation class library. For each simple module, it is possible to choose be-
tween process-style and protocol-style (state machine) modeling. Therefore, different
parts of computing and communication systems can be programmed in their natural way
and connected easily. The simulation class library provides a well-defined application
programmer’s interface (API) to the most common simulation tasks, including: ran-
dom number generation; queues, arrays and other containers; messages; topology ex-
ploration and routing; module creation and destruction; dynamic topologies; statistics;
density estimation (including histograms, P2 and k-split [13]); output data recording.
The object-oriented approach allows the flexible extension of the base classes provided
in the simulation kernel.

Model components are compiled and linked with the simulation library, and one of
the user interface libraries to form an executable program. One user interface library

is optimized for command-line and batch-oriented execution, while the other employs
a graphical user interface (GUI) that can be used to trace and debug the simulation
(as an example, Figure1 shows a simulated network configuration). The GUI makes
the internals of a simulation model fully visible: it displays the network graphics, an-
imates the message flow and lets the user peek into objects (messages, queues, etc.)
within the model. It is also possible to change parameters and message fields for debug-
ging purposes. Visualization features make OMNeT++ suitable also for educational or
demonstration purposes. Because of the modular design, it is possible to embed the sim-
ulation engine (including models) into other applications. OMNeT++ also has support
for parallel discrete event simulations (PDES).

Fig. 1.OMNeT++ screen showing a hierarchical network model. The upper right window
shows the topology of a simulated network consisting of four subnets. Topologies of the
two of these subnets, ecse and bigpond are shown in the middle and bottom windows
respectively.

3 IPv6 Simulation Model

The IPv6 simulation model suite consists of several functional blocks. As one can ex-
pect, the major blocks reside in the network and data link control layers. These blocks
can be connected together to form simulated hosts, routers, Ethernet hubs, point-to-
point links etc. Figure2 shows these blocks in a model of a router with three network

interfaces. The core module (IPProcessing) of the network layer (Figure2(b)) pro-
vides dual-stack support (IPv4 and IPv6).

Our simulation model provides enhancements to the existing OMNeT++ IPv4 mod-
els mainly in the areas of providing interchangeable network interfaces for simulating
IP protocols using various physical transport mechanisms (point-to-point links, Ether-
net connections etc.). The enhancements also include the ability to model nodes having
any combination of these physical devices.

A router in an IPv6 network has many configurable parameters. We believe that
the user should not have to learn the custom syntax of a configuration file in order to
change a single parameter. From a user’s point of view any approach that can reduce the
learning curve involving a new simulation tool will be very useful. For this reason, we
have chosenExtensible Markup Language(XML) as the format for the configuration
file of the network nodes. The reasons behind our decision can be summarized as fol-
lows: XML is easy to comprehend, non-proprietary and mature technology with many
tools available (parsers, viewers and validators etc.).

3.1 IPv6 Node Hierarchy

The architectural framework of the IPv6 simulation model is based on the structure of
the OMNeT++ IPv4 Protocol Suite [14]. The IPv4 suite consists of modules that model
the data link control, network and transport (TCP and UDP) layers. Our IPv6 simulation
model framework is interoperable with the IPv4 models to support modeling dual stack
routers which allow IPv4 and IPv6 packet flows simultaneously. The suite also allows
various data link control layer network interfaces to be present within a single node.
Therefore, it is possible to investigate the interactions between IPv4 and IPv6 protocols
in a mixed protocol environment. We believe that the introduction and integration of
IPv6 into the current global IPv4 infrastructure will raise performance issues that need
to be investigated in large scale simulated networking scenarios.

Network Layer We have adopted a different approach than the design of the IPv4 Pro-
tocol Suite [14], and separated the network interface from the network layer. This ap-
proach has allowed us to add new models of physical interfaces and to simulate routers
that can have a combination of various network cards. In our simulation suite, the net-
work layer contains only the IP processing, IP input queue and the IPv4 routing table
modules (Figure2(b)). The main functional blocks of the IP processing module are as
follows (see Figure3): The IP discriminator (ipd) module checks the IP version and
forwards the packets to the correct IP stack. The IP combine (ipc) receives the packet
from either the IPv4 or IPv6 stack and forwards the packet to the data link control layer.

Data Link Control Layer The Data link control layer module shown in Figure4
contains the input queue and an interchangeable network interface. This arrangement
allows one to accommodate different physical transports without a need of recompi-
lation of simulation models. At the time of writing, PPP and Ethernet interfaces have
been implemented. The Ethernet model also includes a hub which is derived from the
work of Baresi [1].

(a) Top level modules.

(b) Structure of the Network Layer module.

Fig. 2. The simulation model of a router with three network interfaces.

Fig. 3. The main functional blocks of the IP processing module (which is part of the
network layer shown in Figure 2(b)). See text for details.

Fig. 4. Structure of the simulation model for generic data link control layer modules.

3.2 Processing IPv6 Datagrams

The core functionality of the IPv6 Simulation model is implemented in the IPv6 pro-
cessing compound module (ipv6 block inproc which is part of the network layer). See
the Figures2(b), 3 and5. This module determines the destination of packets, initiates
and receives ICMP notifications, and implements Neighbour Discovery mechanisms.

Referring to Figure5, the compound moduleIPv6Processingconsists of the fol-
lowing submodules:PreRouting6(preRouting), IPv6LocalDeliver(localDeliver),
Routing6(routing), IPv6Multicast(multicast), AddressResolution(addrResln), ICMPv6
(ICMP), IPv6Send(send), IPv6Output(output), IPv6Fragmentation(fragmentation)
andRoutingTable 6(RoutingTable6).

Fig. 5. Internal structure of the compound module IPv6Processing.

Datagrams arriving a node will encounter thePreRouting6module first. In this mod-
ule, a hook can be implemented to gather statistics or filter packets as described in [14].
Next hop determination is the responsibility of theRouting6module. Its options are:

– Send the datagram to an output interface via the fragmentation module when for-
warding of packets is in effect i.e., it is a router,

– Send the datagram to multicast module when the packet has a multicast destination
address,

– Send the datagram to localDeliver module for local delivery of the datagram.

LocalDeliveraccepts datagrams destined for the local node, decapsulates the data-
gram and delivers its contents to upper layers. Any destination options encountered in
the datagram are also processed here.

TheAddressResolutionmodule queries neigbhours for their data link control layer
address and responds to the same requests issued by neighbouring nodes. It aims to
follow the prescribed procedures defined in RFC 2461 [7] as closely as possible.

Determination of the next hop neighbour is accomplished inRouting6 as men-
tioned previously with the aid of the simple moduleRoutingTable6, which contains
the conceptual data structures mentioned in Section 5.2 of RFC 2461 [7]. Many other
simple modules rely onRoutingTable6to provide access to those structures, notably
NeighbourDiscovery, MulticastandAddressResolution.

IPv6Sendencapsulates the upper layer SDUs into IPv6 datagrams and sends them
to Routing6for further processing.

The IPv6Fragmentationmodule accepts outgoing datagrams fromRouting6and
checks to see if fragmentation is required before transferring the packets toIPv6Output
module.

ICMP packets are managed by theICMPv6compound module. The internal struc-
ture of this module is shown in Figure6. It contains three simple modulesICMPv6Core,
NeighbourDiscovery(nd) and ICMPCombine(combine). The ICMPv6Coremodule
implements most of the RFC 2463 [2].

Fig. 6. Components of the ICMP compound module.

The NeighbourDiscoverysimple module initiates and responds to neighbour dis-
covery messages according to the role of the node (host or router) in conformance with
RFC 2461 [7]. AutoConfigurationhas also been added in accordance with RFC 2462
[10].

The accuracy of the simulation is ensured due to the fine-grained level of detail in
the simulation. Datagrams are passed between network entities and SDUs exchanged
between the adjacent protocol layers. The IPv6 datagram currently implements most
of the extension headers mentioned in [3] except the Authentication and Encapsulating

Security Payload headers. Real data from simple network testbed is used to calibrate
the model. Simulated processing delays are introduced where necessary to account for
the differences without sacrificing performance.

3.3 Node Configuration and Parameter Specification Files

The network configuration (i.e. the connections between the network entities) is de-
scribed through OMNeT++’s NED language. In addition to this, for each IPv6 node,
a set of parameters can be configured by writing an XML document. (A sample XML
document is shown in Figure7). There are two ways to configure parameters of a node.
In the<global> section, a parameter for all interfaces of all nodes on the same network
is set, and in the<local> section, a particular parameter on a specific interface of the
node is set.

4 Concluding Remarks and Future Work

Future enhancements in the pipeline include adding support for mobility; profiling the
model for very large scale network simulations (i.e. 10,000+ network entities) and dy-
namic creation of network topologies through XML configuration file.

5 Acknowledgment

This work is supported through a Victorian Partnership for Advanced Computing (VPAC)
expertise grant.

References

1. M. Baresi.EtherDemo – a simple ethernet (802.3) simulation. URL reference:http://whale.
hit.bme.hu/cgi-bin/contrib.pl?dir=models&txt=EtherDemo-1.0.

2. A. Conta and S. Deering. RFC 2463 Internet Control Message Protocol (ICMPv6) for the
Interent Protocol Version 6 (IPv6) Specification, 1998. URL reference:http://www.faqs.org/
rfcs/rfc2463.html.

3. S. Deering and R. Hinden. RFC 2460 Internet Protocol, Version 6 (IPv6), 1998. URL
reference:http://www.faqs.org/rfcs/rfc2460.html.

4. D. Hasken and E. Allen. RFC 2472 IP Version 6 over PPP, 1998. URL reference:http:
//www.faqs.org/rfcs/rfc2472.html.

5. R. Hinden and S. Deering. RFC 2373 IP Version 6 Addressing Architecture, 1998. URL
reference:http://www.faqs.org/rfcs/rfc2373.html.

6. U. Kaage, V. Kahmann, and F. Jondral. An OMNeT++ TCP model. InProceedings of the
European Simulation Multiconference (ESM’2001)[9].

7. T. Narten, E. Nordmark, and W. Simpson. RFC 2461 Neigbhour Discovery for IP Version 6
(IPv6), 1998. URL reference:http://www.faqs.org/rfcs/rfc2461.html.

8. OMNeT++ object-oriented discrete event simulation system. URL reference:http://www.hit.
bme.hu/phd/vargaa/omnetpp.htm, 1996.

9. The Society for Modeling and Simulation International (SCS).Proceedings of the European
Simulation Multiconference (ESM’2001), Prague, Czech Republic, June 2001.

http://whale.hit.bme.hu/cgi-bin/contrib.pl?dir=models&txt=EtherDemo-1.0
http://whale.hit.bme.hu/cgi-bin/contrib.pl?dir=models&txt=EtherDemo-1.0
http://www.faqs.org/rfcs/rfc2463.html
http://www.faqs.org/rfcs/rfc2463.html
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc2472.html
http://www.faqs.org/rfcs/rfc2472.html
http://www.faqs.org/rfcs/rfc2373.html
http://www.faqs.org/rfcs/rfc2461.html
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

1 <?xml version="1.0" encoding="iso-8859-1"?>
2 <!DOCTYPE netconf SYSTEM "netconf.dtd">
3
4 <netconf>
5 <global>
6 <gAdvSendAdvertisements>on</gAdvSendAdvertisements>
7 <gMaxRtrAdvInterval>1700</gMaxRtrAdvInterval>
8 <gMinRtrAdvInterval>500</gMinRtrAdvInterval>
9 <gAdvManagedFlag>on</gAdvManagedFlag>

10 <gAdvOtherConfigFlag>on</gAdvOtherConfigFlag>
11 <gAdvLinkMTU>5644</gAdvLinkMTU>
12 <gAdvReachableTime>33567</gAdvReachableTime>
13 <gAdvRetransTimer>5346</gAdvRetransTimer>
14 <gAdvCurHopLimit>457457</gAdvCurHopLimit>
15 <gAdvDefaultLifetime>8000</gAdvDefaultLifetime>
16 <gHostLinkMTU>1400</gHostLinkMTU>
17 <gHostCurHopLimit>2</gHostCurHopLimit>
18 <gHostBaseReachableTime>232</gHostBaseReachableTime>
19 <gHostRetransTimer>234</gHostRetransTimer>
20 <gHostDupAddrDetectTransmits>1</gHostDupAddrDetectTransmits>
21 </global>
22 <local node="host1">
23 <interface>
24 <inet_addr scope="global">435:345:4:0:260:97ff:0:1/64</inet_addr>
25 </interface>
26 </local>
27 <local node="router">
28 <interface>
29 <inet_addr scope="link">fe80:0:0:0:260:97ff:0:5/64</inet_addr>
30 <AdvSendAdvertisements>off</AdvSendAdvertisements>
31 <MaxRtrAdvInterval>1231</MaxRtrAdvInterval>
32 <MinRtrAdvInterval>344</MinRtrAdvInterval>
33 <AdvManagedFlag>off</AdvManagedFlag>
34 <AdvOtherConfigFlag>off</AdvOtherConfigFlag>
35 <AdvLinkMTU>250</AdvLinkMTU>
36 <AdvReachableTime>1888</AdvReachableTime>
37 <AdvRetransTimer>222</AdvRetransTimer>
38 <AdvCurHopLimit>10</AdvCurHopLimit>
39 <AdvDefaultLifetime>6710</AdvDefaultLifetime>
40 <AdvPrefixList>
41 <AdvPrefix>3018:FFFF:0:0:0:0:0:0/48</AdvPrefix>
42 </AdvPrefixList>
43 <HostLinkMTU>60</HostLinkMTU>
44 <HostCurHopLimit>5</HostCurHopLimit>
45 <HostBaseReachableTime>500</HostBaseReachableTime>
46 <HostRetransTimer>400</HostRetransTimer>
47 </interface>
48 </local>
49 </netconf>

Fig. 7. An example of a configuration file used for specifying the values of several pa-
rameters of the nodes in an IPv6 network.

10. S. Thomson and T. Narten. RFC 2462 IPv6 Stateless Address Autoconfiguration, 1998. URL
reference:http://www.faqs.org/rfcs/rfc2462.html.

11. A. Varga.OMNeT++ User Manual. Department of Telecommunications, Technical Univer-
sity of Budapest, 1997. URL reference:ftp://ftp.hit.bme.hu/sys/anonftp/omnetpp/doc/usman.
pdf.

12. A. Varga. The OMNeT++ discrete event simulation system. InProceedings of the European
Simulation Multiconference (ESM’2001)[9].

13. A. Varga and B. Fakhamzadeh. The K-Split algorithm for the PDF approximation of multi-
dimensional empirical distributions without storing observations. InProceedings of the9th

European Simulation Symposium (ESS’97), pages 94–98, Passau, Germany, October 1997.
The Society for Modeling and Simulation International (SCS).

14. K. Wehrle, J. Reber, and V. Kahmann. A simulation suite for internet nodes with the abil-
ity to integrate arbitrary quality of service behavior. InProceedings of the Communica-
tion Networks and Distributed Systems Modeling and Simulation Conference (CNDS’2001),
Phoenix, Arizona, USA, January 2001.

http://www.faqs.org/rfcs/rfc2462.html
ftp://ftp.hit.bme.hu/sys/anonftp/omnetpp/doc/usman.pdf
ftp://ftp.hit.bme.hu/sys/anonftp/omnetpp/doc/usman.pdf

A simulational study of multiexchange circuit switching
networks (with dynamic routing) using OMNeT++

Luísa Jorge
Polytechnic Institute of Bragança

and INESC Coimbra
ljorge@ipb.pt

Paulo Melo
Faculty of Economics – University of

Coimbra and INESC Coimbra
pmelo@fe.uc.pt

1. Introduction
The work presented here is mostly a summary of the Master Thesis [Jorge2001] of one
of the authors, which included the building of a simulational tool using OMNeT++ to
analyse multiexchange circuit switching networks using different dynamic routing
methods. The work presented intended to support the grade of service analysis
regarding the traffic routing method in telecommunication networks (circuit switching
networks), with a pre-determined topological structure.

In this presenta tion, its first described the problem solved by the simulation tool,
followed by (a summary) of the implementation model used, and then by a small
discussion of implementation issues created by the use of OMNeT++ and the solutions
used to solve them.

2. Problem description
The work presented intended to support the grade of service (GoS) analysis regarding
the traffic routing method in telecommunication networks (circuit switching networks),
with a pre-determined topological structure. The performance measure used was the
blocking probability.

A multiexchange circuit switching network can be characterized by the nodes
(switches), the arcs (trunks) that link them, the traffic that if offered switch to switch
(point to point) and the routing rules used. Several parallel channels (circuits) form each
trunk. The traffic flow is the call flow between a determined origin/destination pair. A
network supporting several kinds of traffic flows, (also called several call classes) each
with its own traffic characteristics, can model, in teletraffic engineering an integrated
services network.

A call originating in switch O destined to switch D needs, to be successful, a path (or
route) of single or multiple trunk between O and D switches, with a number of free
circuits in each trunk of the path between those switches at least equal to the number of
circuits needed to the call. Those circuits will be occupied by the call in the selected
path, for the full duration of the call, and will be released at its end. Single trunk paths
are those formed by the direct arc connecting origin and destination. A path that uses
transit switches (intermediate, or tandem switches), therefore one using two of more
trunks its called a multiple trunks path.

When a call can be offered to several (two or more) paths (named alternate routes)
according to predetermined rules, we have an alternative routing method. In dynamic
alternative routing methods, call are routed in the “best” available path, according to
some criteria that form the essence of each method, trying to used adequately the full
extra capacity present in the telecommunication network.

In the present work, a teletraffic simulation tool was developed, to allow the analysis of
GoS in circuit switching networks integrating several service classes. The simulation
tool developed is generic and routing method independent. Some modules to simulate
the dynamic routing methods DCR [Girard90], DAR [Mitra91] and RTNR [Ash98]
(and the fixed routing method FAR [Mitra91]) were also implemented.

3. The implementation model
The structure of the telecommunication network model was established using the NED
language. This depicts the topology of the telecommunication network to be studied.
This model is based in two kinds of processes: the generator process and the switch
process. An example of the model topology can be found on Figure 1.

Fig. 1– Model topology (example with 6 switches).

In OMNeT++ the switching network can be modelled as a network containing several
simple modules named switch (switching nodes) and generator (call generators).
In the model described here, there is a generator for each switch, and the switches
are fully connected with each other, with each generator connected with “its” switch
(not fully connected networks can be modelled by dimensioning link capacities
accordingly). The modules communicate between themselves exchanging messages.
The generator module s create “calls” (which can be of several kinds), for the ir
respective switches. The switch modules receive messages from the generators for the
calls to be established. Those messages are then exchanged between switches from
origin to destination, to establish the call, and back (to clean up after the call).

The several kinds of messages used can be divided in two main groups: call messages
and control messages. Call messages can in turn be one of four kinds, including a
message related to a call yet to be established (named “call to be established”) and one
corresponding to a call already ended (named “concluded call”). Control messages can
be of three kinds, including an “end of simulation” message.

When the generator creates a “call to be established” message, this message is delivered
to the switch connected to it. This message contains the parameters describing the call
(including destination, resources needed, calling population, and others). The switch
receiving it (origin switch) will now find out which path the call should follow to be
established. If (as is usual) the first path to be tried is the direct route, the switch will

find out whether there is free capacity on the trunk connecting the origin and destination
switches. If that is possible, the message is delivered to the destination switch (and the
link capacities changed) , which will then process it (by changing the message kind to
“concluded call” and sending it to itself, to be received when the call duration elapses).
When the call ends, the destination switch sends the changed message back to the origin
switch (and releases the occupation of trunks due to the call then ended).

If the routing mechanism gives the origin switch a path using a tandem switch, the
origin will deliver the “call to be established” message to this intermediate switch,
provided there is capacity in their common link (and changing the capacities to reflect
the calls to be established). This switch will then try to deliver the call message to the
destination switch, again noting the link capacity and changing it accordingly. The
destination switch upon receiving the message will then proceed as in the previous
example, but now will return the message not directly to the origin switch, but back to
the intermediate switch (so the resources used can be released along the path). Several
other (more complex) situations can occur (like when there its found in the intermediate
switch that there aren’t enough resources to conclude the call establishment via that
route), but are dealt with by means similar to the presented, with the exchange of
messages.

The generator main characteristics are its capacity to model several kinds of traffic flow,
with several kinds being active in the same model, using different parameters for the
stochastic processes of call arrival and ending. It can generate traffic according to a
Poisson distribution (modelling infinite populations) and according to Engset
distribution (modelling a finite population). The characteristics of the flow can include
the traffic intensity, the size of the calls (in circuits used), and also (for Engset traffic)
the number of traffic sources and the traffic intensity by free source. As said, a single
generator can provide simultaneously different kinds of traffic, each with different flow
characteristics.

A switch (“central”) must find out the path to be used to deliver each call to be
establishe d to the destination switch. It must record each event, namely those creating
changes on the network status, so they can be analysed on the end of the simulation. It is
responsible to exchange the call establishing messages from the origin to the destination
(possibly via tandem switches) and recording the changes on the capacity of the trunks
used to establish that call. Upon completion of the call, those changes are undone by
returning another message on the reverse path. The switch must also keep the
information to be used on routing decisions current, according to the information
available to it. Most of these tasks aren’t completely routing method independent, and
as such it uses auxiliary classes to perform those tasks.

The generator and the switch are independent of the routing method used. To support
several different routing methods, three auxiliary classes were defined (router,
“controlador” – controller, and stats). The router class function is to supply to the switch
the path to be used to route a call to be established by it. The controller class is used by
some routing methods to aggregate information regarding the status of the network and
provide it on demand to the router class. Finally, the stats class is used to provide a
single data collection and aggregation point to the changes on the network (like link
capacities changes), so that several statistic measures can be computed at the end of the
simulation. All these classes can be method dependent and as such can be specia lized by
each particular routing method used, while the switch and generator modules remain the
same. A global vision of the core classes used can be found on Figure 2.

OmNET++ Classes::cSimpleModule

+stats() : stats
+recebe_informacao()
+termina_estatistica()

stats

+central() : central
+isA()
+activity()
#finish()
#processa_chamada()
#trata_chamada_origem()
#trata_chamada_intermedia()
#trata_chamada_destino()

central

+gerador() : gerador
+isA()
+activity()
-inicializacao_simulador()

gerador

+router() : router
+encaminha_mensagem()
+avisa_impossivel()
+faz_crankback()
+estabeleceu_chamada()
+concluiu_chamada()
+alterou_disp()

router

+controlador() : controlador
+inicializa_tabelas_routing()
+calcula_tabelas_routing()

controlador

Fig. 2– Model main classes static diagram.

