
Protecting Communication Infrastructures
Against Attacks with Programmable

Networking Technology

vorgelegt von
Diplom-Ingenieur

Andreas Hess

Von der Fakultät IV - Elektrotechnik und Informatik
der Technischen Universität Berlin

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

Dr.-Ing.

genehmigte Dissertation

Promotionsausschuss:

Vorsitzender: Prof. Dr. Heiß
Gutachter: Prof. Dr. Wolisz
Gutachter: Prof. Dr. Rathgeb

Tag der wissenschaftlichen Aussprache: 19.06.2008

Berlin 2008
D 83

TU Berlin Section

Zusammenfassung

Die Angriffsstatistiken spiegeln ein klares Wachstum registrierter Schutzzielverletzungen wider.
Die Ursachen hierfür sind zahlreich. Grundlage sind zum einen die sich stetig vergrößernden
Mengen der Internetnutzer und der Internetrechner. Zum anderen lässt sich ein fehlendes
bzw. mangelhaftes Sicherheitsbewusstsein vieler Nutzer und Administratoren beobachten,
welches in mangelhafter Systempflege resultiert. Betriebssystem- und Softwarehersteller
stellen Sicherheitsupdates für das Beseitigen bekannt gewordener Sicherheitslöcher—so genan-
nte Patches—bereit, die aber nicht oder nur stark zeitverzögert eingespielt werden. Als
Beispiel hierfür kann der als Blaster bekannt gewordene Internetwurm herangezogen wer-
den, welcher eine Schwachstelle des RPC-Dienstes von Windows-Systemen ausnutzte. Am
16. Juli 2003 stellte Microsoft auf seiner Seite ein entsprechendes Sicherheitsupdate zur
Verfügung und dennoch erfolgte am 11. August ein Ausbruch des Internetwurms. Symantec
stufte den Wurm in die Kategorie 4 (ernsthafte Bedrohung / weltweite Verteilung) ein.

Mithilfe einer dynamischen, automatisierten Verteilung und Integration von proaktiven
Schutzmechanismen innerhalb eines Netzwerkes, kann mit ”geringem” Aufwand eine große
Zahl an Endsystemen in kurzer Zeit geschützt werden. Es ist dabei jedoch zu beachten, dass
Angriffsunterdrückungssysteme das Verhalten (Durchsatz, Latenzzeit, Jitter, etc.) von Net-
zwerken beeinflussen, da der Netzwerkverkehr vor der Weitervermittlung auf verdächtigen In-
halt geprüft wird. Software-spezifische Schwachstellen und folglich auch die Menge der darauf
basierenden Angriffe, sind zumeist spezifisch für eine bestimmte Menge von Anwendungen
oder Betriebssystemen. Hierdurch bietet sich eine Modularisierung der zu den Schwachstellen
korrespondierenden Schutzmechanismen an.

Das Ziel dieser Arbeit ist die Realisierung eines auf aktiver Netzwerktechnologie basieren-
den und sich selbstorganisierenden Angriffsunterdrückungs-Netzwerks. Aktive Netzwerke bi-
eten die Möglichkeit, anwendungsspezifische Dienste, z.B. spezielle Angriffsunterdrückungs-
funktionalitäten, dynamisch auf aktiven Knoten zu starten und zu beenden. Es wird also
untersucht wie die Ermittlung und Erfüllung des spezifischen Schutzbedarfs einzelner Netzbe-
reiche automatisiert werden kann. Dabei werden die folgenden Punkte diskutiert und entwick-
elt:

• die Architektur des auf aktiver Netzwerktechnologie basierenden Angriffsunterdrückung-
systems,

• die Analyse des zu schützenden Netzwerks hinsichtlich Topologie und verbundener Sys-
teme, und

• die Entscheidung auf welchen Router welche Schutzmechanismen platziert werden.

Page 2

TU Berlin Section

Im Rahmen der Arbeit wird ein Konzept eines solchen Angriffsunterdrückungs-Netzwerks en-
twickelt und prototypisch implementiert. Es wird exemplarisch gezeigt wie ein Netzwerk hin-
sichtlich Topologie und Systemkonfigurationen untersucht werden kann. Zur Berechnung der
”optimalen” Verteilung der Schutzmechanismen wird ein mathematisches Model aufgestellt.
Es werden dabei die folgenden Platzierungsstrategien entwickelt:

• Erfüllung aller Sicherheitsanforderungen bei gleichzeitiger Minimierung der Anzahl der
verwendeten aktiven Router.

• Erfüllung aller Sicherheitsanforderungen bei gleichzeitiger Minimierung der maximalen
Belastung eines Routers.

Abschliessend wird das entwickelte Angriffsunterdrückungs-Netzwerk auf die Experimen-
tierumgebung Deter-Testbett portiert und es werden zwei konkrete Netzwerkkonfiguration
emuliert und bewertet. Die erzielten Resultate zeigen deutlich den Gewinn des entwickelten
Ansatzes.

