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Abstract

Increasing the modal share of bicycle traffic to reduce carbon emissions, reduce urban car traffic, and to improve the
health of citizens, requires a shift away from car-centric city planning. For this, traffic planners often rely on simulation
tools such as SUMO which allow them to study the effects of construction changes before implementing them. Similarly,
studies of vulnerable road users, here cyclists, also use such models to assess the performance of communication-based
road traffic safety systems. The cyclist model in SUMO, however, is very imprecise as SUMO cyclists behave either
like slow cars or fast pedestrians, thus, casting doubt on simulation results for bicycle traffic. In this paper, we analyze
acceleration, deceleration, velocity, and intersection left-turn behavior of cyclists in a large dataset of real world cycle
tracks. We use the results to improve the existing cyclist model in SUMO and add three more detailed cyclist models and

implement them in SUMO.

1. Introduction

Active transportation modes such as cycling provide
health benefits, alleviate traffic congestion, and reduce air
pollution [1]. In practice, however, cyclists often face a car-
centric traffic infrastructure which has a significant impact
on their (perceived) safety and also affects the attractive-
ness of cycling routes [2, 3, 4]. Changing this infrastructure
to better accommodate cyclists and pedestrians requires
significant planning efforts of city planners and traffic engi-
neers. Similarly, road traffic safety systems for vulnerable
road users are often assessed using simulation. Particu-
larly the interaction with cars is relevant when it comes to
V2X-based safety systems for cyclists [5]. Many of these
studies rely on the open source simulation platform SUMO!
(Simulation of Urban Mobility), which allows them to study
the effects of infrastructure changes before implementing
them on the streets.

In SUMO, vehicles and their dynamics are simulated
individually [6]. Unfortunately, the cyclist model is not par-
ticularly realistic — cyclists can either be modeled to behave
as slow cars or as fast pedestrians. Several studies have
already improved the bicycle model of SUMO. For instance,
Kaths and Grigoropoulos [7] investigated the intersection
behavior of cyclists using camera traces and transferred
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findings into SUMO. Also, Grigoropoulos et al. [8] improved
modeling of bicycle infrastructure at intersections while
Heinovski et al. [9] created a virtual cycling environment
to import real bicycle behavior directly into SUMO. Never-
theless, the current cyclist behavior in SUMO is still rather
unrealistic; so far, researchers have devoted much more
effort to car models, e.g., [10, 11, 12, 13, 14, 15, 16, 17].
One reason for this is that, until recently, not enough data
on real-world cyclist behavior have been available. Today,
crowdsourced data collection approaches such as SimRa? [2]
have made thousands of cycle tracks available as open data.

In this paper, we analyze the SimRa dataset regarding
acceleration, deceleration, and velocity of cyclists as well as
their left-turn behavior in four-way intersections. We then
use our findings to improve the cyclist model in SUMO.
Additionally, we add three more detailed cylist models for
slow, medium and fast cyclists. In this regard, we make
the following contributions:

e We show that SUMO’s default bicycle simulation is
not realistic,

e we improve bicycle simulation of SUMO by deriving
new parameters for that vehicle type in SUMO,

e we add three new bicycle simulation models - slow,
mediumd and fast - to SUMO by splitting the SimRa
dataset into slow, medium and fast rides.

e we develop an intersection model which captures cy-
clists’ left-turn behavior at intersections in a more
realistic way, and

2https://github.com/simra-project /
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e we compare our improvements to SUMQO’s default
bicycle simulation, using the SimRa dataset as a
ground truth.

This paper is an extension of our previous work [18§].
The main new contributions are:

e We rerun all analyses of the original paper using
significantly more rides which have become available
in the time period since starting our original paper.

e We complement the general cyclist model from our
original paper with three dedicated models covering
the behavior of cyclist groups clustered by their aver-
age velocity. For each of the three models, we also
derive distributions of left-turn, acceleration, and
maximum velocity behavior.

e For both the general and the three dedicated cyclist
models, we also derive deceleration behavior as a
distribution.

e We implement all new contributions as SUMO plug-
ins and have successfully reimplemented the cyclist
model from our original paper in SUMO core. We
are currently in the process of finalizing an implemen-
tation of the extensions of this paper also in SUMO
core.

e We evaluate all four cyclist models against the default
cyclist model of SUMO using scenarios from Berlin,
Munich, and Hanover, Germany

2. Background

In this section, we give an overview of SUMO (see Sec-
tion 2.1) and SimRa (see Section 2.2), which provided the
dataset we used in our work.

2.1. SUMO

SUMO is an open source traffic simulation tool that
offers macroscopic as well as microscopic simulation of
vehicle mobility [6]. SUMO includes models for different
types of “vehicles”, including, among others, cars, bicycles,
and even pedestrians. Due to its large feature set, it has
become the de-facto standard for traffic simulation and is
used even beyond the transport community, e.g., [19].

Traffic scenarios are, among other things, defined by
road networks and vehicle traffic. The road network in-
cludes roads and their (sub-)lanes as well as exclusive lanes
for cyclists and pedestrians, or road-side infrastructure
such as traffic lights. Furthermore, connections between
these lanes and traffic lights can be configured.

When modeling vehicle traffic, users specify demand
for a specific road segment per vehicle type and can adjust
vehicle-specific parameters of SUMQO’s simulation model to
control their respective behavior. In general, vehicle param-
eters are usually specified in the vehicle type declaration

(vType), applying the changes to all instances of the respec-
tive vType, e.g., to all cars. An alternative, however, is to
obtain multiple vType realizations which typically differ
in at least one parameter by using so-called vTypeDistri-
butions. This way, when spawning a new vehicle, SUMO
randomly picks a specific vType from the vTypeDistribution
and instantiates the vehicle’s parameters accordingly, e.g.,
cars can thus have individual maximum velocities.

