
1

Byzantine Fault Tolerant Consensus in Open
Wireless Networks via an Abstract MAC Layer

Guanlin Jing, Yifei Zou, Member, IEEE, Zuyuan Zhang, Dongxiao Yu, Senior Member, IEEE, Falko
Dressler, Fellow, IEEE and Xiuzhen Cheng, Fellow, IEEE

Abstract—The openness of wireless networks opens the door
to Byzantine attacks on the physical channels, making the
communications unreliable and resulting in more challenges
in achieving consensus among mobile devices. To address this
issue, this paper studies the Byzantine-fault-tolerant (BFT)
consensus problem based on an unreliable Byzantine commu-
nication model. Different from the previous works requiring
stable communications between the honest nodes, considering
the unreliable communication makes our problem more realistic
but also harder. Based on the unreliable communication model,
we first implement a BFT abstract MAC (absMAC) layer with a
distributed and randomized multi-channel communication algo-
rithm. In the implemented absMAC layer, its acknowledgement
and progress operations can be completed within O(kn

k−f
logn)

and O(k
k−f

logn) rounds, respectively. n, f , and k are the
numbers of nodes, Byzantine nodes, and channels, respectively.
With the implemented absMAC layer, an efficient and elegant
BFT consensus algorithm is designed, which can solve the binary
consensus problem within O(kn

k−f
logn) rounds in expectation.

Even though a series of works have discussed how to achieve
consensus with a specific absMAC layer provided, to the best of
our knowledge, this paper is the first one that implements a BFT
absMAC layer.

Index Terms—Fault tolerant consensus; Open wireless net-
works; Byzantine-resilience; Abstract MAC layer

I. INTRODUCTION

The openness of wireless technology ensures a convenient
network connection for the massive Internet-of-Things (IoT)
devices and enables a flexible exchange of data and services
among different objects and various applications. Due to its
openness feature, the open wireless network can be regarded
as a foundation of the Internet of Everything and has attracted
lots of attention from the wireless communities. A recent
concept based on the open wireless network is the Open
Radio Access Network (O-RAN) [1], which aims to drive
innovation and competition in wireless networks by promoting
greater diversity in network devices and services through open
and standardized wireless network interfaces. Even though
the openness of wireless networks allows for more flexibility

Guanlin Jing, Yifei Zou (Corresponding author), Dongxiao Yu and Xiuzhen
Cheng are with Institute of Intelligent Computing, the School of Computer
Science and Technology, Shandong University, Qingdao, 266200, P.R. China.
E-mail: 202120681@mail.sdu.edu.cn, {yfzou, dxyu, xzcheng}@sdu.edu.cn.

Zuyuan Zhang is with the School of Engineering and Applied
Science, George Washington University, D.C.,20052, U.S. E-mail:
zuyuan.zhang@email.gwu.edu .

F. Dressler is with the School of Electrical Engineering and Computer
Science, TU Berlin, Berlin, 10587, Germany. E-mail: dressler@ccs-labs.org .

Manuscript received XX XX, XXXX; revised XX XX, XXXX.

and innovation in the design of network architecture and
applications. This also presents a hurdle in reaching consensus
amidst Byzantine attacks, which potentially undermine the
network’s dependability and security [2].

Specifically, the Byzantine fault tolerant (BFT) consensus
is very important for the IoT devices in the wireless networks
[3], [4], because most of them are organized in a decentralized
pattern and face malicious attacks from the Byzantine agents.
Only with a BFT consensus, can the honest devices achieve a
series of reliable and safety agreements for their cooperation in
the network services and application. Due to its significance,
there have been some BFT protocols presented in the past
decades, such as [5]–[7] with reliable communications, [8]–
[11] on the message loss model, [12], [13] on the communica-
tion failure model, [14] on the communication collision model,
[15]–[18] on the heard-of model, and [2], [19] on the dynamic
omission failures model. Whereas, most of them assume a non-
Byzantine physical channel and focus on Byzantine attacks
from the protocol layer and information layer, which are higher
than the physical layer.1 Compared with the previous works
that rely on stable communications between honest devices,
the BFT consensus problem in an open wireless network is
harder and more complex due to the following reasons. First
of all, with a loss permission scheme in the open wireless net-
work, the physical channel is exposed to the Byzantine nodes.
By breaking the physical channel (e.g. with a jamming signal),
the Byzantine nodes disrupt the communications between hon-
est devices and mislead the consensus process. Therefore, to
solve the BFT consensus problem in an open wireless network,
the Byzantine attacks from physical, protocol, and information
layers should be carefully considered, which makes the BFT
problem harder than that in the previous works with reliable
communication environments. Furthermore, such a cross-layer
consideration increases the complexity of solving the BFT
consensus problem. In detail, the algorithm design of BFT
consensus has to start from the unreliable physical layer,
cross the protocol layer, and finally reach a consensus on the
information layer. When analyzing the reliability and security
of the whole algorithm, the unstable communications in the
physical layer, Byzantine violation in the protocol layer, and
fake messages in the information layer increase the complexity
of reaching a theoretical result with rigorous proof, especially
in some worst cases.

1In the protocol layer, the Byzantine devices can violate the consensus
protocols they are specifically designed for. In the information layer, Byzantine
agents can declare fake information in their messages.

2

Some examples of Byzantine attacks in multiple layers are
presented in the following.

• Jamming Attack in Physical Layer. In [20], [21], by
sending a jamming signal with sufficient large trans-
mission power in the physical channel, an adversarial
device can prevent legitimate communications from being
decoded. An energy budget is assumed on the adversarial
device so that it can only jam the channel in a fraction
of rounds for each time window.

• Double-Spending Sybil Attack in Protocol Layer. A
double-spending sybil attack is proposed in the Bitcoin
decentralized network [22]. In [22], the attacker first
broadcasts a transaction to the network. Before the first
transaction is confirmed, the attacker broadcasts another
transaction using the same digital currency to a different
node. If the attacker can control a significant portion
of the network (e.g., through a 51% attack), they can
create a longer chain that includes the second transaction,
making it a valid transaction while invalidating the first.
By violating the protocol, the attacker misleads the honest
nodes in the Bitcoin decentralized network

• False Data Attack in Information Layer. In an in-
formation system, Byzantine nodes can transmit false
data to the fusion center, which can lead to incorrect
information aggregation, thereby degrading the overall
detection performance and potentially causing the system
to make erroneous decisions [23].

To design an efficient and elegant consensus algorithm
against Byzantine attacks from multiple layers, a BFT ab-
stract MAC layer based on the multi-channel technique is
implemented in this paper. Specifically, the concept of abstract
MAC (absMAC) layer was first proposed by Kuhn et al.
[24], which expresses key guarantees of real MAC layers
with respect to the local broadcast operation. In an abstract
MAC layer, two message delivery operations are provided with
the latency bounds: the acknowledgment operation and the
progress operation. In the acknowledgment (ack. for short),
a node has its message received by all its neighbors2. In the
progress (prog. for short), a node receives one message from
its neighbors. The fack and fprog are the time bounds for
the ack. and prog. operations, respectively. With the concept
of abstract MAC layer, the BFT consensus problem in open
wireless networks can be divided into two independent and
manageable components: (1) to implement the BFT absMAC
layer over a physical network, and (2) to solve the consensus
problem based on ack. and prog. operations provided by the
absMAC layer, as illustrated in Fig 1.

Implementing the BFT absMAC layer in the open wireless
networks is not an easy task since the Byzantine nodes can ar-
bitrarily disrupt the communications on the physical channels
and arbitrarily violate the protocol specifically designed for
the honest nodes. Fortunately, the multi-channel technique can
help against those Byzantine behaviors. By dividing the shared
frequency spectrum into sufficient non-overlapping channels
and assuming that each of the Byzantine nodes and honest

2We say two nodes are neighbors if they are within the transmission range
of each other.

Numerous IoT devices in
open wireless networks

High-level Algorithms, tasks, and
applications, such as consensus

BFT Abstract MAC Layer

Prog. Prog.Ack.Ack.

Fig. 1: Abstract MAC layer can simply the algorithm design
for the consensus problem over open wireless networks.

nodes can only access a single channel in each transmission3,
a distributed and randomized multi-channel communication
algorithm is designed to implement a BFT absMAC layer. Dif-
ferent from the existing channel hopping technique in which
the transmitters and receivers synchronously jump to a clean
channel, in this paper, our absMAC layer algorithm focuses on
how to find and use the residual clean channels hidden by the
byzantine nodes, to guarantee reliable communications from a
distributed view.

With the BFT absMAC layer implemented, all the honest
nodes have reliable and delay-bounded communications with
each other. However, the Byzantine nodes can still mislead
the consensus by delivering inconsistent or fake messages. To
address this problem, the honest nodes have to know sufficient
information from others through the absMAC layer, against the
inconsistent or fake messages from the Byzantine nodes. Based
on the above idea, our BFT consensus algorithm branches
for two cases with f ∈ (0, n

8) and f ∈ [n8 ,
n
3), in which

n and f are the numbers of nodes and Byzantine nodes,
respectively. In the first case, each node broadcasts its own
opinion and receives the opinions from other nodes through
the implemented absMAC layer, which is enough to achieve a
consensus. Whereas, in the second case, the honest nodes have
to broadcast what they have received in the last execution of
absMAC layer algorithm. Otherwise, too many inconsistent
opinions from Byzantine nodes can fail the consensus. As
for the case with f ≥ n

3 , it has been proved impossible
for the BFT consensus problem in [25] even with reliable
communications, and will not be discussed.

In general, this paper studies the Byzantine fault tolerant
consensus problem in open wireless networks from the phys-
ical layer. Compared with most of the previous works relying
on the non-Byzantine communication environment, this paper
additionally considers the Byzantine behaviors on multiple
physical channels, which makes the communications between
honest nodes no longer reliable. To avoid making the algorithm
design complex, we first implement a BFT absMAC layer that
can complete the ack. and prog. operations with a bounded

3We have this assumption because most of the light-weight IoT devices are
equipped with a single radio that can only access to a single channel.

3

time delay. Then, an efficient BFT consensus algorithm is
designed based on the implemented absMAC layer. Generally,
the novelty of our work is comprised of two components. In
part one, different from the previous works assuming/relying
on reliable communications, this paper directly implements
a Byzantine-resilient abstract MAC layer to provide reliable
communications with the presence of jamming attacks across
multiple channels. In part two, a consensus algorithm is
designed based on our absMAC layer, which can tolerate
up to n/3 Byzantine faults. Compared with most of the
Byzantine consensus algorithms relying on atomic reliable
communication4, our algorithm does not require the atomic
property and has a smaller time complexity on achieving
consensus. Compared with a recently proposed Byzantine
consensus algorithm [27] in absMAC layer that can tolerate at
most n/5 Byzantine faults, our Byzantine consensus algorithm
has stronger Byzantine-resilience.5

The detailed contributions of this paper are listed in the
following.