4. OMNeT++ related implementation issues
The model described needed a large number of random number sources to provide
randomness to the different tasks (mostly on the generator module, on the call
generation task, and particularly on the Engset traffic generation). As such, it was
needed a la rge number of independent random number generators. In OMNeT++ the
number is usually bounded at a small value, and as such the source of OMNeT++
util.h file was changed. The seedtool was also changed to improve the seed
generation process for the number of random generators used (4096).

The work analysed different methods at different levels of load, and using different
parameters for the routing methods used. The validation method used for the results also
needed a large number of independent replications to be performed. To help automate
the running of the simulations, a perl tool to generate the different parameters needed to
each run (for the omnetpp.ini file) was built. This tool would create .ini files for a
combination of parameters, each run describing a particular replication using a
particular set of parameters. However, the .ini file could grow to have 500 runs, and as
such, changes on the cinifile.h source were needed to comply with such large
files (large .ini files were also needed to provide fixed seeds to the large number of
random number generators).

The analysis of the results (stats class) used a change d version of the cWeightedStdDev
class, as the results of the evolution of a value weren’t correct with the original. The

results were output in scalar output, and later filtered and input to a database, for
posterior analysis.

The work was started using OMNeT++ version 1.1 and evolved up to OMNeT++
v2.0beta5. The work is now in use (research) using OMNeT++ v2.0. Only small
changes were needed to the code during those evolutions. However, the change of
machines (from Linux to FreeBSD and from different versions of GCC) forced a
general cleanup on the code.

The code implemented made use of global variables as a means of communication
between processes (to store global quantities, like the network occupation status), and as
such it was impossible to use the parallel capabilities of OMNeT++.

Acknowledgment
The author would like to thank her thesis adviser , José Craveirinha, for his help and
support in the work presented.

References
[Ash98] Gerald R. Ash, Dynamic Routing in Telecommunications Networks,

McGraw Hill, New York, 1998
[Girard90] André Girard, Routing and Dimensioning in Circuit-Switched Networks,

Addison-Wesley Publishing Company, U.S.A., 1990
[Jorge01] Luísa Jorge, Um Estudo Simulacional de Redes Inter-centrais com

Encaminhamento Dinâmico – Incluindo redes com integração de serviços,
Master’s Dissertation, University of Coimbra, Faculty of Sciences and
Egineering, Department of Electrotechnical Engineering, Coimbra 2001
(in Portuguese)

[Mitra91] Debasis Mitra and Judith B. Seery, “Comparative Evaluations of
Randomized and Dynamic Routing Strategies for Circuit -Switched
Networks” , IEEE Transactions on Communications, Vol. 39, Nº 1, pp.
102-116, New York, January 1991

Using Realistic Internet Topology Data
for Large Scale Network Simulations

in OMNeT++

Roland Bless

Institute of Telematics, Universität Karlsruhe (TH),
Zirkel 2, D-76128 Karlsruhe, Germany

Phone: +49 721 608 6411, Fax: +49 721 388097,bless@tm.uka.de

Abstract. Results from simulation models can be used to derive implications
for real scenarios only when the model is designed very close to reality. Besides
solving the question of how to generate data traffic in the simulation, one has
to solve also the problem of how to generate larger realistic topologies. The lat-
ter are required in many cases to evaluate protocols and mechanisms in respect
to scalability. Instead of using algorithms for generating Internet-like topologies
artificially, it is possible to use sources of the real Autonomous System topol-
ogy for generating the simulation topology. This paper describes a first approach
of how to make use of such data for OMNeT++ simulations and presents first
experiences.

1 Introduction

Results from simulation models can be used to derive implications for real scenarios
only when the model is designed very close to reality. Network simulations for Internet-
related protocols require several special considerations [2]. Besides solving the question
of how to generate data traffic in the simulation [7], one has to solve also the problem
of how to generate larger realistic topologies. The latter are required in many cases to
evaluate protocols and mechanisms in respect to scalability.

The real Internet topology consists of at least two different hierarchy levels. The
coarser first level consists of several interconnectedAutonomous Systems (ASs). An
Autonomous System constitutes an administrative domain, usually operated by an In-
ternet service provider (ISP). The second hierarchy level can be found within an AS. It
comprises all the routers and their interconnections within an AS (strictly speaking this
level can consist of intra-domain hierarchy levels, too, e. g. OSPF routing areas). This
topology is usually neither propagated nor directly visible outside the AS.

Algorithms for generating Internet-like topologies have to obey some rules which
have recently been formulated as several “power laws” [1,4] for the first hierarchy level
of ASs. More detailed analysis of the Internet topology by different approaches can be
found in [8].

Instead of using algorithms for generating Internet-like topologies artificially, it is
possible to use sources of the real AS topology for generating the simulation topology.
This paper describes a first approach of how to make use of such data for OMNeT++
simulations and presents first experiences.

mailto:bless@tm.uka.de

2 Getting Sources of Topology Information

The AS topology level can be used for evaluating different aspects of inter-domain
protocols, e. g. stability of the border gateway protocol BGP [3] or scalability of new
signaling protocols for resource reservation [6]. Currently, there exist more than 12000
different ASs which have each a unique assigned AS number. One can distinguish sev-
eral different AS types: astub ASis only source or sink of data, whereas atransit AS
also carries and forwards traffic that has neither its destination nor its origin in this AS.
Stub ASs can besingle-homedor multi-homed, i. e. having only one or more connec-
tions to different providers respectively. Furthermore, there may existpure transit ASs
or mixed ASs. The latter carry transit traffic and have also networks that are sources and
sinks of traffic.

One source for getting information about the real Internet AS level topology are
routing tables for inter-domain routing generated by the routing protocol BGP. A rout-
ing table constructed by BGP within an AS represents only a particular view of this
AS, because BGP is a path vector protocol. The routing table contains a set of AS paths
for each destination network prefix address (cf. fig. 1). Therefore, not all connections
between other ASs are visible for this particular AS. However, there exists a “route-
views” project [5] at the University of Oregon in order to enable service providers to
check their own routing information. Currently, over 50 providers are contributing their
routing information to a dedicated BGP router. BGP routing tables are archived auto-
matically several times a day and are made available for download.

route-views.oregon-ix.net>show ip bgp
BGP table version is 694918, local router ID is 198.32.162.100
Status codes: s suppressed, d damped, h history, * valid, > best, i - internal
Origin codes: i - IGP, e - EGP, ? - incomplete
0120123456789012345601234567890123456789012345601234560123456

Network Next Hop Metric LocPrf Weight Path
* 3.0.0.0 204.42.253.253 0 267 1225 701 80 i
* 129.250.0.1 6 0 2914 701 80 i
* 129.250.0.3 0 0 2914 701 80 i
...
* 128.134.151.128/25 195.66.225.254 0 5459 3549 4766 9526 i

Fig. 1.A small excerpt from a BGP table dump

In comparison to BGP tables other sources of AS topology information, e. g. gath-
ered by router-level path traces, show usually a smaller degree of coverage. Therefore,
a small program written in Perl was used to produce a graph representation for the AS
topology from the BGP routing table data archived from route-views. The BGP routing
table data is usually dumped in a human readable ASCII format generated by a CISCO
router as output from the command sequenceshow ip bgp . The routing table is
quite huge in this representation: it comprises more than 360 MB in its uncompressed
form.

The script also analyzes the type of ASs and creates a topology data file which
is suitable for input by OMNeT++ simulations. When constructing the AS graph, an
important simplification is made: it is assumed that links are bidirectional, so the graph
is undirected. Furthermore, due to the fact that the assigned AS numbers are not always
continuous, the real AS numbers are mapped to a continuous number space of unsigned
integers starting at 1.

Source Number ASs Conn- Net- Paths Max.
(transit, ections works path-
mixed, length
stub)

route-views.oregon-ix.net11621 (85,2637,8899)269631122764239791 31
(18.8.2001)
route-views.oregon-ix.net8326 (77,1894,6355) 18857 935131772139 20
(18.8.2000)
route-server.ip.att.net 8221 (52,1107,7062) 12710 841161524708 17
(18.8.2000)
route-server.cerf.net 8223 (47,1057,7119) 12382 83942 331700 17
(18.8.2000)

Table 1.Characteristics of Autonomous Systems in the Internet

3 Implementation in OMNeT++

The objective of the now discussed OMNeT++ simulation was to evaluate a new inter-
domain signaling protocol for resource reservation. In this particular case, it was as-
sumed that there is only one signaling entity within each AS. Signaling messages were
generated and consumed by hosts located in non-pure transit ASs. Furthermore, each
signaling entity has to store a complete routing table to all other signaling entities. It
was assumed that the routing tables are static, i. e. no link failures between ASs were
simulated. Nevertheless, this implies a huge amount of memory usage for routing table
data.

The design process in OMNeT++ was as follows: no module usesactivity() ,
only handleMessage() was used in order to avoid problems with stack memory
consumption when having several thousand modules. Instead of generating NED code
from the topology data, OMNeT++’s feature for dynamic module creation was used (it
is described in the OMNeT++-manual). If you look at output from thenedc compiler
you see many repeated calls similar to those caused by unrolling loops. Therefore, it is
more efficient to directly create the modules within OMNeT++ dynamically.

The OMNeT++ network description file contains only one simple module which
reads in the topology data and creates all further modules dynamically during itsini-
tialize() call. Its handleMessage() method can be left empty. The dynam-
ically created modules are subsequently initialized automatically by the OMNeT++

kernel. A topology file has the following format (assuming that total number of ASs is
N):

N
asnum1 (type,outdegree)
...
asnumN (type,outdegree)
asnum1 : ASa ASb ASc ASz ;
...
asnumN : ASv ASw ASx ASr ;

The total numberN of nodes in the graph is given in the first line of the topology
data file. This is useful in order to know how many times one has to loop over the lines in
the file, and, to temporarily store the actual module pointers in an array. Subsequently,
a list of all nodes follows, describing its type (1 = single-homed, 2 = multi-homed, 3 =
mixed, 4 = pure transit) and the outdegree, i. e. the number of outgoing links (or gates
in OMNeT++ terminology). While parsing this list, the necessary modules are created
dynamically (usingcModuleType::create()) with their respective incoming and
outgoing gates (usingcModule::setGateSize()). The second list consists of an
adjacency list which describes the interconnections between all ASs. Therefore, after
the modules have been created, all necessary connections between the modules are es-
tablished (usingconnect()). Modules for hosts are additionally generated and con-
nected for each AS that is not a pure transit AS. A topology data file for the Internet
topology from August 18th 2001 needs approximately 500 kB of file space.

A very simple 5 node topology with a pure transit AS in the middle is described by
the following topology file:

5
1 (1,1)
2 (3,2)
3 (4,2)
4 (3,2)
5 (1,1)
1 : 2 ;
2 : 1 3 ;
3 : 2 4 ;
4 : 3 5 ;
5 : 4 ;

4 Experiences

The previously mentioned simulation model was used to run a simulation under Linux
with an Internet topology from march 2000 consisting of 7183 ASs (53 transit, 1053
mixed and 6077 stub ASs). The routing tables were calculated by using thecTopology
class (usingunweightedSingleShortestPathsTo()) for each AS and dumped
into a file in order to save calculation time when doing several simulation runs. The file

size of all routing tables is around 738 MB in this case. The actual memory consump-
tion is considerably higher because each routing tables entry needs additional pointers
(each consuming 4 Bytes of memory). The current Linux kernel 2.4 limits the memory
size of a user space process to 3 GB on Intel platforms so newer and current AS topolo-
gies could not be used yet. After simulation initialization the memory usage was around
2.2 GB. As hardware platform a two processor 1 GHz Pentium III with 4 GB RAM was
used.

Creating and connecting all the modules (more than 14000, counting signaling
nodes and hosts) from the topology data file is very fast (only 2 seconds), whereas
initializing them requires some tens of seconds. The routing table calculation was still
reasonably fast (around 20 minutes), but reading the precalculated routing tables from
a file reduces the setup time considerably (down to 3 minutes). However, during all the
time the OMNeT++ simulation kernel was stable.

5 Conclusion and Outlook

OMNeT++ is a very efficient simulation environment when doing large simulations
with several thousands of modules. This makes it possible to use “real” large scale
topologies for network simulations. It is planned to run simulations with more current
AS Internet topologies on 64-bit platforms in order to break the 3 GB process memory
limit on Intel Linux platforms. Furthermore, it is planned to generalize the presented
first approach for topology data file input and to integrate it into the OMNeT++ kernel.

References

1. M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-Law Relationships of the Internet
Topology. InProceedings of the ACM symposium on Communications architectures & proto-
cols. ACM, 1999. SIGCOMM 1999.

2. S. Floyd and V. Paxson. Difficulties in Simulating the Internet.IEEE/ACM Transactions on
Networking, 9(4):392–403, Aug. 2001.

3. S. Halabi and D. McPherson.Internet Routing Architectures, Second Edition. Cisco Press,
201 West 103rd Street, Indianapolis, IN 46290, USA, 2 edition, 2000. ISBN 1-57870-233-X.

4. A. Medina, I. Matta, and J. Byers. On the Origin of Power Laws in Internet Topologies.ACM
Computer Communications Review, 30(2), 2000.

5. D. Meyer. Route views project page. http://www.antc.uoregon.edu/
route-views/ , Sept. 2000.

6. Next steps in signaling (nsis) charter.http://www.ietf.org/html.charters/
nsis-charter.html , Dec. 2001.

7. K. Park and W. Willinger, editors.Self-Similar Network Traffic and Performance Evaluation.
Wiley, 2000.

8. D. Vukadinovíc, P. Huang, and T. Erlebach. A Spectral Analysis of the Internet Topology.
Technical Report ETH TIK-Nr. 118, Inter-Computer Engineering and Networks Laboratory
(TIK), Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, July 2001. erhltlich
unterhttp://www.tik.ee.ethz.ch/˜huang/publication/nls-tr.pdf .

http://www.antc.uoregon.edu/route-views/
http://www.antc.uoregon.edu/route-views/
http://www.ietf.org/html.charters/nsis-charter.html
http://www.ietf.org/html.charters/nsis-charter.html
http://www.tik.ee.ethz.ch/~huang/publication/nls-tr.pdf

Session 2:
Parallel and

Distributed Simulation

3DUDOOHO�6LPXODWLRQ�ZLWK�201H7���XVLQJ�WKH�6WDWLVWLFDO�6\QFKURQL]DWLRQ�0HWKRG�
*iERU�/HQFVH�

6]pFKHQ\L�,VWYiQ�8QLYHUVLW\��'HSDUWPHQW�RI�7HOHFRPPXQLFDWLRQV�+pGHUYiUL�X�����+������*\ U��+XQJDU\�/HQFVH#V]LI�KX�
KWWS���ZZZ�KLW�EPH�KX�SKG�OHQFVH�

$EVWUDFW�� 7KH� V\QFKURQL]DWLRQ�PHWKRGV� IRU� SDUDOOHO� GLVFUHWH� HYHQW� VLPXODWLRQ��3'(6��DUH�FRPSDUHG���7KH�RULJLQDO�6WDWLVWLFDO�6\QFKURQL]DWLRQ�0HWKRG��660��DQG�LWV�WLPH�GULYHQ�YHUVLRQ��660�7��DUH�GHVFULEHG��7KH�3'(6�VXSSRUW�RI�20�1H7���LV�H[SODLQHG�� �$�FDVH�VWXG\�LV�JLYHQ�DERXW� WKH�SDUDOOHO�VLPXODWLRQ�ZLWK�201H7����WKH�VLPXODWLRQ�RI�WZR�LQWHUFRQQHFWHG�)'',�ULQJV�H[HFXWHG�RQ�WZR�SURFHVVRUV��7KH�SUHVHQWDWLRQ�FRQWDLQV�DOVR�D�GHPRQVWUDWLRQ�RI�WKLV�SDUDOOHO�VLPX�ODWLRQ�DW�WKH�ZRUNVKRS��

,QWURGXFWLRQ�
3DUDOOHO�GLVFUHWH�HYHQW�VLPXODWLRQ��3'(6��FRXOG�EH�DQ�LPSRUWDQW�WRRO�IRU�WKH�SHUIRUP�DQFH�DQDO\VLV�RI�FRPPXQLFDWLRQ�V\VWHPV�� �7KH�SUHFLVH�VLPXODWLRQ�RI�WKHVH�ODUJH�DQG�FRPSOH[� V\VWHPV� ZRXOG� UHDOO\� EHQHILW� IURP� FRPSXWLQJ� SRZHU� RI� SDUDOOHO� V\VWHPV���+RZHYHU�3'(6� LV�D�GLIILFXOW�SUREOHP�� �)XMLPRWR�>�@�GHVFULEHV� WKH�ZHOO�NQRZQ�V\Q�FKURQL]DWLRQ�PHWKRGV�IRU�3'(6���7KH�DLP�RI�WKH�V\QFKURQL]DWLRQ�PHWKRGV�LV�WR�GHDO�ZLWK�WKH�SUREOHP�RI�FDXVDOLW\��7KH�FRQVHUYDWLYH�PHWKRG�DYRLGV�WKH�FDXVDOLW\�HUURUV��E\�H[HFXWLQJ�RQO\�VDIH�HYHQWV����)RU�D�VHJPHQW�6� DQ�HYHQW�(� ZLWK�WLPHVWDPS�7� LV�VDIH�LI�6� FDQ�GHWHUPLQH�WKDW�LW�LV�LPSRVVLEOH� IRU� LW� WR� UHFHLYH�DQ�HYHQW�ZLWK� WLPHVWDPS�VPDOOHU� WKDQ�7���� �0HFKDQLVPV�ZHUH� GHYHORSHG� IRU� HLWKHU� GHDGORFN� DYRLGDQFH� RU� GHDGORFN� GHWHFWLRQ� DQG� UHFRYHU\���7KH�PDLQ�SUREOHP�RI� WKH�FRQVHUYDWLYH�PHWKRG� LV� WKDW� LW�FDQ�SURGXFH�JRRG�VSHHG�XS�RQO\� IRU� V\VWHPV� WKDW�PHHW� VSHFLDO� FULWHULD��RWKHUZLVH� WKH�PHWKRG�FDQQRW�H[SORLW� WKH�SRVVLEOH�SDUDOOHOLVP��7KH� RSWLPLVWLF�PHWKRG� DOORZV� WKH� FDXVDOLW\� HUURUV�� � 7KHQ� LW� GHWHFWV� DQG� UHFRYHUV�IURP� WKHP�� � 7KHUH� DUH� VHYHUDO� YDULDQWV� RI� WKH� RSWLPLVWLF� PHWKRG� RIIHULQJ� GLIIHUHQW�VROXWLRQV���2QH�RI�WKH�PRVW�SRSXODU�LV�7LPH�:DUS���,W�SHUIRUPV�SHULRGLF�VWDWH�VDYLQJ���,I�WKH�VWDWH�VDYLQJ�RYHUKHDG�LV�ODUJH�LW�PD\�VHULRXVO\�GHJUDGH�WKH�SHUIRUPDQFH�RI�WKH�VLPXODWLRQ�� �'\QDPLF�PHPRU\� DOORFDWLRQ� RI� WKH� SURFHVVHV� FDXVHV� IXUWKHU� FRPSOLFD�WLRQV��%RWK�RI�WKH�V\QFKURQL]DWLRQ�PHWKRGV�PHQWLRQHG�DERYH�KDYH�WKHLU�RZQ�OLPLWDWLRQV�DQG�UHTXLUH�TXLWH�PXFK�VXSSRUW�IURP�WKH�VLPXODWLRQ�NHUQHO���7KH�6WDWLVWLFDO�6\QFKUR�QL]DWLRQ�0HWKRG� >�@� LV� D�SURPLVLQJ� DOWHUQDWLYH�� �660�GRHV�QRW� H[FKDQJH� LQGLYLGXDO�PHVVDJHV�EHWZHHQ�WKH�VHJPHQWV�EXW�UDWKHU�WKH�VWDWLVWLFDO�FKDUDFWHULVWLFV�RI�WKH�PHVVDJH�

IORZ���$FWXDO�PHVVDJHV�DUH�UHJHQHUDWHG�IURP�WKH�VWDWLVWLFV�DW�WKH�UHFHLYLQJ�VLGH���,W�KDV�QXPHURXV�DGYDQWDJHV�RYHU�WKH�WZR�RWKHU�PHWKRGV��7KLV�SDSHU�ILUVW�EULHIO\�GHVFULEHV�WKH�6WDWLVWLFDO�6\QFKURQL]DWLRQ�0HWKRG��WKDQ�WKH�SDUDOOHO� VLPXODWLRQ� IXQFWLRQDOLWLHV� RI� 201H7��� DQG� ILQDOO\� D� FDVH� VWXG\�� SDUDOOHO�VLPXODWLRQ�RI�WZR�LQWHUFRQQHFWHG�)'',�ULQJV��

� 7KH�6WDWLVWLFDO�6\QFKURQL]DWLRQ�0HWKRG�
,Q� LWV� RULJLQDO� IRUP��660�ZDV� LQYHQWHG� E\�*\|UJ\�3RQJRU� >�@� DW� WKH�/DSSHHQUDQWD�8QLYHUVLW\�RI�7HFKQRORJ\��)LQODQG�� � ,W�ZDV�IXUWKHU�GHYHORSHG��DV�660�7��E\�*iERU�/HQFVH�>�@�DW�WKH�7HFKQLFDO�8QLYHUVLW\�RI�%XGDSHVW��+XQJDU\��

���� 7KH�2ULJLQDO�660�
6LPLODUO\� WR�RWKHU�SDUDOOHO�GLVFUHWH�HYHQW�VLPXODWLRQ�PHWKRGV�� WKH�PRGHO� WR�EH�VLPX�ODWHG�±�ZKLFK�LV�PRUH�RU�OHVV�D�SUHFLVH�UHSUHVHQWDWLRQ�RI�D�UHDO�V\VWHP�±�LV�GLYLGHG�LQWR�VHJPHQWV��ZKHUH�WKH�VHJPHQWV�XVXDOO\�GHVFULEH�WKH�EHKDYLRU�RI�IXQFWLRQDO�XQLWV�RI�WKH�UHDO�V\VWHP���7KH�FRPPXQLFDWLRQ�RI�WKH�VHJPHQWV�FDQ�EH�UHSUHVHQWHG�E\�VHQGLQJ�DQG�UHFHLYLQJ�YDULRXV�PHVVDJHV�� �)RU�660��HDFK�VHJPHQW� LV�HTXLSSHG�ZLWK�RQH�RU�PRUH�LQSXW�DQG�RXWSXW�LQWHUIDFH���7KH�PHVVDJHV�JHQHUDWHG�LQ�D�JLYHQ�VHJPHQW�DQG�SURFHVVHG�LQ� DQRWKHU� VHJPHQW� DUH�QRW� WUDQVPLWWHG� WKHUH�EXW� WKH�RXWSXW� LQWHUIDFHV� �2,)�� FROOHFW�VWDWLVWLFDO�GDWD�RI�WKHP���7KH�LQSXW�LQWHUIDFHV��,,)��JHQHUDWH�PHVVDJHV�IRU�WKH�VHJPHQWV�DFFRUGLQJ� WR� WKH� VWDWLVWLFDO� FKDUDFWHULVWLFV� RI� WKH� PHVVDJHV� FROOHFWHG� E\� WKH� SURSHU�RXWSXW�LQWHUIDFHV����6HH�)LJ������

PHVVDJHV� VWDWLVWLFV�
2,)� ,,)� PHVVDJHV�

UH�JHQHUDWHG�

VHJPHQW�$� VHJPHQW�%�

)LJ������$Q�2,)�±�,,)�SDLU�
7KH�VHJPHQWV�ZLWK�WKHLU�LQSXW�DQG�RXWSXW�LQWHUIDFHV�FDQ�EH�VLPXODWHG�VHSDUDWHO\�RQ�VHSDUDWH�SURFHVVRUV��JLYLQJ�VWDWLVWLFDOO\�FRUUHFW�UHVXOWV��7KH�HYHQWV�LQ�RQH�VHJPHQW�GR�QRW� KDYH� WKH� VDPH� HIIHFW� LQ� RWKHU� VHJPHQWV� DV� LQ� WKH� RULJLQDO�PRGHO�� VR� WKH� UHVXOWV�FROOHFWHG�GXULQJ�660�DUH�QRW�H[DFW��7KH�SUHFLVLRQ�GHSHQGV�RQ�WKH�SDUWLWLRQLQJ�RI�WKH�PRGHO��RQ�WKH�DFFXUDF\�RI�VWDWLVWLFV�FROOHFWLRQ�DQG�UHJHQHUDWLRQ��DQG�RQ�WKH�IUHTXHQF\�RI�WKH�VWDWLVWLFV�H[FKDQJH�DPRQJ�WKH�SURFHVVRUV��

660�KDV� WKH� IROORZLQJ�DGYDQWDJHV� FRPSDUHG� WR� WKH�RWKHU�3'(6�V\QFKURQL]DWLRQ�PHWKRGV��x UHTXLUHV�OHVV�QHWZRUN�EDQGZLGWK�x WROHUDWHV�FRPPXQLFDWLRQ�GHOD\�EHWWHU�x FDQ�EH�HDVLO\�LPSOHPHQWHG�x UHTXLUHV�OHVV�VXSSRUW�IURP�WKH�VLPXODWLRQ�NHUQHO�x PD\�SURGXFH�EHWWHU�VSHHG�XS�

����7KH�'HILQLWLRQ�RI�660�7�
,Q�LWV�RULJLQDO�IRUP��660�ZDV�DSSOLFDEOH�IRU�WKH�DQDO\VLV�RI�VWHDG\�VWDWH�EHKDYLRU�RI�V\VWHPV���,Q�DQRWKHU�SDSHU�>�@�'U�3RQJRU�HPSKDVL]HV�WKH�DGYDQWDJHV�RI�WKH�IDFW�WKDW�WKH�ORFDO�YLUWXDO�WLPH��/97��RI�WKH�VHJPHQWV�PD\�EH�FRPSOHWHO\�GLIIHUHQW��WKLV�IHDWXUH�PD\�UHVXOW�LQ�DXWRPDWLF�LPSRUWDQFH�VDPSOLQJ�DQG�VXSHU�RSWLPDO�VSHHG�XS��+RZHYHU��DQ�DSSUR[LPDWH�V\QFKURQLVP�RI�WKH�/97V�RI�WKH�VHJPHQWV�LV�RIWHQ�GHVLU�DEOH�� �)RU�H[DPSOH� WKH� ORDG�RI�FRPPXQLFDWLRQ�V\VWHPV� LV�QRW�FRQVWDQW��EXW�FKDQJHV�GXULQJ�WKH�GD\�DFFRUGLQJ�WR�D�KDW�OLNH�FXUYH���$�VLPXODWRU�VKRXOG�EH�DEOH�WR�IROORZ�WKLV�EHKDYLRU���$W�WKH�'HSDUWPHQW�RI�7HOHFRPPXQLFDWLRQV��7HFKQLFDO�8QLYHUVLW\�RI�%XGD�SHVW��ZH�IXUWKHU�GHYHORSHG�660�WR�KDYH�WKLV�SURSHUW\���7KLV�YHUVLRQ�LV�GLVWLQJXLVKHG�DV�660�7��WKH�WLPH�GULYHQ�YHUVLRQ�RI�660���:H�DOVR�FRPSOHWHG�201H7���ZLWK�WKH�QHFHVVDU\�IXQFWLRQDOLW\�IRU�SDUDOOHO�H[HFXWLRQ��7KH�EDVLF�LGHD�RI�660�7�LV�YHU\�VLPSOH���/HW�WKH�H[HFXWLRQ�RI�WKH�VHJPHQWV�UXQ�LQ�GHSHQGHQWO\�LQ�WKH�PDMRULW\�RI�WLPH�IDFLOLWDWLQJ�JRRG�VSHHG�XS�DQG�OHW�WKH�/97V�RI�WKH�VHJPHQWV�PHHW�DW�FHUWDLQ�SRLQWV�RI�WLPH�HQVXULQJ�DQ�DSSUR[LPDWH�V\QFKURQLVP��/RRVH�V\QFKURQL]DWLRQ�EHWZHHQ�VHJPHQW�$�DQG�VHJPHQW�%� LV�GHILQHG�IRUPDOO\�DV�IROORZV��/HW�W�� W�� W�� ����WL� ����WQ EH�V\QFKURQL]DWLRQ�SRLQWV�RI�WLPH���/HW�W$ DQG�W% GHQRWH�WKH�/97V� RI� VHJPHQW�$� DQG� VHJPHQW� %�� UHVSHFWLYHO\�� � 6HJPHQW�$� DQG� VHJPHQW� %� DUH�ORRVHO\�V\QFKURQL]HG�LI��

��W$ � WL�� �W% d WL���� ��W$! WL�� �W% t WL�����L� �������������Q�� ���
7KH�ORRVH�V\QFKURQL]DWLRQ�RI�WKH�WZR�VHJPHQWV�PHDQV�WKDW�QRQH�RI�WKHP�PD\�OHDYH�DQ\�V\QFKURQL]DWLRQ�SRLQW�RI�WLPH��WL� XQWLO�WKH�RWKHU�RQH�UHDFKHG�LW��$W�WKH�WL V\QFKURQL]DWLRQ�SRLQW�RI�WLPH�VHJPHQWV�$�DQG�%�PD\�H[FKDQJH�WKH�VWDWLV�WLFV�WKH\�KDYH�FROOHFWHG�EHIRUH�WL DQG�WKH\�PD\�XVH�WKH�QHZ�RQHV�LQ�WKH�>WL� WL��@ WLPH�LQWHUYDO�� �:LWK� WKH� DSSURSULDWH� FKRLFH� RI� WKH� WL V\QFKURQL]DWLRQ� SRLQW� RI� WLPH�� LW� LV�HQVXUHG�WKDW�WKH�HIIHFW�RI�D�FKDQJH�LQ�VHJPHQW�$�LQ�W[ZLOO�UHDFK�VHJPHQW�%�HDUOLHVW�DW�W[DQG� ODWHVW� DW� W[�'W�� � ,Q� WKH� VLPSOHVW� FDVH�� ZH� XVH� ORRVH� V\QFKURQL]DWLRQ� ZKHUH�WL L
8,��8,�EHLQJ�WKH�XSGDWH�LQWHUYDO��:KDW�GRHV�WKLV�PHWKRG�UHTXLUH�IURP�WKH�VLPXODWLRQ�NHUQHO"��/HW�XV�FRQVLGHU�WKH�IRO�ORZLQJ�H[DPSOH��,I�VHJPHQW�$�ZDQWV�WR�VHQG�D�PHVVDJH�WR�VHJPHQW�%�DW�/97�WL WKHQ�VHJPHQW�$�VKRXOG�DVN�WKH�VLPXODWRU�QRW�WR�OHW�WKH�/97�RI�VHJPHQW�%�SDVV�WL XQWLO�VHJ�PHQW�%�UHFHLYHV�D�PHVVDJH�IURP�VHJPHQW�$����)RU�VLPSOLFLW\�DQG�FODULW\�ZH�FRQVLGHU�RQO\�RQH�GLUHFWLRQ�RI�FRPPXQLFDWLRQ�DV�WKH�RWKHU�GLUHFWLRQ�FDQ�EH�KDQGOHG�LQ�WKH�VDPH�ZD\���,I�ERWK�VHJPHQWV�DVN�IRU�V\QFKURQL]DWLRQ�IRU�WKH�VDPH�/97��WKHQ�WKH�/97V�RI�WKH�WZR�VHJPHQWV�ZLOO�UHDOO\�PHHW����$V�IRU�WKH�LPSOHPHQWDWLRQ��LI�VHJPHQW�$�VHQGV�D�

V\QFKURQL]DWLRQ�SRLQW� UHTXHVW� WR� VHJPHQW�%� IRU�/97� WL WKDQ� VHJPHQW�%�VFKHGXOHV�D�VHOI�PHVVDJH��D�VSHFLDO�HYHQW�� WKDW�ZLOO�EH�SURFHVVHG�E\� WKH�VLPXODWLRQ�NHUQHO� LWVHOI��IRU�/97�WL� ,I�WKH�VWDWLVWLFV�SDFNDJH�IURP�VHJPHQW�$�DUULYHV�WR�VHJPHQW�%�DW�/97�W[�WLWKDQ�WKH�PHVVDJH�FDUU\LQJ�WKH�VWDWLVWLFV�LV�VLPSO\�VFKHGXOHG�WR�WL� ,I�WKH�VWDWLVWLFV�SDFN�DJH� IURP�VHJPHQW�$� WR�VHJPHQW�%�GRHV�QRW�DUULYH�XQWLO� WL� VHJPHQW�%�SURFHVVHV� WKH�VHOI�PHVVDJH�DQG�VXVSHQGV�SURFHVVLQJ�RI�DQ\�IXUWKHU�HYHQWV�XQWLO�WKH�VWDWLVWLFV�SDFNDJH�DUULYHV���)LJ�����VKRZV�H[DPSOHV�IRU�ERWK�FDVHV����
� W� W�

W� W� W�
W[

VWDWLVWLFV� VWDWLVWLFV�

VHJPHQW�%

VHJPHQW�$

�

)LJ����� 7KH�RSHUDWLRQ�RI�660�7���7KH�WKLQ�KRUL]RQWDO�OLQHV�VKRZ�WKH�ZDOO�FORFN��UHDO��WLPH�RI�WKH�SURFHVVRUV�H[HFXWLQJ�WKH�VHJPHQWV�DQG�WKH�WKLFN�OLQHV�DUH�WKH�YLUWXDO�WLPHV�RI�WKH�VHJPHQWV�

����)XUWKHU�,QYHVWLJDWLRQV�RQ�660�7�
%HFDXVH� RI� VSDFH� OLPLWDWLRQV� ZH� FDQQRW� FLWH� DOO� WKH� UHVXOWV� RQ� 660�7�� LQVWHDG� ZH�EULHIO\�VXPPDUL]H�WKH�WRSLFV�FRYHUHG�LQ�SUHYLRXV�SDSHUV���$OO�WKH�FLWHG�SDSHUV�FDQ�EH�GRZQORDGHG�IURP�WKH�DXWKRU¶V�ZHE�SDJH���$FFXUDF\�RI�660�LV�GHDOW�ZLWK�LQ�>�@���'LIIHUHQW�VWDWLVWLFV�FROOHFWLRQ�DOJRULWKPV�ZHUH�H[DPLQHG�FRQFHUQLQJ�WKHLU�UHVRXUFH�UHTXLUHPHQWV�DQG�DFFXUDF\���7KH�DSSOLFDELOLW\�FULWHULD�RI�660�DUH�JLYHQ�LQ�>�@�WRJHWKHU�ZLWK�H[DPSOHV�ZKHQ�WKH�PHWKRG�FDQ�RU�FDQQRW�EH�XVHG���7KH�6WDWLVWLFV�([FKDQJH�&RQWURO�$OJRULWKP� >�@� LV� UHVSRQVLEOH�IRU�GHWHUPLQLQJ� WKH�DSSURSULDWH�YLUWXDO�WLPH�IRU�WKH�QH[W�VWDWLVWLFV�H[FKDQJH���,WV�WDVN�LV�QRW�DW�DOO�WULYLDO��DV�WKH�UHTXLUHG�DFFXUDF\�JLYHV�WKH�QXPEHU�RI�REVHUYDWLRQV�UHTXLUHG�IRU�WKH�VWDWLVWLFV��DQG�WKH� VWDWLVWLFV� H[FKDQJH� FRQWURO� DOJRULWKP�PXVW�PHHW� WKH� FRUUHFW� YLUWXDO� WLPH�� � ,I� WKH�SUHGLFWLRQ�IDLOV��WKH�V\QFKURQL]DWLRQ�SRLQW�LV�GHOHWHG�DQG�WKH�VWDWLVWLFV�FROOHFWLRQ�PXVW�EH�FRQWLQXHG���7KH�HIIHFWV�RI�WKH�GLIIHUHQW�NLQGV�RI�GHYLDWLRQV�IURP�WKH�RSWLPDO�FDVH�ZHUH�H[DPLQHG��

� ,PSOHPHQWLQJ�3DUDOOHOLVP�LQ�201H7���
201H7���FDQ�UXQ�SDUDOOHO�RQ�GLIIHUHQW�W\SHV�RI�KRVWV�DQG�RU�RSHUDWLQJ�V\VWHPV�WKDW�VXSSRUW�390����

���� 3DUDOOHO�7RSRORJ\�'HVFULSWLRQ�
201(7��� SDUDOOHO� VXSSRUW� LQFOXGHV� WKH� SDUDOOHO� WRSRORJ\� GHVFULSWLRQ�� D� IOH[LEOH�PHWKRG��WKDW�HQDEOHV�WKH�XVHU�WR�GHVFULEH�WKH�SDUWLWLRQLQJ�RI�WKH�PRGHO���:KHQ�GHILQ�LQJ� D�PRGXOH� W\SH�� D� FRPSRXQG�PRGXOH� �EHVLGHV� WKH� IRUPDO� SDUDPHWHU� OLVW� DQG� WKH�VXEPRGXOH� OLVW�� PD\� KDYH� D� IRUPDO� PDFKLQH� OLVW� LQWURGXFHG� E\� WKH� NH\ZRUG� PD�
FKLQHV� :KHQ�GHILQLQJ�WKH�LQVLGH�VWUXFWXUH�RI�WKH�FRPSRXQG�PRGXOH��WKH�XVHU�FDQ�
H[SUHVV� RQWR� ZKLFK�PDFKLQH� �IURP� WKH� IRUPDO� PDFKLQH� OLVW�� KH� ZDQWV� WR� SODFH� WKH�VXEPRGXOHV��WKH�NH\ZRUG�RQ�LV�IROORZHG�E\�WKH�PDFKLQH���/HW�XV�VHH�DQ�H[DPSOH��

�PRGXOH�1HWZRUN�
� PDFKLQHV��
� KRVW�QHW$��KRVW�QHW%��
� VXEPRGXOHV��
� QHW$��VXEQHWZRUN��
� RQ��KRVW�QHW$��
� QHW%��VXEQHWZRUN��
� RQ��KRVW�QHW%��
� FRQQHFWLRQV��
� QHW$�RXW���!�QHW%�LQ��
� QHW%�RXW���!�QHW$�LQ��
HQGPRGXOH�
�:KHQ�EXLOGLQJ�WKH�QHWZRUN�WRSRORJ\��WKH�VLPXODWLRQ�NHUQHO�HYDOXDWHV�WKH�PDFKLQH�SDUDPHWHUV� DQG�SODFHV� WKH�PRGXOHV� LQWR�D� VLQJOH� VHJPHQW� �SURFHVV��SHU�KRVW�� �(VSH�FLDOO\�IRU�WHVWLQJ�GHEXJJLQJ�SXUSRVHV�LW�LV�SRVVLEOH�WR�SODFH�DOO�WKH�VHJPHQWV�LQ�VHSD�UDWH�SURFHVVHV�RQWR�RQH�KRVW��6,1*/(B+267�KDV�WR�EH�GHILQHG�LQ�WKH�SYPPRG�FF�

VRXUFH�ILOH��

���� &RPPXQLFDWLRQ�%HWZHHQ�WKH�6HJPHQWV�
,Q�201H7���� WKH�PRGXOHV�FRPPXQLFDWH�ZLWK�HDFK�RWKHU�E\�VHQGLQJ�DQG� UHFHLYLQJ�YDULRXV� PHVVDJHV�� � 7KH� PHVVDJHV� PD\� FRQWDLQ� DUELWUDULO\� FRPSOH[� GDWD� VWUXFWXUHV���%DVLFDOO\��WKH�XVHU�GRHV�QRW�KDYH�WR�WDNH�FDUH�LI�WKH�PRGXOHV�FRPPXQLFDWLQJ�ZLWK�HDFK�RWKHU�DUH�SODFHG�LQWR�WKH�VDPH�VHJPHQW�RU�LQWR�GLIIHUHQW�RQHV���,I�FRPPXQLFDWLRQ�RF�FXUV� EHWZHHQ� WZR�PRGXOHV� WKDW� DUH� LQ� GLIIHUHQW� VHJPHQWV��201H7��� SDFNV� DOO� WKH�VWDQGDUG�GDWD�VWUXFWXUHV�±�WKDW�DUH�LQFOXGHG�LQ�WKH�PHVVDJH�±�LQWR�390�PHVVDJHV�DQG�FDUULHV�WKHP�VDIHO\�WR�WKH�GHVWLQDWLRQ���2I�FRXUVH�WKHUH�DUH�VRPH�QDWXUDO�UHVWULFWLRQV����� 3RLQWHUV�EHFDPH�PHDQLQJOHVV�LI�WKH\�DUH�WUDQVIHUUHG�IURP�RQH�SURFHVV�WR�DQRWKHU�

���7KH�FRQYHUVLRQ�RI�WKH�GLIIHUHQW�DUFKLWHFWXUHV�LV�GRQH�LQWHUSUHWLQJ�GDWD�DV�WKHLU�W\SHV�DUH�GHILQHG��)RU�H[DPSOH�WKH�RUGHU�RI�WKH���E\WHV�RI�DQ�LQWHJHU�LV�UHYHUVHG�LI�LW� LV�WUDQVIHUUHG�EHWZHHQ�D� OLWWOH�HQGLDQ�DQG�D�ELJ�HQGLDQ�FRPSXWHU�� �7KH�GLUW\� WULFN�RI�DFFHVVLQJ�WKH���E\WHV�RI�WKLV�LQWHJHU�DV�FKDU�W\SH�YDULDEOHV�ZLOO�QRW�ZRUN�ZHOO��
���7KH�UDQJH�RI�WKH�SRVVLEOH�YDOXHV�RI�GDWD�W\SHV�PD\�GLIIHU���)RU�H[DPSOH�WKH�VWRUDJH�VL]H�RI�D�YDULDEOH�RI�&���W\SH�ORQJ�LV���RU���E\WHV�RQ�D����RU����ELW�DUFKLWHFWXUH�

FRPSXWHU��

���� 6\QFKURQL]DWLRQ�%HWZHHQ�WKH�6HJPHQWV�
201H7���SURYLGHV�D�YHU\�VLPSOH�PHFKDQLVP�IRU�WKH�LQWHU�VHJPHQW�V\QFKURQL]DWLRQ��7KH�XVHU�PD\�VHQG�D�V\QFKSRLQW�WLPH��IURP�RQH�VHJPHQW�WR�DQRWKHU���7KH�WDU�
JHW�VHJPHQW¶V�/97�PD\�QRW�SDVV�WLPH� �DQG� LWV�H[HFXWLRQ� LV�VXVSHQGHG� LI� LW�KDV�QR�
PRUH�HYHQWV�ZLWK�OHVV�RU�HTXDO�WLPHVWDPS�WKDQ�WLPH� XQWLO�D�PHVVDJH�IURP�WKH�VRXUFH�
VHJPHQW� DUULYHV�� � 7KH� ILUVW� V\QFKURQL]DWLRQ� SRLQWV� DUH� VHQW� DW� WKH� EHJLQQLQJ� RI� WKH�VLPXODWLRQ�DQG�WKH�XVHU�PXVW�WDNH�FDUH�WR�VHQG�WKH�QH[W�V\QFKURQL]DWLRQ�SRLQW�DOZD\V�EHIRUH� KH� VHQGV� WKH� H[SHFWHG�PHVVDJH� WKDW�GHOHWHV� WKH� DFWXDO� V\QFKURQL]DWLRQ�SRLQW���7KLV� PHFKDQLVP� FDQ� EH� XVHG� IRU� HLWKHU� FRQVHUYDWLYH� RU� VWDWLVWLFDO� V\QFKURQL]DWLRQ���7KH�ODWWHU�LV�VXSSRUWHG�E\�GLIIHUHQW�VWDWLVWLFV�FROOHFWLQJ�FODVVHV��VXFK�DV�KLVWRJUDPV��3��.�VSOLW�>�@��

� 3DUDOOHO�6LPXODWLRQ�RI�7ZR�,QWHUFRQQHFWHG�)'',�5LQJV�
:H�ZRXOG�OLNH�WR�GHPRQVWUDWH�WKH�SDUDOOHO�VLPXODWLRQ�ZLWK�201H7���RQ�WKH�H[DPSOH�RI�DQ�)'',�QHWZRUN���,Q�������WKH�EDFNERQH�RI�WKH�7HFKQLFDO�8QLYHUVLW\�RI�%XGDSHVW�FRQVLVWHG�RI� WZR� ULQJV��7KH�1RUWKHUQ�5LQJ�ZDV�D�XQLYHUVLW\�ZLGH�QHWZRUN�DQG�FRQ�VLVWHG�RI����)'',�VWDWLRQV� LQWHUFRQQHFWHG�E\���ZLULQJ�FRQFHQWUDWRUV�� �7KH�6RXWKHUQ�5LQJ�ZDV�WKH�EDFNERQH�RI�WKH�)DFXOW\�RI�(OHFWULFDO�(QJLQHHULQJ�DQG�,QIRUPDWLFV��DQG�EHLQJ�D�VPDOOHU�ULQJ�FRQVLVWHG�RQO\�RI���)'',�VWDWLRQV���)LJXUH����VKRZV�WKH�WRSRORJ\�RI�WKH�QHWZRUN�� �7KH�WZR�ULQJV�DUH�LQWHUFRQQHFWHG�E\�WKH�EPHFLVFR��URXWHU�� �7KH�WR�SRORJ\�RI�WKH�QHWZRUN�DQG�WKH�FDEOH�OHQJWKV�ZHUH�WDNHQ�IURP�WKH�UHDO�V\VWHP��7KH�ORDG�XVHG�LQ�WKH�VLPXODWLRQ�PRGHO�FDPH�IURP�PHDVXUHPHQWV�WDNHQ�RQ�WKH�UHDO�ULQJV���%\�XVLQJ�D�SURWRFRO�DQDO\]HU��WKH�ILUVW����RFWHWV�RI�DOO�WKH�SDFNHWV�ZHUH�FRSLHG�IURP� WKH� ULQJ� DQG� WKH� SDFNHW� OHQJWKV�� DUULYDO� WLPHV�� DV�ZHOO� DV� WKH� DGGUHVVHV� RI� WKH�VRXUFH�DQG�GHVWLQDWLRQ�VWDWLRQV�ZHUH�VWRUHG��7KH�QDWXUDO�VHJPHQWDWLRQ�RI�WKH�QHWZRUN�LV�WR�SODFH�HDFK�ULQJ�LQWR�LWV�RZQ�VHJPHQW���7KH�EPHFLVFR��URXWHU�LV�D�SDUW�RI�ERWK�ULQJV�DQG�LV�FXW� LQWR�WZR�LQ�WKH�PLGGOH�� �7KH�VWDWLVWLFDO� LQWHUIDFHV�DUH� LQVHUWHG�EHWZHHQ� WKH� WZR�ULQJV��HDFK�VHJPHQW�KDV�RQH� LQSXW�DQG�RQH�RXWSXW�LQWHUIDFH��DV�WKH�GDWD�IORZ�EHWZHHQ�WKH�VHJPHQWV�LV�EL�GLUHFWLRQDO���7KH�1H'� GHVFULSWLRQ� RI� WKH� QHWZRUN� ORRNV� DV� IROORZV� �WKH� SDUDPHWHUV�ZHUH� UHPRYHG� WR�VDYH�VSDFH���

EPHFLVFR��

EPHFLVFR�

EPHFLVFR��

EPHFLVFR��

EPHFRQF� EPHFRQF�

EPHFRQF�

EPHFRQF�

EPHEU�� EPHEU��

&KDOOHQJH

JLEULGJH

ELJPDF� *ROLDW

'HOILQ

EPHFRQF�

EPHEU�� HWKVZ�� HWKVZ� IL]LND�

1RUWKHUQ
)'',�
5LQJ� SURWRFRO�DQDO\]HU

)'',�5LQJ�
6RXWKHUQ

SURWRFRO�DQDO\]HU

[\SOH[� EPHFLVFR��

+HOLRV] EPHFLVFR� PKWEULGJH :DJQHU�

 ZLULQJ�FRQFHQWUDWRU�

)'',�6WDWLRQ

/HJHQG�
 GRXEOH�DWWDFKPHQW�ZLULQJ��

 VLQJOH�DWWDFKPHQW�ZLULQJ��

)LJ�����7KH�)'',�EDFNERQH�RI�WKH�7HFKQLFDO�8QLYHUVLW\�RI�%XGDSHVW�LQ������
PRGXOH�78%B660�
� PDFKLQHV��
� 15BKRVW��65BKRVW��
� VXEPRGXOHV��
� 15LQJ��78%15LQJ��
� RQ��15BKRVW��
� 65LQJ��78%65LQJ��
� RQ��65BKRVW��
� 15LQJBRLI��660B2,)BW\SH�OLNH�660B2,)��
� RQ��15BKRVW��
� 15LQJBLLI��660B,,)��

RQ��15BKRVW��
� 65LQJBRLI��660B2,)BW\SH�OLNH�660B2,)��
� RQ��65BKRVW��
� 65LQJBLLI��660B,,)��
� RQ��65BKRVW��
� FRQQHFWLRQV��
� 15LQJ�RXW���!�15LQJBRLI�LQ��
� 15LQJBRLI�RXW���!�GHOD\������XV���!�65LQJBLLI�LQ��
� 65LQJBLLI�RXW���!�65LQJ�LQ��
� 65LQJ�RXW���!�65LQJBRLI�LQ��
� 65LQJBRLI�RXW���!�GHOD\������XV���!�15LQJBLLI�LQ��
� 15LQJBLLI�RXW���!�15LQJ�LQ��
HQGPRGXOH�

�

)LJ�����7KH�PDLQ�ZLQGRZ�RI�201H7���
7KH�GHPRQVWUDWLRQ�RI� WKH�SDUDOOHO�VLPXODWLRQ�UXQV�RQ� WZR�QRWHERRNV�� LQWHUFRQQHFWHG�YLD���%DVH7�(WKHUQHW��7KH�390�YHUVLRQ�LV��������201H7���WKH�FXUUHQWO\�DYDLODEOH����� GLVWULEXWLRQ� >�@�� � 7KH� FRPSOHWH�)'',�PRGHO� FDQ� EH� IRXQG� DPRQJ� WKH� VDPSOHV���7KH�201H7���PDQXDO� JLYHV� D� GHWDLOHG� GHVFULSWLRQ� DERXW� KRZ� WR� FRQILJXUH� 390��DQG�DERXW�JHWWLQJ�WKH�)'',�PRGHO�UXQ�SDUDOOHO���'HVSLWH�WKH�IDFW��WKDW�WKH�)'',�VLPX�ODWLRQ�ZDV�ZULWWHQ�LQ�������EHIRUH�WKH�SXEOLF�UHOHDVH�RI�201H7���WKH�FRGH�VWLOO�FRP�SLOHV� DQG� HYHQ�ZRUNV�� � �7KDQNV� WR�$QGUiV�9DUJD��ZKR� DOZD\V� XSGDWHG� LW�ZKHQ� WKH�VLPXODWRU� ZDV� FKDQJHG��� �)RU� WKRVH�� ZKR�ZRXOG� OLNH� WR� UHSHDW� WKH� H[SHULPHQW�� WKH�DERYH�VWDWHPHQWV�DUH�WUXH�RQO\�LI�6,1*/(B+267�LV�QRW�GHILQHG���,I�LW�LV�GHILQHG�WKH�

����GLVWULEXWLRQ�VUF�VLP�SYP�SYPPRG�FF�ILOH�ZLOO�QRW�FRPSLOH��EXW�QHHGV�DERXW�
���PLQXWHV�KDFNLQJ«�%XJIL[�LV�SODQQHG�WR�EH�SURYLGHG�VRRQ��

� 6XPPDU\�
:H�KDYH�VKRZQ�� WKDW�660�7�LV�D�JRRG�VROXWLRQ�IRU�3'(6�V\QFKURQL]DWLRQ�� �$OO� WKH�QHFHVVDU\�IXQFWLRQDOLW\�LV�DOUHDG\�LQFOXGHG�LQ�201H7�����6R�QRZ�ZH�DUH�ORRNLQJ�IRU�YROXQWHHUV��ZKR�WHVW�WKH�PHWKRG�IRU�UHDO�OLIH�DSSOLFDWLRQV��

5HIHUHQFHV�
���)XMLPRWR�� 5��0��� �3DUDOOHO� 'LVFUHWH� (YHQW� 6LPXODWLRQ���&RPPXQLFDWLRQV� RI� WKH� $&0� ������������QR�����SS����������� 3RQJRU��*\����6WDWLVWLFDO�6\QFKURQL]DWLRQ��D�'LIIHUHQW�$SSURDFK�RI�3DUDOOHO�'LVFUHWH�(YHQW�6LPXODWLRQ���3URFHHGLQJV�RI�WKH������(XURSHDQ�6LPXODWLRQ�6\PSRVLXP��(66¶�����'UHVGHQ��*HUPDQ\��1RY�������6&6�(XURSH��SS�������������� /HQFVH�� *��� �(IILFLHQW� 3DUDOOHO� 6LPXODWLRQ� ZLWK� WKH� 6WDWLVWLFDO� 6\QFKURQL]DWLRQ� 0HWKRG��3URFHHGLQJV�RI�WKH�&RPPXQLFDWLRQ�1HWZRUNV�DQG�'LVWULEXWHG�6\VWHPV�0RGHOLQJ�DQG�6LPX�ODWLRQ��&1'6
�����6DQ�'LHJR��&$��-DQ����������6&6�,QWHUQDWLRQDO��SS���������� 3RQJRU��*\����0XOWLSOH�9LUWXDO�7LPHV�LQ�3DUDOOHO�'LVFUHWH�(YHQW�6LPXODWLRQ����3URFHHGLQJV�RI� WKH� 3DUDOOHO� 3URFHVVLQJ� :RUNVKRS� �7HFKQLFDO� 8QLY�� RI� %XGDSHVW�� %XGDSHVW�� +XQJDU\��)HEU������������������� /HQFVH��*����6WDWLVWLFV�&ROOHFWLRQ�IRU�WKH�6WDWLVWLFDO�6\QFKURQLVDWLRQ�0HWKRG��3URFHHGLQJV�RI�WKH� ����� (XURSHDQ� 6LPXODWLRQ� 6\PSRVLXP� �(66
���� �1RWWLQJKDP�� 8.�� 2FW�� �������� 6&6�(XURSH��SS������������ /HQFVH��*����$SSOLFDELOLW\�&ULWHULD�RI�WKH�6WDWLVWLFDO�6\QFKURQL]DWLRQ�0HWKRG��3URFHHGLQJV�RI� WKH� &RPPXQLFDWLRQ� 1HWZRUNV� DQG� 'LVWULEXWHG� 6\VWHPV� 0RGHOLQJ� DQG� 6LPXODWLRQ��&1'6
�����6DQ�)UDQFLVFR��&$��-DQ����������6&6�,QWHUQDWLRQDO��SS�������������� /HQFVH�� *��� �'HVLJQ� &ULWHULRQ� IRU� WKH� 6WDWLVWLFV� ([FKDQJH� &RQWURO� $OJRULWKP� XVHG� LQ� WKH�6WDWLVWLFDO�6\QFKURQL]DWLRQ�0HWKRG��3URFHHGLQJV�RI�WKH�$GYDQFHG�6LPXODWLRQ�7HFKQRORJLHV�&RQIHUHQFH��$67&�������SDUW�RI�WKH���QG�$QQXDO�6LPXODWLRQ�6\PSRVLXP��6DQ�'LHJR��&$��$SULO��������6&6�,QWHUQDWLRQDO��SS�������������� 9DUJD��$����.�VSOLW�±�2Q�/LQH�'HQVLW\�(VWLPDWLRQ�IRU�6LPXODWLRQ�5HVXOW�&ROOHFWLRQ���3UR�FHHGLQJV�RI�WKH������(XURSHDQ�6LPXODWLRQ�6\PSRVLXP��(66������1RWWLQJKDP��8.��2FW������������6&6�(XURSH������������ 9DUJD��$����201H7���'LVFUHWH�(YHQW�6LPXODWLRQ�6\VWHP���������KWWS���ZZZ�KLW�EPH�KX�SKG�YDUJDD�RPQHWSS�KWP�

A Networked Remote Simulation Architecture and its
Remote OMNeT++ Implementation

Erdei, Márk

Department of Telecommunications
Budapest University of Technology and Economics

merdei@hit.bme.hu

Sója, Katalin

Department of Telecommunications
Budapest University of Technology and Economics

ksoja@hit.bme.hu

Wagner, Ambrus

Department of Telecommunications
Budapest University of Technology and Economics

ambi@hit.bme.hu

Simulation is a resource-intensive task. It demands both computational power
and large storage capacity. In this paper we present an architecture that provides
a client-server distributed environment facilitating effective sharing of
resources. In a simulation system, three function groups can be clearly
separated: control, execution, and storage of models and results. Each of these
functions requires a specialised resource profile. The benefit of separating the
three function groups is that the costly simulation hardware becomes accessible
to a wide audience and on the other hand user hardware requirements are kept
to a minimum. The distributed simulation architecture we developed effectively
supports the functional separation of simulation systems as outlined above. In
this paper first the architecture is introduced, followed by the description of the
various usage scenarios. Then the security system is outlined, and a brief
overview of the implementation for the OMNeT++ simulator, called Remote
OMNeT++, is given.

The Architecture

This architecture is designed to separate the different functions in a simulation
system. This is necessary because the resource needs of each function are different.
Three basic function groups can be distinguished:

• Control
• Simulation Execution
• Data Storage (models, results, etc.)

These functions are embodied in the three main components of our architecture
respectively:

• Client
• Processing Host
• Data Warehouse

These components and their relationships are shown on the figure below:

Data
Warehouse

Processing
Host

Client

Data
Warehouse

Processing
Host

Network

The components of the architecture and their relationships

The Client allows the user to create and control simulation runs, manage models,
and results. This program has a small footprint, this way the user does not need a
high-performance workstation to use the simulation system.

A Processing Host is typically an expensive machine, with enough processing
power to execute multiple simulations at the same time. The number of simultaneous
users is limited only by the capacity of this computer.

A Data Warehouse is a machine with large storage capacity to store simulation
models and results. Through the use of Data Warehouses, models and results can be
shared among users easily.

This architecture is a type of client-server architecture, in which the components
are interconnected via a network, which can be an intranet, or the Internet, depending
on the usage scenario.

On the figure below, the flow of data can be observed. There are four basic types
of objects:

• Model: a simulation model (source code)
• Run: a running simulation
• Simulation: a finished simulation with a reference to the model and the results
• Result: a result of a finished simulation

Client

P
ro

ce
ss

in
g

 H
o

st

D
at

a
W

ar
eh

o
u

se

Model

Result

M
od

el

S
im

ul
at

io
n

R
u

n

M
od

el

model
upload

model download

model
upload

model
download

result transfermodel
transfer

Data flow between the components

In the following sections the components are described.

Client

The Client is the user’s computer. Only a small software component has to be
installed, so there are no special hardware requirements. The Client is basically a
gateway to the rest of the simulation system. In the ideal case, neither simulation
execution, nor data storage is located on the user’s computer.

Using the Client software, the user can connect to the other components, that is, to
the Processing Hosts and the Data Warehouses, and perform various actions, like data
transfers and simulation executions.

Processing Host

The Processing Host is the high-performance simulation execution machine. It runs
the simu lation engine to execute the simulation models . Processing Hosts do not have
large storage capacities, therefore neither models, nor results are stored in Processing
Hosts. Models are uploaded as needed, while results are automatically transferred to a
Data Warehouse as soon as the simulation is completed.

Data Warehouse

The Data Warehouse is the storage component in the system. It stores simulation
models for later use and simulation results for analysis. The models are uploaded by
the users, and the results are transferred from the Processing Hosts upon simulation
completion.

Usage Scenarios

There are several different usage scenarios, based on the location of the individual
components. The degree of spatial separation can be adjusted according to the
application. This means, that in some cases, all three components should be on the
same machine, while in other cases, they should be separated.

There are three main scenarios:

• Local machine
• Small research or educational laboratory
• Large, corporate laboratory

In the following sections the above three scenarios will be discussed.

Local machine

Remote OMNeT++
Manager

Remote OMNeT++
Dataware

Remote OMNeT++
Client

Local machine

OMNeT++
Engine

The local machine scenario

In this scenario, the three components are colocated on the user’s computer. This is
useful when a model is being developed. Clearly, it would not be effective to
continuously upload the model to a Processing Host for testing, and then download
the results. One advantage of the architecture is that the components are location
transparent, that is, the same components can be used even if they reside on the same
computer.

Obviously, if someone just wants to experiment with the system, this is the
scenario he would use.

Small laboratory

Remote OMNeT++
Manager

Remote OMNeT++
Dataware

Remote OMNeT++
Client

Processing Hosts

OMNeT++
Engine

Local machines

Internet or LAN (TCP/IP)

Data Warehouses
The small laboratory scenario

In this scenario, the Processing Host and the Data Warehouse is a single computer,
with adequate processing power and storage capacity. Multiple Clients can then
connect to this machine, execute simulations and download results.

This scenario is typical for a small laboratory, like a small research laboratory or a
university laboratory, where there is no need for exceptional processing or storage
capacity.

A university laboratory can benefit from the fact that models and results can be
shared effectively among the users. The teacher uploads the model to the server, then
the students download and maybe modify it. Next, they upload their models for
simulation, and download the results for analysis.

Large laboratory

Remote OMNeT++
Manager

Remote OMNeT++
Dataware

Remote OMNeT++
Client

Processing Hosts

OMNeT++
Engine

Local machines

Internet or LAN (TCP/IP)

Data Warehouses
The large laboratory scenario

In this case all three components are located on different machines. In fact, there
might be more than one Processing Host and Data Warehouse.

This scenario is appropriate for large laboratories, or distributed computing
environments (like a Grid Computing environment), where there are a number of
available resources, and the user selects the one that meets his simulation or storage
needs.

A typical usage sequence

In this section, a typical sequence is described. The user wishes to simulate a model,
that already exists on a Data Warehouse (A), and wants to store the results on a
different Data Warehouse (B). The user connects to the resources over the Internet.

1. Login to the Data Warehouse A, and to the Processing Host.
2. Transfer the model from Data Warehouse A to the Processing Host. (The model is

not transferred to the user’s computer! With appropriate security settings (see next
chapter) it is possible to allow a user to simulate a model, but not to download it.
This is very useful if the model contains sensitive data.)

3. Create a simulation run, and specify Data Warehouse B as the destination for the
results.

4. Start the simulation, and disconnect from the Internet.
5. Reconnect to check simulation progress.
6. When the simulation completed, download the results from Data Warehouse B.

Security System

Obviously, sharing data among different users is not without problems. In some cases
it is not desirable for all users to have access to a model, results, or resources. User
authentication must also be solved.

There are two main components of the security system in the architecture:

• User authentication
• Control of user actions

User authentication

User authentication means reliable identification of users. Also, user identification
must be portable, to be able to attach rights to objects such as models.

Our solution is based on a public key encryption scheme. The first time a user
connects to a server, he uploads his public key. The server ensures via a challenge-
response method that the user is in possession of the private key, that is, the uploaded
public key is indeed his own. Next, the user chooses a username and a password, that
is specific to that particular server. However, the user is always identified by his
public key. The username is used only to make logging into the server easier.

As an addition to the public key scheme, certificates could be used to verify a
user’s identity.

Control of user actions

There are many kinds of actions that can be controlled by the security system. Some
of these are linked to servers, while others are linked to objects, like models or results.
Server-based rights include the rights to upload a model to a server, download a
model from a server, execute a simulation on that server, etc. Object-based rights
include the right to simulate a model, view a set of results, etc.

In the case of server-based rights, the rights are stored on the server for each user.
In the case of object-based rights, however, this information must be conveyed along
with the object in question. That is, each object has an associated security information
object, that contains information about the rights certain users have in connection with
that particular object. This makes the objects transferrable, which is important when,
for example, a model is moved from one Data Warehouse to another. In this context it
is very important to be able to identify users uniquely, hence the need for the public
key approach.

Rights attached to objects make the scheme mentioned in the previous chapter
possible, where the user has no right to download a model, only to simulate it.

Implementation

In this section some implementation aspects are covered, concentrating on the user’s
perspective, omitting the details.

Our implementation was made for the OMNeT++ simulator, and is therefore called
Remote OMNeT++. This system contains three main software components that
correspond to the functions described earlier.

• Client: Remote OMNeT++ Client
• Processing Host: Remote OMNeT++ Manager
• Data Warehouse: Remote OMNeT++ Dataware

All three components are implemented in Java, to make the system completely

portable. The components communicate via a standard Java RMI interface. This
makes it possible to develop proprietary components for the system, if necessary, for
example to interface to a different simulator.

In the following sections, the individual components are described.

Remote OMNeT++ Client

This software component is a GUI-based component that is installed on the user’s
computer. It enables the user to connect to the server components of the system, that
is, to Processing Hosts and Data Warehouses.

The user can start a simulation, continuously monitor its progress, pause, resume,
stop, or abort the simulation. The user might even disconnect from the Processing
Host while the simulation is running, and reconnect later to check its progress. This
feature is especially useful for dial-up users.

Remote OMNeT++ Manager

This component is installed on Processing Hosts, and has three basic functions:

• compile uploaded models
• control the OMNeT++ simulation engine
• transfer the results to a preselected Data Warehouse

The first function enables users to upload the C and NED source code to the

Processing Host, where it is automatically compiled into a simulation executable.
This executable is then started, and controlled via a Java RMI interface. This is

made possible by a special OMNeT++ environment called RemoteEnv.

When the simulation is finished, the results are automatically transferred to a Data
Warehouse for long-term storage, and later analysis.

Remote OMNeT++ Dataware

This is the software component for the Data Warehouses. It interfaces to some data
storage mechanism to store user data. This might be the local file system, or a full-
blown database management system, depending on the application.

Future Plans

There are two major plans for the future:

• CORBA interfaces
• Agent-based resource management

CORBA interfaces would make this system completely open-architecture, making

it possible to develop specialised components in languages other than Java. This
might be necessary, for example, when a high-performance simulation server does not
have Java installed. In this case, a pure C implementation of some parts of the Remote
OMNeT++ Manager is required.

Agent-based resource management helps users find appropriate resources in a
distributed environment. This is closely related to Grid Computing, where processing
power and storage capacity are provided and maintained by an organisation, which
then makes these resources available to users. Fees are usually based on processor
ticks and megabytes. If there are a large number of resources available, a software
agent can be used to travel through the resource network and negotiate with the
resource providers based on the preferences of the user.

Conclusion

The architecture presented in this paper solves the problem of shared use of valuable
simulation equipment, and data. An implementation for the OMNeT++ simulator
called Remote OMNeT++ has also been presented. Remote OMNeT++ is a small-
footprint, scalable, platform-independent simulation environment for model
developers, educational institutions, or even commercial applications.

Future plans include addition of CORBA interfaces for easy expansion, and agent-
based resource management for Grid Computing environments.

References

Wagner, A., M. Erdei, “Agent-Based Resource Management for Remote Simulation
Systems and an Implementation for Remote OMNeT++”, European Simulation
Multiconference (ESM2001) , Prága, 2001.

Erdei, M., A. Wagner, K. Sója, M. Székely, “A Networked Remote Simulation

Architecture and its Remote OMNeT++ Implementation”, European
Simulation Multiconference (ESM2001), Prága, 2001.

Erdei, M., K. Sója, A. Wagner, “A distributed simulation architecture and its

implementation: Remote OMNeT++”, Scientific Student Conference, Budapest
University of Technology and Economics, Budapest, 2001.