In SUMO, vehicle behavior is, among other things,
defined by Car Following (CF) models for the longitudinal
kinematic behavior, Lane Change (LC) models for the
lateral kinematic behaviour, and junction models for the
behavior at junctions and intersections.

Despite including several of these models for cars and
trucks, SUMO does not provide a dedicated movement
model for cyclists. Instead, cyclists are simulated by mod-
eling them either as slow cars or fast pedestrians. Both
of these approaches use movement models of the corre-
sponding vehicle type and adapt their respective shape
and kinematic characteristics (e.g., velocity and accelera-
tion profiles) to match cyclists. While this is obviously a
rough approximation, it is unlikely to reflect the behavior
of real-world cyclists [8].

2.2. SimRa

SimRa is an open source project started in 2019 which
aims to identify hotspots of near miss incidents in bicycle
traffic [2, 20]. For this, the project follows a crowdsourcing
approach in which cyclists record their daily rides using a
smartphone application available for both Android and iOS.
Today, the project has managed to record almost 90000
rides, most of them in Germany, approximately half of
them in Berlin.

During the ride, SimRa records the GPS trace at 1/3
Hz and the motion sensors, i.e., (linear) accelerometer,
gyroscope, and rotation vector at 50 Hz; the motion sensor
readings are aggregated by calculating a moving average
with a window size of 30 and then keeping only every fifth
value. This was done for saving memory, battery, and
mobile data usage while still being able to reconstruct the
ride and detect near miss incidents. After the ride, SimRa
shows the recorded ride as a route on the map which is then
annotated, cropped (for privacy reasons), and uploaded by
the user. In this paper, we only use measured data from
the ride files and disregard user-annotated data on near
miss incidents.

3. Related Work

In this section, we give an overview of related work on
improving intersection behavior (Section 3.1) and longitudi-
nal (Section 3.2) behavior of cyclists in SUMQO’s simulation
models.



3.1. Intersection Behavior of Cyclists

Kaths and Grigoropoulos [7] aim to address the short-
comings of SUMQO’s intersection model for cyclists. For
this, they record video footage of an example intersection
in Munich and derive cyclist trajectories. From the set of
trajectories, they select one representative trajectory for
each combination of start and end points in the intersection
and make it available to SUMO via an external API. While
this is a significant improvement in realism over SUMO’s
intersection model, it is hard to generalize to other intersec-
tions and cannot cover the plurality of trajectories chosen
by real-world cyclists.

Similar to Kaths and Grigoropoulos [7], Grigoropoulos
et al. [21] analyze video footage of intersections with the
goal of better understanding the intersection behavior of
cyclists. Their focus, however, is not on deriving an im-
proved intersection model but rather on identifying best
practices for traffic planners working on intersections with
high volumes of cycling traffic. Grigoropoulos et al. [8]
propose to adjust the default traffic infrastructure inside
SUMO to achieve more realistic cyclist behavior at inter-
sections. Here, they focus on the number and shape of
bicycle lanes which, however, are highly specific and differ
from intersection to intersection.

3.2. Longitudinal Behavior of Cyclists

Twaddle and Grigoropoulos [22] examine four models
for the longitudinal kinematic behavior of cyclists, i.e., ac-
celeration and velocity. The first, called Constant Model, is
the simplest and is the SUMO default: Cyclists accelerate
and decelerate at a constant rate until the desired velocity
is reached. This model works well when breaking to a
full stop but leads to frequent acceleration jumps between
a fixed positive or negative value and zero, which is not
realistic cyclist behavior. In the Linear Decreasing Model,
maximum acceleration is reached when starting the acceler-
ation maneuver and then linearly declines until the desired
velocity is reached. This model is outperformed by all other
models. In the third and fourth models, Polynomial and
Two Term Sinusoidal Model, acceleration or deceleration
start at zero and then gradually grow over time. In their
paper, Twaddle and Grigoropoulos [22] analyze the video
recordings of 1,030 rides in four intersections in Munich,
Germany and conclude that the Polynomial Model has
overall the most realistic cyclist behavior but is, however,
not trivial to implement in SUMO.

A different approach of achieving realistic cycling behav-
ior in SUMO is taken by Heinovski et al. [9]. The authors
simulate multiple traffic scenarios in which accidents be-
tween cars and cyclists occur to investigate the effects of
wireless communication between cyclists and other road
users in the context of accident prevention. In order to
obtain realistic cycling behavior for SUMO, they set up a
novel Virtual Cycling Environment (VCE) featuring an ac-
tual bicycle that is connected to the simulation via multiple
sensors. The VCE supports interactive empirical studies

Table 1: Most important attributes of entities of the SimRa dataset

Total Used

Number of Rides 60470 55175
Number of Accelerations 12382675 2330292
Number of Decelerations 12985955 2623904

in a physically safe environment and allows the authors
to record the cyclists’ behavior in the form of trajectories.
They use a set of recorded trajectories from different cy-
clists for emulating realistic cycling behavior inside SUMO
to simulate accidents. Although their approach produces
trajectories from cyclists created with an actual bicycle,
it does only achieve limited realism, since no other road
users were present when recording the trajectories. Fur-
thermore, deriving a realistic set of trajectories requires a
large number of test persons.