Page 3

TU Berlin Section

Abstract

The continued explosion of new virus/worm and other security attacks in the Internet, the
tremendous propagation speed of self-propagating attacks, and the still increasing number
of hosts connected to the Internet has led to network security being considered as a design
criterion rather than an afterthought. Beyond this, also the diversity of software is increasing
and still the quality of many software solutions is insufficient, especially in terms of security
vulnerabilities resulting from programming errors.

These problems are aggravated by an inappropriate security awareness of many network
and system administrators as well as users which has (again) been clearly shown by the
W32/Blaster worm [37]. The worm which started on August 11th 2003 exploited a vul-
nerability that has already been known four weeks earlier. Actually, since July 16th 2003
Microsoft had provided a patch in order to fix this flaw. But still, the worm could diffuse itself
in a manner such that Symantec rated it as category 4 (severe threat, global distribution).
As a consequence thereof, we can clearly see that the idea of quickly patching all vulnerable
systems upon detection of a new security hole is not an appropriate measure to cope with the
evolution of execution speed of computer attacks, and that, therefore, attackers will continue
to be able to break into systems and deploy them for their purposes in the future.

Attack prevention, detection, and mitigation mechanisms can be broadly classified as
network based or host based. Network based security mechanisms have been shown to be
much more effective than host based mechanisms, primarily because of the former’s ability
in identifying attack traffic that is further upstream from the victim and closer to the attack
source. In the context of network based mechanisms, we propose a flexible overlay network of
security systems running on top of programmable (active) routers. In such an architecture,
security services can be dynamically distributed across the network, which provides flexibility
for load-balancing of services across nodes and addition of new services over time. The thesis
discusses:

• the architecture of the intrusion prevention system on top of active networking tech-
nology,

• the process of analyzing the network to be protected in terms of topology and connected
systems,

• the third functional part decides which intrusion prevention services are deployed on
which programmable routers.

A contribution of the thesis is the conceptual design of the autonomous intrusion prevention
overlay network on top of programmable networking technology, also a corresponding pro-

Page 4

TU Berlin Section

totype is implemented. We exemplarily show how to gather network information in terms
of topology and connected systems. Further on, we develop an optimization framework that
specifies the optimal placement of security services. The following objective functions are
introduced:

• minimize the number of programmable routers used while fulfilling all security requests;

• minimize the maximal workload of a programmable router while fulfilling all security
requests.

Finally, the intrusion prevention architecture is setup on the Deter testbed. We show the
benefit of the presented approach by emulating two concrete networking scenarios.

Page 5

TU Berlin Section CONTENTS

Contents

1 Introduction 8

2 A Review of Network-Based Intrusion Detection and Prevention 12
2.1 Communication Networks . 12
2.2 Active/Programmable Networking Technology 13
2.3 Intrusion Detection and Prevention Systems 15

2.3.1 What is an Attack? . 15
2.3.2 Access Control . 18
2.3.3 Intrusion Detection and Prevention System Architecture 19
2.3.4 Taxonomy of Intrusion Detection and Prevention Systems 20
2.3.5 Difference between Intrusion Detection and Intrusion Prevention . . . 22
2.3.6 Approaches to Realize Intrusion Detection and Prevention Systems . . 26
2.3.7 Evaluation of Intrusion Detection and Prevention Systems 26

2.4 Gathering Network-Related Information . 29

3 State of the Art of Network Based Intrusion Detection and Prevention 33
3.1 Host-Based Systems . 33
3.2 Network-Based Systems . 35

3.2.1 Stand-alone Systems . 36
3.2.2 Distributed and Coordinated Systems 39
3.2.3 Commercial Network-Based Intrusion Detection Systems 44

3.3 Limitations of Intrusion Detection and Prevention Systems 45
3.3.1 Accuracy of Intrusion Detection/Prevention Systems 45
3.3.2 The Requirements of Scalability and Flexibility 47

3.4 What is Missing - A Discussion of the State of the Art 48

4 Fidran: An Autonomous Intrusion Prevention Overlay Network 50
4.1 Requirements for an Autonomous Intrusion Prevention Overlay Network . . . 51
4.2 Why Programmable Routers . 52
4.3 The Principle of Demand-Driven Intrusion Prevention 53
4.4 The Fidran Intrusion Prevention System Architecture 56

4.4.1 The Security Policy . 57
4.4.2 The Traffic Selector . 59
4.4.3 An Intrusion Prevention Service . 60
4.4.4 The Waiting Queues . 62

Page 6

TU Berlin Section CONTENTS

4.4.5 The Control Module . 62
4.5 The Impact of a Fidran Router on the Processing of a Packet 63
4.6 Summary . 72

5 Gathering Network Information 74
5.1 Requirements and Practical Considerations 75
5.2 Gathering Network Knowledge . 77
5.3 A Case Study . 78
5.4 Summary . 82

6 Optimal Deployment Strategies 83
6.1 Router System Model . 85
6.2 Objective Functions . 86
6.3 Predefined Single-Path Routing . 87
6.4 Predefined Multipath Routing . 91
6.5 Joint Traffic Routing and Distribution of Security Services 93
6.6 Optimal Placement of Security Services under the Constraint of a Predefined

Order . 100
6.7 Varying Computational Speeds of Routers . 102
6.8 A Remark on Fractional Service Assignments 103
6.9 Summary . 105