Using Akaroa with Omnet++

Steffen Sroka1 and Holger Karl1

Telecommunication Networks Group
Technical University Berlin

Berlin, Germany
sroka@ft.tu-berlin.de, karl@ee.tu-berlin.de

http://www-tkn.ee.tu-berlin.de

1 Introduction

When using discrete event simulation (DES) two main problems are: When is
it ready to start collecting data (in order not to include initialisation effects)
and when to terminate the simulation? One possible criterion is given by the
confidence level, more precisely, by its width relative to the mean. But ex ante
it is unknown how many observations have to be collected to achieve this level.
Another problem is that DES can consume much time. Even with today’s high
speed processors simulation of modest complexity can take hours. AKAROA-2
[1] is a software packet that solves both problems. Akaroa was designed at the
University of Canterbury in Christchurch, New Zealand and can be used free
of charge for teaching and non-profit research activities. It is designed for run-
ning quantitative stochastic discrete event simulations on Unix multiprocessor
systems or networks of heterogeneous Unix workstations. To speed up sequen-
tial simulation it uses multiple replications in parallel (MRIP). This means that
multiple instances of a sequential simulation program run on different proces-
sors. These instances run independently of one another and continuously send
their observations to a central management process. This management process
calculates from these observations an overall estimate of the mean value of each
parameter. AKAROA-2 decides by a given confidence level and precision whether
it has enough observations or not. When it judges that is has enough observa-
tions it halts the simulation. The simulation would be sped up approximately in
proportion to the number of processors used and sometimes even more.

Currently these functionality is not present within OMNeT++ [2] and im-
plementing these algorithms by hand is complicated and error-prone. Therefore
it seems to be a good idea to integrate the AKAROA-2 capabilities into OM-
NeT++. Sequential simulation programs to be run under Akaroa must be written
in either C or C++, or be capable of calling library routines written in C++.
Therefore Omnet++ simulations are good candidates to use with Akaroa.

This document shows that OMNeT++ simulations can benefit from the ca-
pabilities of AKAROA-2 and describes a method to integrate the AKAROA-2
functions into existing simulations. Section 2 briefly describes how Akaroa works.

akrun

Simulation A Simulation B

akmaster

Host 1

akslave

Engine A

Engine B

Host 2

akslave

Engine A

Engine B

Host 3

akslave

Engine A

Engine B

akrunakrun

Simulation A Simulation B

akmasterakmaster

Host 1

akslave

Engine A

Engine B

Host 2

akslave

Engine A

Engine B

Host 3

akslave

Engine A

Engine B

Host 1

akslave

Engine A

Engine B

Host 1

akslave

Engine A

Engine B

akslave

Engine A

Engine B

Host 2

akslave

Engine A

Engine B

Host 2

akslave

Engine A

Engine B

akslave

Engine A

Engine B

Host 3

akslave

Engine A

Engine B

Host 3

akslave

Engine A

Engine B

akslave

Engine A

Engine B

akrun

Fig. 1. Diagram of Akaroa running on 3 hosts

2 Running a simulation under Akaroa

This section is based on the manual of Akaroa. For a more detailed description
see ref. [3] .

2.1 Parts of the Akaroa system

– Akmaster is the master process which coordinates all other processes in the
Akaroa system.

– Akslave is a process that must run on each host that should be used for the
simulation.

– Akrun instructs akmaster to launch the simulation on the requested number
of hosts.

2.2 Starting up the Akaroa system

1. Start akmaster running in the background on some host.
2. On each host where you want to run a simulation engine, start akslave in

the background.

In Fig.1 there is a scheme of a simulation running on 3 hosts.

2.3 Running a simulation

The akrun command starts a simulation, waits for it to complete, and writes
a report of the results to the standard output. The basic usage of the akrun
command is:

akrun -n num_hosts command [argument..]

where command is the name of the simulation you want to start. If the simulation
is not in the search path you should use the full name to invoke. When akrun
starts it reads the file Akaroa in the same directory. There are some variables
that customize Akaroa. For more details see the Akaroa manual. Here is a little
example which shows the output when starting the simulation uni on two hosts
[3].

whio% akrun -n 2 uni
Simulation ID = 17
Simulation engine started: host = pukeko, pid = 23672
Simulation engine started: host = purau, pid = 434
Param Estimate Delta Conf Var Count Trans

1 0.503476 0.0157353 0.95 4.42582e-05 1530 255
whio%

2.4 Shutting down the Akaroa system

For shutting down the Akaroa system it is only necessary to kill the akmaster
process. Any other processes (akslave, akrun or simulation engines) attached to
the akmaster process will be automatically terminated.

2.5 Additional parts of Akaroa

– Akadd adds machines to a running simulation.
– Akstat provides information about a running simulation.
– Akgui is a GUI written in Python, but actually does not work with some

Linux installation.

3 Writing an OMNeT++ simulation for Akaroa

One basic virtue of Akaroa is that it is easy to adapt existing simulation programs
to run under it. Only three steps have to be taken:

– Because Akaroa use MRIP it is indispensable that all simulation runs inde-
pendently. When using the build-in RNGs from OMNeT++ every replica-
tion would work with the same stream of random numbers. Consequently the
simulation should always obtain random numbers from the Akaroa system.
It uses a Combined Multiple Recursive pseudorandom number generator
(CMRG) with a period of approximately 2191 random numbers and provides
a unique stream of random numbers for every simulation engine.

– The Akaroa system needs to know how many parameters are to observe.
This information has to be transfered before the first observation is made.
The function AkDeclareParameters(n) tells Akaroa that is has to handle
n parameters.

– Finally all observations have to be transmitted to Akaroa. This is solved by
the function AkObservation(i,x) that collects observations for parameter
i.

3.1 Sub-classing AkOutVector from cOutVector

For an easy use of the Akaroa functionality a sub-classing from cOutVector seems
to be ideal because this is the OMNeT++ class where such continuous observa-
tions are recorded. Thereby the last two steps from above can be hidden from
the user. Then only replacing cOutVector by AkOutVector and the replacing of
the random generators are required. Through sub-classing all functionality from
cOutVector remains available. If only a single replication of a program is used,
the replacing of RNGs is not required.

Listing 1 shows the declaration of AkOutVector. When calling the constructor
of AkOutVector the constructor of cOutVector is called too. Thus all function-
ality of cOutVector is achieved. In order to tell Akaroa how many parameters
have to be observed veccount is a static member. When the simulation records
its first observation AkOutVector calls AkDeclareParameters(veccount) to tell
Akaroa the number of parameters. Every time the simulation calls record() the
class transfers the value to Akaroa and OMNeT++.

When running different instances of one simulation working on the same
directory the names for storing data have to be different. Therefore the function
setOutFilename() sets the name to <hostname>.vec.

3.2 Random Numbers

When running multiple replications of a simulation model in parallel, it is im-
portant that each simulation engine uses a unique stream of random numbers,
independent of the streams used by other simulation engines. For this reason, if
your simulation requires random numbers, you should always obtain them from
the Akaroa system, so that Akaroa can coordinate the random number streams
received by different simulation engines. The Akaroa library provides several
distributions (see Listing 2).

3.3 Other Problems

If you use several instances of simple modules to form one estimate, you have
to make AkOutVector* a static member of this simple modules class. This is a
bit complicated because the constructor of cOutVector requires an other object.
Listing 3 shows a possible solution.

Listing 1. Declaration of AkOutVector

#include "omnetpp.h"

#include <akaroa.H>

#include <akaroa/ak_message.H>

class AkOutVector : public cOutVector {

static bool Ak_declared;

static long veccount;

static bool hostfile;

long Ak_id;

void setOutFilename();

public:

AkOutVector(const char *name=NULL) ;

~AkOutVector();

virtual void record(double value);

};

Listing 2. Random distributions

#include <akaroa/distribution.H>

real Uniform(real a, real b);

long UniformInt(long n0, long n1);

long Binomial(long n, real p);

real Exponential(real m);

real Erlang(real m, real s);

real HyperExponential(real m, real s);

real Normal(real m, real s);

real LogNormal(real m, real s);

long Geometric(real m);

real HyperGeometric(real m, real s);

long Poisson(real m);

real Weibull(real alpha, real beta);

Listing 3. AkOutVector as static member

class ak_module : public cSimpleModule

{

Module_Class_Members (ak_module, cSimpleModule, 16384);

public:

virtual void activity ();

virtual void finish();

virtual void initialize();

static AkOutVector* pParameter;

};

Define_Module(ak_module);

AkOutVector* ak_module::pParameter=NULL;

void ak_module::initialize()

{

if (pParameter==NULL)

{

pParameter=new AkOutVector("pParameter");

};

}

4 Known Problems and Future Work

4.1 Terminating the Simulations

Currently Akaroa simply terminates the simulation engines when it has enough
observations. The problem with this is that OMNeT++ does not call finish()
when it receives such signals.

Another problem occurs when recording data within dynamically generated
modules because the parameter has to be declared in advance to the Akaroa
system. A solution would be a parameter placed in omnet.ini that contains the
number of parameters to be observed.

5 Installing Akaroa under Linux

The installation of Akaroa under Linux needs some modifications of the Akaroa
source files. A modified packet of Akaroa is available under www-tkn.ee.tu-berlin.
de/research/omnet-akaroa/. For a detailed installation instruction read the
read.me file in this folder.

References

1. K. Pawlikowski; D. McNickle; G. Ewing; R. Lee; J. Jeong. Project akaroa. Technical
report, Department of Computer Science, University of Canterbury, Christchurch,
New Zealand, www.cosc.canterbury.ac.nz/research/RG/.

2. Andreas Varga. Omnet++ eiscrete event simulation system. Technical report,
Technical University of Budapest, www.hit.bme.hu/phd/vargaa/omnetpp/, 2001.

3. Greg Ewing; Krzysztof Pawlikowski; Donald McNickle. Akaroa 2.6 User’s Manual.
www.cosc.canterbury.ac.nz/research/RG, July 2000.

Session 3:
Simulating Wireless and

Mobile Networks

A Discrete Model of the Mobile Radio Channel in OMNeT++

Dipl.-Ing. Timo Weiss

Universität Karlsruhe, Institut für Nachrichtentechnik, D-76128 Karlsruhe, Germany
weiss@int.uni-karlsruhe.de

Abstract. This paper presents a new approach in modelling the mobile radio channel which is espe-
cially suited for discrete event simulation. A multitude of parameters characterizing the wireless data
transmission is taken into account i.e. several types of fading, delay and interference. The model de-
livers a realistic representation of the channel and the base band processing without demanding a large
amount of processing power.
This is achieved by an abstraction from simulating every parasitic effect of the air medium and the base
band in detail. Many of them can be merged to groups having the same impact on the bit error rate of
the channel. Thus, a reduction of simulation complexity is obtained without sacrificing accuracy. The
application of random process generators which are especially qualified for nonlinear time progession
provokes a further speed enhancement. An elegant mathematical description of effects like cochannel
interference and multiple access interference is introduced.
Further on, the implementation of the presented model in OMNeT++ is described. The specification of
the model interface between the channel and the physical layer as well as between the physical layer and
the data link layer is given. Finally, simulation results will be presented showing a good match between
stream driven and discrete event simulation in terms of the first and second order statistical properties
of the generated bit error process.

1 Introduction

In publications of recent years on simulation of higher protocol layers in mobile communication systems
the special characteristics of mobile radio transmission is often taken into account insufficiently. In many
cases simplified models or even plain AWGN-channels are employed.

Abstraction from reality is certainly necessary for computational reasons. However, the impact of many
physical phenomena on functions of higher layers cannot always be neglected. For example, the time cor-
relation of fading induced in the mobile radio channel plays an important role when it comes to the perfor-
mance of MAC and DLC layer techniques.

But on the other hand we may not make the mistake of going into detail too deeply and simulate every bit
with the accuracy of stream driven simulation tools. Thus, rare protocol events could not be investigated due
to restricted computational power. Hence, a compromise is to be found between expenditure and accuracy.
In the sequel, we describe a new approach providing more flexibility and closeness to reality and only
requiring a reasonable amount of computational ressources.

For higher layers of the protocol stack only the bit and packet error processes of the channel are relevant.
The description of the first and second order statistics of these processes and the influence of various channel
and signal processing parameters is subject of this chapter.

1.1 Physical phenomena

First of all, important parameters and properties of the mobile radio channel are to be identified which are
considered in the following.

– position and speed of each station
– Rice, Rayleigh, Gauss and lognormal fading
– free-space attenuation

– propagation and transmission delay
– external interference (MAI, CCI etc.)
– internal interference (ISI, ICI, sync mismatch etc.)
– additive white Gaussian noise

where external interference denotes the interaction between stations inside the propagation area. If only
one link between two stations is considered (point-to-point) these interactions can be overcome by increas-
ing the transmitter gain. Whereas internal interference denotes the distortion that is introduced within each
link. This kind of interference is also present even in the absence of other users and cannot be mitigated by
a higher gain which can be observed with ISI for instance.

1.2 Transmission model

In this section an abstracted channel model will be derived from which the important process of the instan-
taneous SNIRγ(t) can be generated directly. This processγ(t) represents the basis for the generation of
the bit error process which is calculated in the physical layer (see next section).

Before the transmission model is described in detail some assumptions have to be made. First, the
channel is assumed to be all-multiplicative i.e. the channel can be perfectly represented by its time-variant
complex attenuation processH(t). Nevertheless, frequency selective properties of the mobile radio channel
can also be embedded in this model as will be seen later on. Additionally, it is assumed that the receiver is
able to demodulate perfectly coherently. Hence, the carrier phase is known and can be set to zero without
loss of generality

Re{H(t)} = |H(t)| (1)

Im{H(t)} = 0. (2)

For the sake of simplicityH(t) is now referred to asH(t) and represents a real process. As it is shown
later the assumption of perfect coherent demodulation does not preclude that synchronization and channel
estimation errors can be taken into account as well. The channel process shall be normalized having the
average powerE{H2} = 1. Note thatH(t) is a real process now as its phase is zero.

Furthermore, three noise processes are introduced representing the impact of the perturbations additive
noiseNo(t), internal interferenceN i(t) and external interferenceNe(t) as mentioned above. The processes
N i(t) andNo(t) can be considered stationary. Whereas,Ne(t) is generally nonstationary and depends
on the number and the geometric positions of the participating stations and their transmission behavior.
However, these parameters are always known to the simulation system.

As these parameters influencingNe(t) are slowly changingNe(t) is assumed to be stationary at least
for small time intervals.

The average power of each noise process is defined as follows

E{N0N
∗
0} = PN0

E{N iN
∗
i } = PNi

E{NeN
∗
e} = PNe . (3)

With all these definitions the transmission model can be given as shown in Fig. 1.

Wheres(t) andr(t) denote the transmitted and the received signal, respectively, withs(t) having the
average powerE{SS∗} = PS . The amplitude gainA(t) at the transmitter is time-variant in order to
simulate power control and power saving mechanisms as well.

Now it is straight forward to derive the instantaneous SNIRγ(t) from Fig. 1 as the ratio of wanted signal
power to noise signal power inr(t).

ni(t)

r(t)s(t)

ne(t) n0(t)A(t) h(t)

Channel ReceiverTransmitter

Fig. 1.The transmission model

γ(t) =
E{SS∗}A(t)2h(t)2

(A(t)2E{N iN
∗
i }+ E{NeN

∗
e})h(t)2 + E{N0N

∗
0}

=
PSA(t)2h(t)2

(A(t)2PNi + PNe)h(t)2 + PN0

(4)

Taking eq. (4) into account, neglecting all interferencesPNi = PNe = 0 and assumingh(t) andA(t) to
be time constantγ(t) simplifies to

γ(t) =
PSA

2

PN0

= γAWGN . (5)

If we keeph(t) time variant and Rayleigh distributed, this results in a flat Rayleigh channel

γ(t) = h(t)2PSA
2

PN0

= h(t)2γAWGN . (6)

With PNe = 0 andPNo → 0 (thusγAWGN →∞) we obtain

γ(t) =
PSA

2h(t)2

PNiA
2h(t)2

=
PS
PNi

= γfloor. (7)

From eq. (7) it is obvious that the internal interferences cause a SNIR-floorγfloor provoking wrong
decisions at the receiver even in the absence of AWGN. This error floor behavior is well known from many
simulations and measurements of real systems.

Hence, eq. (4) can be considered a generalization of the special cases shown above (eq. (5) - eq. (7)),
thus covering a multitude of phenomena in mobile radio transmission. How the necessary noise powers can
be acquired in a practical application is subject of section 2. Next, we want to turn to a new technique for
the realization of the processH(t) which is especially suited for discrete event simulation systems.

1.3 Modeling the channel process

If one does not want to rely on a simple modeling of the channel processH(t) using analytical Rayleigh
and Rice models [Cla68][Jak93] one can skip to more sophisticated deterministic channel models. In the
literature one finds two basic approaches for the implementation of a colored Gaussian noise (CGN) gener-
ator which represents a fundamental element of a channel simulator. There is the filter method and the Rice
method.

In stream driven simulations the filter method as depicted in Fig. 2 is most common. Here, a CGN
process is generated by filtering a white Gaussian noise (WGN) process with a linear time nonvariant filter
having a given frequency responseG(f). If the input process isN (0, 1)-distributed the output signal of the
filter is Gauss distributed as well with the power spectral density|G(f)|2

WGN G(f) CGN

Fig. 2.The filter method

However, from a discrete event simulation point of view there is one substantial drawback no matter
what kind of linear filter is employed: discrete leaps in time of different length are not possible. So if two
events are separated by∆T i.e. the end of a data transmission and the start of a new one then the filter has to
be running throughout the entire time period∆T between these two events although the state of the channel
is irrelevant. This leads to an unnecessary computational overhead.

CGNS
cos(2 f t+)p f2 2

cos(2 f t+)p f1 1

cos(2 f t+)p fN N

c1

c2

cN

..
.

..
.

Fig. 3.The Rice method

A remedy can be found by generating colored Gaussian processes employing the Rice method. The
main principle of the Rice method [Ric45] is shown in Fig. 3. It is based on the weighted superposition of
an infinite number of weighted harmonic functions having different frequencies and random phases. Thus,
a colored Gaussian process can be described by

h(t) =
∞∑
n=0

cn cos(2πfnt+ ϕn). (8)

However, for computational reasons one can only consider a limited number of superimposed waves in
practice. As one can see from eq. (8),h(t) is determined at each point in time making it possible to allow
nonlinear time progression. This property makes the Rice method very attractive to discrete event systems.

Thereby, the phasesϕn can be chosen randomly and independently in the interval[0, 2π). In this work
the weight factorscn were calculated using the method of equal areas due to its small computational expen-
diture and its quasi-nonperiodic correlation properties. The reader may refer to [Pae94] for details.

CGN1

CGN2

CGN3 exp()

a
b
s
()

ms

r p fcos(2 f t+)r r

r p fsin(2 f t+)r r

h(t)

Fig. 4.Extended Suzuki process of type I

By combining several independent colored Gaussian noise generators as depicted in Fig. 3, Rayleigh,
Rice and the more sophisticated extended Suzuki processes of type I [PKL98] and type II [PKL97] can be
created. Exemplarily, a block diagram of type I is given in Fig. 4. In the upper two branches representing
real and imaginary part of a zero mean complex Gaussian process two harmonic functions are added. These
additive components stand for the line of sight part in the channel transfer function withρ, fρ andϕρ being
its amplitude, frequency and phase, respectively.

In order to not only describing the short term but also the long term behavior of the channel a third
Gaussian process (lowest branch in Fig. 4) is required. ThisN (0, 1)-distributed process is turned into a
lognormal process by adding and multiplying the constantsµ andσ, respectively, and by the exponential
element behind it. The appropriate selection ofµ andσ is described in detail in [WG98].

If one wants to consider path loss additionally which is necessary for the simulation of power control
mechanisms the output of the Suzuki model has to be multiplied by a certain attenuation factor. In the
literature many approaches can be found. In this work a prediction model according to Lee [Lee93] was
employed which was derived from a measurement campaign conducted in the USA. Here, the attenuation
factorhloss is given by

hloss = (
r

r0
)−β(

f

f0
)−nκ0. (9)

The parameters can be taken from Lee’s work mentioned above. Interestingly, the exponent of the
distance dependent attenuationβ varies from3, 05 to 4, 31 depending on the propagation environment.
Notice that additional scattering effects raiseβ considerably compared to pure path loss (β = 2).

2 Determination of the instantaneous SNIR

In this section describes how the mathematical equations and models mentioned above can be used to build
up a bit error generator. Therefore, all the parameters in eq. (4) have to be known. The transmit powerPS
is normalized (PS = E{SS∗} = 1). Hence, all the noise powers in eq. (4) have to normalized, too. The
amplitude amplificationA(t) can be chosen dynamically during the simulation run but it can also be fixed
(A(t) = 1) if power control is neglected. The realization of the channel process was discussed extensively
in section 1.3.

The only parameters left are the noise powersPNi , PNe andPN0 which are normalized toPS . PN0 is an
arbitrary parameter representing additive noise (AWGN) introduced by thermal and background noise. The
internal interferencePNi cannot be determined directly and depends on the implementation of the baseband
processing in the receiver. As an exact simulation of this part of a mobile radio system is not the intention of
this work the parameterPNi needs to be specified reasonably or extracted from a stream driven simulation.

This can be performed very easily according to eq. (7). If one knows the error floorBERfloor of a data
transmission link (BER withγAWGN → ∞) or if one specifies it the simple horizontal projection of the
error floor on the AWGN performance curve corresponding to the actual modulation scheme deliversγfloor
directly. In case of BPSK or QPSK even an analytical relation applies

BERfloor =
1
2

erfc(
√
γfloor). (10)

One of the most complicated tasks when implementing eq. (4) is the dynamical calculation of the exter-
nal interferencePNe , because it depends on many factors that can change during the simulation run. Here,
we present a solution enabling the simulation of CCI as well as MAI. Therefore, the entire network of all
N participating nodes is considered to be fully meshed. Between two nodesi andj there exist independent
and reciprocal mobile radio channel processesHij(t), so that

E{HijHkl} = 0 für i 6= j ∨ k 6= l

E{HijHkl} = 1 für i = j ∧ k = l (11)

and

Hij = Hji. (12)

The additive superposition of all arriving wave fronts being transmitted by theN nodes in the network
and being received at theith node can be expressed conveniently in vector-matrix notation

r = Hs, (13)

with r = (r1(t), r2(t), . . . , rN (t))T , s = (s1(t), s2(t), . . . , sN (t))T . Wheresi(t) andri(t) stand for
the transmitted and received signal at theith node, respectively. Thus, in case of normalized transmit power
(PS = 1) si(t) = Ai(t) applies. The elements of the main diagonalHii have to be set to zero as a node
does not transmit to itself.