4. Cycling Behavior in SimRa and SUMO

In this section, we analyze real-world cyclists’ behav-
ior extracted from the SimRa dataset and compare it to
the behavior of SUMQ’s default bicycle model. SimRa’s
dataset stems from crowdsourced smartphone data genera-
tion and thus suffers from poor sensor quality [23, 24] as
well as heterogeneous hardware and users [25]. This leads
to a lot of unclean data, which we first need to filter out
(Section 4.1). Since we want to create one general type
for all cyclists and complement it with three dedicated
models for slow, medium, and fast cyclists, we need to
derive three distinct types from the SimRa dataset, which
we do in Section 4.2. We then analyze acceleration, decel-
eration and velocity behavior for each of the four models in
Sections 4.3 to 4.5 before discussing left-turn behavior at
four-way intersections of the different models in Section 4.6.
We omit a detailed discussion of the right-turn behavior at
intersections, since SUMO’s default model does not deviate
much from the behavior observed from SimRa’s dataset.
When referring to SUMO’s bicycle model, we refer to the
“slow car” model of SUMO as the “fast pedestrian” model
occasionally leads to poor results and was therefore not
considered further.

Aside from the public SimRa datasets [26, 27, 28] and
more recent rides available on GitHub,® we also used non-
public rides which have, for privacy reasons, not been
published yet. Table 1 summarizes the most important
attributes of the dataset that we used.

We used rides from almost 100 SimRa regions when
calculating the distributions for the maximum acceleration,
maximum deceleration and maximum velocity of cyclists.

3https://github.com/simra-project /dataset
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Figure 1: Histogram of the empirical average velocity capabilities
of cyclists found in the SimRa dataset. The average velocity of
all bicycle rides after the preprocessing is 4.38 m/s with a standard
deviation of 0.89 and a median of 4.42m/s.

4.1. Preprocessing

To achieve the best possible data quality, we tested
various pre-processing techniques and filters. We also con-
ducted an experiment in which sample trajectories were
recorded in parallel on several SimRa client devices and
compared to a ground truth trajectory recorded by a stand-
alone GPS receiver. In the end, we used a Gaussian Kernel
filter for improving location data and a Low Pass filter for
the velocity data. Additionally, the SimRa dataset contains
information about the location accuracy, which we use to
filter out rides where the GPS accuracy suffered greatly.
After filtering semantically and syntactically defective files,
we used data from 55 175 rides, which is around 65% of the
initial dataset as input for our analysis scripts.*

4.2. Categorizing Cyclists by Velocity

To get different types of cyclists, we decided to analyze
the average velocity of each ride after filtering out the stops.
Fig. 1 shows the distribution of the average velocities of
each ride in the SimRa dataset. This does not present an
obvious way to split the dataset into three types, which
is why we have split the dataset from a SUMO users’ per-
spective. We, hence, decided to split the dataset so, that
the 25% slowest and the 25% fastest rides represent the
slow and the fast cyclists respectively, which leaves the
middle 50% to the medium-paced cyclists. This results
in the following cyclist type velocities: Slow cyclists have
an average cycling velocity of up to 13.5km/h. Medium
cyclists have an average cycling velocity between 13.5km/h
and 17.9km/h. Fast cyclists have an average cycling veloc-
ity above 17.9km/h. We have chosen against an equal split
and in favor of a 25%-50%-25% split, because we think that
the majority of the cyclists should be in the same cyclist
type, namely, the medium cyclist type.

4.8. Acceleration

For analyzing cyclist acceleration, we extracted accel-
eration maneuvers from the dataset. For this, we slightly

4https://github.com/simra-project /SimRaXSUMO

adapted the approach of [29]. First, we split the veloc-
ity profile at its local extrema to get segments where the
cyclist accelerates/decelerates. Then, we consider only seg-
ments with a distance from 20m to 350 m and a duration
between 5s to 40s. We also make sure to filter out seg-
ments where the variance in velocity is too low, i.e., such
that % > 0.5, where v; and v, are the velocities
at the start and end of a segment. With that approach
we found 228 347 acceleration maneuvers in the cleaned
dataset. Distribution fitting processes, which were done
with SciPy®, showed that the Burr (Type XII) distribu-
tion [30] Burrl2(x;c,d) = c*d*% for x = amas >0
and ¢, d > 0 fits the data best for the general cyclist model
(see also Fig. 2a). For the models of the slow and fast
cyclist models, the Burr (Type III) distribution [30]

Burr3(z;e,d) = cx d * W for £ = amaee > 0 and
c,d > 0 fits the data best, while the Mielke Beta-Kappa
distribution [31]

MpBk(z;c,d) = Of;‘fw for £ = apmae > 0and k, s >
0 is the best fit for the medium cyclist model’s acceleration
distribution (see also Fig. 2b).

Comparing the acceleration capability of actual cyclists
(the SimRa dataset) with the default SUMO cyclist model,
differences become apparent. By default, SUMO specifies
aSUMO with 1.2m/s?. This deviates significantly from
the findings in the SimRa dataset where only 15% of the
acceleration maneuvers are executed with a maximum ac-
celeration of 1.2m/s? or higher. Furthermore, the empirical
distributions are rather wide, indicating a broad variance
across different cyclist types and cycling situations, which
is in stark contrast to SUMOQ’s strategy of choosing a fixed
maximum value.