• This study investigates the BFT consensus problem in
open wireless networks, in which the communications of
honest nodes are no longer reliable due to the openness
of wireless channels. In previous works, most of them
rely on a reliable communication environment, and a
few of them are considered on a single physical channel
suffered from the Byzantine attacks with energy budget
constraints. Compared with the previous works, this paper
considers the BFT consensus problem under a more com-
prehensive and realistic Byzantine communication model,
in which Byzantine nodes can cooperatively fail multiple
physical channels with the energy budget removed.

• Based on the Byzantine communication model, a
BFT absMAC layer is implemented with time bound
O(kn

k−f log n) and O(k
k−f log n) for its ack. and prog.

operations, respectively. n, k, and f are the numbers
of nodes, Byzantine nodes, and channels separately. In
other words, with the absMAC layer implemented, a
node has its message received by all neighbors within
O(kn

k−f log n) rounds, and a node receives one message
from its neighbors within O(k

k−f log n) rounds. To the
best of our knowledge, this is the first work implementing
a BFT absMAC layer in Byzantine wireless networks.

• Based on the implemented absMAC layer, a BFT consen-
sus algorithm is designed to help honest nodes achieve a
consensus with its requirements on agreement, validity,
and termination satisfied. When f ∈ (0, n

3), it takes
O(kn

k−f log n) rounds in expectation for honest nodes to
reach a consensus. Compared with a non-Byzantine fault-
tolerant result O(n3 log n) with absMAC layer in [28]
and the classical fault-tolerant Paxos in [29], our BFT
consensus algorithm is faster. Compared with a Byzantine
fault-tolerant consensus algorithm in absMAC layer [27]

4Atomic reliable communications not only require that all the nodes have
reliable communications with each other, but also require that the total order
of messages received by each node should be the same [26].

5A detailed description for the novelty of our work can be found in the
Appendix.

that can tolerate up to n/5 Byzantine faults, our BFT
consensus algorithm has a stronger Byzantine resilience.

Both theoretical analysis and numerical simulations are given
to show the performance of our BFT consensus algorithm.

Roadmap. This paper is structured as follows. Sec. II
gives the necessary related work. Sec. III gives the Byzantine
network model in open wireless networks and defines the
consensus problem. The implementation of the absMAC layer
and the algorithm design for the consensus problem are given
in Sec. IV, with the analysis part followed in Sec. V. Sec. VI
presents the simulation results for our consensus algorithm.
The final conclusion and future work is given in Sec. VII.

II. RELATED WORKS

BFT consensus has always been an important research topic
in the past years. One of the early works is [25] proposed by
Lamport et al. in 1982. Subsequent researches on Byzantine
fault-tolerant consensus in wireless networks include [5]–
[7], in which communication-efficient protocols using overlay
networks, digital signatures, and failure detectors, or message
and route redundancy schemes are proposed under a reliable
communication environment. Except for those works on reli-
able communications, [8], [10], [13], [14] consider the BFT
consensus problem in some unreliable environments. In [8], a
message loss model assumes that the communications between
honest nodes are reliable. While the communications from
Byzantine nodes are unreliable because of malicious mes-
sage loss, reordering, insertion, or duplication. Based on the
message loss model, the message tagging and stable storage
logging techniques are used in [8] to guarantee the correctness,
consistency, and termination of consensus. The similar unre-
liable communication models also include the communication
failure model [13], [19], communication collision model [14],
and the heard-of model [17]. The study presented in [17]
focused on examining the issues of node failures and message
losses resulting from collisions. It addressed how to achieve
consensus in a single-hop network environment. Subsequently,
the concept of communication failure evolved into the dynamic
omission failure model as discussed in [2], [19], which takes
into account the possibility of Byzantine behaviors impacting
communication among faithful devices. Within the framework
of the dynamic omission failures model, [2], [19] delved into
a binary consensus problem involving a subset of nodes in the
network, aiming for at least the subset of nodes to achieve a
majority consensus on a binary decision.

Recently, there are also some works considering a more re-
alistic scenario, in which the communications between honest
nodes are no longer reliable because of the malicious behaviors
from Byzantine nodes, such as the dynamic omission failure
model [2], [19] and the jamming model in [21]. As an extended
version of the communication failure model, the dynamic
omission failure model additionally assumes that the Byzan-
tine behaviors may affect the communications between honest
devices. Whereas, the works in [2], [19] no further discuss
how legitimate communications can be affected. In [20], [21],
an energy-budget jamming attack from the Byzantine nodes
is considered, which can fail the legitimate communications

4

TABLE I: Related Works on Communication Failure Models

Reference Communication Model Detailed descriptions
[5]–[7] Reliable communication model Communications between nodes are reliable

[8]–[11] Message loss model (1) Physical channel is reliable. (2) Communications between honest nodes are stable.
(3) Messages from Byzantine nodes can be dropped, reordered, inserted or duplicated.

[12], [13] Communication failure model (1) Physical channel is reliable. (2) Communications between honest nodes are stable.
(3) Messages from Byzantine nodes can be omitted, added and corrupted.

[14] Communication collision model (1) Physical channel is reliable. (2) Communications between honest nodes may fail
due to benign collisions and interference. (3) Byzantine nodes can send fake messages.

[15]–[18] Heard-of model (1) Physical channel is reliable. (2) Communications between honest nodes may fail
due to benign failures. (3) Byzantine communications are not discussed.

[2], [19] Dynamic omission failure model (1) Physical channel is reliable. (2) Communications between honest nodes may fail with
some probability because of Byzantine attacks. (3) Byzantine nodes can send fake messages.

[21] Byzantine jamming model

(1) Single physical channel is no longer stable due to jamming attacks.
(2) All communications fail if the channel is jammed in current time slots. During an interval,
at most constant fraction of time slots are jammed due to an energy budget constraint.
(3) Byzantine nodes can send fake messages.

Our work Byzantine communication model

(1) Multiple physical channels are no longer stable due to jamming attacks.
(2) Byzantine nodes can cooperatively jam multiple physical channels with stable
and sufficient energy supply. All communications in the jammed channels fail.
(3) Byzantine nodes can send fake messages.

TABLE II: Related Works on Abstract MAC Layer

Reference Detailed descriptions
[20], [21], [30], [31] Implement an abstract MAC layer under dynamic and jamming environments without the presence of Byzantine.

[27], [28], [32] Solving the Byzantine-resilient consensus, fault-tolerant consensus, and consensus problems with assumed absMAC layer.

Our work
(1) Implement an abstract MAC layer under Byzantine communication failure model.
(2) Prove that the absMAC layer indeed provides reliable communications.
(3) Solve the BFT consensus problem with the help of implemented abstract MAC layer

between honest nodes. However, considering the jamming
attack together with the packet omissions, corruptions, and
additions results in a complex algorithm design, as the authors
in [20], [21] declare that considering multiple Byzantine
attacks indicate a sharp increase in the difficulties of algorithm
design. A detailed comparison on the communication models
is listed in Table I.

As for the concept of the abstract MAC layer, it was first
proposed by Kuhn et al. in [24], to reduce the difficulties
of algorithm design in complex networks. In the following
years, the research on the abstract MAC layer branched in two
directions: how to implement an abstract MAC layer based
on complex networks and how to solve the corresponding
problems with a provided abstract MAC layer. Calvin Newport
et al. in [32] show that with an abstract MAC layer, the
famous PAXOS consensus algorithm can be completed within
Ω(DFack) time steps, in which D is the diameter of the
wireless network, and Fack is the time complexity of the
acknowledgement in the provided abstract MAC layer. On
the basis of their previous work, Newport et al. in [28]
demonstrated that their protocol can achieve non-Byzantine
fault-tolerant consensus among n nodes within O(n3 log n)
time steps. Recently, an Byzantine approximate consensus
algorithm is proposed in [27], in which an eventual message
delivery service is required. Additionally, the works in [20],
[21], [30], [31] consider how to implement an abstract MAC
layer under dynamic and jamming environments. To the best of
our knowledge, few of the previous works consider the usage
and implementation of abstract MAC layer in the Byzantine-
fault tolerant area. A detailed comparison on the absMAC
layer technique is listed in Table II.

In general, a large fraction of the previous works are con-

sidered with reliable communications between honest nodes.
A few of them assume that the legitimate communications
between honest nodes no longer keep stable due to the
malicious attacks from Byzantine nodes in a single channel. As
the sacrifice, their algorithms become much complex. In this
paper, we also adopt the harsh assumption that the legitimate
communications can be destroyed by the Byzantine nodes with
physical jamming attacks, but consider a more general multi-
channel scenario. Our novelty relies on that we are the first one
considering the BFT consensus problem under a multi-channel
Byzantine communication model. Implementing the absMAC
layer in a Byzantine environment and use the implemented
absMAC layer to make our BFT consensus algorithm efficient
and elegant are our technical novelty and contribution.

III. NETWORK MODEL AND PROBLEM DEFINITION

In this paper, we consider a single-hop wireless network in
which f Byzantine nodes and (n− f) honest nodes are arbi-
trarily deployed within a two-dimensional Euclidean space. V
is the set of all nodes. Vl and Vb are the set of honest nodes
and Byzantine nodes, respectively. All nodes have the same
global clock and wake-up initially. By transmitting or listening
to the wireless channels, the nodes exchange their messages
with each other. In message transmission, each honest node has
a unique ID that cannot be forged by others. The physical con-
tention and interference are considered in wireless networks,
which results in the unreliable communications between nodes.
Based on the unreliable communication model, we consider
the implementation of a BFT absMAC layer and then study
the BFT consensus problem based on a three-layer Byzantine
failure model. The unreliable communication model, Byzan-

5

tine failure model, definitions for the BFT absMAC layer, and
consensus problems are given in the following.

Unreliable Communication Model. The communications
between nodes are synchronized and roundly based, i.e., the
time in our wireless network is divided into synchronized
rounds, each of which is a time unit for the nodes to transmit
or receive a message. In each round, the nodes exchange
their messages through a shared medium divided into k sub-
channels with IDs from 1 to k. Similar with [33], we assume
that the k channels are not overlapped and are sufficiently
discrete on the spectrum. Each of the nodes is equipped with
a single and half-duplex radio. Thus, in each round, the nodes
can choose one channel to transmit or listen to, but cannot
do both. Only the simultaneous signals in the same wireless
channel interfere with each other and the interference across
multiple channels is not considered.

Send any message
containing

wrong/fake/empty

Deviate arbitrarily
from the protocol

Malicious contention,
interference, and jamming

Information layer

Protocol layer

Physical layer

Fig. 2: Three-layer Byzantine Failure Model

In each round, the nodes that choose to transmit/receive are
termed transmitters/receivers for short. For a signal from the
transmitter u to the receiver v in the same channel, it is denoted
by the vector S⃗u,v that not only includes the strength but also
the phase knowledge of the signal. Whether the signal S⃗u,v can
be decoded by the receiver v is formulated by the following
SINR (Signal to Interference plus Noise Ratio) equations.

|S⃗u,v| = Pu ∗ d(u, v)−α, |S⃗W,v| = |
∑
u∈W

S⃗u,v|,

SINR(u, v) = |S⃗u,v|/(|S⃗W\{u},v|+N).