7 Fidran Performance Evaluation 106
7.1 Emulation: The DETER Testbed . 106
7.2 The Generation of Self-Similar Network Traffic 108
7.3 A Limited Networking Environment . 111

7.3.1 The Benefit of Optimal Deployment Strategies in a Tree-Network . . . 114
7.3.2 Programmable Routers of Heterogeneous Performance 126

7.4 A High-Speed Networking Environment: The Abilene Network 128
7.4.1 Abilene Network: Securing each Commodity by Six Security Services . 130
7.4.2 Abilene Network: Securing each Commodity by Seven Security Services 138

7.5 Self-Similar Network Traffic of Smaller Bandwidth 144
7.5.1 Protecting each Commodity with Six Security Services 145
7.5.2 Protecting each Commodity with Seven Security Services 145

7.6 Time Required to Calculate Optimal Deployment Strategies 146
7.7 Summary . 148

8 Conclusions 150

A Additional Results 153

Page 7

TU Berlin Section 1

Chapter 1

Introduction

Daily life is more and more influenced by the Internet which, for example, allows to comfort-
ably accomplish tasks like bank transferals, shopping or travel bookings. But the benefit of
the Internet is accompanied by the threatening danger of fraud and misuse. For instance,
phishing which is a form of Internet fraud—it aims to steal valuable information such as
credit card numbers, social security numbers, user IDs and passwords—caused solely in the
USA in 2007 a damage of over 3 billion US dollars [90].

An initial prerequisite for a successful attack is the existence of a vulnerability which is
a weakness in an information system or service that can be used by an attacker to alter its
intended operation. Further on, recent developments show that communication networks like
the Internet are vulnerable and that they cannot be secured by sporadic and uncoordinated
security devices like firewalls at users and cooperates sites. The reasons behind this trend
originate from multiple developments.

The number of DNS-registered hosts in the Internet keeps growing [42], as does the num-
ber of computers connected to the Internet via DSL or cable modem—high bandwidth and
permanent access currently represents one of the fastest growing markets in the telecom-
munications business [91]. In 2007 over 70 % of all Germans used a computer at home and
additionally, about 50 % of all households had a broadband Internet access [28]. This implies
an accordingly increasing number of vulnerable hosts and offers an ever growing number of
potential targets for malicious activities.

Further, the diversity of software is increasing but the quality of many software solutions
in terms of security vulnerabilities resulting from programming errors is insufficient—the
Computer Emergency Response Team (CERT) counted 4,129 vulnerabilities in 2004 and
5, 990 in 2005 [3]. Additionally, users and administrators are very slow in applying fixes
to vulnerable systems [112], either because they are overstrained patching the systems or
unaware of the threats they represent. The Internet worm Netsky-P was responsible for
15.7 % of all virus incidents that were registered in 2005 although it was spotted the first
time in March 2004 and an effective protection against it has been made available at the end
of that month [120].

On the other side, the attacks are becoming more aggressive. The propagation speed
of self-distributing attacks is increasing [32]—the authors of [123] argue that under certain
conditions a small worm “can infect almost all vulnerable servers on the Internet in less
than thirty seconds.” As a consequence, the time window to invoke countermeasures against

Page 8

TU Berlin Section 1

potential attacks is shrinking. For instance, according to [120] there is a chance of 50 %, of
being infected within 12 minutes online when running an unpatched Windows system without
a firewall.

Countermeasures in terms of attack prevention, detection, and mitigation mechanisms—
namely software updates, firewalls, antivirus software and intrusion detection/prevention
systems—can be applied to improve the protection of the systems of a communication net-
work. These mechanisms can be broadly classified as network based or host based. Now,
referring to the above trends, it can hardly be expected that all users and administrators will
be able to keep their system(s) secure. In addition, fixing security holes as soon as patches
become available can hardly be done in time on all end systems, and the installation, con-
figuration and operation of an intrusion detection/prevention systems requires a knowledge
that most users do not have. In this context, we believe network based security mechanisms
to be much more effective than host based mechanisms. Thus, in order to relieve end-users
and administrators from continuously having to deal with today’s massive amount of security
challenges, we propose to use the routers of a network to protect the connected end systems
against intrusions. A fundamental requirement for the intrusion prevention architecture is
flexibility to cope with both the evolution of attacking techniques and the varying protection
demands of the end-systems. A means of realizing flexibility is the usage of programmable
networks [36] consisting of programmable nodes on which services, for example intrusion
prevention services, can be dynamically deployed. Summarizing, the philosophy followed in
this thesis is not to modify end-systems and to do intrusion prevention as a software process
on routers in the network. The effort to place a limited set of programmable routers in a
network that are capable to do intrusion prevention is smaller than to modify a significant
higher number of end-systems.

However, the operation of an intrusion prevention system (IPS) inevitably decreases net-
work performance as packets are analyzed for malicious content before being forwarded. To
address efficiency two concepts are introduced:

• demand-driven intrusion prevention and

• operation of an intrusion prevention overlay network (ON).