4.4. Deceleration

For analyzing cyclist deceleration, we extracted de-
celeration maneuvers from the dataset (see Section 4.3).
Distribution fitting processes showed here that the John-
son’s Sy-distribution [32] JSU(x;a,b) = \/Td)(a + b

log(z + Va? 4+ 1)) for = dipee and b > 0 with ¢ being
the probability density function of the normal distribu-
tion, fits the data best for the general cyclist model (see
also Fig. 3a). JSU(dmaaz;a,b) was also the best fit for the
slow and medium cylist models, whereas the fast cyclists’
data was the best fit for the Student’s ¢t-distribution [33]

t(zsv) = 71%53;:1}25)2) (1 + 22 /v)~ D72 for & = dpas

(see also Fig. 3b).

Comparing the deceleration capability of actual cyclists
(the SimRa dataset) with the default SUMO bicycle model,
differences become apparent. By default, SUMO specifies
d5UMO with —3m/s?. This deviates extremely from the

findings in the SimRa dataset where none of the decelera-
tion maneuvers are executed with a maximum acceleration

Shttps:/ /scipy.org/
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Figure 2: Histogram of maximum acceleration capabilities found in the empirical SimRa dataset and their respective distribution functions.

The red scalar represents the default value in SUMO.
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Figure 3: Histogram of maximum deceleration capabilities found in the empirical SimRa dataset and their respective distribution functions.

The red scalar represents the default value in SUMO.

of —3m/s? or lower. Furthermore, the empirical distribu-
tions are rather wide, indicating a broad variance across
different cyclist types and cycling situations, which is in
stark contrast to SUMO’s strategy of choosing a fixed
maximum value.

4.5. Velocity

To gain insights into cyclists’ behavior regarding their
velocities, we calculate the maximum velocity for each
ride file in the cleaned SimRa dataset. Using distribution
fitting, we found that the symmetric generalized normal
distribution [34] SGND(z; ) = W * exp(—|z|?) for
& = Umag fits the empirical data of all cyclists best (see also
Fig. 4a) and is therefore a valid fit for the specification of
the empirical distribution of v for the general cyclist
model. For the model of the slow cyclists, the Johnson’s Sy~
distribution [32] JSU (Vimae; *) fits the data best, while
the best fit for the medium cyclists’ model is the Exponen-

tially Modified Gaussian distribution [35] EMG(z; K) =
s % exp(5z — m/K)erfc(—zf\}éK
K > 0. Finally, the non-central ¢-distribution [36] NCT
(Umaz; @) emerged as the best fit for the fast cyclists’ data.
On the other hand, SUMO sets v5UMO at 5.56 m/s by

default. This deviates significantly from the findings in the

) for & = Ve, and

SimRa dataset where 77% of the rides have a higher maxi-
mum velocity. Bringing this together with the acceleration
findings, real-world cyclists often (but not always) cycle
much faster than SUMO cyclists and vary much more in
their acceleration behavior.

4.6. Left-turn Behavior at Intersections

According to the SimRa dataset, cyclists either behave
like cars (using the normal road) or pedestrians (using the
pedestrian crossing) to take left-turns at intersections. We
call the former a direct left turn and the latter an indirect
left turn.

SUMO’s default model only provides cyclists with an
unrealistic "bicycle-lane-to-bicycle-lane-left-turn" (see also
Fig. 5), where the cyclist enters the intersection from a
bicycle lane, crossing all car lanes and directly entering the
bicycle lane again.

Taking a closer look at real world intersections in the
SimRa dataset revealed that there are mainly two intersec-
tion types. In the first intersection type, the indirect path
is chosen with a probability of 61% when all cyclists are
considered, while medium cyclists and fast cyclists prefer
the indirect path with a probability of 87% and 50% respec-
tively. However, on the second intersection type, almost all
cyclists choose the indirect path. Slow cyclists almost never
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Figure 5: Qualitative comparison between the SUMO default inter-
section model and real world data given by SimRa for the intersection
between Alexanderstraffe and Karl-Marx-Allee in Berlin. SimRa
shows two distinct left-turn paths (i.e., a direct and an indirect one)
whereas SUMO default only models the direct path.

tend to do direct left-turns, since they presumably avoid
car traffic the most. Randomly investigating intersections
of both types revealed that the first intersection type has no
specific characteristics while the second intersection type
actively encourages cyclists to indirect turns through the
design of the intersection, e.g., by having a traffic island in
the center. Since such information cannot be identified in
Open Street Map (OSM) data reliably and in an abstract
way, we will consider only the first intersection type in the
following.

SUMO and real world data differ decisively in all metrics
considered, namely acceleration, velocity, and left-turn
behavior at intersections. However, these three metrics

are crucial for realistically simulating bicycle traffic. In
the following, we try to adapt SUMO to simulate a more
realistic cyclist behavior by introducing three different
cyclist types.

5. Improving SUMO’s Bicycle Simulation

To improve the simulation, we propose three changes
to SUMO’s bicycle model: First, the longitudinal kine-
matic parameters of SUMQO’s default bicycle model are
(re-)parameterized based on the findings from the SimRa
dataset. Second, a novel simulation model is derived from
SimRa trajectories to exclusively simulate realistic left-turn
bicycle behavior at intersections based on the findings in
Section 4. The latter model is referred to as the intersection
model in the following. Third, four different cyclist models,
with different longitudinal kinematic and left-turn behav-
iors depending on the findings from Section 4. One model
is for all cyclists combined and the three other models are
for modeling slow, medium and fast cyclists.

5.1. Longitudinal Kinematic Behavior

In Section 4, we derived maximum acceleration, max-
imum deceleration and maximum velocity characteristics
from the SimRa dataset. We now use them to improve
the longitudinal kinematic behavior of the default SUMO
bicycle model. Contrary to the default parameterization,
we use theoretical distribution functions instead of scalar
values for the exposed kinematic parameters. This enables
the model to produce more realistic bicycle simulation re-
sults since the heterogeneity of real world cycling styles is
reflected.