(1)

In the above SINR equations, |S⃗u,v| is the strength of the
signal from u to v, which gets weak with the distance d(u, v)
between u and v. Pu is the transmission power of node u.
The path-loss exponent α is a constant determined by the
wireless medium and within 2 to 6 in usual. When the signals
from multiple transmitters accumulate at a receiver, the process
can be regarded as the sum of vectors. Let W be the set of
transmitters that are within the same channel with v, S⃗W,v is
the mixed signal sensed by v. For the transmission from u
to v, it succeeds if SINR(u, v) is larger than β, in which
|S⃗u,v| is the strength of the signal from u and received by
v, |S⃗W\{u},v| is the interference from other transmitters that
in the same channel, N is the ambient noise determined by
the environment, and β is the threshold determined by the
hardware of v, greater than 1. The transmission power can
be determined by the transmitter itself and has the lower and

upper bounds Pmin and Pmax, respectively. To guarantee a
single hop wireless network, we have Pmin

dα(u,v)N ≥ β for any
pair of nodes u and v.

Three-layer Byzantine Failure Model. Similar to [21],
a three-layer Byzantine failure model is adopted to depict
the malicious behaviors of totally f Byzantine nodes on the
physical layer, protocol layer, and information layer. On the
physical layer, each Byzantine node can arbitrarily choose a
channel to transmit, listen to, or jam with a jamming signal in
each round6. Evidence for this can be found in the occurrence
of jamming attacks or in the installation of infected firmware
when attackers have physical access to these devices [34]. On
the protocol layer, the Byzantine nodes can deviate arbitrarily
from the protocol to disrupt the task, such as malicious
competition in a leader election task and message omission in
a message dissemination task. On the information layer, the
Byzantine nodes can send any messages containing wrong/fake
information to mislead the other honest nodes on their next or
final decisions. We assume that the f Byzantine nodes have
reliable and real-time communications with each other. Thus,
they can cooperatively launch their malicious attacks on the
three layers after a full discussion with each other. As shown
in Fig 2.

Overall, our model not only encompasses physical layer
jamming capabilities but also addresses malicious behaviors at
the protocol and information layers, thereby offering a holistic
view of potential Byzantine attacks in real-world scenarios.
At the physical layer, Byzantine nodes possess the capability
to selectively jam communication channels, a technique that
indeed might necessitate firmware modifications in practical
implementations. In reality, someone can use an add-on to jam
channels, which illustrates a practical concern at the physical
layer. This aspect underscores the technical feasibility and
potential threat of such attacks in real environments where
adversaries might gain control over devices with sufficient
privileges to alter their firmware for jamming purposes. At the
protocol layer, Byzantine nodes may deviate from established
communication protocols to disrupt operations, such as by
maliciously competing during leader election tasks or omit-
ting messages. At the information layer, these nodes further
exploit their capabilities to disseminate false or misleading
information, aiming to corrupt the decision-making processes
of honest nodes. This layered approach reflects a nuanced
understanding of Byzantine behaviors, extending beyond mere
jamming to include sophisticated strategies that adversaries
might employ.

Reliable and real-time communications among Byzantine
nodes facilitate coordinated attacks across these layers, signif-
icantly elevating the threat level and highlighting the practical
challenges in defending against such multifaceted attacks. This
model draws parallels with real-world attack scenarios, such
as coordinated network attacks involving both jamming and
false information to undermine system integrity.

Problem Definition for the BFT AbsMAC layer. Based on
the unreliable communication model and three-layer Byzantine

6Due to the hardware limitation (i.e., single radio), each Byzantine node
can only get access to a single channel in each round.

6

failure model, we implement the following BFT absMAC
layer in a single-hop wireless network, to provide reliable
message exchanges for high-level algorithms and applications.
Specifically, there are two operations in our absMAC layer:
acknowledgement (ack. for short) and progress (prog. for
short). In an ack. operation, each honest node has its message
received by all the other honest nodes; and in a prog. operation,
each honest node at least has one message received from the
other honest nodes. The fack and fprog are used to denote
the timing bounds to complete the ack. and prog. operations,
respectively. A series of works [28], [32] have shown that
with an absMAC layer provided, the consensus problem can
be solved elegantly. However, few of them discuss how to
implement a BFT absMAC layer.

To implement an absMAC layer, the policy of the nodes in
an interval includes their actions (transmit or listen in which
channel) in each round of the interval. For each node v, tuple
⟨av,t, bv,t⟩ is used to denote its action in the round t. If v
transmits, Boolean variable av,t = 1; otherwise, av,t = 0. The
variable bv,t is used to record the ID of the channel chosen
by v in the round t. Combining with the SINR model and our
Byzantine failure model, our problem can be formulated as
minimizing the length of the interval with the constraints on
ack. and prog. operations, given in the following.

Minimize |I|
s.t. av,t = 1, au,t = 0, bv,t = bu,t, SINR(v, u) ≥ β

for ∃ t ∈ I, ∀ v ∈ Vl, ∀ u ∈ Vl \ {v}
av,t = 0, au,t = 1, bv,t = bu,t, SINR(u, v) ≥ β

for ∃ t ∈ I, ∀ v ∈ Vl, ∀ u ∈ Vl \ {v}
with av,t and au,t are binary ∈ {0, 1},

bv,t and bu,t are integer ∈ {1, 2, ..., k},

SINR(v, u) =
|av,t ∗ S⃗v,u|

(|
∑

w∈W\{v} a(w, t) ∗ S⃗w,u|+N)

for ∀ t ∈ I, ∀ v ∈ V, ∀ u ∈ V \ {v}
(2)

In the above equation, the first and the second constraints
require that the ack. and prog. operations for all honest nodes
should be completed within the interval I . Let ⟨aVl,t, bVl,t⟩ =
{∪v∈Vl

⟨av,t, bv,t⟩} be the action set of all the honest nodes
in the round t, and ⟨aVl,I , bVl,I⟩ = {∪t∈I⟨aVl,t, bVl,t⟩} be the
action set of all the honest nodes in the interval I , which is
also termed as the policy of the honest nodes in interval I .
Similarly, we have ⟨aVb,I , bVb,I⟩ to denote the policy of the
Byzantine nodes which can be arbitrarily determined by the
Byzantine nodes. In this paper, our objective is to design a
distributed algorithm, by running which an efficient policy
aVl,I can be generated for the absMAC layer, despite the
malicious policy from Byzantine nodes. Such an optimization
problem can be formulated as a link scheduling problem that
has been proven to be NP-complete in [35].

Problem Definition for the BFT consensus problem. We
study the classical binary consensus problem among n nodes
that contains f Byzantine nodes. Initially, all honest nodes
have their binary opinions from {0, 1} for one task or event.
By exchanging opinions with each other, each honest node can

TABLE III: Table of key notations.

Notations Definitions
n Total number of nodes in the network
V Set of all nodes
f Number of Byzantine nodes
Vl Set of honest nodes
Vb Set of Byzantine nodes
Pu Transmission power of node u

d(u, v) Distance between node u and node v
α Path-loss exponent
W Set of transmitters in the same channel with v

SINR(u, v) Signal to Interference plus Noise Ratio from u to v
β Threshold determined by the hardware of v
N Ambient noise
Pmin Minimum transmission power
Pmax Maximum transmission power
I Interval duration for ack. and prog. operations

Opv,t Opinion of node v at round t

choose to insist on or change its opinion. Finally, all the honest
nodes are required to achieve a consensus on their opinions
with the following properties satisfied [36]. Agreement: all
honest nodes should hold the same opinion; Validity: the final
opinion held by the honest nodes should come from an honest
node; Termination: this consensus should be achieved within
a finite time

For each node v, variable Opv,t is used to denote its opinion
at the round t, with Opv,0 as its initial value. For the honest
nodes, their initial opinions come from the set {0, 1}. Whereas,
the opinions of Byzantine nodes at any round can be arbitrary
and determined by themselves, which may mislead the honest
nodes on achieving a consensus.

Knowledge of Nodes and Necessary Assumptions. In our
system model, the honest nodes are endowed with essential
knowledge of the wireless network’s key characteristics. This
includes an understanding of the total number of nodes in the
network n, the number of available communication channels
k, and the maximum number of Byzantine nodes f . The nodes
are identified by simplified IDs ranging from 1 to n. These
aspects are crucial for nodes to participate effectively in the
distributed protocol.

Total number of nodes n should be known by all the
nodes. Each node is cognizant of the total count of nodes,
which is vital for them to gauge the network’s scale and adjust
their behavior accordingly. This is in line with the principles
outlined in Nancy Lynch’s [37], where network size awareness
is emphasized for efficient protocol functioning.

Number of communication channels k should be known
by all the nodes. Nodes are aware of the total number of
communication channels. This knowledge is crucial, especially
in scenarios where channel interference is a possibility, such
as in the presence of Byzantine nodes. This aspect is high-
lighted in the work by Gafni and Bertsekas [38], underscoring
the importance of channel awareness in maintaining robust
communication.

Maximum number of Byzantine nodes f < n/3. It is
assumed that f , the number of Byzantine nodes, is less than
one-third of the total nodes n. This assumption is grounded
in the classic theory of Byzantine Fault Tolerance [25]. It’s
established that maintaining system safety and consistency is
unattainable if the Byzantine nodes reach or exceed one-third

7

of the total nodes.
The number of channels k > f . The requirement that the

number of channels should exceed the number of Byzantine
nodes k > f is critical. This is to prevent the Byzantine
nodes from completely jamming the communication channels,
which could render the consensus problem unfeasible. This
assumption is supported by Dolev and Strong’s [39], which
emphasizes the necessity of redundant communication paths
in the presence of Byzantine faults.

These assumptions form the bedrock of our proposed
Byzantine Fault-Tolerant system. They are derived from es-
tablished theories and research in distributed computing and
network communications, ensuring that the system remains
effective and secure despite the presence of Byzantine nodes.

IV. ALGORITHM DESCRIPTION

In this part, we show how to implement a BFT absMAC
layer and use the implemented absMAC layer to achieve a
consensus despite the malicious behaviors from f Byzantine
nodes. Firstly, we discuss the challenges in our algorithm de-
sign and their corresponding solutions. Secondly, the algorithm
to implement a BFT absMAC layer is presented. Finally, we
show how to achieve the consensus efficiently and elegantly
with the help of the implemented absMAC layer.

A. Challenges and Solutions

The first challenge is that the unstable communication
between the honest nodes increases the difficulty on design
a BFT algorithm. As has been mentioned in the related
work section, most of the previous works require reliable
communications between honest nodes and address the Byzan-
tine behaviors from the protocol layer and information layer.
Whereas, the Byzantine behaviors on the physical layer (e.g.
the jamming attack and malicious contention) result in the
unreliable communications between honest nodes, which may
impact or even fail the BFT methods in the previous works.
The second challenge is that the Byzantine behaviors on the
protocol layer and information layer will mislead the absMAC
layer. In general, most of the previous works rely on feedbacks
from neighbors to design an efficient absMAC layer. For
example, in [20], once a node has its messages received by all
the neighbors, it will receive a feedback from its neighbors and
terminate. However, in a Byzantine environment, the malicious
feedback from Byzantine nodes is nearly impossible to detect
and misleads the honest nodes.