The vectorr can be employed to simulate measurements of the received power level at the stations. It
can also be used to calculate the external interference at nodei when receiving from nodej

neij (t) = ri(t)− hij(t)sj(t). (14)

The introduction of the cross-correlation factorc and the transmit matrixS

S =


0 s1 s1 · · · s1

s2 0 s2 · · · s2

· · · s3 0 s3 · · ·
...

...
...

sN sN · · · sN 0

 (15)

yields the external interference matrixNe with the elementsneij

Ne = cHS, (16)

wherec denotes a cross-correlation factor representing the non-zero cross-correlation of the eventually
employed spreading codes which can be set to1 in systems not using spread spectrum techniques.

3 Modeling the physical layer

Now that all variables in eq. (4) are determined the instantaneous SNIRγ(t) can be calculated. In case of
BPSK the bit error rate can be derived immediately using eq. (10). Therefore, a random variable has to be
realized which is uniformly distributed over the interval[0, 1). By comparing this random number with the
instantaneous BER one can decide whether a bit error has occurred or not.

When dealing with multilevel modulation schemes there is no analytical relation between bit error rate
and SNR because this relation depends on the coding of the signal space (i.e. Gray code). Hence, a decision
stage has to be implemented. Therefore, a symbol of the signal space is chosen according to a uniform
distribution. Then a zero-mean complex Gaussian random number (N (0, σ2)) is added having a variance
σ2 that corresponds to the actual value ofγ(t). If the signal space is normalized (PS = 1) the following
equation applies

σ2 = γ(t)−1. (17)

With the known signal space coding and the decision boundaries one can easily determine whether and
how a symbol has been corrupted by the channel and which bit error pattern results.

Channel coding was embedded in a strongly simplified way but still having properties resembling the
ones of block codes like RS- or BCH-codes. Using this kind of codes the error correctability measured in
symbols per block can be specified directly as a design parameter. Hence, it is straight forward to calculate
the average number of correctable bit errors in a data packet of a certain length. If the number of errors in
an arriving data packet exceeds this threshold the data packet has to be discarded.

4 Simulation results

The presented mathematical model of the mobile radio channel was implemented in OMNeT++ and embed-
ded in an existing simulation of the wireless LAN standard IEEE 802.11. A simulation model of the physical
layer of same standard in the stream driven simulation tool COSSAP served as a basis for comparison.

It was investigated whether the first and second order statistics of the generated bit error rate process
of both simulation systems match. Fig. 5 shows the average BER vs. SNR as an example for the first order
statistics, where SNR denotesγAWGN from eq. (5). The simulations were conducted on an OFDM link
with 4-PSK modulation using a rural channel according to the specification in COST 207 [COS89].

0 5 10 15 20 25 30 35 40 45 50

10
−4

10
−3

10
−2

10
−1

SNR (dB)

B
E

R

COSSAP (OFDM 4−PSK, Rural Channel)
OMNeT++ (OFDM 4−PSK, Rural Channel)

Fig. 5.Average BER as function of SNR

One can recognize a good match of both curves. The slight differences between them are due to the
abstraction of the channel estimation that was implemented in detail under COSSAP while it was reduced
to γfloor from eq. (7) under OMNeT++. However, this mismatch can be neglected for the functional flow
in higher protocol layers. Furthermore, the simulation duration using our channel model only amounted to
one tenth of the duration of the stream driven model.

Fig. 6 depicts that the second order statistics of the presented model match the stream driven simulation
curve as well as the theoretical curves utilizing an ideal Jakes model. Here, we considered the autocorrela-
tion function of the bit error rate process in the interval0 to 1ms. The solid and the dashed line represent
the stream driven and the discrete event approach, respectively, while the dash-dotted line stands for the
ideal analytical curve. The simulations were conducted on a BPSK-transmission over a flat fading Rayleigh
channel. The maximum Doppler frequency was100Hz and the Doppler spectrum was assumed to be Jakes
shaped.

References

Cla68. R.H. Clarke. A statistical theory of mobile-radio reception.Bell Syst. Tech. Journal, 47, August 1968.
COS89. 207 COST. Digital land mobile radio communications. Technical report, Office for Official Publications of

the European Communities, 1989.

0 0.2 0.4 0.6 0.8 1.0 1.2
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

t/ms

A
C

F
 o

f B
E

R

COSSAP Simulation
OMNeT++ Simulation
Ideal Jakes Spectrum

Fig. 6.Autocorrelation function of the BER process

Jak93. W.C. Jakes. Microwave mobile communications.IEEE Press, August 1993.
Lee93. W.C.Y. Lee.Mobile Communications Design Fundamentals. John Wiley and Sons, New York, 1993.
Pae94. M. Paetzold. A deterministic model of a shadowed rayleigh land mobile channel.Proc. 5th IEEE Int. Symp.

Personal, Indoor and Mobile Radio Comm., PIMRC’94, Den Haag, Netherlands, September 1994.
PKL97. M. Paetzold, U. Killat, and F. Laue. Modeling, analysis and simulation of nonfrequency-selective mobile radio

channel with asymmetrical power spectral density shapes.IEEE Trans. on Veh. Technol., 46, May 1997.
PKL98. M. Paetzold, U. Killat, and F. Laue. An extended suzuki model for land mobile satellite channels and its

statistical properties.IEEE Trans. on Veh. Technol., May 1998.
Ric45. S.O. Rice. Mathematical analysis of random noise.Bell Syst. Tech. Journal, 24, January 1945.
WG98. W. Wiesbeck and N. Geng.Planungsmethoden für die Mobilkommunikation. Springer, 1998.

A HiperLAN/2 simulation model in OMNeT++

Daniel Hollos1 and Holger Karl1

Telecommunication Networks Group
Technical University Berlin

Berlin, Germany
hollos@ee.tu-berlin.de, karl@ee.tu-berlin.de

http://www-tkn.ee.tu-berlin.de

Abstract. This paper describes the implementation of an OMNeT++-based Hiper-
LAN/2 simulation model. The simulation models the HiperLAN/2 standard with
a large degree of accuracy, in particular, in the DLC layer. It is designed to be ex-
tendable and flexible and incorporates HiperLAN/2 protocol extensions for multi-
hop relaying. It is publicly available.

1 Introduction

Wireless communication has received increasing interest in the recent year. The wireless
local area networks (WLANs) market is currently dominated by IEEE 802.11-based
products [1]. Advantages of IEEE 802.11 networks are simple setup and reasonable
performance in typical network conditions. A possible competitor to IEEE 802.11 is the
HiperLAN/2 standard [2]. It promises higher data rates than the current IEEE 802.11
networks, reaching up to 54 MBit/s in optimal circumstances. A number of differences
between IEEE 802.11 and H/2 lend credibility to this claim, in particular, the use of
a centralized medium access scheduling as opposed to the distributed algorithms used
in 802.11 (see Section 2 for more details). This control is performed by a so-called
“central controller”, which is responsible to orchestrate the communication between a
number of terminals, together forming a HiperLAN/2 cell. In an infrastructure-based
setup, the central controller would usually be the base station (as it is usually connected
to a fixed power supply), in an ad-hoc network, any terminal can be elected to perform
these control functions.

The use of such a centrally controlled medium access opens possibilities for addi-
tional protocol extensions. One such extension is the introduction of relaying capabili-
ties into HiperLAN/2, using intermediate terminals to communicate between the central
controller and another terminal, allowing to reduce the radiated power used by all ter-
minals. The goal of such relaying protocols would be to improve the total capacity of a
wireless network by reducing interference [3, 4] as well as to increase the energy effi-
ciency of the communication (which is important as mobile devices usually only have
a limited power supply). We are pursuing both these goals in the context of the IBMS 2

project [5].
In order to assess such claims, as well as to experiment with such extensions to

and modifications of the H/2 standard, a simulation model of the standard is needed
that allows to efficiently evaluate the performance of a system. Such a model must be

extensible, modular, easy to understand, and fast. In the context of the IBMS 2 research
project we have developed such a simulation model. The essential characteristics of this
model are described in this paper; for more information (and for the source code) please
refer to the simulator homepage [6].

The following section gives a brief overview of H/2. In Section 3, the simulation
model itself is described. Section 4 summarizes our contribution and discusses possi-
bilities for future work.

2 The HiperLAN/2 System

The HiperLAN/2 (H/2) WLAN system standardized for the 5.2 GHz range with modu-
lation types of up to 54 Mbit/s. The goal of this standard is to maximize the utilization
of the radio channel. The main mechanism — and the largest difference to IEEE 802.11
— is the use of a a priori scheduled medium access: Among a set of stations (a so-called
cell), one station is declared to be the central controller (CC). Any station that wants
to communicate with another station has to announce this to the CC, which will grant
time slots in a periodically repeated frame to this station. Hence, H/2 uses a connection-
oriented, centrally scheduled TDMA to organize the medium access. Main benefits are
collision-free data traffic (100% efficiency, no hidden or exposed terminal problems)
and simple support for priorities or QoS requirements.

Scheduling happens on the basis of a frame, which is divided into different phases
(compare Figure 1), which are again divided into cells of fixed length. In the first phase,
the central controller broadcasts administrative information (BCH and FCH), in partic-
ular, which terminal is allowed to transmit to whom at what time and for how long. As
this information is available to all terminals, perfect channel access can be organized.
While this idea is very simple, it is the source of performance and flexibility of H/2.

BCH FCH RCHACH DOWNLINK DIRECT LINK UPLINK

Fig. 1. H/2 MAC frame structure

One example of this flexibility is the so-called direct-link traffic: As it is possible
for the CC to assign a time slot to one terminal as a sender, to another terminal as a
receiver, terminals can communicate directly with each other without having to send
the data via the CC. Usually, the sequence of transmissions is organized such that after
the frame’s initial administration phase, downlink traffic is scheduled, then direct-link
traffic, and uplink traffic; there is also a random access time-interval at the end of the
MAC frame for associations and other infrequent, unscheduled requests (resulting in
five phases in total).

Using this basic mechanism, a number of additional capabilities are included in the
H/2 standard (e.g., automatic frequency selection, multicast, automatic CC selection,
etc.). Also, the CC can request channel measurements from any terminal, describing

the channel characteristics between any two terminals (which is important for multi-
hop extensions of H/2, see Section 4, and for the parallel transmission extension of the
CC scheduler, see Section 3.2). Other possible add-ons are sleep modes for terminals
or the interconnection of separate H/2 cells [7].

3 Features and Possibilities

Main goals of the simulator design were flexibility and extensibility as well as a correct
capturing of reality: No “incorrect” information transfer or any other methods which
are possible in a simulation environment, but not possible according to real life or the
standard, are used. The following Subsection 3.1 describes the simulation of standard
H/2 functionality, Subsection 3.2 exemplifies the simulator’s extensibility by outlining
some functions we have introduced in the course of our multi-hop research.

3.1 Simulator Structure

This simulator was made for research purposes; we payed attention to separate different
parts, and tried to keep it open to future developments. Therefore, all major function-
alities have their own separate modules; these modules communicate with each other
using OMNeT++ messages.

The main configuration file (omnetpp.ini) defines the number of cells, number of
terminals, the data source description file and the initial location file.

The initial location file contains the identifiers (MAC IDs) and initial positions of
all terminals. Note that some of them can be turned off and later on, so this number
should be the maximum number of the terminals. The positions are “initial” as it is
possible that a terminal moves during a simulation; however, mobility is currently not
yet supported.

In the following subsections we give a brief description of all modules included in
the simulator, its structure is outlined in Figure 2. As the primary focus of our own
research is on the link and routing layer, these functions are modeled with the largest
degree of detail; lower layers are comparably simple, but it is easy to replace these
layers by more sophisticated modules.

The lowest layer in our simulator is an abstraction of the radio channel. The basic
idea is to represent the physical layer along with its error behavior in a single module.
All terminals are grouped into cells (compound modules), which are in turn connected
to the channel module. An example of such a layout can be seen in Figure 3; Figure 4
shows how a radio cell consists of a central controller and a number of terminals.

A terminal is turn again structured as a compound module, consisting of a load
generation module (also used as a data sink), the network stack as such and a control
module (Figure 5). The network stack is the last compound module used in the simula-
tor, it contains simple modules for the datalink, network and transport protocol layers
(Figure 6).

The Configuration Distributor This module is always called first when starting a sim-
ulation, and later any time when the configuration changes. For example, a terminal can

(ONE OF THEM IS AP)

WORLD

CHANNEL

(global)

RADIO CELL1 RADIO CELLK

DEV1 DEVN

LOAD CONTROLSTACK

DLINK NETWK TRANSP

AP SCHEDULER

H/2 INTERNAL

LAYERS

Fig. 2. Simulator structure

Fig. 3. Screenshot of the physical channel and a single radio cell

Fig. 4. Screenshot of a radio cell compound module, containing a single controller (mobile[0])
and four terminals

Fig. 5. Screenshot of a terminal compound module

Fig. 6. Screenshot of a stack compound module, showing simple modules for the individual net-
work layers.

be turned into a central controller by calling a function in this module. It is connected
to all layers and distributes the new state to them.

The Physical Medium Simulation Module The terminals send their data to the Physi-
cal Medium Simulator Module called “channel” (common for the entire scenario). This
module is responsible for determining whether or not a transmission succeeds or a
packet is lost. To do so, this module collects packet transmissions and calculates the
delay to all other terminals. For each destination terminal, the channel gain and the
interference level is then calculated. Based on this signal to interference/noise ratio, a
packet error rate (PER) can be calculated [2]. The PER is used to decide (with a simple
Bernoulli random variable) whether the packet is correctly received by the terminal; if
not, an error indication is sent to the terminal (akin to a failed CRC check). In case the
received power is below the receiver sensitivity, the packet will not be delivered at all.

Each packet will also increase the interference of the non-destination terminals as
determined by the respective channel gain. As a simplification, when calculating the
PER (Packet Error Rate) we use the highest interference level determined during that
particular packet.

The data collection, parallel interference calculation and all other physical-layer
related calculations are put to a subclass of the channel module. Therefore, applying a
more sophisticated physical layer model is a matter of replacing the channel subclass
of this module.

The Physical Layer This is a very simple layer, one instance per H/2 device, which
adds the basic H/2 preambles to the MAC packets.

The channel module always needs some parameters which are given in real life, but
not in the simulation: for example, the transmission power, the modulation type to use,
terminal ID (for simulation administrative reasons), etc. These parameters are also set
by this layer; they have a separate, unique structure in each message type.

The DLC Layer The data link control (DLC) layer contains the basic data sending and
reception functionalities, like handling data initiated by the load generator, constructing
resource requests, decoding the administrative information received at the beginning of
a frame (BCH and FCH cells), sending the data at the scheduled time, etc.

The DLC layer (outlined in Figure 7) basically contains two major subclasses: AP-
Control and MTControl. They are for the different AP and MT functionality, but as a
subclass they contain MTInstance class(es). An MTControl has only one MT subclass,
the APControl has one for each associated MTs and one for itself. Changing a common
MT functionality is a matter of changing a function in the MTInstance class. The MTIn-
stance classes contain several DLCC queues: send, received, sending in this frame, re-
ceived in this frame. When an MTInstance receives data from the FCH which is valid
for it, allocates space in one of its in this frame DLCC queue immediately. This struc-
ture reflects reality, since MTs have time after the FCH to do administrative procedures,
but not later when receiving by 54Mbit/s rate. The DLC layer also has the CC scheduler
as a subclass, which is activated only when the node is indeed a CC (see Section 3.2).

The CC scheduler proceeds in two steps, implemented in two separate classes: one
for handling priorities, QoS demands, parallel transmission support, etc., computing a
schedule describing when each terminal is allowed to transmit (Compute Schedule).
The second module constructs the MAC frame based on this schedule, keeping the H/2
rules defined in the standard (Build FCH). Thanks to this structure, new scheduling
algorithms (priorization, parallel transmission, or any other optimization method) can
be applied without having to worry about complex H/2 MAC frame structure rules.

DATALINK MODULE

CC CONTROL

MT ENTRY0SCHEDULER MT ENTRYK MT ENTRY

MT CONTROL

Fig. 7. DLC layer structure

All nodes have the same DLC, RLC, etc. modules.

The Network Layer This is an internal network layer, part of the H/2 RLC; it has the
database with DLCC connections for that terminal. When a data packet comes from the
load generator, this layer translates source- and destination MAC IDs to streams with
DLCC IDs; when data has been received by the DLC layer, it translates DLCC IDs to
source- and destination MAC IDs.

Generating Load Currently, two simple load generation methods are implemented:
Constant bitrate (CBR), and Poisson process (PPS). The load generation parameters
are contained in a file (which is specified in omnetpp.ini). In CBR mode the start- and
end time, the bitrate of the data flow, and the DLCC ID can be specified. In PPS the
starting- and ending time, and the parameter � of the arrival process can be specified.
The system generates as many load modules per terminals as were described in the data
sources description file. Other load generators can be easily integrated.

3.2 Extra Features

Here we describe the features we added to the simulation and are not present in the
standard.

The Parallel Transmission CC Scheduler Since the H/2 provides direct, scheduled
data transmissions between terminals in a cell, and the CC has all information to de-
cide whether a parallel transmission is possible or not (based on channel measurements
provided by the terminals, see Section 2), we developed a scheduler class (extending
the one described in Section 3.1) which calculates possible parallel transmission pairs
based on a graph coloring algorithm. Using this class the Build FCH class is able to
schedule multiple transmissions at the same time.

The Single Relay Protocol When a terminal is located on the edge of the cell, it has
to use its highest transmission power to reach the CC. The single relay protocol enables
the system to use one relay station for a transmission between the CC and a “far” ter-
minal. The protocol fits into the H/2 standard and allows dynamic route path change
even in every MAC frame without additional protocol overhead. In this case, a termi-
nal located far away will use less transmission power (exploiting non-linear channel
characteristics); it also dramatically reduces the inter-cell interference. The protocol re-
alization itself is included in the CC scheduler Build FCH class; the path calculation
has to be done in the class Compute Schedule. This work is part of our ongoing
research in the context of the IBMS2 project [5].

4 Conclusions

This paper has described an H/2 simulator, capturing essential parts of H/2’s medium
access and link layer functionalities. Its design lends itself to simple modifications and
to introduction of new functionalities, which has been demonstrated by introducing a

single-relay protocol and non-standard cell schedulers. We believe that this simulator
could be useful to a broader community of researchers.

Currently, we are developing an IP convergence layer on top of the actual H/2 stan-
dard in order to be able to use realistic traffic models based on IP traffic for performance
evaluation. This convergence layer will be integrated with the TCP/IP suite available
for OMNeT++ [8]. In the long run, we are interested in incorporating true ad-hoc func-
tionality such as dynamic CC selection, terminal handover between different cells and
inter-cell connection support (H/2 multihop extension). Also, suitable mobility models
should be integrated in the simulator. It will be a challenging task to take into account
mobility-induced handovers between different CCs, as these are represented by com-
pound modules. It would imply to remove a compound module representing a node
from a cell compound module and reinserting it into another cell module in order to
maintain the general structure of the simulation setup. In addition, this process has to
closely coordinated with the protocol-specific processing of handover. It would be an
interesting question to see if such functionalities are generally useful to the modeling
of mobile ad-hoc networks; examples for such a generalization would be cluster-based
routing protocols for ad-hoc networks, which also superimpose a cell-like structure
upon an ad-hoc network. A convenient handling of such problems would be useful to
OMNeT++-based simulations of ad-hoc networks.

More specifically to the OMNeT++ tool, a particular problem that we encountered
was the simulation of the physical layer. Taking into account interference generated
by other terminals as well as noise to compute packet error rates proved to be feasible
only by delegating these tasks to a separate module which is responsible for the entire
simulation setup; using OMNeT++ channel abstraction did not turn out to be useful. In
general, the development of more sophisticated and customizable channel abstraction
would prove rather useful in many respects. Besides the notion of simulation-wide (or
cell-wide) computation of interference discussed here, also bit error models might prove
to be useful, e.g., models which can express autocorrelation within the bit error process
[9].

References

1. : Ieee 802.11 (iso/iec 8802-11:1999). IEEE Standards for Information Technology (1999)
Available via http://standards.ieee.org/getieee802/.

2. Khun-Jush, J., Malmgren, G., Schramm, P., Torsner, J.: HIPERLAN type 2 for broadband
wireless communication. Ericsson Review 2 (2000) 108–119 http://www.ericsson.
com/review/2000_02/files/2000026.pdf.

3. Karl, H., Mengesha, S.: Analyzing capacity improvements in wireless networks by relaying.
In: Proc. IEEE Intl. Conf. Wireless LANs and Home Networks, Singapore (2001) 339–348

4. Mengesha, S., Karl, H., Wolisz, A.: Improving goodput by relaying in transmission-power-
limited wireless systems. In: Proc. of Informatik 2001-31. Jahrestagung der GI, OCG, Austria,
Vienna (2001)

5. : Webpage of the IBMS2 project. (http://www.ibms-2.de)
6. Hollos, D., Karl, H., Kubisch, M., Mengesha, S.: Hiperlan/2 simulator homepage. http:

//www-tkn.ee.tu-berlin.de/research/H2Simulator/ (2001)
7. Peetz, J.: HiperLAN/2 multihop ad hoc communication by multiple-frequency forwarding.

In: Proc. of Vehicular Technology Conference (VTC) Spring 2001, Rhodes, Greece (2001)

8. : Omnet++ internet protocol suite. (Webpage at http://cvs-int.etec.
uni-karlsruhe.de/omnetpp/model-doc/ip-suite.html)

9. Willig, A., Kubisch, M., Wolisz, A.: Measurements and stochastic modeling of a wireless link
in an industrial environment. Technical Report TKN-01-001, Telecommunication Networks
Group, Technische Universität Berlin (2001)

Session 4:
Future OMNeT++

Java: Future Tools Platform for OMNeT++?
András Varga

Department of Telecommunications
Budapest University of Technology and Economics

andras@whale.hit.bme.hu

Abstract
Graphical user interfaces in OMNeT++ [1] are currently based on Tcl/Tk. Tcl/Tk does not seem to be a
good long term choice: while it has merits in rapid UI prototyping, it is not really suitable for large scale
projects, and it has seriously fallen behind contemporary GUI development trends and other GUI toolkits.
Further alarming signs are the low level of development activity in the Tcl/Tk CVS and the huge gap
between their roadmaps and what has actually been implemented from them.