We derive the theoretical distributions by aggregating
the respective features from Sections 4.3 to 4.5. For this,
we rely on the law of large numbers which states that the
average of the results obtained from a large number of
trials of the same experiment eventually converges to its
true expected value [37]. In the context of this work, this
means that individual rides do not matter but that the
aggregates of multiple rides will converge towards their



actual expected value given a sufficiently large number of
rides.

For the implementation, we used vTypeDistributions
following the results of our previous analysis and sample
both distribution independently.

It should be noted that through the parameterizations
with theoretical probability density functions SUMO’s
speedDev parameter becomes obsolete as variance between
the kinematic preferences among cyclists are already repre-
sented by the distribution function.

Furthermore, alternatives for the acceleration parame-
ters have been added to SUMO. This would enable a user
to pick a normal distribution and choose the parameters for
it. This is would yield more realistic scenario data contrary
to using a simple scalar value for the acceleration.

5.2. Left-turn Behavior at Intersections

To improve the degree of realism in cyclists’ left-turn be-
havior at signaled intersections, we use an adapted version
of the external intersection model (a Python script that
steers cyclists via SUMO’s Traffic Control Interface) as
proposed by Kaths and Grigoropoulos [7] which is based on
previously recorded real-world trajectories as their guide-
lines for cyclists across a single predefined intersection. Our
approach algorithmically synthesizes the cyclists’ trajecto-
ries (i.e., their respective guidelines across the intersection)
for any regular four-way intersection and can therefore be
seen as a step towards a more universal solution.

The left-turn maneuver distribution, as we call it, speci-
fies the probability of the cyclists choosing either the direct
or the indirect path to cross the intersection. For this, we
use the distributions derived in Section 4.6 as the default
for our intersection model for each different cyclist group.
Users, however, can adjust the distributions if desired or
needed for their specific purposes (see also the exception
cases in Section 4.6).

In order to simplify the process and to improve perfor-
mance, we decided to integrate this feature into the SUMO
core. The implementation provides a new parameter that
lets the user adjust the indirect left turn probability of a
bicycle ride. To detail the workflow, the cyclist makes a
decision before each intersection, where there is at least
one direct and indirect left-turn available to choose from.
This delegates decisions inside SUMO just by using the
bicycle vehicle type parameter.

5.8. Different Cyclist Models

Our approach defines distibutions of models derived
from the same default implementation of SUMO. The mod-
els vary only in the parameter values used. The parameters
considered are maximum acceleration (accel), maximum
deceleration (decel) and maximum velocity (mazSpeed),
splitted into 3 groups, as it can be seen in Sections 4.3
to 4.5. In order to leverage distribution parameters for a
bicycle model, we used the vTypeDistribution from SUMO
to define a distribution of cyclists having all the parameters
mentioned.

Table 2: Most important attributes of our simulation scenarios.

Cars Bicycles Distance Lanes
Oranienstr. 3158 300 1528 m -
Dzchauer Str. 3427 300 1204 m -
Frauentorgraben 1625 300 1023 m -
Mehringdamm 180 2700 - 29
Warschauer Str. 180 2700 - 26
Alexanderstr. 180 2700 - 25

With this data ready, the only remaining step is to
augment these groups with a left-turn behavior probability
per group. In order to make a decision whether to do a
direct or an indirect left-turn, we approached the problem
by using a script that controls the cyclists, as described in
Section 5.2.

Thus, this group-based model enables the user to simu-
late bicycle traffic in SUMO more realistically.

6. Evaluation

In this section, we evaluate the new cyclist models from
Section 5 by comparing them to each other and to SUMO’s
default simulation model and the real-world data taken
from the SimRa data set. We start by introducing the
simulation setup (Section 6.1) which we used to create
and run the scenarios with. We then continue analyzing
acceleration (Section 6.2), deceleration (Section 6.3), ve-
locity (Section 6.4), and left-turn behavior at intersections
(Section 6.5) before evaluating the combination of all model
extensions (Section 6.6). Please note: While it may appear
obvious that using the SimRa data set for both parameter-
ization and evaluation should lead to perfect results, this
is not the case as our extensions are subject to the design
restrictions imposed by SUMO

6.1. Simulation Setup

As SUMO users can import real-world scenarios from
OSM data, simulation results can be compared to real-
world data and thus be evaluated. For our evaluation,
we chose specific traffic scenarios from multiple SimRa re-
gions that are representative and likely to showcase both
strengths and weaknesses of our extensions. Likewise, we
do not show every cyclist type’s results in detail to avoid too
many figures and tables. For evaluating the longitudinal
behavior (acceleration, deceleration and velocity), we chose
urban traffic scenarios with long straight sections. As ex-
ample locations, we use Oranienstrafie in Berlin, Dachauer
Strafle in Munich and Frauentorgraben in Nuremberg. For
evaluating left-turn behavior, we chose compact scenar-
ios around signaled intersections with multiple lanes on
each axis. For this, we study three intersections in Berlin,
namely at Mehringdamm (see also Fig. 6), Warschauer
Strafle, and Alexanderstrafe.



Figure 6: Excerpt from the Mehringdamm scenario in SUMO. The
scenario was created using OSM data only.

We made our scenarios as realistic as possible by choos-
ing main roads and intersections with a lot of traffic and
also added a significant number of cars, as Table 2 shows.