To address the challenges mentioned above, in this paper, we
first adopt a randomized communication scheme based on the
multi-channel technique, to help the honest nodes find clean
channels and obtain some reliable communications. We say a
channel is clean if it does not contain any Byzantine behaviors.
Otherwise, it is polluted by the Byzantine nodes, in which the
communications are unreliable. Then, based on the reliable
communications, an absMAC layer is implemented without
relying on the feedback of neighbors. Refusing the feedback
from neighbors fundamentally avoids the negative impacts of
Byzantine behaviors on the protocol and information layers.
Thus, it strengthens the Byzantine fault tolerance of our

algorithm in open wireless networks. As a tradeoff, it takes
longer time for our absMAC layer to complete the ack. and
prog. operations, compared with the previous non-Byzantine
works using feedback schemes.

B. Implementation of BFT absMAC layer
As has been defined, an absMAC layer consists of two

operations: the ack. in which all honest nodes have their
messages received by the other honest nodes and the prog. in
which all honest nodes receive a message from other honest
nodes. To complete these two operations despite the Byzantine
attacks on the physical, protocol, and information layers, a ran-
domized communication scheme based on the multi-channel
technique is designed. Specifically, at the beginning of each
round, each honest node v randomly and uniformly chooses
a channel j from the k non-overlapped channels to transmit
with probability 1/2 or listen to with the other 1/2 probability.
Note that multiple transmitters transmitting with similar power
in the same channel are likely to result in collision and heavy
interference. The following power selection rule from [40]
is used to help nodes randomly separate their transmission
powers and reduce the contention/interference between com-
munications. In detail, for each node v, d = i + ⌈2 log2 n⌉
with probability 1/2i. Let D be an integer randomly selected
from [2d log22 n, 2

d+1 log22 n), we have Pv = Pmin ∗ DγD,
where γ is a positive constant and Pv is the transmission
power of node v. Specifically, γ is set as a constant larger
than max(1, sα+1+log β). Constants α and β are the SINR
parameters. We normalize the shortest distance between any
pair of nodes in the network as 1 and use R to denote the
longest distance between any pair of nodes. s = logn R is
a constant since we assume that R can be bounded by a
polynomial of n. The same setting can be found in [40] and
[41]. With such a power selection rule, we can prove that
the node with the loudest transmission power has its message
received by all the receivers if they stay in a clear channel. In
[40], such a power selection scheme is used for leader election
in a single-hop wireless network. In this paper, we extend it to
a multi-channel scenario. When a node v listens to the channel
j, it saves the messages from other transmitters if the signals
from other transmitters can be decoded. By repeating such a
randomized communication scheme for ckn

k−f log n times, we
show that the ack. and prog. operations can be completed and
the BFT absMAC layer gets implemented, in which c is a
sufficiently large constant. The pseudocode to implement our
absMAC layer is given in the Algorithm 1. Theorem 1 is given
to show the performance of our BFT absMAC layer and proved
in the analysis section.

Theorem 1: Within ckn
k−f log n rounds, our BFT absMAC

layer can be implemented w.h.p. 7, with fack = O(ckn
k−f log n)

for ack. and fprog = ck
k−f log n for prog.

C. BFT Consensus Algorithm with absMAC layer
With the BFT absMAC layer implemented, we design an

efficient and elegant BFT consensus algorithm to solve the

7with high probability for short, at least with probability of 1 − 1
nc0 for

some constant c0 > 1

8

Algorithm 1: BFT absMAC layer for node v

1 Mv := Message of v; Sv := ϕ;
2 Pv := Transmission power of v ;

3 for ckn
k−f log n rounds do

4 j ← Random({1, 2, ..., k}) ;
5 x← {0, 1} uniformly and randomly;
6 if x = 1 then
7 obtain its transmission power Pv according to

the power selection rule;
8 transmit Mv with power Pv in the channel j;

9 else
10 listen the channel j;
11 if received a message Mu from node u then
12 Sv = Sv ∪ {Mu};

Power selection rule
13 d← i+ ⌈2 log2 n⌉ with probability 1/2i, i ∈ N+;
14 D ← an integer randomly selected from interval

[2d log22 n, 2
d+1 log22 n);

15 Pv = Pmin ∗DγD;

binary consensus problem. Specifically, our algorithm has two
branches to handle the cases 0 < f < n

8 and n
8 ≤ f < n

3 ,
respectively. As proved in our analysis section, in the first
branch with f < n

8 , directly exchanging opinions with each
other for multiple times is enough for the honest nodes to
achieve a binary consensus. Whereas, when there are more
than n

8 Byzantine nodes, those honest nodes may be misled
when the Byzantine nodes transmit inconsistent opinions [42].
To avoid this, a more complex communication scheme is
designed in our second branch to help the honest nodes find
legitimate opinions. The detailed descriptions are given in the
following.

Branch-I. In the first branch with 0 < f < n
8 , the

message to be transmitted by an honest node only contains
its ID and opinion. Thus, it is a constant-size message and
communication efficient. Through the BFT absMAC layer,
each honest node v successfully broadcast its opinion to the
other nodes and knows the opinions of other nodes. Set Sv is
used by node v to store the opinions from other nodes and its
own opinion. Set Ŝv is used to record the major opinions in
the set Sv and Dsv is used to record the value of the opinions
in the set Ŝv .8 With the help of Sv and Ŝv , the consensus
problem can be directly solved if it is in a non-Byzantine case.
For example, all the honest nodes choose the value of major
opinions as the final agreement. Whereas, the honest nodes
may receive inconsistent opinions from the Byzantine nodes,
which can make the set Sv various for different honest nodes
v. Thus, we further have the following operations: variable y
has the value of 0 with probability 1/2 and 1 with the other
probability 1/2. If the number of opinions in the set Ŝv is

8When the major opinions are chosen in the algorithm 2, the opinions with
the value of “0” will be chosen if the opinions with the value of “0” has the
same number with the opinions with the value of “1”.

Algorithm 2: BFT consensus for node v

1 Opv: opinion of v; IDv: ID of v; Sv = ϕ;
2 Dsv: decision of v; Mv: message of v; Ŝv = ϕ;
3 Xv[n][n]: two-dimension matrix with size of n× n;

4 if 0 < f < n
8 then

5 Branch-I ();

6 else if n
8 ≤ f < n

3 then
7 Branch-II ();

8 Output Dsv;

Branch-I ()
9 while |Ŝv| < 7

8n do
10 Mv ← ⟨IDv, Opv⟩; Sv ← {Opv};
11 transmit message Mv through the absMAC layer;
12 for each received Mu from the absMAC layer do
13 Sv ← Sv ∪ {Opu};
14 Ŝv ← major opinions in set Sv;
15 Dsv ← value of opinions in the set Ŝ;
16 y ← {0, 1} uniformly and randomly;
17 if |Ŝv| < 5+y

8 n then
18 Dsv ← 0;

19 Opv ← Dsv;

Branch-II ()
20 Mv ← ⟨IDv, Opv⟩; Sv ← {⟨IDv, Opv⟩};
21 transmit message Mv through the absMAC layer;
22 for each received Mu from the absMAC layer do
23 Sv ← Sv ∪ {⟨IDu, Opu⟩};
24 Mv ← ⟨IDv,Sv⟩;
25 transmit its message Mv through the absMAC layer;
26 for each received Mu from the absMAC layer do
27 for each tuple Sw in the set Su do
28 Xv[IDu][IDw]← Opw;

29 for each tuple Opu in the set Sv do
30 if at least n− f nodes (denoted by {w1, w2,

..., wn−f}) satisfy that Xv[IDw1][IDu] =
Xv[IDw2][IDu] = ... = Xv[IDwn−f

][IDu] then
31 Opu = Xv[IDw1

][IDv];
32 Ŝv ← {Opu};

33 Dsv ← value of the major opinions in the set Ŝv;

smaller than 5+y
n , Dsv is set to 0. All the honest nodes set Dsv

as their opinions. The above steps (lines 10-19 in Algorithm 2)
are repeated until |Ŝv| ≥ 7

8n. In other words, only when the
number of major opinions is at least 7

8n, the loop in Branch-I
terminates and the decision Dsv of each node v is output as
the final agreement.

Branch-II. In the second branch with n/8 ≤ n < n/3, the
BFT absMAC layer algorithm is executed twice to detect the
inconsistent opinions from the Byzantine nodes. Specifically,
in the first execution of the absMAC layer algorithm (line 21 in
the Algorithm 2), the message to be transmitted by each honest
node contains its ID and opinion. Through the absMAC layer,

9

each honest node v receives the opinions from the other nodes
and stores those opinions in the set Sv . Then, in the second
execution of the absMAC layer (line 25 in the Algorithm 2),
each honest node v broadcasts its set Sv to all nodes and
receives the set Su from other nodes u through the absMAC
layer. A matrix Xv[n][n] is used by node v to handle the
opinions from its set Sv and the sets Su received from other
nodes u. Let’s take the nodes u, v, and w as an example. For
node v, if it receives Sw from the node w, which contains
the opinion Opu, we say v hears the opinion of u from node
w, and has Xv[IDw][IDu] = Opu. When both w and u are
honest nodes, the honest node v knows the true opinion of
u. When w or u is the Byzantine node, v may hear nothing
about u or receive a wrong opinion Opu from w. When v
hears nothing about w, it has Xv[IDw][IDu] = null. When
v hears a wrong opinion Opu from w, the wrong opinion will
also be recorded by Xv[IDu][IDw] since the wrong opinion
cannot be directly detected. With the help of matrix Xv[n][n],
node v knows the opinion of u from other nodes. We say
an opinion Opu is legitimate in node v if v hears the same
Opu from at least n − f nodes {w1, w2, ..., wn−f} (line 30
in the Algorithm 2). Set Ŝv is used to store all the legitimate
opinions Opu received by v. Finally, node v chooses the value
of the major opinions in the set Ŝv as its final decision. The
performance of our BFT consensus algorithm is presented in
the Theorem 2 and proved in the next section.

Theorem 2: With the help of implemented BFT abs-
MAC layer, all the honest nodes achieve a consensus within
O(ckn

k−f log n) rounds in expectation with its properties agree-
ment, validity, and termination satisfied.

V. THEORETICAL ANALYSIS

In this part, we prove the correctness and efficiency of our
BFT absMAC layer algorithm and BFT consensus algorithm.

A. Analysis for BFT AbsMAC Layer Algorithm

As mentioned in our model section, the absMAC layer
contains the ack. and prog. operations. In an ack. operation,
all the honest nodes have their messages received by the other
honest nodes. In a prog. operation, all the honest nodes receive
at least one message from the honest nodes. In the following,
the Lemma 1 and Lemma 2 are given to prove the ack. and
prog. operations, respectively.

Lemma 1: Within O(ckn
k−f log n) rounds, all the honest nodes

have their messages received by the other honest nodes w.h.p..
Proof: Since the Byzantine attacks on the physical layer

can directly fail the communications in a channel, we firstly
show that there are always (k− f) clean channels that can be
used by the honest nodes to transmit or listen to in the Claim 1.
Then, we focus on the randomized process and communication
efficiency of honest nodes in the clean channel in Claim 2 and
3, which proves this lemma.