Demand driven intrusion prevention makes use of the fact that an attack requires the existence
of a concrete vulnerability to succeed. In the proposed approach an intrusion prevention
service provides protection against attacks exploiting a concrete vulnerability. Hence, the
amount of security services required to adequately protect the end-systems of a network can
be restricted by a previous identification of the present vulnerabilities and according to our
philosophy it makes little sense to scan traffic for attacks which cannot harm a host. Next, the
operation of an intrusion prevention overlay network provides the capability to intelligently
distribute the security services among the programmable routers. In this context a central
question of the thesis is:

What intrusion prevention functionality is required at which places of
a network for the purpose of adequately protecting the end-systems
of that network while simultaneously fulfilling a chosen objective func-
tion?

Page 9

TU Berlin Section 1

To answer the question the following aspects must be considered. Further, how to decide
on the set of security services that must be installed? And finally, what security services
deployment strategies are reasonable?

The presented concept of an intrusion prevention overlay network is designed for limited
networks like an autonomous system (AS) as well as for high-speed networks (backbone).
The functionality provided by the intrusion prevention overlay network (ON) depends on the
chosen scenario. When deployed in a limited networking environment—in terms of a limited
amount of connected end-systems and traffic volumes—the IPS overlay network is able to
autonomously identify network topology, end-systems (operating system, running applica-
tions, etc.) and the set of required security services. Subsequently, the requested security
services are intelligently distributed in the network such that, for example, the impact on the
network performance—caused by the intrusion prevention overlay network—is minimized.
When deployed in a backbone network the IPS framework does not analyze network topol-
ogy, end-systems and required security services as the amount of systems to be analyzed is
too big. In this scenario, the related information must be provided to the autonomous in-
trusion prevention overlay network. Summarizing, the intrusion prevention overlay network
comprises three functional parts:

1. the first functional part provides the intrusion prevention framework that actually allows
to dynamically deploy intrusion prevention services on programmable nodes in the
network.

2. the second functional part (not for high-speed deployment) includes the intelligence to
analyze the network to be protected:

• identification of the network topology,
• discovery of the hosts that are running and
• hosts profiling, identification of operating system and running applications.

3. the third functional part decides which intrusion prevention services are deployed on
which programmable routers.

A contribution of the thesis is the conceptual design of an autonomous intrusion prevention
overlay network on top of programmable networking technology. A fundamental requirement
of the intrusion prevention architecture is the capability to dynamically deploy a security
service at runtime on a chosen router. Further requirements and a detailed description
of the intrusion prevention architecture is given in Chapter 4. To assess the performance
of the proposed intrusion prevention overlay network a Linux-based prototype including a
set of seven intrusion prevention services—using existing attack detection techniques—was
implemented and analyzed.

Further, the concept of an intrusion prevention overlay network was designed for both
limited networking environments and high-speed networking environments. In the former
case, the architecture is able to autonomously recognize and deploy the security services,
necessary to adequately protect the end-systems of a network, while simultaneously minimiz-
ing the impact on the network performance. A prerequisite is knowledge of network topology,
end-system configurations and flow volumes. An exemplary case study that shows how to
gather necessary network information is presented in Chapter 5.

Page 10

TU Berlin Section 1

Chapter 6 discusses the question: ”What intrusion prevention functionality is required
at which places of a network in order to efficiently protect the end-systems against attacks
spreading over the network?”. To answer this, an optimization framework was developed
that considers the scenarios:

• Security services distribution along predefined routes:

– single-path

– multipath

• Joint traffic routing and security service distribution

Predefined routing implies that at least one path from any source to any destination is
specified—as a result the routing tables are set. In a single-path routing environment, a
single path exists between any two systems. In contrast, in a multipath routing environ-
ment multiple paths exist between systems, allowing for load-balancing. In the last scenario
the optimization framework specifies traffic routing—a single path from each source to each
destination—and the distribution of the requested security services. The optimization frame-
work allows to choose the routing scenario as well as one of the following objective functions:

• minimize the number of programmable routers used while fulfilling all security requests
and keeping all router queues bounded;

• minimize the maximal workload of a programmable router while fulfilling all security
requests and keeping all router queues bounded.

Chapter 7 presents the performance evaluation of the proposed intrusion prevention frame-
work and the optimal deployment strategies described above. To assess the intrusion preven-
tion overlay network emulations were conducted on the Cyber Defense Technology Experimen-
tal Research testbed (DETER). Two different network topologies—a limited tree network and
a high-speed network—were emulated for varying sets of traffic traces. The achieved results
show that intrusion prevention can be done as a software process in case that the requested
security services are intelligently distributed among the router nodes. The benefit of the
approach proposed is evident for both networks.

Page 11

TU Berlin Section 2

Chapter 2

A Review of Network-Based
Intrusion Detection and Prevention

In this chapter an overview of network-based intrusion detection and prevention systems is
given. Initially, communication networks including active/programmable routers are intro-
duced in Section 2.1. Afterwards a general definition of a network-based attack is given in
Section 2.3. In addition, we discuss security threats as well as the corresponding security
services in the same section. Subsequently, a general intrusion detection/prevention system
architecture and a method to classify them is given. Further the section elaborates on the
differences between intrusion detection and prevention systems, and it also discusses the hard-
ware that is used for the realization. Finally, the section describes how to evaluate intrusion
detection and prevention systems. In Section 2.4 network information gathering techniques
are discussed.