For our evaluation, we use SUMO version 1.14.0 and a
step size of 1s in simulations. The SUMO default results
are obtained with SUMO’s vType Bicycle for cyclists, i.e.,
the maximum acceleration, maximum deceleration and
maximum velocity are scalars and set to 1.2m/s?, —3m/s?
and 5.56 m/s respectively.

6.2. Acceleration

Fig. 7a shows the empirical distributions of the maxi-
mum acceleration among all cyclist types inside the Fraun-
torgraben scenario simulation and the corresponding real
world data. It is evident that real-world acceleration ma-
neuvers show heterogeneous maximum rates of acceleration.
The same is true for the three cyclist groups of our new
approach as Fig. 7b shows. Note that the other two cy-
clist groups, namely slow and medium, allow the same
conclusion and, that we have randomly chosen the slow
cyclist group to visualize in Fig. 7b to make the figure
more readable. Apparently, the default parameterization is
not suitable to describe this acceleration behavior among
cyclists, as it provides homogeneous maximum acceleration
rates within the simulation. Our new parameterization -
for all cyclists together and for each of the cyclist types - is
significantly closer to the real-world behavior in the SimRa
data set with its highly heterogeneous behavior across cy-
clists. This can also be seen, when comparing the mean,
standard deviation and median values of SUMO default, all
and slow (s) cyclists (both in the SimRa dataset and our ap-
proach) depicted in Table 3. It also shows, that the division

Table 3: Results Overview Maximum Acceleration Comparing SUMO
Default, Our Approach (All), Our Approach (Slow), SimRa (All) and
SimRa (Slow). All values are in m/s?.

Mean Std. Deviation Median
SUMO default 1.178 0.019 1.18
Our approach (all) 0.921 0.218 0.95
SimRa (all) 0.761 0.217 0.71
Our approach (s)  0.727 0.168 0.74
SimRa (s) 0.656 0.109 0.65

of the cyclist into subgroups further increases the realism,
since the difference between the mean and median values
of our approach (all) and Simra (all) shrinks, compared to
our approach (s) and Simra (s). The standard deviation
suffers though, which is probably due to less rides being
regarded, because of the splitting into three subgroups.
Please note also here, that we omitted the medium and fast
cycling groups to stay consistent with Fig. 7b and avoid
clutter. That our new parameterizations are not a perfect
fit indicates that there are probably additional influence
factors, e.g., the traffic density or the weather situation,
not covered in our kinematic models which aggregate data
from all SimRa rides.

6.3. Deceleration

Fig. 8a shows the empirical distributions of the maxi-

mum deceleration among all cyclist types inside the Dachauer|

Straf$e scenario simulation and the corresponding real world
data. Here, we only show the medium cyclist group as an
example to avoid clutter, the other two cycling groups
(slow and fast) show very similar results. It is evident
that real-world deceleration maneuvers show heterogeneous
maximum rates of deceleration. The same is true for the
medium cyclists as Fig. 8b shows. Here, too, the default
parameterization is not suitable to describe this decelera-
tion behavior among cyclists, as it provides homogeneous
maximum deceleration rates within the simulation. Our
new parameterization - for all cyclists together and for each
of the cyclist types - is significantly closer to the real-world
behavior in the SimRa data set with its highly heteroge-
neous behavior across cyclists. Just like with the maximum
acceleration, Table 4 shows, that our approach is not only
more realistic than SUMO’s default bicycle model (both
with all and medium (m) cyclists), but the introduction
of the cyclist groups increases the realism. The medium
cyclist group was randomly chosen as a representative for
the other groups, since the conclusion does not differ. In-
fluence factors, such as the traffic density or the weather
situation, not covered in our kinematic models which aggre-
gate data from all SimRa rides, result in a non-perfect fit
for our new parameterizations. Note, that we had to filter
out deceleration values, that we deemed too high (above
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Table 4: Results Overview Maximum Deceleration Comparing SUMO
Default, Our Approach (All), Our Approach (Medium), SimRa (All)
and SimRa (Medium). All values are in m/s2.

Table 5: Results Overview Maximum Velocity Comparing SUMO
Default, Our Approach (All), Our Approach (Fast), SimRa (All) and
SimRa (Fast). All values are in m/s.

Mean Std. Deviation Median Mean Std. Deviation Median
SUMO default 2.664 0.507 2.77 SUMO default 5.555 0.002 5.956
Our approach (all) 1.071 0.336 1.09 Our approach (all) 6.589 1.234 6.58
SimRa (all) 0.962 0.141 0.96 SimRa (all) 7.072 0.904 7.10
Our approach (m)  0.949 0.362 0.93 Our approach (f)  8.272 0.902 8.20
SimRa (m) 0.973 0.100 0.98 SimRa (f) 7.872 0.738 7.86

7m/s?), to avoid recording emergency deceleration, which
is another parameter in SUMQO’s vehicle parameterization.

6.4. Velocity

Fig. 9a shows the empirical distributions of all cyclists
maximum velocities in the Oranienstrafle scenario sim-
ulation and the real-world scenario. As with maximum
acceleration and deceleration rates, maximum velocities
vary widely among real-world cyclists and we only depict
one cyclist group (this time fast cyclists) as an example for
other groups to increase the readability of the figure. Once

)

more, the default parameterization is not able to reflect
this characteristic. This is also the case for the different
cyclist groups as Fig. 9b shows exemplary. According to
Table 5 the maximum velocity aspect of our simulation is
the closest, when compared to maximum acceleration and
maximum deceleration of all and fast (f) cyclist groups in
SimRa and our approach. This is probably due to the fact,
that we splitted the cyclist based on the average velocity.
Our new parameterization is thus significantly closer to
the real-world behavior of cyclists. As for acceleration and
deceleration behaviors, the fact that our new parameteri-
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Figure 9: Histogram of SUMO’s, SimRa’s, and our approach’s observed maximum velocities inside the example Oranienstrafie scenario. While
the maximum velocities are heterogeneously distributed in the real-world data and our approach, the default values are clustered.

zation is not a perfect fit to the real-world data indicates
that there are likely to be additional influence factors not
captured in our model.