This paper proposes that Tcl/Tk based parts of OMNeT++ be replaced by Java/Swing components. The
paper proposes that the NetBeans open-source IDE framework be used as a base for a future OMNeT++
IDE. The OMNeT++ IDE may contain a graphical NED editor (GNED), a graphical FSM editor, a project
manager for compiling and linking simulations and possibly other components. The primary advantage
from using NetBeans is that a large amount of work can be spared by not having to spend efforts on
developing our own user interface framework. The paper also proposes that Tkenv be replaced by a
JavaEnv on the long term. The first step towards building JavaEnv is creating a JNI-based Java wrapper
around the OMNeT++ simulation kernel classes.

These plans cannot be realized without collaborative effort from the community. A possible way to go is to
implement parts of the project as student projects at universities.

Java and OMNeT++

:K\�-DYD"�
In current OMNeT++ releases, all GUI components are built using Tcl/Tk. While Tcl/Tk proved to be very
effective for GUI development, it is not suitable as a long-term choice. First, Tcl doesn’t scale well for
large-scale development. Variables are not typed, there is no support for object-oriented concepts and
because it is an interpreted language, there are no compile-time checks on the code. Second, Tk has
seriously fallen behind contemporary GUI development kits (Qt, Gtk or MFC), and there is no sign of its
catching up. It has but the most basic widgets: even combo boxes, spinboxes or tabbed dialogs have to be
assembled from other GUI elements, not to speak of dockable toolbars or tables. An alarming sign is that
while open-source development flourishes these days and there are several very large-scale open-source
projects (KDE, Gnome, JBoss, the Apache and Jakarta projects, etc), there is very little activity on Tcl/Tk.

As a replacement for Tcl/Tk, we might use Qt, Gtk or MFC and C++. However, Java and the Swing GUI
toolkit appear to be a better choice for several reasons.

• Swing offers all contemporary GUI elements.

• Java/Swing is completely platform-independent. The requirement of platform independence
eliminates MFC from possible choices, and also Qt and Gtk are not really strong choices.

Also, Java has significant advantages over C++:

• much faster development cycle because of faster compilation

• much shorter debugging time (no segfaults, usually exception stack trace immediately gives
enough info to locate bug)

• huge amount of libraries and APIs ready for immediate use (Regexp and XML, to mention two
practically important ones)

• huge amont of reusable components (GUI and other)

Java/Swing can be a replacement only for the components currently based on Tcl/Tk. Existing Tk-based
components need to be supported until Java-based ones become mature.

OMNeT++ Integrated Development Environment

0RWLYDWLRQ�
Instead of creating a standalone GNED and possibly other GUI-based OMNeT++ tools as standalone
programs, it is better to build a single integrated development environment where these components are
plugins. The OMNeT++ IDE may contain a graphical NED editor (GNED), a graphical FSM editor, a
project manager for compiling and linking simulations and possibly other components.

1HW%HDQV�IURP�6XQ�
NetBeans [2][3] from Sun Microsystems is a portable, Java-based IDE framework. NetBeans is extensible,
modular and standards-based, and what is equally important, it is open source. Because of these reason,
NetBeans is a possible candidate to be used as a base for an OMNeT++ integrated development
environment. NetBeans is available from www.netbeans.org.

Because NetBeans is completely modular, developers can:

• Add modules that provide editing, debugging, syntax coloring, error highlighting, etc. The editor
can work with C, C++, UML, IDL, XML, Java and other languages.

• Switch any IDE modules on/off. By switching off unneeded modules, the IDE consumes less
memory and no longer offers unnecessary information and actions.

• Write modules that add new features or replace functionality in the IDE.

• Update the IDE online through the Update Center

A recent addition, the standards-based Metadata Repository makes it easier to build modules to support
other programming languages.

The NetBeans IDE has all GUI elements and features one expects from a contemporary IDE (explorer tree,
syntax-coloring source editor, component toolbars, etc.). The following figure is a screenshot of the
NetBeans IDE.

NetBeans is extensible via plug-in modules written to the NetBeans OpenAPIs (15 API sets, over 400
classes). Virtually every aspect of the IDE is extensible. New functionality can be added or removed
simply by adding or removing modules. The Core APIs are the following: Modules, Nodes, DataSystems,
FileSystems, Explorer, Actions, Options, Execution, Compiler. The Metadata repository supports the MOF,
XMI and OCL standards.

The proof that the extensibility concept really works is the large number and variety of projects (both
commercial and open-source) that build upon NetBeans. While most projects are some sort of Java
development environment (i.e. GUI builders, EJB or servlet/JSP editors), there are also UML editors and
radically different ones like a commercial mine planning application or a data analysis environment for
biologists. A sample of the over 30 projects listed on www.netbeans.org:

Forte for Java (Sun) • BEA Campaign Manager for WebLogicTM (BEA) • CocoBase an Object/Relational
mapping tool (Thought, Inc.) • UML modeling tool (Gentleware AG) • Describe, an integrated UML
modeling & Java development environment (Embarcadero Techn.) • DataMirror, bi-directional data
transformation between XML, database and text formats (DataMirror Corp.) • iWarf Service Creation
Environment (SCE), for creating telecom applications (Incomit) • an open source GIS application (Leeds
University) • BioBeans, an integrated data analysis environment for biologists (University of Glasgow) •
MINEX V integrated mine planning application (ECSI).

$ 1HW%HDQV�EDVHG�201H7���,'(�
How could NetBeans be used in OMNeT++? Some ideas:

• A GNED module could provide NED graphical and source editing.

• The same IDE could be used for developing simple modules. The corresponding C++ source
editor module has probably already been created within the NetBeans project.

• A graphical FSM editor could provide a front-end for writing state machine-based simple modules

• A “project manager” could control compiling and linking simulations, providing the IDE
equivalent of opp_makemake and make. A ‘makefile’ module already exists within the NetBeans
project.

The promary advantage of using NetBeans is that it would enable the developers to concentrate on the
core tasks (e.g. creating the NED editor), instead of wasting energy on building their own GUIs.

*1('�PRGXOH�IRU�1HW%HDQV�
A GNED module for NetBeans could be developed in the following steps.

Preparation:

1. get familiar with NetBeans APIs: write an experimental NED editor (source editor only, with
syntax highlighting)

2. explore the Metadata Repository, create representation of NED inside NetBeans (converge NED-
XML data tree and MDR?)

Next steps (may go parallel):

3. create NED-XML “converters”: NED parser, NED generator, XML parser, XML converter

4. build graphical editor on top of NED data classes

As for developers: The first two tasks are small enough so that they can be conveniently given out to
students as one-semester assignments. The third task is also very small (the C++ implementation of the
same components could be easily converted to Java). However, the fourth task (the actual NED editing) is
of larger-scale, it would take several semesters if done as student projects.

*UDSKLFDO�)60�(GLWRU�
A graphical FSM editor module could serve as a front-end for writing state machine-based simple modules
for OMNeT++. The graphical editor might feature a GUI like that of OPNET or NetSim++, and generate
C++ code that uses the FSM macros.

The task is currently being advertised as student project by Ahmet Sekercioglu at Monash University,
Australia.

2WKHU�1HW%HDQV�PRGXOHV�
• project manager (~makemake)

• analysis tools (Plove + more)

JavaEnv: Java-based graphical runtime environment
On the long term, Tkenv should be replaced by a Java-based GUI. This will enable a more powerful user
interface. Also, the Java language will enable a much cleaner program design, thereby lowering
maintenance costs.

JavaEnv might also be implemented as a plugin to NetBeans.

-DYD�ZUDSSHU�DURXQG�6,0�
JavaEnv will have to contain a layer that interfaces Java GUI code with the C++ simulation kernel. Part of
this layer is a Java wrapper around OMNeT++ API classes. Every C++ class in the simulation kernel
should have a Java wrapper – a Java class that has similar methods that the C++ class, and Java methods
are implemented via the Java Native Interface (JNI) and call methods of the C++ class.

JavaEnv would be built using the Java wrapper classes, as illustrated by the following figure.

JavaEnv GUI

JNI SIM Wrapper

VLPXODWLRQ�NHUQHO�ZLWKH[HFXWLQJ�PRGHO

The Java wrapper can also be useful outside JavaEnv:

• It would enable embedding OMNeT++ simulations in Java apps.

• The same library might also enable writing simple modules in Java, should the need ever emerge.

Code for the Java wrapper should be automatically generated from the SIM C++ headers. A handy tool for
this purpose might be the J2C++ program from IBM Alphaworks [4]; the resulting code could then be
hand-tuned.

The task is currently advertised (being worked on?) as student project at University Karlsruhe.

Conclusion
NetBeans as OMNeT++ IDE

• GNED module (NetBeans infrastructure, NED-XML data structure)

• others: FSM Editor, etc.

JavaEnv

• 1st step: Java wrapper around simulation classes

• Java wrapper may have other uses (e.g. Java-based simple modules)

This project cannot be carried out without collaborative effort from the OMNeT++ community.

References
[1] OMNeT++ Discrete Event Simulation System. http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

[2] NetBeans. http://www.netbeans.org

[3] The NetBeans Tools Platform, white paper.
http://www.netbeans.org/download/NetBeansToolsPlatform.pdf

[4] IBM AlphaWorks. http:// www.alphaworks.ibm.com

Second Generation NED

András Varga
Department of Telecommunications

Budapest University of Technology and Economics
andras@whale.hit.bme.hu

Abstract

This paper introduces NED-2, the second generation of OMNeT++’s NED language. In addition to
enhancing the current NED, NED-2 provides important new features such as possibility to define messages
(also known as “message subclassing”). NED-2 will be implemented with modular compiler architecture,
centered around XML. A specification draft and some source code are already present.

NED-2 Goals

NED-2 [2] will be an improvement over the current NED used in OMNeT++ [1] in the following areas. It
will support defining message types with their contents; it will enhance the parameters, gates, channels and
connections. It will provide inheritance for components (simple and compound modules, channels,
networks and messages). It will support enums. NED-2 will enable automatic doumentation generation
from the source code (similar to Javadoc). Expressions will be enhanced in several ways. Last but not least,
it will have an XML [6] interface for easy interoperability with other systems.

This paper is not a substitute for the NED-2 specification draft. The latter contains several additional points
that had to be omitted from this paper due to size limitations. Interested readers are strongly encouraged to
read the draft specification and provide feedback.

Messages in NED

���������

In OMNeT++, modules communicate by exchanging messages. Most simulation models need that
messages have attached parameters or fields. Current OMNeT++ simulation models use cMessages with
dynamically added cPar objects. This usually results in poor performance because it incurs the creation and
deletion of too many objects. An additional disadvantage is that the code is difficult to read and maintain,
because the content of messages is not obvious (parameter list is implicit in the code). The latter problem
could be solved by defining message types separately – that is, by introducting typed messages.

A possible workaround is avoiding cPars and subclassing cMessage and adding new fields as C++ data
members instead. This apparently solves both problems mentioned above, but has two drawbacks: one is
that too much C++ code has to be written manually (there are several methods that must be overwritten
when subclassing cMessage); the second is that data fields added in C++ are not visible for Tkenv. The
second problem could be solved with writing custom inspectors for Tkenv, but that’s also inconvenient.

The solution introduced in NED-2 is to describe messages with their fields as part of NED, then let the
NED compiler (nedc) generate corresponding C++ classes from them. The idea is somewhat similar to
CORBA IDL [5] and IDL compilers. The solution cures all the forementioned problems: it provides typed
messages and low runtime overhead, the simulation programmer is freed from having to write a lot of C++
code (because nedc generates it), and also solves the Tkenv problem because nedc can also generate meta-
info that Tkenv can use. It is also an improvement conceptually: now that messages are part of NED, NED
code provides more complete information about module interfaces.

�	
��
��

An example NED-2 message:

message DynaPacket
{

fields:
short packetType;
int srcAddress;
int destAddress;

};

Technically, from a NED source file called foo.ned, the nedc compiler will generate foo_n.h and foo_n.cc.
Simple modules will need to include foo_n.h and link with foo_n.cc. Given the above NED-2 fragment, the
generated foo_n.h will contain code like:

class DynaPacket : public cMessage {
 protected:
 int srcAddress;
 int destAddress;
 public:
 DynaPacket(const char *name=NULL);
 DynaPacket(const DynaPacket& other);
 virtual ~DynaPacket();
 virtual const char *className() const {return "DynaPacket";}
 DynaPacket& operator=(const DynaPacket& other);
 virtual cObject *dup() const {return new DynaPacket(*this);}

// field getter/setter methods
 virtual int getSrcAddress() const;
 virtual void setSrcAddress(int srcAddress);
 virtual int getDestAddress() const;
 virtual void setDestAddress(int destAddress);
};

For every field, nedc generates protected data members and getter/setter methods. The DynaPacket class
can be used from simple modules as any other class:

#include "foo_n.h” // include generated header

void Client::activity() {
 ...
 conn_req = new DynaPacket("DYNA_CONN_REQ");
 conn_req->setPacketType(DYNA_CONN_REQ);
 conn_req->setSrcAddress(own_addr);
 conn_req->setDestAddress(server_addr);
 ...
 ev << "waiting for DYNA_CONN_ACK\n";
 conn_ack = (DynaPacket *) receive(timeout);
 ...

�������
����

NED-2 supports inheritance for messages. In a subclassed message, one may add new data members or
change the default values for fields. Single inheritance is supported; the generated C++ class hierarchy
parallels the NED hieararchy. The NED syntax is similar to that of Java:

message DynaDataPacket extends DynaPacket { …

��������
�����

Because generated message classes may not always entirely fit the needs of the simulation programmer,
NED-2 provides a way to customize the class via the Generation Gap object-oriented design pattern [3][4].
The idea is to generate an intermediate C++ base class which the user can customize by overriding its
virtual member functions. This is illustrated by the following UML class diagram showing the C++ class
hierarchy:

���������	
���������	�

���������	
����
��	�	��
	�

�
������

���	�����	��������	

The need for using the Generation Gap pattern is signalled to the nedc compiler by the following syntax:

message DynaPacket
{

properties:
 customize = true;
 fields:
 short packetType;
 ...

��������

���
������
����	��������

����
�����
�����

Currently there is an experimental perl-based nedc prototype that implements NED-2 messages. It provides
support for the ideas described above, including:

• default base class can be cMessage (message keyword) or cObject (class keyword)

• single inheritance

• customization of generated class via the “generation gap” pattern

• support for generating cObject classes, non-cObject classes, structs

• enum support (enum name visible in Tkenv)

• extending enums (adding new elems to existing enum)

• nearly all C++ primitive types, one-dimensional arrays (both fixed-size and dynamically allocated)

• possibility to reference classes declared in external C++ code

• pointers (to both owned and not owned objects)

• “virtual” members (no data member generated, only pure virtual getter/setter methods)The
prototype is fully functional (compromise affects error handling). Experiences (and with conversion, much
of its code) can be directly reused in implementing the production nedc compiler. The prototype is part of
the current OMNeT++ code snapshots in the Karlsruhe CVS.

Improvement on Existing Components

�������
����

NED-2 supports inheritance for all components described in NED: simple and compound modules,
channels, networks and messages.

Inheritance may add new parameters (fields), or set parameters to fixed values, thereby hiding them from
derived and embedding components.

Inheritance of compound modules may add new gates, submodules and connections.

�
������
�
����������
���
���������������

In NED-2, it is possible to create parameter vectors. Size of the parameter vectors must be given at the
place of the parameter declaration (no “paramsizes” keyword). Parameter vector sizes can be defined with
constants or expressions.

Parameters can be given a value at the place of their declarations. These fixed values cannot be overridden
in enclosing components.

It is possible to declare gate vectors with their sizes defined at the place of the gate declaration (without
using the “gatesizes”' keyword).

It will support specifying acceptable message types for gates (BONeS-like feature).

Channels can have arbitrary parameters in addition to the currently supported delay, error, datarate
parameters. Channel parameters can be given a value at the place of their declarations. Inheritance is also
supported for channels.

Channel parameters can be assigned values when used in connections. Several connections can share a
single "if" clause, and it will be possible to create and use temporary variables within loops; these features
are especially useful for creating random topologies.

�	����������

Expressions may reference other parameters of the same module. String operations are supported
(concatenation, substring, comparison, etc.). There is a possibility to distinguish between numeric types
(i.e. integer vs double).

A higher performance can be achieved by compiling expression into native C++ expressions instead of
generating interpreted reverse Polish representations (cPar-sXElem expressions).

Self-documentation

NED-2 will provide a way to generate documentation from NED files in an automated way. The solution is
similar to Javadoc: special comments are used to denote documentation in the NED source. An example:

/**
 * Packet type used by the Dyna example
 */
message DynaPacket
{

fields:
 short packetType; /// possible values: connreq, data, …
 int srcAddress; /// source address
 int destAddress; /// destination address
};

As for software that can actually produce documentation, Doxygen [7] may be used; it will have to be
extended to support NED.

XML and OMNeT++

�������������

XML is a universal data interchange format. XML can be viewed as “generalized HTML” – it has a similar
syntax but arbitrary tags. XML has increasingly become a generic format for presenting structured
information. XML has been created and standardized by the World Wide Web Consortium (W3C). Today,
XML enjoys a huge popularity. There is an abundance of specifications built around and on top of XML. It
is currently used for web-related and e-commerce purposes and as standard file format (e.g. UML’s XMI
specification).

There are standard tools for processing XML. XML parsers are used to convert XML to an in-memory
representation. Many XML parsers can also verify that an XML document fulfills certain rules described
by its DTD or XML schema; such parsers are called validating parsers. A standard in-memory
representation for XML is DOM – parsers can build DOM trees (DOM parsers) or let the user build their
own data structure (SAX parsers). Stylesheet transformations (XSLT) can be used to convert XML
documents into each other or into other file formats.

There is already an abundance of XML-related tools. To mention a few: XML-based database access and
XML databases; visual tools for designing transformations between XML documents; tools for easy
presentation of XML.

��� !
����"�#��������������

For OMNeT++, XML is ideal as an alternative representation of NED. By supporting XML, NED becomes
more interoperable with other systems, and it will be possible to process it with standard tools. XML is
unsuitable though as the only representation of NED information because of its relatively pool readability.

An example XML fragment that describes an OMNeT++ compound module:

<?xml version="1.0" ?>
<nedfile filename="fddi.ned">
 <module name="FDDINode">
 <params>
 <param name="address" datatype="string"/>
 </params>
 <gates>
 <gate gatetype="in" isvector="false" name="net_in" />
 <gate gatetype="out" isvector="false" name="net_out" />
 </gates>
 <submodules>
 <submodule name="MAC" typename="FDDI_MAC">
 <substparams>
 <substparam name="mac_address" value="address"/>
 <substparam name="promiscuous" value="false"/>
 </substparams>
 </submodule>
 ...

The planned NED-XML infrastructure is centered around data classes that are the in-memory
representation of NED, and several components build around that. These components are:

• NED parser

• NED generator

• XML parser (incl. validator)

• XML generator

• C++ code generator

• network builder

The NED-XML architecture is illustrated in the following diagram:

XML data
classes

NED

XML

database

C++ (*_n.cc)

Live network

Graphical editing

Based on the infrastructure, a NED compiler can be assembled from a NED parser and a C++ code
generator component. GNED can utilize the NED parser and NED generator components. Both nedc and
GNED will be able to import and export XML by just adding the XML parser and XML generator
components.

The infrastructure will make it easier to build models dynamically. For example, when building networks
from data coming from a database, one might let the database query produce XML (several databases are
already capable of that), then apply an XSLT transformation to convert to NED-XML if needed. Then one
might apply the NED generator to create NED source; C++ code generator to produce code to be linked
into the simulator; or the network builder to set up the network directly within the executable.

NED-2 Roadmap

The steps necessary for implementing NED-2 are thefollowing:

1. message subclassing (perl-based prototype already exists)

2. port existing nedc to XML architecture. This consists of writing the NED parser, XML data
classes and C++ code generator. (Some code already exists.)

3. finalize NED-2 draft (feedback from the community is needed!)

4. complete NED-XML architecture for NED-2

5. nedc for NED-2

Implementation will be done by Andras Varga, based on feedback (and potential contribution) from the
community.

Future plans include migrating GNED to NED-2 and creating a C++ network builder component that can
be integrated into Cmdenv/Tkenv. The latter would enable new models without recompilation.

References

[1] OMNeT++ Discrete Event Simulation System. http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

[2] NED-2 Draft specification. http://www.hit.bme.hu/phd/vargaa/omnetpp/neddraft.htm

[3] Generation Gap. C++ Report, Nov./Dec. 1996.

[4] Vlissides, John: Pattern Hatching: Design Patterns Applied. Addison Wesley, 1998

[5] Common Object Request Broker Architecture (CORBA/IIOP), version 2.5. OMG Specification.

[6] XML 1.0. W3C Recommendation, February 1998. http://www.w3.org/XML/

[7] Doxygen. http://www.doxygen.org

OMNeT++ Model Convergence: Aspects and Solutions

Dipl.-Ing. Ulrich Kaage

Universität Karlsruhe, Institut für Nachrichtentechnik, D-76128 Karlsruhe, Germany
kaage@int.uni-karlsruhe.de

Abstract. Since OMNeT++ is a simulation tool that is now used at a number of universi-
ties and companies, a lot of man power is spent on creating simulation models. However,
as OMNeT++ does not offer a comprehensive model library so far, a lot of redundant
work is done. It is obvious that models taken from different sources are not guaranteed to
work together seamlessly. To ease the task of creating compatible models some program-
ming guidelines and possible improvements to the OMNeT++ simulation environment
are proposed in this paper.
These guidelines cover definitions of interface messages and documentation aids. New
features of the upcoming OMNeT++ version make this task feasible and are discussed in
detail.
Further proposed enhancements to the OMNeT++ simulation environment could lead
to more hierarchically structured compound modules that can be inspected with OM-
NeT++’s graphical front-end TKENV.

1 Introduction

Taking an ever growing mailing list as an indicator for popularity, OMNeT++ [?]
seems to start a career as a simulation environment for both research and develop-
ment tasks in the widespread field of network and communications engineering as no
day goes by without at least one or two queries about it. Success is usually based on
more than one reason and so is OMNeT++. Reasons for its increasing popularity are
that

– it is open source
– it is easy to learn
– it offers automatic visualization
– it offers graphical debugging aids
– its programming interface is well structured
– its framework allows models to be reusable

Since OMNeT++ development has been for a long time mostly aone man’s job
there are clearly some disadvantages, too:

– new features and enhancements sometimes find their way slowly into the simula-
tion environment

– there is a lack of a comprehensive model library

While the first point is not always a disadvantage – it might even guarantee that the
simulation kernel will not be bloated by too many additions – the second one, however,
is indeed a big one. This is where the OMNeT++ user community comes into play.