2.1 Communication Networks

The concept introduced in this thesis is designed for networks using the Internet Protocol
version 4 (IPv4) for data transmission. In this context, we remark that our view of a com-
munication network is restricted to network elements that operate on the network layer and
higher layers of the Open Systems Interconnection Basic Reference Model (OSI). Accordingly,
the topology of a communication network is specified by a varying number of end-systems
that are connected with each other over a set of routers and links. Network components that
operate in the data link layer like hubs or switches remain invisible to us.

A link is a passive component of a specific capacity and delay whereas a router forwards
and routes IP packets. To do so it inspects the packet headers of arriving IP packets and
checks the local routing table to identify the outbound interface. Finally, an end-system’s
configuration is defined by its hard- and software. The former includes among others the Cen-
tral Processing Unit (CPU) and the chipset used. The software configuration is determined
by the Operating System (OS) and the applications that are running on the system. Finally,
end-systems are both sender and receiver of network traffic. Measurements of local-area [88],
[136] and wide-area [107] network traffic have shown that packet-switched data traffic is self-
similar. A self-similar object is exactly or approximately similar to a part of itself, a popular

Page 12

TU Berlin Section 2.2

example are fractals as they can be divided into parts and each part is a reduced copy of the
whole. In the context of network traffic self-similarity means that packet bursts, also known
as packet trains, appear on a wide range of time scales.

In practice, the topology of a network steadily changes. A reason for this are end-systems
that are connected to the network via dial-in lines and consequently, they are not permanently
part of the network. Another reason would be a newly connected web-server. Furthermore,
the configuration of an end-system might change over the time. New applications/services can
be installed and launched on it. We assume the network topology as well as the end-systems
configurations to be static.

Next, the routing defines the path over which data is sent from a sender to a receiver.
Routing algorithms can be classified static or dynamic. A static routing algorithm calculates
routes which are valid forever and in contrast a dynamic routing algorithm considers the
network state and is able to adapt the routing topology. For instance, the dynamic routing
protocol Open Shortest Path First (OSPF) is able to recalculate routes due to link-/router-
failures or overload situations. In this thesis we do not consider dynamic routing protocols.

Apart from that also source- and destination-address of an IP packet can be modified
by network elements doing Network Address Translation (NAT) [17]. Throughout the thesis
NAT is not considered any further. In the networking scenarios considered by us a set of
routers is replaced by active routers that are explained in the following section.

2.2 Active/Programmable Networking Technology

Active/programmable networks provide a framework for flexible and rapid service creation
on top of existing networks and they were considered as a new networking paradigm in the
early 90’s [36, 128]. In an active network, the routers or switches of the network perform
customized computations on the messages flowing through them. Or in other words, an active
node is expected to offer multiple active networking services.

The concept of active networking was intended to satisfy emerging user demands as well
as service provider demands, to facilitate the integration of new technologies into existing
networks and to improve the overall network performance. Service examples are media
transcoding services, network security enhancing services, protocol boosters, proxies and
overlay networks [66, 137, 21].

Active networks are classified discrete or integrated [129]. The discrete active networking
approach separates the transport of active networking service and input data. This means,
active service installation and message processing are independent of each other [57, 82]. In
detail, active services are installed on chosen active nodes in advance. Each active node
examines the arriving packets and forwards them to the appropriate active service(s).

In contrast to this, the integrated approach uses smart packets so-called capsules that
have their own executable code [134, 13, 117]. A capsule is a combination of a program (or
a small fragment) and input data which is automatically executed at each active router it
traverses. The programs that are included in a capsule are assumed to consist of simple
instructions.

Summarizing, the integrated approach prefers simplicity to security as further manage-
ment or evaluation functionality is not required. In contrast, the discrete approach is adequate

Page 13

TU Berlin Section 2.2

Figure 2.1: The AN architectural framework

for complex active services which can hardly be realized as capsules. In addition, the discrete
approach seems to be more applicable for active services that are expected to run permanently
like security enhancing services. For example, an intrusion detection service is intended to
inspect all packets that are routed through an active node and thus, it is required to run
permanently. Moreover, we assume a programmable networking environment to provide the
following capabilities:

• the programmable environment must allow to add/remove services at runtime,

• the programmable infrastructure must support the deployment of chosen services on
specified programmable routers at a given time,

• the programmable infrastructure must be able to dynamically relocate a service from a
programmable router to another one, and

• the programmable infrastructure must provide means to securely exchange information
between programmable routers.

In the remainder of this section we introduce the fundamental discrete active node architec-
ture which is depicted in Figure 2.1 and that was developed by the DARPA active network
community [35, 63].