Claim 1: In each round, there are at least (k − f) clean
channels despite the f Byzantine nodes.

Proof: The Claim 1 holds because there are at most f
Byzantine nodes, each of which at most chooses one channel
to pollute in each round.

Claim 2: In each round, the node with the loudest transmis-
sion power has its message received by all the other nodes in
the same clean channel with high probability.

Proof: Let’s consider an arbitrary round t and a clean
channel j. W is the set of transmitters in channel j. u is the
node with the maximum transmission power in the set W . v is
a receiver in the channel j. According to our SINR equation,

SINR(u, v) ≥ Pu/d
α(u, v)∑

w∈W\{u} Pw/dα(w, v) +N
(3)

With the Claim 4 in the Appendix, we have Pw

dα(w,v) <
Pu

dα(u,v)βn for arbitrary node w ∈W \{u} w.h.p.. Additionally,
we have N ≤ Pmin

dα(u,v)β in model section and |W \{u}| ≤ n−1.
Thus, we have

SINR(u, v) ≥ Pu/d
α(u, v)∑

w∈W\{u} Pw/dα(w, v) +N

≥ Pu/d
α(u, v)∑

w∈W\{u} Pu/ (dα(u, v)βn) +N

≥ Pu/d
α(u, v)

n−1
n ∗ Pu

dα(u,v)β + Pmin

dα(u,v)β

≥ Pu/d
α(u, v)

n−1
n ∗ Pu

dα(u,v)β + Pu

dα(u,v)β

= β.

(4)

According to our SINR communication model,
SINR(u, v) ≥ β means that v receives the message
from u, which proves the result in claim 2.

Claim 3: For arbitrary two honest nodes u and v, v receives
the message from u w.h.p. within O(ckn

k−f log n) rounds.
Proof: According to the results in Claim 2, a sufficient

condition for v receiving the message from u is that (a) both
v and u choose the same clean channel j; (b) u becomes the
node with the maximum transmission power and v listens;
For the event (a), it occurs at least with a probability k−f

k ∗
1
k . Because there are at least (k − f) clean channels hidden
behind the k channels and both u and v randomly choose a
channel in each round. For the event (b), it occurs at least
with a probability 1

2nj
∗ 1

2 , in which nj ∈ Θ(n/k) is the
number of nodes choosing the channel j. Because each node
transmits or listens with probability 1/2 in its channel and has
the equal probability to become the node with the maximum
transmission power. Multiplying these probabilities together,
we obtain a result that for arbitrary two honest nodes u and v, v
receives the message from u with a probability of Θ(k−f

nk). By
applying a Chernoff bound, we obtain that within ckn

k−f log n
rounds, v receives the message from u with high probability of
1− 1

nΘ(c) . The introduction and application of Chernoff bound
are given in the Appendix.

By setting constant c sufficiently large and taking a union
bound for any pair of honest nodes from the set Vl, the
Lemma 1 gets proved.

Lemma 2: Within O(ck
k−f log n) rounds, all the honest nodes

at least receive one message from the other honest nodes
w.h.p..

Proof: With Claims 1 and 2, we have already shown that
the nodes with the maximum transmission power will have
their message received by all the receiving nodes in the same

10

clean channel. Thus, a sufficient condition for an honest node
v to receive one message from the other honest nodes is to
choose a clean channel and become the listener. Consider that
(1) there are at least (k − f) clean channels hidden behind
the k channels and (2) v randomly choose a clean channel to
transmit or listen with a probability 1/2. The probability for an
honest node v to receive one message from the other honest
nodes in a round is at least k−f

2k . By applying a Chernoff
bound, we obtain that within ck

k−f log n rounds, v receives at
least one message from an honest node. By setting constant c
sufficiently large and taking a union bound on all the honest
nodes, the Lemma 2 gets proved.

B. Analysis for BFT Consensus Algorithm

Since our algorithm branches for the cases 0 < f < n
8 and

n
8 ≤ f < n

3 , we prove the agreement, validity, termination of
algorithms in branch-I and branch-II, respectively.

Proof for Branch-I. We start the analysis in Branch-I
from a worst-case f = ⌊n8 ⌋ − 1. Let V0 and V1 be the set
of honest nodes with the opinion “0” and the opinion “1”,
respectively. In branch-I, through the absMAC layer, all the
honest nodes receive opinions from the other honest nodes
and the Byzantine nodes. For each honest node v, Sv has
been defined as the set of opinions it received from the honest
nodes and Byzantine nodes. The major opinions in set Sv are
recorded by the set Ŝv . numb is the number of opinions in
set Ŝv contributed by the Byzantine nodes. According to the
line 17-18 in Algorithm 2, the honest nodes in branch-I set
their opinions as 0 if Ŝv < 5+y

8 n. Otherwise, v chooses the
opinion from the set Ŝv as its opinion. Our following analysis
branches into the following five cases.

• Case 1: |V0| ∈ [n2 , n− f]. In this case, the major opinion
in set Sv must be opinion 0. According to the line 15-19,
no matter whether the event |Ŝv| < 5+y

8 n occurs or not,
all the honest nodes choose 0 as their opinions.

• Case 2: |V0| ∈ [n−f
2 , n

2). In this case, even though |V0| ≥
|V1|, the major opinions in set Sv can be 0 or 1 because
the f Byzantine nodes can arbitrarily vote for opinions
from 0 and 1. What we can make sure is that |Ŝv| < 5n

8

because |Ŝv| ≤ max{|V0|, |V1|}+numb ≤ |V0|+f < 5n
8 .

numb is the number of opinions in set Ŝv contributed
by the Byzantine nodes. Since the Byzantine nodes can
arbitrarily vote for opinions 0 or 1, numb can be an
arbitrary value from 0 to f determined by the Byzantine
nodes. Thus, all the honest nodes choose the value 0 as
their opinion according to the lines 18 and 19 in the
Algorithm 2.

• Case 3: |V0| ∈ [n2 − f, n−f
2). In this case, even though

|V0| < |V1|, the major opinions in set Sv can be 0 or
1 because the f Byzantine nodes can arbitrarily vote for
opinions from 0 and 1. What we can make sure is that
|Ŝv| < 5n

8 because |Ŝv| ≤ max{|V0|, |V1|} + numb ≤
|V1| + f = n − |V0| ≤ 5n

8 . Thus, all the honest nodes
choose the value 0 as their opinion according to the line
18 and 19 in the Algorithm 2.

• Case 4: |V0| ∈ [n8 − f, n
2 − f). In this case, |Ŝv| =

|V1| + numb ∈ [n2 ,
7n
8]. For the case |Ŝv| ∈ [n2 ,

5n
8),

all the honest nodes have |Ŝv| < 5+y
8 n no matter y = 0

or y = 1 and choose 0 as their opinions. For the case
|Ŝv| ∈ [3n4 , 7n

8), all the honest nodes have |Ŝv| ≥ 5+y
8 n

and choose the major opinion 1 as their opinion. As for
the middle case |Ŝv| ∈ [5n8 , 3n

4), |Ŝv| < 5+y
8 n when

y = 1 and |Ŝv| ≥ 5+y
8 n when y = 0. In the branch-

I, y is a variable randomly and uniformly chosen from
{0, 1}. In other words, each honest node v chooses 0 as
its opinion with probability 1/2 and 1 as its opinion with
the remaining probability 1/2. By doing this, |V0| falls
into the scope of [3n8 − f, n− f] with at least 1/2 in the
next round of consensus process, because the expectation
of |V0| is n−f

2 in the next round. When |V0| falls into
the scope of [3n8 − f, n − f] in the next round, all the
honest nodes achieve a consensus on the opinion 0. This
is because when |V0| ∈ [n2 − f, n− f] in the next round,
all the honest nodes choose the value 0 as their opinion,
according to the analyses in cases 1, 2, and 3, respectively.
In the remaining case when |V0| ∈ [3n8 , n

2 − f), we have
|V1| = n − f − |V0| ∈ (n2 ,

5n
8 − f]. Considering that

|Ŝv| = |V1|+ numb and numb ∈ [0, f], we have |Ŝv| ∈
[n2 ,

5n
8] and all the honest nodes choose 0 as their opinion,

according to the previous analysis in Case 4.
• Case 5: |V0| ∈ [0, n

8 − f). In this case, the major opinion
in set Sv must be opinion 1 and |Ŝv| ≥ 5+y

8 n no matter
y = 0 or y = 1. Thus, all the honest nodes choose 1.

From the above cases, we can see that (1) if |V0| falls into
the cases 1-3 and 5, all the honest nodes reach an agreement
on the valid opinion in one round consensus, (2) if |V0| falls
into the case 4, all the honest nodes reach an agreement on the
valid opinion at least with probability of 1/2 in each round
of consensus. Additionally, when all the honest nodes hold
the same opinion, the loop in the branch-I terminates because
|Ŝv| ≥ 7n

8 . Thus, the agreement and validity are satisfied
within constant rounds of consensus in expectation.

Proof for Branch-II. The branch-II is designed for the case
f ∈ [n8 ,

n
3). Through the absMAC layer, all the honest nodes v

know the opinions of other nodes and store them in the set Sv .
Then, with the help of matrix Xv[n][n], the legitimate opinions
are selected from the set Sv and stored in the set Ŝv . Finally,
all the honest nodes select the value of the major opinions in
the set Ŝv as the final agreement. Obviously, our algorithm
terminates after executing the absMAC layer algorithm twice,
by which the property of termination is proved. In the next,
we prove the agreement and validity of the consensus.

Lemma 3: For any two honest nodes u and v, Ŝu = Ŝv
w.h.p..

Proof: We first consider the case that w is an honest node.
Through our absMAC layer, node u receives the opinion Opw
from all the other honest nodes. In this case, the condition in
line 30 of Algorithm 2 gets satisfied and Ŝu ← {Opw}. With
similar proof, we have Ŝv ← {Opw}. Thus, all the opinions
from honest nodes can be found in the sets Ŝu and Ŝv .

Secondly, we consider the case that w is a Byzantine node,
but Opw is always a consistent value in the absMAC layer.
With the similar proof, u finds the same Opw from its own
set Ŝu and the sets Ŝx from all the other (f −1) honest nodes

11

x. Thus, we have Opw appeared in both Ŝu and Ŝv .
Thirdly, we consider the case that w is a Byzantine node

that transmits inconsistent opinions in the absMAC layer. For
example, w transmits Opw = 1 in the round t1 and transmits
Opw = 0 in the round t2. According to the Claim 2, the
opinion of w will be received by Θ(n/k) nodes if w broadcasts
successfully. Thus, w’s voting for opinion 0 in the round t1
and voting for opinion 1 in the round t2 will be witnessed
by at least Θ(n/k) nodes separately. In the second execution
of our absMAC layer (line 25 of Algorithm 2), all the nodes
(including the honest nodes) exchange what they have received
from others. Then, the inconsistent behavior of the Byzantine
node will be caught. Considering that the Byzantine nodes
prefer to mislead the consensus process without being be
caught by the honest nodes. The Byzantine nodes will not
choose to transmit the inconsistent opinion under the witness
of Θ(n/k) nodes. In other words, execution of the absMAC
layer twice to exchange Sv prevents the inconsistent opinions
from Byzantine nodes.