There is a great variety of fields where simulation using OMNeT++ is applica-
ble: From modeling processor architectures to Internet based protocols – as long as

the system can be described as a discrete one – OMNeT++ might be the right choice.
Anyway, there are actually some hot spots like mobile communication where a lot of
research groups are currently working on. These groups would benefit from a compre-
hensive model library that provides well known and state of the art protocols. A list
that is far from being complete is shown in table??. Note that protocols marked with
an asterisk are either already available or currently under development. Unfortunately,
these protocols are developed independently from each other and thus a combination
of them into a more complex simulation is not guaranteed to work.

Layer Protocol
Application FTP, HTTP, RTP∗, generic traffic generators and data

sinks
Transport TCP∗, UDP∗

Network IP∗, IPX, RSVP
Routing OSPF, BGP, IGRP, RIP, EIGRP
Data Link ATM, Ethernet, FrameRelay, LAN Emulation, To-

kenRing, FDDI, FibreChannel∗, PPP, Wireless LAN,
HiperLan∗

Physical SONET, xDSL, ISDN, Radio Link∗

Table 1.Protocols

With the availability of such a library it would be possible to build complex simula-
tion scenarios where protocol improvements or additions could be tested in interaction
with other protocol layers. This would allow realistic performance evaluations with
protocol interactions at different time scales being taken into account.

The big questions are:How can a model convergence be achieved so that existing
protocol models really become reusable and interchangeable? What kind of framework
is necessary so that new developed protocol models fit into an existing structure?

Some tasks have to be defined for these goals:

– define a model hierarchy where each protocol has its unique location
– define sets of interfaces that create links between different protocol layers
– recommend some tools for documentation of protocol models
– recommend programming guidelines that ease these tasks

The following sections will discuss these items in detail. Where necessary, future
enhancements of the OMNeT++ simulation environment will be taken into account.

2 Model Hierarchy

Providing a comprehensive model library implicates some organizational preliminar-
ies. One point clearly is its distribution approach. If model components are hosted at
different sites and are therefore spread over the Internet it is a tedious task to collect the
models of interest. Moreover, model improvements are likely to affect other models,
too, that may be not known to the developer. Therefore, a unique location for models
is advantageous.

A well known place is, e.g., SourceForge [?] that is owned by the Open Source De-
velopment Network, Inc. (OSDN). Today there are 31,393 hosted projects and 322,716
registered users. Moreover, this site offers discussion lists, IT news, development tools
and a bug tracking system. On the downside, it has become a really slow site and often
is not even reachable.

The Institut für Nachrichtentechnikat the University of Karlsruhe, Germany, has
therefore begun to provide its own server that is dedicated to OMNeT++ develop-
ment [?]. As a non-profit service this server is open to the public and offers a CVS-
Repository for OMNeT++ models and the OMNeT++ sources. There are model spe-
cific web pages as well as mailing lists for communication purposes. Secured access
controls allow to differenciate between privileged users that have write access to their
models and unprivileged users that have anonymous read-only access to models that
are made open source. This service is now running since November 2000 and has
proven to be a reliable repository.

Developers of open source OMNeT++ models should feel encouraged to host their
code on this server so that it becomes a unique resource for OMNeT++ development.

This would be the first step for collecting a model library. The next step should be
to define a module library hierarchy that considers all models and links them together.
However, care must be taken to assure that there will be not too many dependencies
between models – a modular approach will be necessary. Unfortunately, more than one
exists:

1. A model-based structure will result in a hierarchy that mostly pleases model de-
velopers since it is fairly easy to extend the model library by creating a new sub-
directory that contains the new model. However, this flat structure could lead to a
lot of redundant code being written.

2. An ISO/OSI protocol layer-based structure provides a hierarchy that reflects much
more the protocol purpose. On the other hand, this could lead to models being
spread over more than one sub-directory and therefore will increase the mainte-
nance overhead.

Making a compromise, the directory layout could be structured according to table
??which leads to a directory depth of at least two. One hierarchy for the protocol layer,
one for the protocol model itself. Further sub-directories may be created if the model
is of a great complexity.

3 Interfaces

Putting all protocol models into sub-directories will not automatically result in a modu-
lar interchangeable structure. Special care has to be taken of protocol interfaces. Start-
ing with the lowest protocol layer, an interface message towards the upper layer should
be defined that not only carries the protocol specific header and payload but also inter-
face control information to control protocol layer specific behavior.

If the internal state of a module has to be made visible to other modules, a function
call interface could be implemented that allows other modules to directly query and
set the internal state or to exchange some information that does not fit into interface
messages.

3.1 Abstraction Layers

At different protocol layer levels insertion of additional abstraction layers might be
useful to provide a unique interface to upper layers. As an example taken from real
implementations, the BSD socket layer provides an abstraction of the transport layer
towards the application layer. Using sockets is a convenient way to hide transport spe-
cific functionality. Therefore, it becomes quite easy to write generic traffic generating
applications that can be put on top of TCP, UDP or IP.

3.2 Message Subclassing

The easiest way to add protocol header information to a message is by using the
cMessage::addPar() member function but this is deprecated for the following
reasons. The most important one is that header parameters are generated on the fly in
the source code. There is no clean header description that is visible to a user. Knowl-
edge of the whole source code is needed for not missing an important header parameter.
Moreover, parameters added byaddPar() are referenced by a string value. Misnam-
ing a string will not be caught at compile-time but at run-time. Tracking down run time
errors is known to be a tedious task.

To compenstae this disadvantage, message subclassing should be used instead of
addPar() . It is a much cleaner way of defining interface messages since all message
information is contained in a class definition. Understanding the usage of a protocol
module is therefore facilitated by looking at the message class header files.

Using message subclassing so far results in writing a lot of code: In addition to the
protocol header fields getter and setter functions have to be written to access these. Fur-
thermore, methods of the base cMessage class have to be redefined, i.e. constructors,
assignment operator and some methods that interface with the OMNeT++ kernel.

OMNeT++ releases later than version 2.1 will offer a new way of definingcMes-
sage sub-classes by means of a NED language extension introduced by András Varga.
It will be no longer necessary to write code that defines a message subclass. Simply a
NED file has to be created that contains the message definition. Compiling the NED
file with nedc creates a header and implementation file. The latter one contains the
implementation of the generated classes. Additionally, reflection code is added that
allows to display message content with OMNeT++’s graphical front end TKENV.

3.3 Function Call Interfaces

As OMNeT++ is a discrete event-driven simulation environment, information exchange
between modules happens by means of message passing. This is a classic approach that
satisfies most needs. However, sometimes a function call interface between modules
would ease the task to modularize a model design. This is true especially for global
modules that are accessed by others to retrieve information.

The simulation environment already offers two mechanisms to retrieve a module
pointer. One is implemented with thecObject::findObject() function call.
The other one is by following gate connections until the module of interest has been
reached. Both methods create access to a module class pointer and therefore it is pos-
sible to call its member functions.

This mechanism, however, is invisible to the user and might lead to simulation
models that are hard to understand since access to other module pointers is only re-
vealed by reading the appropriate part of the source code. This is where a function
call interface might be the solution which could be declared within the NED mod-
ule description. Its big advantage is that this kind of declaration could open ways for
graphical front ends to display these module relationships by wires and somehow vi-
sualize module access.

4 Documentation Aids

One important step in writing reusable models that is often neglected is documenta-
tion. As a lot of models are programmed by students at universities doing their master
degree documentation is often written as an external document. If the model is further
actively developed, documentation usually falls behind. To circumvent this documen-
tation inside the source code is really important.

Since OMNeT++ version 2.1 Doxygen [?] is used as the documentation framework
for the kernel sources. It is an inline java-like documentation system for C++, Java,
IDL and C.

Doxygen provides the following features:

– it generates an online documentation browser (in HTML) and/or an offline ref-
erence manual (in LATEX) from a set of documented source files. There is also
support for generating output in RTF (MS-Word), PostScript, hyperlinked PDF,
compressed HTML, and Unix man pages. The documentation is extracted directly
from the sources, this facilitates to keep the documentation consistent with the
source code.

– it can be configured to extract the code structure from undocumented source files.
This can be very useful to quickly find one’s way in large source distributions.
The relations between the various elements are visualized by means of including
dependency graphs, inheritance diagrams, and collaboration diagrams, which are
all automatically generated.

– it can even be used for doing other kind of documentation

Using Doxygen therefore allows code documentation that stays up to date as the
model evolves. However, Doxygen is not aware of the NED language files containing
NED code. Extending Doxygen so that it knows how to parse NED code might be very
useful.

5 Programming Guidelines

The topics described so far can be summarized into some programming guidelines that
help make models written by different development groups being more consistent and
therefore easier to be integrated with each other.

– find out if there is a model already available that can be extended to satisfy your
needs.

– do not useaddPar() to construct messages headers – use message subclassing
instead.

– avoid using enums with a global scope. Instead, put them into the module or mes-
sage class they belong to. This avoids name clashes and makes it easier to read the
code.

– for each module or message use one class and one header file. Try to avoid to put
together different classes into the same file. This is also true for NED description.

– use Doxygen for inline documentation of your simulation model.
– consider contributing your simulation model to the OMNeT++ CVS server.

6 Conclusion

This paper tried to point out some issues that are worth while being discussed in order
to lay the fundamentals for a comprehensive OMNeT++ simulation class library. What
has been proposed should be subject to further elaboration on the OMNeT++ mailing
list with the goal of defining a concrete framework to support developers writing mod-
els that can be effortlessly integrated into the model library.

References

fN02. Institut für Nachrichtentechnik. Omnet++ repository homepage.http://cvs-int.
etec.uni-karlsruhe.de , 2002.

OSDN02. Inc. Open Source Development Network. Sourceforge homepage.http://www.
sourceforge.net , 2002.

Var02. A. Varga. Omnet++ discrete event simulation system homepage.http://www.hit.bme.
hu/phd/vargaa/omnetpp.htm , 2002.

vH02. Dimitri van Heesch. Doxygen homepage.http://www.doxygen.org , 2002.

http://cvs-int.etec.uni-karlsruhe.de
http://cvs-int.etec.uni-karlsruhe.de
http://www.sourceforge.net
http://www.sourceforge.net
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
http://www.hit.bme.hu/phd/vargaa/omnetpp.htm
http://www.doxygen.org

Planning New Features for the OMNeT++ Simulation Kernel

András Varga
Department of Telecommunications

Budapest University of Technology and Economics
andras@whale.hit.bme.hu

Abstract

This paper describes issues and planned new features for the OMNeT++ simulation kernel. Many of the
items presented here are not (fully) elaborated yet, and the OMNeT++ community is strongly encouraged
to provide feedback about them. The items listed here include: beautifying the simulation library (const-
correctness, STL-style iterators, more inner classes, etc.); object-oriented random number streams; multi-
thread modules; more flexible channel objects; real-time scheduler (for hardware-in-the-loop simulation);
parallel simulation; generating ns2 nam traces; whether it would be useful to introduce scripting).

Two larger projects (about NED-2 and using Java as future tools platform) are described in separate
documents. Parallel simulation is introduced in a paper from Gabor Lencse.

Beautifying the Simulation Kernel

The OMNeT++ [1] simulation kernel has undergone several changes since the 2.1 release. The C++ code
has been made const-correct, and several changes were made to make the code more consistent and robust.
Further changes are planned to make the code cleaner, for example introducing STL-style iterators and
making several of the small auxiliary classes inner classes.

Object-Oriented Random Number Generators

Current solution for generating random numbers is the intrand() and genk_intrand() functions. Distributions
are also implemented as functions that call intrand() and genk_intrand() directly. This solution is flawed in
several ways. First, the total number of random number generators is limited, and the limit can only be
changed by recompiling the simulation kernel. Second, distributions cannot be made to use other random
number generator than the one built in. Third, the solution is not object-oriented.

The current solution has to be replaced by an object-oriented one that cures the problems mentioned above.
A possible model is the GNU C++ library. The design is complicated by the requirements that one should
be able to use the random number generators and distributions transparently from NED expressions, and
also transparently be able to set seeds from the ini file.

Details are to be worked out.

Multi-thread modules

Currently, if there is a need to have multiple threads of control within a simple module, dynamically
created modules have to be used. It is usually difficult to have these modules share resources (i.e. have
access to a shared queue or status variable). A more appropriate solution would be to support multiple
threads of execution within a simple module; the main advantage would be that a “thread” could use
resources (data members like queues, etc.) of the containing simple module.

A rough initial design is the following. Introduce a cProcess class that is a unit of scheduling and execution
(“lightweight simple module”). It would have the following properties:

• An event’s target is always a cProcess.

• cProcess has activity() and handleMessage()

A cSimpleModule is (has?) a cProcess. A simple module may create/destroy further cProcesses. The child
cProcesses live within the parent module’s context (may access its parameters, gates, members, etc.)

Messages from input gates are always received by the cSimpleModule (its main cProcess), which may in
turn manually dispatch them to its cProcesses. A cProcess may have its own scheduled self-messages
which are delivered directly to it.

cProcess might have uses outside simple modules too, potentially in channels. (The channel concept is still
to be created.)

Channels

�����������

The current channels provided by OMNeT++ are very simple which limits their usefulness. Problems with
current channels:

• no custom attributes

• not scheduled � anomalies with animation and sometimes with model logic

• not customizable (simplistic error model, awkward busy channel modeling)

A more flexible channel model is needed. To be able to design a better solution, we need to explore the
requirements. The fundamental question is the following:

Complex channels could be implemented using simple modules. Do we need powerful and
flexible channels or are basic channels enough (and use simple modules for complex
channels)?

The question is open to discussion. This paper doesn’t attempt to answer it, just lists some points that can
help in making the decision.

	
��������

��

The right solution depends on what we want to use channels for. What do we want to model using
channels?

• point-to-point? shared media? bus?

• delays? error model? physical propagation models (radio)? collisions?

• complex channels vs. simple channels+modules

Considerations for the design:

• do we need scheduling (events) for modeling transmission? � YES (current implementation must
be changed!)

• should the design allow several connecting channels in a path? � NO (otherwise checking
channel state from simple modules becomes complicated. Current implementation must be
changed!) -> we must distinguish between simple connections (no delay/error/datarate modeling)
and channels

• channels will need arbitrary parameters (like modules)

• do channel implementations need to be modular/hierarchical? � yes? maybe?

• do channels need several gates? (for bus or shared media) � no? (introducing named gates for
channels would also cause notation problems in NED)

• what is the technical difference between such complex channels and modules? � different
semantics but very similar implementation?

Two (three) ways seem tractable for the channel design:

• Lazy: support only very simple channels (remove BER and datarate attribute) � then more
complex channels should become simple modules.

• Heavyweight: build a mechanism parallel to modules for channels (parameters, maybe gates,
activity()/handleMessage(), etc.)

• Middle: add channel parameters; channel object is a cProcess (can be written by user)

Feedback is kindly requested from the user community.

Hardware-in-the-loop simulation

Hardware-in-the-loop simulation enables interesting scenarios that are sometimes of huge practical value:

• The simulator may represent part of the real network.

• A real-world device may be tested inside a simulated network.

Such scenarios naturally assume that the simulation program is running on a computer that is fast enough to
be able catch up with events in the real life.

It is planned to enhance OMNeT++ to support hw-in-the-loop simulation. The needed simulation kernel
improvement is a real-time scheduler. The interface for communication between the simulation and the real
system is usually specific to the concrete simulation scenario and is therefore difficult to generalize.

Having a real-time scheduler in addition to the normal scheduler raises the need that the scheduler inside
OMNeT++ be replaceable.

Implementation of the real-time scheduler has already begun (Andras Varga). However, it is currently
suspended because of practically more important tasks (e.g. NED-2 [2]).

“nam” traces

The ns2 [3] project’s nam program is a very useful off-line network animation viewer. OMNeT++ currently
lacks such a tool. If OMNeT++ could generate ns2 nam traces, the OMNeT++ community could make use
of nam instead of having to write another animation viewer.

Using nam is feasible because:

• it already has (most) features we need

• available (open-source, etc.)

• works on a well-documented, simple input file

• fairly independent of ns2

The task is to enhance OMNeT++ and make it able to generate nam traces. This can be done by enhancing
the cEnvir library; details about the nam trace can be provided via the omnetpp.ini file.

The task has been handed out as a student project at TU Budapest by Dr. György Pongor; work is still in
progress.

Scripting

Motivation: ns2 uses Tcl to script simulations. OMNeT++ currently does not have a scripting facility.
Tasks that are solved in ns2 by simulation scripting are solved in OMNeT++ in other ways: via module
parameters that obeyed by simple modules; custom script files understood by individual simple modules; or
C++ programming.

The question is whether OMNeT++ needs simulation scripting. Pro and con arguments are the following.

We do not need scripting to:

• build up topology (done via NED)

• assign values to parameters (done via ini files)

We might need scripting to:

• express dynamic scenarios (where traffic pattern changes over time, nodes/links go down and up,
etc.)

Opinions are expected from the OMNeT++ community.

OMNeT++ Distributions

Several OMNeT++ binary distributions are/should be maintained.

There were efforts to create distributions for various Unix systems.

• Linux RPM package

• Debian package

• Solaris package

Regarding Windows support and MSVC integration, the following components have been created:

• OMNeT++ AppWizard

• “Add NED file” tool

• Installer (NSIS-based)

Maintainers are needed for all the above components.

References

[1] OMNeT++ Discrete Event Simulation System. http://www.hit.bme.hu/phd/vargaa/omnetpp.htm

[2] NED-2 Draft specification. http://www.hit.bme.hu/phd/vargaa/omnetpp/neddraft.htm

[3] The Network Simulator - ns-2. http://www.isi.edu/nsnam/ns/

Session 5:
Last minute
presentations

A number of presentations have been announced after the deadline for the camera-
ready version had expired so that no article could have been included. They are:

– Simulated-KIDS — A flexible simulation suite for individual Quality of Service
mechanisms,Klaus Wehrle (Universiẗat Karlsruhe (TH))

– Adaptation of a router simulation to realistic delays,Eckehardt Luhm (Universität
Karlsruhe (TH))

– A flexible traffic generator for realistic Internet traffic,Stefan Sellschopp, Milena
Neumann (Universität Karlsruhe (TH))

	P4:
	stampTemplate:
	pg: (1)

	P5:
	stampTemplate:
	pg: (2)

	P6:
	stampTemplate:
	pg: (3)

	P7:
	stampTemplate:
	pg: (4)

	P8:
	stampTemplate:
	pg: (5)

	P9:
	stampTemplate:
	pg: (6)

	P10:
	stampTemplate:
	pg: 7

	P11:
	stampTemplate:
	pg: 8

	P12:
	stampTemplate:
	pg: 9

	P13:
	stampTemplate:
	pg: 10

	P14:
	stampTemplate:
	pg: 11

	P15:
	stampTemplate:
	pg: 12

	P16:
	stampTemplate:
	pg: 13

	P17:
	stampTemplate:
	pg: 14

	P18:
	stampTemplate:
	pg: 15

	P19:
	stampTemplate:
	pg: 16

	P20:
	stampTemplate:
	pg: 17

	P21:
	stampTemplate:
	pg: 18

	P22:
	stampTemplate:
	pg: 19

	P23:
	stampTemplate:
	pg: 20

	P24:
	stampTemplate:
	pg: 21

	P25:
	stampTemplate:
	pg: 22

	P26:
	stampTemplate:
	pg: 23

	P27:
	stampTemplate:
	pg: 24

	P28:
	stampTemplate:
	pg: 25

	P29:
	stampTemplate:
	pg: 26

	P30:
	stampTemplate:
	pg: 27

	P31:
	stampTemplate:
	pg: 28

	P32:
	stampTemplate:
	pg: 29

	P33:
	stampTemplate:
	pg: 30

	P34:
	stampTemplate:
	pg: 31

	P35:
	stampTemplate:
	pg: 32

	P36:
	stampTemplate:
	pg: 33

	P37:
	stampTemplate:
	pg: 34

	P38:
	stampTemplate:
	pg: 35

	P39:
	stampTemplate:
	pg: 36

	P40:
	stampTemplate:
	pg: 37

	P41:
	stampTemplate:
	pg: 38

	P42:
	stampTemplate:
	pg: 39

	P43:
	stampTemplate:
	pg: 40

	P44:
	stampTemplate:
	pg: 41

	P45:
	stampTemplate:
	pg: 42

	P46:
	stampTemplate:
	pg: 43

	P47:
	stampTemplate:
	pg: 44

	P48:
	stampTemplate:
	pg: 45

	P49:
	stampTemplate:
	pg: 46

	P50:
	stampTemplate:
	pg: 47

	P51:
	stampTemplate:
	pg: 48

	P52:
	stampTemplate:
	pg: 49

	P53:
	stampTemplate:
	pg: 50

	P54:
	stampTemplate:
	pg: 51

	P55:
	stampTemplate:
	pg: 52

	P56:
	stampTemplate:
	pg: 53

	P57:
	stampTemplate:
	pg: 54

	P58:
	stampTemplate:
	pg: 55

	P59:
	stampTemplate:
	pg: 56

	P60:
	stampTemplate:
	pg: 57

	P61:
	stampTemplate:
	pg: 58

	P62:
	stampTemplate:
	pg: 59

	P63:
	stampTemplate:
	pg: 60

	P64:
	stampTemplate:
	pg: 61

	P65:
	stampTemplate:
	pg: 62

	P66:
	stampTemplate:
	pg: 63

	P67:
	stampTemplate:
	pg: 64

	P68:
	stampTemplate:
	pg: 65

	P69:
	stampTemplate:
	pg: 66

	P70:
	stampTemplate:
	pg: 67

	P71:
	stampTemplate:
	pg: 68

	P72:
	stampTemplate:
	pg: 69

	P73:
	stampTemplate:
	pg: 70

	P74:
	stampTemplate:
	pg: 71

	P75:
	stampTemplate:
	pg: 72

	P76:
	stampTemplate:
	pg: 73

	P77:
	stampTemplate:
	pg: 74

	P78:
	stampTemplate:
	pg: 75

	P79:
	stampTemplate:
	pg: 76

	P80:
	stampTemplate:
	pg: 77

	P81:
	stampTemplate:
	pg: 78

	P82:
	stampTemplate:
	pg: 79

	P83:
	stampTemplate:
	pg: 80

	P84:
	stampTemplate:
	pg: 81

	P85:
	stampTemplate:
	pg: 82

	P86:
	stampTemplate:
	pg: 83

	P87:
	stampTemplate:
	pg: 84

	P88:
	stampTemplate:
	pg: 85

	P89:
	stampTemplate:
	pg: 86

	P90:
	stampTemplate:
	pg: 87

	P91:
	stampTemplate:
	pg: 88

	P92:
	stampTemplate:
	pg: 89

	P93:
	stampTemplate:
	pg: 90

	P94:
	stampTemplate:
	pg: 91

	P95:
	stampTemplate:
	pg: 92

	P96:
	stampTemplate:
	pg: 93