The primary functional components are the Node Operating System (NodeOS) and the
Execution Environments (EEs). Each entity of an active networking service runs inside an

Page 14

TU Berlin Section 2.3

EE which provides the interface through which the networking services are provided to users.
In addition, an active node is expected to offer multiple active networking services, each one
running in its own EE, and accordingly, it is required that the EEs are completely indepen-
dent of each other. The NodeOS manages the requests for local resources of the EEs. An
active networking service triggers its EE to send a resource request to the NodeOS in case
that the service requires access to the local resources (e.g. memory). The NodeOS in turn
forwards the request to the security enforcement engine which consults the policy database
whether to fullfil the request. The connections between network and active networking ser-
vices are realized via channels. Arriving packets are analyzed by an active node which in turn
inserts them in the channel connected to the EE that runs the specified active networking
service. The active networking service processes the incoming packets and sends them subse-
quently via the connected outgoing channel. Finally, the management execution environment
component is responsible for node configuration aspects as for example the modification of a
security policy.

A detailed description of the architecture is given in[62]. It was picked up by many later
active networking projects, as for example the AMnet 2.0 architecture [57].

However, challenging security issues are related to the operation of active networks [97].
Network operators do not feel comfortable about executing ”arbitrary code” on routers in
the network and in addition, users may have the authorization to install active services.
Accordingly, an active node itself could be the victim of an attack, or the active node itself
could be exposed to attack other end systems. This topic as well as a corresponding concept to
address the security isssues of programmable networks are discussed in references [67, 68, 69].

2.3 Intrusion Detection and Prevention Systems

”Intrusion Detection is the process of identifying and responding to malicious activity tar-
geted at computing and networking resources” [14]. The concept of an intrusion detection
system (IDS) was introduced in 1980 by Anderson [16]. A few years later Denning formal-
ized a first intrusion detection model that tried to detect anomalies based on profiles that
characterize the behavior of subjects/users with respect to objects/system’s resources [51].

2.3.1 What is an Attack?

Many slightly varying definitions of a network attack exist. For example, Schäfer defines an
attack as the actual realization of a threat, whereas a threat is any possible event or sequence
of actions that might lead to a violation of one or more security goals [115]. Lindqvist and
Jonsson define an intrusion as a successful attack that consists of: 1.) an attack which
exploits a security flaw (aka vulnerability), and 2.) a breach (aka compromise) which is the
resulting violation of the security policy [89]. The definition of an attack used throughout
this thesis is more general:

An attack is any sequence of actions that changes the behavior of a
system in an unwanted way.

Since the emergence of network attacks, researchers made an effort to categorize them
(e.g. [38, 89, 99, 122]). In the following two attack taxonomies are presented: the process-

Page 15

TU Berlin Section 2.3

Communication

Information

Source

Information

Destination

(a) Normal flow

(b) Interruption (c) Interception

(d) Modification (e) Fabrication

Figure 2.2: Security attacks

based taxonomy from Stallings [122] and the threat-based taxonomy of Schäfer [115].
Stallings introduced a process-based taxonomy [122] differentiating between four attack

techniques (see Figure 2.2): interruption, interception, modification and fabrication.
Figure 2.2(a) depicts a normal communication flow; an information source produces data and
sends this data to the chosen information destination.

An interruption attack (see Figure 2.2(b)) prevents that all data sent by the information
source is received by the information destination. Attacks in this category do a denial-of-
service (DoS) attack against communication acts. For example, an attacker could try to
overload the victim’s link such that packets will be dropped. Another possibility, would be
to physically destroy the communication channel between source and destination.

The consequence of an interception attack (see Figure 2.2(c)) is that an unauthorized
third party gets access to the information. For example, an attacker could eavesdrop the
communication channel between source and destination. Generally, it is difficult to notice
such an attack as all information is correctly received by the destination. A modification
attack (see Figure 2.2(d)) manipulates the information that is sent from the source to the
destination. A requirement for such an attack is that the attacker has access to a router/

Page 16

TU Berlin Section 2.3

network device that is on the data-path between source and destination. Finally, in case of
a fabrication attack (see Figure 2.2(e)), an attacker creates counterfeit messages—using the
information source’s identity—and sends them to the information destination.

In contrast, Schäfer distinguishes between the following technical threats:

• Masquerade: An entity pretends to have the identity of another entity.

• Eavesdropping: An entity reads information that is meant for someone else.

• Authorization violation: An entity uses services or resources although it does not have
appropriate permission.

• Loss or modification of information: Certain information is destroyed or modified.

• Forgery: An entity creates new information using the identity of another entity.

• Repudiation: An entity falsely denies having participated in a particular action.

• Sabotage: Any action that is aimed at reducing the availability or correct functioning
of services or systems.

In reality, a concrete attack often involves a combination of the threats mentioned above.
An intrusion into a system often involves sniffing the access identification and related pass-
word. The identity of the sniffed identification is then provided for the access check with the
latter representing a masquerade.

Nevertheless, for the purpose of identifying intrusions (definition: the unwanted changing
of the behavior of systems) it is a mandatory prerequisite to precisely define a corresponding
security policy. A security policy is the set of rules, principles, and practices that determine
which security goals should be realized in what fashion. Basically, the following security goals
are distinguished:

• Confidentiality: Transmitted or stored data should only be disclosed to authorized
entities.

• Data integrity: It should be possible to detect unintentional or deliberate changes to
data. This requires that the identification of the originator of the data is unique and
cannot be manipulated.

• Accountability: It must be possible to identify the entity responsible for a particular
event (e.g., use of a service).

• Availability: The services implemented in a system should be available and function
properly.