6.5. Left-turn Behavior at Intersections

As shown in Fig. 10, which shows the intersection be-
tween Alexanderstrafse and Karl-Marx-Allee in Berlin, the
2D trajectories produced by the new intersection models
converge towards the trajectories of the SimRa data set.
While the trajectories produced by SUMO’s default bicycle
model, as can be seen in Fig. 5, only offer direct "bike-lane-
to-bike-lane" turns, the new model is significantly closer to
real-world intersection behavior of cyclists. This is true for
all of our cyclist models. Here, we see again the different
left-turn behaviors of different cyclist types. While slow
cyclist only prefer the indirect left-turn, the medium and
fast cyclists are more inclined to take the direct left-turn
comparatively.

6.6. Combining Intersection Model and Kinematic Exten-
siomns

To achieve a holistic comparison between SUMO’s de-
fault bicycle model and our new models, we measure the
durations of left-turn maneuvers at multiple intersections
and compare the empirical distributions of these measure-
ments. To specifically monitor the impact of our changes,
we do not include any ride time before or after the inter-
section in the measurements. Note that we also omit the
slow rides, since no or too few slow rides went through the
intersections presented here.

Based on this, we identified the following four findings:
First, our new models outperform the default at most
intersections, as its measured durations converge with real
data, see for example Fig. 11. Especially when given the
option to use the indirect path, cyclists take longer to cross
an intersection as they need to stop at an additional traffic
light. This is consistent with real-world data as we find it
in the SimRa dataset at multiple intersections.

Second, in some cases, we were able to improve our
results by adjusting the left-turn behavior distribution fol-
lowing the second distribution discussed in Section 4.6.
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The “lane only” results in Fig. 12 were achieved by pro-
hibiting cyclists from using the direct path. Obviously,
it takes much longer for cyclists to cross the intersection
than SUMQO’s default simulation model suggests. When ex-
amining SimRa trajectories at this particular intersection,
almost all cyclists chose the indirect path as the infrastruc-
ture guides cyclists to do so. Hence, manually adjusting
the left-turn behavior distribution for such intersections is
crucial.

Third, at a few intersections, the results of our approach
do not yet sufficiently reflect real-world bicycle behavior
(see Fig. 13). We discuss possible reasons for this in Sec-
tion 7.

Fourth, creating three cyclist models based on their
average velocity also revealed, that SUMO’s default model
behaves like fast cyclists. This becomes clear when looking
at Figures 11 to 13, since the lines representing the cyclists
modeled with our fast cyclist model are the closes to the
red line representing SUMO default.

7. Discussion

Overall, the results presented in this paper show a
significant improvement over the state-of-the-art. Never-
theless, they still have a number of shortcomings. In this
section, we discuss the inherent limitations of our approach
in general (Section 7.1) as well as problems resulting from
the SimRa dataset as our ground truth data (Section 7.2).
We also describe a potential problem regarding e-bikes in
Section 7.4.

7.1. Methodological Challenges

Our initial assumption was that the behavior of cyclists
in a single intersection cannot be generalized to all inter-
sections [7] but that the average behavior across a large
number of intersections will be close enough to cyclists’ be-
havior at arbitrary intersections. This seems to be true only
for a (relatively large) subset of intersections — apparently,
the intersection behavior of cyclists is more heterogeneous
than expected. We believe that this is due to the fact that
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Figure 11: ECDFs of the measured durations for crossing the scenario
Warschauer Strafle. It is apparent that our models for all, medium
(m) and fast (f) cyclists outperform SUMO’s default as the measured
durations converge towards the real-world data. Only our fast cyclist
model (f) is just marginally better than SUMO’s default.

we averaged across all intersections in our dataset whereas
there are apparently different classes of intersections that
we did not account for.

Primarily, the intersection design is likely to have a
strong impact: Consider the example in Fig. 14 where a
traffic island partially blocks direct left turns and where
markings on the ground suggest indirect turns. As another
example, the intersection Bismarckstrafe/Leibnizstrafe
had no direct left turns in the SimRa dataset. In this
intersection, the reason would be that cyclists legally have
to use a bike lane. When using that bike lane, a direct left
turn would require cyclists to first pass through a row of
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Figure 12: ECDFs of the measured durations for crossing the scenario
Mehringdamm. The results when using our models for all, medium
(m) and fast (f) cyclists are only slightly more realistic than when
using the standard SUMO model. However, when the direct path
is blocked for cyclists, the simulation results outperform the default
approach.

parked cars, then to cross four car lanes of a major street
before being able to turn left.

Aside from that, other possible influence factors include
the amount and velocity of traffic (higher numbers of cars
or faster cars can be expected to lead to more indirect
turns), gender and age group distributions of cyclists in
the respective intersections, as well as weather and light
conditions or the grade of the street. In future work, we
plan to explore these possible influence factors, focusing on
the intersection design which we deem to have the strongest
impact.
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Figure 13: ECDFs of the measured durations for crossing the scenario
Alezxanderstrafie. Here, our new approach is not more precise than
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Figure 14: Intersection Mehringdamm/Gneisenaustrafe: a traffic
island obstructs the direct turn path (dashed line) and, thus, makes
the indirect path (solid line) more likely to be used.