Combining the results in the above three cases proves the
Lemma 3.

Since all the honest nodes v have the same set Ŝv and
choose the value of the major opinions in the set Ŝv as the
final opinion. The property of agreement has been satisfied.
Besides, the number of Byzantine nodes is smaller than n/3.
By choosing the major opinions from the set Ŝv , the validity
of the final agreement can be satisfied.

C. Single Byzantine Jamming across Multiple Channels

In our model section, we assume that each Byzantine node
can arbitrarily choose a channel to jam in each communication
round. Based on this assumption, we design our absMAC algo-
rithm, consensus algorithm and present the theoretical proofs.
In this part, we further discuss a harder but more realistic
case in which a Byzantine node can disrupt communications
across multiple channels. A new parameter J is defined to
quantify a Byzantine node’s maximum jamming capability,
which allows us to rigorously assess the worst-case scenario.
In other words, f Byzantine node could interfere with normal
communications across J ∗ f channels. In this case, there are
remaining k−J ∗f clean channels that can be used by honest
nodes to deliver messages. Note that in our previous analysis,
f Byzantine nodes at most jam f channels cooperatively,
leaving k − f clean channels. And the time complexity for
ack. operation, prog. operation in absMAC layer and BFT-
consensus problem are O(kn

k−f log n) rounds, O(k
k−f log n)

rounds, and O(kn
k−f log n) rounds, respectively. In this setting

when a Byzantine node can at most jam J channels, there are
only k−J ∗f clean channels left, and the efficiency for com-
munication is reduced for k−J∗f

k−f times. With similar proofs,
we can show that the time complexity for ack. operation,
prog. operation in absMAC layer and BFT-consensus prob-
lem are O(kn

k−J∗f log n) rounds, O(k
k−J∗f log n) rounds, and

O(kn
k−J∗f log n) rounds, respectively. The constraints would

be f < n/3 and k − J ∗ f > 0, i.e., f < min{n/3, k/J}.

VI. PERFORMANCE IN SIMULATION

In this section, we investigate the performance of our
BFT consensus algorithm with various network parameters.
Specifically, the number of rounds used by our algorithm to
achieve a consensus is observed when the numbers of honest
nodes, Byzantine nodes, and channels vary.

Parameter Settings. In our simulation, n nodes are ran-
domly and uniformly distributed within a circular area with
a radius of 100m. The transmission range R of each node is
200m, ensuring a single-hop network environment. Initially,
all the n nodes randomly and uniformly choose their opinions
from {0, 1}. As for the malicious behaviors from the Byzantine
nodes, ζ-fraction of Byzantine nodes cooperatively jam ⌊ζ∗f⌋
channels, and the rest of Byzantine nodes choose to release the
fake messages. Specifically, when a Byzantine node decides
to jam a channel, a sufficient large jamming signal will be
launched. When a Byzantine node w plan to deliver an opinion
Opv to another node u, the fake opinion Ōpv will be used to
replace the true opinion Opv . By doing this, the Byzantine
nodes mislead the consensus process. m = k − ⌊ζ ∗ f⌋
is defined as the number of clean channels. For the SINR
parameters, we have α = 3 and β = 2.

TABLE IV: The parameters in simulation.
Para. Definition Value
n Number of devices [1000, 5000]
f Number of Byzantine devices (0, 333]
m Number of clean channels in progress {25, 50}
ζ Parameter to depict Byzantine behaviors [0.1, 0.9]
α Path loss exponent in SINR model 3
β Threshold in SINR model 2
R Transmission range 200m

Numerical Results. The performance of our algorithm
is presented in Fig. 3, in which the X-axes and Y -axes
represent the number of nodes and the time used to achieve
the consensus, respectively. Round is used to describe the unit
of the running time. By observing the curves in the Fig. 3 with
n ∈ [1000, 5000], f ∈ (0, 333] m ∈ {25, 50}, ζ ∈ [0.1, 0.9],
the following results can be obtained.

• By fixing on the same m, f , and ζ, the running time
of our consensus algorithm increases when n gets larger.
For example, in Fig 3 (a) with f = 233, when n gets
larger from 1000 to 5000, the running time increases
from 1.96×106 to 1.21×107. This tendency verifies the
theoretical time complexity O(nk logn

k−f) of our algorithm.
• By fixing on the same n, m, and ζ, it takes a longer time

to achieve the consensus when there are more Byzantine
nodes. For example, by comparing the four curves in
Fig 3 (a), the numbers of rounds with f = 133, f = 233,
and f = 333 is about 1.82, 3.64, and 5.46 times larger
than that with f = 33 when n = 3000. This is because
more Byzantine nodes result in a longer time to achieve
reliable communications and consensus.

• With the same n, f , and m, the running time of our
algorithm increases when ζ gets larger. By comparing
the four curves with f = 133 in Fig 3 (a)-(d), we can
see that when n = 1000, the numbers of rounds are
1.19 × 106 with ζ = 0.1, 1.64 × 106 with ζ = 0.4,
2.65 × 106 with ζ = 0.7, and 6.88 × 106 with ζ = 0.9.

12

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 0.1

(a) m = 25 and ζ = 0.1

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 0.4

(b) m = 25 and ζ = 0.4

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 0.7

(c) m = 25 and ζ = 0.7

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

100.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 1

(d) m = 25 and ζ = 0.9

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 0.1

(e) m = 50 and ζ = 0.1

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 0.4

(f) m = 50 and ζ = 0.4

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 0.7

(g) m = 50 and ζ = 0.7

1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Nodes

1.0M

10.0M

100.0M

R
u

n
n

in
g

 T
im

e

f=33

f=133

f=233

f=333

 α = 1

(h) m = 50 and ζ = 0.9

Fig. 3: The running time of our algorithm when the numbers
of nodes, Byzantine nodes and clean channels vary.

60 80 100 120 140

Number of Nodes

100.0M

1000.0M

R
un

ni
ng

 T
im

e

f=5
f=10
f=20
f=24

(a) Paxos

60 80 100 120 140

Number of Nodes

10.0K

100.0K

R
un

ni
ng

 T
im

e

f=5
f=10
f=20
f=24

(b) Our work

Fig. 4: The running time of Paxos compared with our al-
gorithm when the numbers of nodes, Byzantine nodes vary,
m = 50 and ζ = 0.9.

50 60 70 80 90 100

Number of Nodes
10.0M

100.0M

1.0G

R
un

ni
ng

 T
im

e

f=1
f=5
f=10
f=15

(a) PBFT

50 60 70 80 90 100

Number of Nodes
1.0K

10.0K

100.0K

R
un

ni
ng

 T
im

e

f=1
f=5
f=10
f=15

(b) Our work

Fig. 5: The running time of PBFT compared with our algo-
rithm when the numbers of nodes, and Byzantine nodes vary,
m = 50 and ζ = 0.1.

From this observation, we can see that the jamming attack
from Byzantine nodes has a heavier impact than the fake
messages with respect to the running time.

• With the same n, f , and ζ, the running time of our
algorithm decreases when there are more clean channels.
For example, by comparing the curves with f = 233
in Fig 3 (d) and (h), we can see the running time is
1.84×106 rounds when m = 25 and n = 1000. Whereas,
when m doubles, the number of rounds is 1.10 × 107,
which is 0.4 times smaller than that in Fig 3 (d). This
is because more clean channels improve the efficiency of
communications in our absMAC layer.

• By fixing on the same n, m, and ζ, we compare the
performance of our proposed BFT algorithm with the
non-BFT Paxos algorithm [29] in the face of channel
jamming. The numerical results are reported in Fig 4.
According to the curves in Fig 4, we observe that
Paxos exhibits a considerably high time cost reaching
consensus, especially as the number of nodes scales.
This is because Paxos requires atomic multicast and thus
must contend with the implications of jamming at the
communication layer. Given Paxos’s requirement for a
total order, this adds a significant time complexity to
its operation in our context, effectively making a global
consensus in O(n3 log n). In contrast, our proposed al-
gorithm demonstrates better scalability and resilience to
jamming attacks, with the numbers of rounds required
to reach consensus being about 1.22 ∗ 104, 1.67 ∗ 104,
1.70 ∗ 104, and 1.73 ∗ 104 times larger than that when
n = 140 and f = 5, 10, 20, and 24, respectively.

• In Figure 5, we compare the performance of our proposed
BFT consensus algorithm with the PBFT algorithm [9]
in the face of channel jamming with n ∈ [50, 100],
f ∈ [1, 15], m = 50 and ζ = 0.1. According to
the curves in Figure 5, we can observe that the PBFT
requires an exceedingly high temporal cost to reach
consensus, even with a small value of ζ and a small
number of nodes. Compared with the results of PBFT, our
proposed Byzantine consensus algorithm demonstrates
better scalability and resilience to jamming attacks with
the numbers of rounds required to reach consensus being
about 8.3×103, 1.2×104, 1.6×104, 2.1×104, 2.7×104,
and 3.3 × 104 times smaller when f = 15, and n = 50,
60, 70, 80, 90, 100, respectively. The comparative results
further demonstrate the efficiency and resilience of our

13

proposed BFT consensus algorithm.
Overall, the numerical results verify the correctness and

efficiency of our BFT consensus algorithm. When the number
of nodes n, the number of Byzantine nodes f , and the jamming
ratio ζ get larger, it takes longer time for our algorithm to
achieve a consensus. Meanwhile, more clean channels (k−f)
are helpful to improve the communication efficiency and result
in a smaller running time.

VII. CONCLUSION

This paper explores the Byzantine fault tolerant consensus
problem in open wireless networks. Different from most
of the previous works that require reliable communications
between honest nodes, this study considers a more challenging
Byzantine model in which the communications can be unstable
due to the Byzantine attacks on physical channels. To make
our BFT consensus algorithm elegant and efficient, we first im-
plement a BFT abstract MAC layer with its acknowledgement
and progress operations completed within O(kn

k−f log n) and
O(k

k−f log n) rounds, respectively. Then, a BFT consensus
algorithm is designed based on the implemented absMAC
layer. We show that repeating the absMAC layer algorithm for
constant times is enough for the honest nodes to achieve a BFT
consensus. Both theoretical proofs and numerical results are
presented to show the correctness and efficiency of our work.
Implementing a similar BFT absMAC layer to solve the other
complex problems in distributed computing and networking
will be our work in the future.

ACKNOWLEDGEMENT

This work was supported in part by the National Key R&D
Program of China (No. 2023YFB2703600), National Natural
Science Foundation of China (NSFC) under Grant 62102232,
62122042, and Shandong Science Fund for Excellent Young
Scholars (No.2023HWYQ-007).

REFERENCES

[1] A. Garcia-Saavedra and X. Costa-Pérez, “O-ran: Disrupting the virtual-
ized ran ecosystem,” IEEE Communications Standards Magazine, vol. 5,
no. 4, pp. 96–103, Dec. 2021.