• Controlled access: Only authorized entities should be able to access certain services
and data.

Next, security services are applied to enforce the security goals defined in a given security
policy. In detail, the following security services exist:

Page 17

TU Berlin Section 2.3

• Authentication: the process of determining whether someone or something is, in fact,
who or what it is declared to be.

• Integrity: is the assurance that data created by a specific entity cannot be modified
by third without being detected; accordingly the security service of integrity requires
authentication.

• Confidentiality: is the process of ensuring the secrecy of protected data.

• Access control: is the process of permitting or denying the use of an object (e.g. a
system or file) by a subject (e.g. a user or a process).

• Non repudiation: is the process of of ensuring that a communication peer cannot
later deny its participation.

Further, each security service belongs to one of the following three general categories [85]:

• Attack Prevention: the set of security mechanisms that protect systems against at-
tacks by restricting access to critical resources. An important member of this category
is the technique of access control which is used to define or restrict the rights of autho-
rized users, application programs, systems, or processes to information system resources
(e.g. multi-user computer system, firewall).

• Attack Avoidance: this set of security mechanisms is applied in case that an attacker
has access to the critical resource like a message that is transmitted over the public
Internet. Then the information is transformed in manner that makes it useless to an
attacker. A technique to secure information is cryptography.

• Attack Detection: the security mechanisms in this set actually do not protect system
resources, they rather identify attacks/attack attempts that take or have taken place.
Intrusion detection systems belong to this category. Attack detection is an important
prerequisite for the recovery process of compromised systems.

The focus of this thesis is on network-based techniques to prevent attacks from becoming
successful. Hence, the subsequent section discusses the concept of a firewall which is the
most widely-used approach to protect end-systems against attacks.

2.3.2 Access Control

Access control is the process of permitting or denying the use of an object by a subject. In
the context of network security, the most common applied access control mechanism is a
firewall. A firewall controls the network traffic that might enter/leave the trusted network in
accordance with a set of rules specified in the security policy. A personal firewall is placed on
an end-system whereas a network firewall runs on a dedicated network device like a gateway
router for the purpose of:

• restricting traffic to enter at one carefully controlled point,

• restricting the traffic that may enter corresponding to rules (source-address, destination-
address, protocol, etc) and

Page 18

TU Berlin Section 2.3

• restricting traffic to leave at one carefully controlled point.

Moreover, firewalls are further categorized into network layer and application layer firewalls.
Network layer firewalls–despite their name—operate on the network (IP) and transport layer
(UDP/TCP). Accordingly, a network administrator is able to specify rules using attributes
like: IP source/destination address, source/destination port or specific protocol flags (e.g.
TCP SYN or ACK flag). In contrast, an application layer firewall, which most often consists
of a set of proxy servers allows for a more fine-grained access control on the application
layer. A proxy server is a server that acts as an intermediary between end-systems and
the Internet. Initially, all end-systems’ requests for Internet services are sent to that proxy.
Next, those requests that are authorized by the security policy are executed by the proxy
server. An example would be an application layer firewall that can be configured to allow
WWW-requests only for a set of authorized Uniform Resource Locators (URL).

A further distinctive feature is whether a firewall keeps state or not. A stateful firewall
keeps track of network packets over a specified period of time in order to block packets that
do not belong to an existing communication. For example, a stateful firewall observes the
3-way handshake of TCP peers for the purpose of evaluating whether packets belong to an
established TCP session. A stateless firewall does not keep track of past events.

Finally, it must be stated that firewalls cannot protect against new threats, viruses or
worms which is the scope of intrusion detection and prevention.

2.3.3 Intrusion Detection and Prevention System Architecture

The Common Intrusion Detection Framework (CIDF) working group made an attempt to en-
able and facilitate the cooperation of different intrusion detection components/systems [125]
by developing a general IDS-architecture that consists of components that can be found in
most common IDSs:

• event generators/E-boxes: an E-box is the interface between the IDS and the compu-
tational/networking environment. It collects data and generates events based on that
data. An exemplary E-box is a filter that passively monitors a network and which
generates events based on the traffic gathered.

• event analyzers/A-boxes: an A-box receives the events from the E-boxes, analyzes them
and generates new ones. An example is an A-box which tries to detect specific attack
signatures in the events.

• event database/D-boxes: D-boxes are used to store events and accordingly, D-boxes
allow for an exhaustive postmortem analysis.

• response units/R-boxes: response units receive and process the events produced by the
event analyzers. This might include actions like the killing of processes or the resetting
of specific connections. R-boxes consume events.

Figure 2.3 depicts a CIDF representation of an exemplary network-based IDS. The E-box
copies the network traffic and forwards it to the three A-boxes constituting the first stage
of the analysis process. Each A-box of the first stage analyzes the network traffic in terms

Page 19

TU Berlin Section 2.3

D-box

A-boxA-boxA-box

E-box

A-box

R-box

Network traffic

Stage 2

Stage 1

Figure 2.3: CIDF representation of an exemplary IDS-architecture

of malicious contents and forwards its result to the A-box of stage 2. The A-box of stage 2
correlates the results of stage 1 and initiates the adequate response by instructing the R-box.
In addition, it forwards the information to be logged to the D-box.