Another problem results from inaccuracy in the dataset
used: GPS and motion sensors of smartphones provide only
imprecise insights into actual “micro’~-behavior of cyclists.
The problem with GPS sensors on smartphones in our
case is that they are not precise enough to detect evasive
maneuvers of cyclists, that, e.g., swerve around a pothole,
since the GPS modules in smartphones provide location
information with an inaccuracy of about 7-13 meters [38].
While human activity recognition based on motion sensors
can differentiate very distinct activities such as walking,
sitting, or sleeping, this is very challenging in our dataset.
The reasons for this are that (i) we do not have detailed in-
formation about the positioning of the phone (which might
be next to the knee in case of someone wearing cargo pants
or on the bike handlebar), i.e., the data might be extremely
noisy or not, (ii) the movements of the cyclist create lots
of semi-periodic movements and hence acceleration in all
directions, and (iii) the road surface quality can create
significant amounts of noise (e.g., a phone mounted on
the handlebar while going on a cobblestone road will often
experience a maxed-out acceleration sensor for at least one
direction). These all together imply a poor signal-to-noise
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ratio, i.e., it is very hard to impossible to use the phones’
motion sensors to improve GPS quality [39, 40, 41, 42].
We tried to partially address these limitations through the
combination of preprocessing and using large numbers of
rides. Alternatives would be additional sensors (especially
cameras) on bicycles or on intersections [7]. These, how-
ever, have the inherent limitation that they will either limit
the number of bicycles producing data or the number of
intersections covered.

7.2. Dataset Choice as Ground Truth

In this paper, we used the SimRa datasets as input
for our analysis as it is, to the best of our knowledge, the
first public dataset comprising a large number of rides that
actually publishes individual rides in an anonymized but
non-aggregated form. We need to keep in mind, however,
that SimRa was designed for a different purpose: For ex-
ample, the SimRa app records motion sensors at 50 Hz but
only persists every fifth value of a moving average over
30 values. While this suffices for detecting near miss in-
cidents [2], it further limits the resolution of motion data
(and thus any conclusions we can draw from that). Further-
more, the SimRa data which we used were recorded over
a period of 1.5 years. During such as long period of time,
physical changes to the bicycle infrastructure (both tem-
porary and permanent) will occur, thus, adding additional
noise to the data.

Finally, SimRa relies on crowdsourcing as a data collec-
tion method which often leads to participation inequality.
As a result, individual users will be overrepresented in some
intersections and street segments and not represented in
others. Furthermore, based on the data collection method
using smartphones, the user group of SimRa is likely to
have a slight gender bias towards males and an age group
bias towards cyclists between the ages 20 and 50. These
biases will, of course, be reflected in our analysis results
and cannot be compensated unless other cycling datasets
become available in non-aggregated form.

7.8. Limitations

While the SimRa dataset which we used to analyze
the longitudinal kinematic behavior contains rides from
almost 100 regions from Germany, Switzerland and Austria,
which increases the generalizability, the models presented
in this work have their limits: First, the rides were mostly
recorded in highly urban areas. Second, most of our rides
are not recreational rides, but commuting rides from/to
school /university /work places [2]. Third, the participating
regions in the SimRa projects are all in Germany, Switzer-
land and Austria. Fourth, our models do not consider hills
as most of our data are from mostly flat areas. This means
that researchers simulating urban, central European, bike
commute traffic in mostly flat areas will have a much more
realistic simulation when using our models compared to
SUMO’s default models. When simulating recreational
bike traffic in, e.g., a mountainous region in Japan, our



model is unlikely to be a good fit. For such a scenario, we
nevertheless believe that our model might be closer to real
behavior than SUMO’s default which models cyclists with
unrealistically high acceleration and deceleration values
coupled with really low maximum velocity.

7.4. E-Bikes

Another potential threat to the realism of our approach
are e-bikes, since they support the cyclist, potentially lead-
ing to higher acceleration and velocity. To analyze this, we
filtered out the e-bikes and found, that the SimRa dataset
only contains about 4000 e-bike rides, which is less than 5%.
We redid the analyses of the three cyclist groups and found
out, that the change in the results is barely noticeable.
And there are not enough e-bike rides to create a dedicated
e-bike model with a high credibility.

8. Conclusion

Increasing the modal share of cyclists to provide health
benefits, alleviate traffic congestion, and reduce air pollu-
tion requires significant planning efforts of city planners
and traffic engineers towards an improved cycling infras-
tructure. For this, city planners often rely on the open
source simulation platform SUMO to study the effects of
infrastructure changes before implementing them on the
streets. Likewise, research on V2X-based safety systems
for cyclists often relies on SUMO for evaluation. Unfortu-
nately, SUMO cyclists are either modeled as slow cars or
as fast pedestrians, neither of which is overly realistic.

In this paper, we used the recently published SimRa
dataset, which to our knowledge is the first public dataset
providing detailed insights into a large number of indi-
vidual cyclists’ rides, to improve SUMO’s cyclist model.
For this, we split the rides into three categories based on
their average velocity, after the stops are filtered out: slow,
medium, and fast. We then derived acceleration, decelera-
tion and velocity behaviors for each of these three cyclist
groups and reparameterized the SUMO cyclist models. As
a SUMO extension, we also developed a new intersection
model describing left-turn behaviors of cyclists of the three
new groups in four-way intersections. While our work sig-
nificantly improved the existing cyclist model, it is not as
realistic as we wanted it to be. We, hence, discussed a
number of research directions which we plan to explore in
the near future.
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