[2] H. Moniz, N. F. Neves, and M. Correia, “Byzantine Fault-Tolerant
Consensus in Wireless Ad Hoc Networks,” IEEE Transactions on Mobile
Computing, vol. 12, no. 12, pp. 2441–2454, Dec. 2013.

[3] R. Guo, Z. Guo, Z. Lin, and W. Jiang, “A hierarchical byzantine fault
tolerance consensus protocol for the internet of things,” High-Confidence
Computing, 2023.

[4] Y. Zou, L. Yang, G. Jing, R. Zhang, Z. Xie, H. Li, and D. Yu,
“A survey of fault tolerant consensus in wireless networks,” High-
Confidence Computing, p. 100202, 2024.

[5] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens,
“ODSBR: An on-demand secure Byzantine resilient routing protocol for
wireless ad hoc networks,” ACM Trans. Inf. Syst. Secur., vol. 10, no. 4,
pp. 6:1–6:35, Jan. 2008.

[6] V. Drabkin, R. Friedman, and M. Segal, “Efficient Byzantine broadcast
in wireless ad-hoc networks,” in DSN, Jun. 2005, pp. 160–169.

[7] M. Yu, S. Kulkarni, and P. Lau, “A new secure routing protocol to defend
Byzantine attacks for ad hoc networks,” in MICC, vol. 2, Nov. 2005, p.
6 pp.

[8] R. Boichat, P. Dutta, S. Frølund, and R. Guerraoui, “Deconstructing
paxos,” SIGACT News, vol. 34, no. 1, pp. 47–67, Mar. 2003.

[9] M. Castro and B. Liskov, “Practical Byzantine fault tolerance,” in OSDI,
Feb. 1999, pp. 173–186.

[10] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[11] J.-P. Martin and L. Alvisi, “Fast Byzantine Consensus,” IEEE Transac-
tions on Dependable and Secure Computing, vol. 3, no. 3, pp. 202–215,
Jul. 2006.

[12] N. Santoro and P. Widmayer, “Time is not a healer,” in STACS,
B. Monien and R. Cori, Eds., 1989, pp. 304–313.

[13] Santoro, Nicola and Widmayer, Peter, “Agreement in synchronous
networks with ubiquitous faults,” Theoretical Computer Science, vol.
384, no. 2, pp. 232–249, Oct. 2007.

[14] G. Chockler, M. Demirbas, S. Gilbert, C. Newport, and T. Nolte,
“Consensus and collision detectors in wireless Ad Hoc networks,” in
PODC, Jul. 2005, pp. 197–206.

[15] M. Biely, J. Widder, B. Charron-Bost, A. Gaillard, M. Hutle, and
A. Schiper, “Tolerating corrupted communication,” in PODC, Aug.
2007, pp. 244–253.

[16] F. Borran, R. Prakash, and A. Schiper, “Extending Paxos/LastVoting with
an Adequate Communication Layer for Wireless Ad Hoc Networks,” in
SRDS, Oct. 2008, pp. 227–236.

[17] B. Charron-Bost and A. Schiper, “The Heard-Of model: Computing in
distributed systems with benign faults,” Distrib. Comput., vol. 22, no. 1,
pp. 49–71, Apr. 2009.

[18] U. Schmid, B. Weiss, and I. Keidar, “Impossibility Results and Lower
Bounds for Consensus under Link Failures,” SIAM J. Comput., vol. 38,
no. 5, pp. 1912–1951, Jan. 2009.

[19] H. Moniz, N. F. Neves, M. Correia, and P. Verı́ssimo, “Randomization
Can Be a Healer: Consensus with Dynamic Omission Failures,” in
Distributed Computing, I. Keidar, Ed., 2009, pp. 63–77.

[20] Y. Zou, D. Yu, J. Yu, Y. Zhang, F. Dressler, and X. Cheng, “Distributed
Byzantine-Resilient Multiple-Message Dissemination in Wireless Net-
works,” IEEE/ACM Transactions on Networking, vol. 29, no. 4, pp.
1662–1675, Aug. 2021.

[21] G. Jing, Y. Zou, D. Yu, C. Luo, and X. Cheng, “Efficient Fault-
Tolerant Consensus for Collaborative Services in Edge Computing,”
IEEE Transactions on Computers, vol. 72, no. 8, pp. 2139–2150, Aug.
2023.

[22] S. Zhang and J. Lee, “Double-spending with a sybil attack in the bitcoin
decentralized network,” IEEE Transactions on Industrial Informatics,
vol. 15, pp. 5715–5722, 2019.

[23] B. Kailkhura, Y. Han, S. Brahma, and P. Varshney, “Distributed bayesian
detection in the presence of byzantine data,” IEEE Transactions on
Signal Processing, vol. 63, pp. 5250–5263, 2013.

[24] F. Kuhn, N. Lynch, and C. Newport, “The Abstract MAC Layer,” in
Distributed Computing, I. Keidar, Ed., 2009, pp. 48–62.

[25] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals
Problem,” ACM Trans. Program. Lang. Syst., vol. 4, no. 3, pp. 382–
401, Jul. 1982.

[26] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant
broadcasts and related problems,” Cornell University, Tech. Rep., 1994.

[27] L. Tseng and C. Sardina, “Byzantine Consensus in Abstract MAC
Layer,” in 27th International Conference on Principles of Distributed
Systems (OPODIS 2023), ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 286, 2024.

[28] C. Newport and P. Robinson, “Fault-Tolerant Consensus with an Abstract
MAC Layer,” in DISC, U. Schmid and J. Widder, Eds., vol. 121, 2018,
pp. 38:1–38:20.

[29] F. Borran, R. Prakash, and A. Schiper, “Extending paxos/lastvoting with
an adequate communication layer for wireless ad hoc networks,” in 2008
Symposium on Reliable Distributed Systems, 2008.

[30] Y. Zou, M. Xu, J. Yu, F. Zhao, and X. Cheng, “Fault-Tolerant Consensus
with NOMA in Mobile Networks,” IEEE Wireless Communications,
vol. 29, no. 3, pp. 80–86, Jun. 2022.

[31] D. Yu, Y. Zou, Y. Zhang, H. Sheng, W. Lv, and X. Cheng, “An Exact
Implementation of the Abstract MAC Layer via Carrier Sensing in
Dynamic Networks,” IEEE/ACM Transactions on Networking, vol. 29,
no. 3, pp. 994–1007, Jun. 2021.

[32] C. Newport, “Consensus with an abstract MAC layer,” in PODC, Jul.
2014, pp. 66–75.

[33] M. M. Halldórsson, Y. Wang, and D. Yu, “Leveraging multiple channels
in ad hoc networks,” Distrib. Comput., vol. 32, no. 2, pp. 159–172, Apr.
2019.

[34] Y. Guan and X. Ge, “Distributed attack detection and secure estimation
of networked cyber-physical systems against false data injection attacks
and jamming attacks,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 4, pp. 48–59, 2018.

[35] O. Goussevskaia, Y. A. Oswald, and R. Wattenhofer, “Complexity in
geometric SINR,” in MobiHoc, 2007, pp. 100–109.

14

[36] G. Coulouris, J. Dollimore, and T. Kindberg, Distributed Systems -
Concepts and Designs (3. Ed.), Jan. 2002, p. 452.

[37] N. A. Lynch, Distributed Algorithms, 1996, p. 122.
[38] E. Gafni and D. Bertsekas, “Distributed algorithms for generating

loop-free routes in networks with frequently changing topology,” IEEE
Transactions on Communications, vol. 29, no. 1, pp. 11–18, 1981.

[39] D. Dolev and H. R. Strong, “Polynomial algorithms for multiple
processor agreement,” in Symposium on the Theory of Computing, 1982.

[40] M. M. Halldórsson, S. Holzer, E. A. Markatou, and N. A. Lynch, “Leader
election in SINR model with arbitrary power control,” Theor. Comput.
Sci., vol. 811, pp. 21–28, 2020.

[41] D. Yu, L. Ning, Y. Zou, J. Yu, X. Cheng, and F. C. M. Lau, “Distributed
spanner construction with physical interference: Constant stretch and
linear sparseness,” IEEE/ACM Transactions on Networking, vol. 25,
no. 4, pp. 2138–2151, 2017.

[42] M. O. Rabin, “Randomized byzantine generals,” in SFCS, 1983, pp.
403–409.

[43] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger
of bft protocols,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 31–42.

[44] T. Lorünser, B. Rainer, and F. Wohner, “Towards a performance model
for byzantine fault tolerant services.” in CLOSER, 2022, pp. 178–189.

[45] P.-L. Aublin, S. B. Mokhtar, and V. Quéma, “Rbft: Redundant byzan-
tine fault tolerance,” in 2013 IEEE 33rd international conference on
distributed computing systems. IEEE, 2013, pp. 297–306.

Guanlin Jing is currently pursuing a Ph.D. degree
in computer science from Shandong University. He
received the BS degree in electrical engineering from
University of Minnesota, Twin Cities in 2019, and
MS degree in computer science from George Wash-
ington University in 2021. He is currently in Prof.
Xiuzhen Cheng’s group, focusing on distributed
computing and wireless networks.

Yifei Zou received the B.E. degree in 2016 from
Computer School, Wuhan University, and the PhD
degree in 2020 from the Department of Computer
Science, The University of Hong Kong. He is cur-
rently an Assistant Professor with the school of com-
puter science and technology, Shandong University,
Qingdao. His research interests include wireless net-
works, ad hoc networks and distributed computing.

Zuyuan Zhang Zuyuan Zhang received the B.S.
degree from the Shandong University, China in
2023. He is currently a first year Ph.D. student and
a Research Assistant in Electrical and Computer
Engineering deparment at the George Washington
University. His research interests include Reinforce-
ment Learning.

Dongxiao Yu received the BSc degree in 2006 from
the School of Mathematics, Shandong University
and the PhD degree in 2014 from the Department of
Computer Science, The University of Hong Kong.
He became an associate professor in the School
of Computer Science and Technology, Huazhong
University of Science and Technology, in 2016. He
is currently a professor in the School of Computer
Science and Technology, Shandong University. His
research interests include wireless networks, dis-
tributed computing and graph algorithms.

Falko Dressler received his M.Sc. and Ph.D. de-
grees from the Dept. of Computer Science, Univer-
sity of Erlangen in 1998 and 2003, respectively. He
is a full professor and Chair for Data Communi-
cations and Networking at the School of Electrical
Engineering and Computer Science, TU Berlin. Dr.
Dressler has been associate editor-in-chief for IEEE
Trans. on Mobile Computing and Elsevier Computer
Communications as well as an editor for journals
such as IEEE/ACM Trans. on Networking, IEEE
Trans. on Network Science and Engineering, Else-

vier Ad Hoc Networks, and Elsevier Nano Communication Networks. He has
been chairing conferences such as IEEE INFOCOM, ACM MobiSys, ACM
MobiHoc, IEEE VNC, IEEE GLOBECOM. He authored the textbooks Self-
Organization in Sensor and Actor Networks published by Wiley & Sons and
Vehicular Networking published by Cambridge University Press. He has been
an IEEE Distinguished Lecturer as well as an ACM Distinguished Speaker.
Dr. Dressler is an IEEE Fellow as well as an ACM Distinguished Member. He
is a member of the German National Academy of Science and Engineering
(acatech). He has been serving on the IEEE COMSOC Conference Council
and the ACM SIGMOBILE Executive Committee. His research objectives
include adaptive wireless networking (radio, visible light, molecular commu-
nications) and embedded system design (from microcontroller to Linux kernel)
with applications in ad hoc and sensor networks, the Internet of Things, and
cooperative autonomous driving systems.

Xiuzhen Cheng received her MS and PhD degrees
in computer science from University of Minnesota,
Twin Cities, in 2000 and 2002, respectively. She was
a faculty member at the Department of Computer
Science, The George Washington University, from
2002-2020. Currently she is a professor of computer
science at Shandong University, Qingdao, China.
Her research focuses on blockchain computing, se-
curity and privacy, and Internet of Things. She is a
Fellow of IEEE.

15

APPENDIX

A. Novelty of Our Work on Byzantine Consensus Algorithm

The reliable communication provided by our absMAC layer
only guarantees that the messages from the transmitter can
be received by the receiver within a bounded delay (i.e.
fack rounds). Our Byzantine consensus algorithm is based on
reliable communications. Compared with reliable communica-
tions, atomic reliable communications not only require that all
the nodes have reliable communications with each other, but
also require that the total order of messages received by each
node should be the same [26]. To the best of our knowledge, a
large fraction of the existing Byzantine consensus algorithms
are based on atomic reliable communications. For example, the
Honey Badger in [43] and PBFT (Practical Byzantine Fault
Tolerance) in [9]. Directly grabbing an existing Byzantine
consensus algorithm and running it on our absMAC layer
results in high time complexity. In general, we discuss two
approaches to implement an existing Byzantine consensus
algorithm that relies on atomic reliable communications on our
absMAC layer with only reliable communications provided.

• Approach I. Directly run an existing Byzantine con-
sensus algorithm on our absMAC layer regardless of its
atomic communication requirement. However, the results
in [26] have highlighted the importance of atomic com-
munications for existing algorithms to reach consensus.
The work in [44] showed that PBFT may fail when the
atomic communications are destroyed by packet loss. In
our simulation, we have presented the performance of
our proposed algorithm and PBFT algorithm [9] when
they are directly executed on our absMAC layer with
only reliable communications provided, and reported the
results in Fig. 6. According to the curves in Fig. 6
with n ∈ [50, 100], f ∈ [1, 15] and ζ = 0.1, we
can see that it takes PBFT an extremely high time cost
to reach consensus, especially as the number of nodes
increases. Whereas, our proposed Byzantine consensus
algorithm has a better performance on the running time.
Both of the results from [26], [44] and the numerical
results from our simulation show that directly executing
the existing Byzantine consensus algorithms that rely on
atomic reliable communication on our absMAC layer
results in high time cost.

• Approach II. Achieving atomic reliable communications
on our absMAC layer with some additional schemes,
and then implementing the existing Byzantine consensus
algorithms on the achieved atomic reliable communica-
tion is a feasible approach. To guarantee atomic reliable
communications, an intuitive solution is executing our
absMAC layer for n times. Specifically, we assume that
there are totally n nodes in a distributed system, denoted
by the set {v1, v2, ..., vn}. Then, in the i-th execution of
our absMAC layer, only node vi transmits its message
Mi while the other nodes listen, with i = 1, 2, ..., n.
By doing this, all the nodes can receive messages from
others with the same order {M1,M2, ...,Mn}, i.e., the
atomic reliable communications can be guaranteed. Since
an execution of our absMAC layer requires fack rounds.

50 60 70 80 90 100

Number of Nodes
1.0M

10.0M

100.0M

1.0G

R
un

ni
ng

 T
im

e

f=1
f=5
f=10
f=15

(a) PBFT in absMAC layer

50 60 70 80 90 100

Number of Nodes
1.0K

10.0K

100.0K

R
un

ni
ng

 T
im

e

f=1
f=5
f=10
f=15

(b) Our Byzantine consensus

Fig. 6: The running time of PBFT and our algorithm with
reliable communications in absMAC layer

It takes n ∗ fack rounds to guarantee an atomic reliable
communication for all nodes. According to [9], [43],
[45], the Byzantine consensus algorithms PBFT, RBFT,
and Honey Badger require constant times atomic reli-
able communications to achieve a consensus. Thus, the
number of rounds required by PBFT, RBFT, and Honey
Badger would be Θ(n ∗ fack) with fack = O(kn

k−f log n)
rounds in our absMAC. Compared with PBFT, RBFT, and
Honey Badger, our Byzantine consensus algorithm only
needs constant times of reliable communications. Thus,
its time complexity is Θ(fack), which is Θ(n) times faster
than that of PBFT, RBFT, and Honey Badger.
There may be some potential solutions that can provide
atomic reliable communications by executing our abs-
MAC layer but is more simple or brief than the intuitive
solution proposed in approach II. Even though we assume
the existence of a brief solution that only needs constant
times execution of our absMAC layer to provide atomic
reliable communications, the time complexity of PBFT,
RBFT, and Honey Badger on our absMAC layer would be
Θ(fack), which is the same with our Byzantine consensus
algorithm. However, such a brief solution is not easy to
find since the wireless channels are unreliable.

In [27], the authors assume an absMAC layer to provide reli-
able (but not atomic) communications and design a Byzantine-
resilient consensus algorithm based on the absMAC layer,
which can tolerate up to n/5 Byzantine faults. Compared
with the work in [27], the novelty of part one in our paper
is clear. Because the work in [27] just assumes an absMAC
layer to provide reliable communications despite Byzantine
attacks while our work directly implements a Byzantine-
resilient absMAC layer with provable time delay. Part two
of our work is also a Byzantine-resilient consensus algorithm
in the absMAC layer but with a different idea on algorithm
design and a stronger threshold n/3 for Byzantine tolerance.
The threshold n/3 has already been proved as the upper
bound in Byzantine-resilient consensus problems with reliable
communications [25].

Claim 4: For the node u with the maximum transmission
power, and two arbitrary nodes w, v ∈ W \ {u}, we have

Pw

dα(w,v) < Pu

dα(u,v)βn with high probability in an arbitrary
round t,

Proof: Recall that in the power selection scheme, each

16

node has d = i + ⌈2 log2 n⌉ with probability 1/2i, ran-
domly and uniformly selects an integer D from the interval
[2d log22 n, 2

d+1 log22 n), and finally adopts Pmin ∗DγD as its
transmission power. Obviously, du ≥ dw. Otherwise, Pu <
Pw, which directly violates the fact that Pu ≥ Pw. Specifically,
γ is set as a constant larger than max(1, sα + 1 + log β).
Constants α and β are the SINR parameters. We normalize the
shortest distance between any pair of nodes in the network as
1 and use R to denote the longest distance between any pair
of nodes. s = logn R is a constant since we assume that R
can be bounded by a polynomial of n. The same setting can
be found in [40] and [41]. In the next, we consider the cases
of du = dw and du > dw, respectively.

Case 1: du = dw. In this case, du = dw = Ω(log n). This
is because when n nodes select d values in our scheme, there
are (1/2)i+1 fraction of nodes having d = i + ⌈2 log2 n⌉ in
expectation. Thus, by applying the Chernoff bound, we can
get du = Θ(log n) with high probability since node u holds
the largest d. Then, both of Du and Dw are randomly and
uniformly chosen from the interval [2du log22 n, 2

du+1 log22 n).
Note that 2du+1 log22 n− 2du log22 n = Ω(n2 log2 n). It is easy
to prove that when two integers are chosen from an interval
with a length of Ω(n2 log2 n), the two integers differ at least
with a probability 1− 1

n2 log2 n
. In other words, Dn−Dn−1 ≥ 1

with high probability. We normalize the minimum distance
between any pair of nodes as unit 1 and assume that the
maximum distance between any pair of nodes is poly(n)
(i.e.polynomial of n). Then, we have

Pu/d
α(u, v)

Pw/dα(w, v)
=

Pmin ·DγDn
n · dα(w, v)

Pmin ·DγDn−1

n−1 · dα(u, v)

≥ DγDn
n

D
γDn−1

n−1 poly(n)

≥ Dγ
n

(5)

Case 2: du > dw, in which Dw ≤ 2dw+1 log22 n <
2du log22 n ≤ Du. Thus,

Pu/d
α(u, v)

Pw/dα(w, v)
=

Pmin ·DγDu
u · dα(w, v)

Pmin ·DγDw
w · dα(u, v)

≥ DγDu
u

DγDw
w · poly(n)

≥ Dγ
n

(6)

Combining the two cases, we get Pu/d
α(u,v)

Pw/dα(w,v) =

Ω(n2γ log2γ n) > βn if constant γ is sufficient large.

Explanation of Chernoff bound. Let X1, X2, · · · , Xn

be independent or negatively associated non-negative random
variables with Xi ≤ 1. Moreover, let X = X1+X2+· · ·+Xn,
and µ = E[X]. For δ > 0, it holds that

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

For every δ ∈ (0, 1), it holds that

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ/γ

≤ e−δ2µ/2.

Application of Chernoff Bound. From the proof of Claim
3, we obtain a result that for arbitrary two honest nodes u
and v, v receives the message from u with a probability of
Θ(k−f

nk). Let Xi = 1 be the event that v receives the message
from u at round i. Otherwise, Xi = 0. For an interval from
round 1 to round t, we have X =

∑t
i=1 Xi as a random

variable and each Xi be an independent Bernoulli random
variable. Assuming that t = ckn

k−f log n, the probability of v
successfully receiving a message from u in each round is
p = c1 ∗ k−f

nk for some constant c1, we have µ = E[X] =
ckn
k−f log n ∗ c1 ∗ k−f

nk = c ∗ c1 log n. To apply the Chernoff
bound, we are looking for the probability Pr(X < 1), i.e.,
not receiving any messages in all rounds. Using the Chernoff
bound with δ = 1/2, we have

Pr(X < 1) ≤ Pr(X < µ/2) ≤ e−
µ
8 = e−

c∗c1 log n
8 = n−c∗c1/8,

which proves the last sentence of Claim 3.

	Introduction
	Related Works
	Network Model and Problem Definition
	Algorithm Description
	Challenges and Solutions
	Implementation of BFT absMAC layer
	BFT Consensus Algorithm with absMAC layer

	Theoretical Analysis
	Analysis for BFT AbsMAC Layer Algorithm
	Analysis for BFT Consensus Algorithm
	Single Byzantine Jamming across Multiple Channels

	Performance in Simulation
	Conclusion
	References
	Biographies
	Guanlin Jing
	Yifei Zou
	Zuyuan Zhang
	Dongxiao Yu
	Falko Dressler
	Xiuzhen Cheng

	Appendix
	 Novelty of Our Work on Byzantine Consensus Algorithm