2.3.4 Taxonomy of Intrusion Detection and Prevention Systems

Much research was done in the field of intrusion detection leading to a multitude of ap-
proaches. According to the taxonomy given in [50] IDSs can be categorized on the basis
of:

• audit source location: host-/network-based

• the detection method: anomaly/misuse

• behavior on detection: passive/active

• usage frequency: continuous/periodic

• state awareness: stateful/statelss

First, IDSs are categorized into the two types network intrusion detection systems (NIDS)
and host-based intrusion detection systems (HIDS). A NIDS monitors packets on the network
wire and attempts to discover if a hacker is attempting to break into a system. A typical
example is a system that watches for large number of TCP connection requests (SYN) to many
different ports on a target machine thus, discovering if someone is attempting a TCP port
scan. In contrast, a HIDS is locally installed on an end-system and it focuses its monitoring
and analysis on the internals of the system rather than on its external interfaces. For example
a HIDS monitors which processes try to access/modify the local password file.

Second, the evaluation method whether or not an attack is taking place differ between
IDSs. The anomaly technique assumes that all intrusive activities are necessarily anoma-
lous. Thus, if it would be possible to create a “normal” behavior pattern of a system/

Page 20

TU Berlin Section 2.3

communication network, every occurrence that does not accord to this pattern would be
identified as an intrusion. Thereby, the main problem is the creation of the behavior pat-
terns. Different approaches have been discussed including e.g. neural networks but still
many problems exist. Another drawback of this method is that it is not possible to identify
an attack by name. The system detects an anomaly but it is not inevitably able to link the
anomaly to a specific attack and, hence it is difficult to invoke adequate countermeasures. In
contrast thereto, the misuse detection technology (aka signature detection) scans the gath-
ered information (e.g. network traffic) for known attack signatures. An alert is generated in
case that the gathered information matches an attack signature. A simple signature example
is the Land-attack, the source and destination IP addresses in a packet are the same” [102].
The strength of this approach is that each detected attack is named correctly which helps
invoking the correct response. But one drawback hereby is that a signature-based IDS is
only able to detect known attacks and that the signature database must be continuously
maintained. Furthermore, through the crafting of numerous packets which match attack sig-
natures, alarms on an IDS can be conditioned or disabled and then exploited [105], [141]. An
attacker who uses existing evasion techniques could trick signature-based IDSs. For example
one instruction belonging to the Nimda-attack [92] trying to exploit the so-called “Directory
Traversal” vulnerability could look like:

• GET /SCRIPTS/../../winnnt/system32/cmd.exe?/c+dir,

• GET /SCRIPTS/../../winnnt/system32/cmd.%65xe?/c+dir,

• GET /SCRIPTS/..%c0%af../winnnt/system32/cmd.exe?/c+dir.

The given instructions look different but they are identical. Either an attack signature is
generated for each thinkable permutation or appropriate functions are integrated into the
IDS. In the first case, an enormous amount of attack signatures must be managed by the
IDS. Nevertheless, a modern IDS should be able to upgrade the set of attack signatures and
to integrate new functionalities in order to react on newly detected evasion techniques.

Third, IDSs differ in their response to attacks. An active IDS provides a certain set of
response mechanisms to an attack like:

• the re-configuration of a firewall or

• the sending of a TCP RESET packet in order to stop the attack session (only applicable
to TCP based attacks and obviously, this results in a race condition between attack
and response mechanism)

• etc.

Active IDSs are also known as intrusion detection and response systems (IDRS). In contrast,
a passive IDS solely triggers an alert that an attack was detected.

Fourth, IDSs are categorized in accordance to their usage frequency. A real-time IDS
must run continuously whereas some distributed systems do an periodical offline audit as
they collect the log files from different sensors in the network.

Fifth, the distinctive feature of stateful and stateless IDSs is added. A stateful IDS
keeps track of a certain amount of packets allowing to detect more sophisticated attacks—for

Page 21

TU Berlin Section 2.3

example attacks that span multiple packets. A stateless IDS solely inspects one packet a time
and accordingly, stateless IDSs miss many attacks. Today, most IDSs are stateful.

2.3.5 Difference between Intrusion Detection and Intrusion Prevention

Most network-based IDSs do a passive packet analysis (see Figure 2.4). This means a promis-
cuous network device or a sniffer creates copies of the network traffic and hands those to the
analysis engine. In CIDF terminology, the E-box copies the network traffic and forwards it
to the A-box(es). The strengths of the passive packet analysis are that it does not degrade
the network performance and that the presence of a promiscuous network device is hard to
detect by other machines.

However, Ptacek revealed in his seminal report [72] fundamental flaws of the passive packet
analysis technique. He demonstrates that a skilled attacker might use evasion techniques—
which exploit ambiguities in the network traffic as seen by the NIDS—for the purpose of
avoiding detection by a NIDS. Traffic ambiguities occur due to the fact that ”there isn’t
enough information on the wire on which to base conclusions about what is actually happening
on networked machines”.

For example a NIDS must be capable to reassemble overlapping/out-of-order IP fragments
in the same manner as the receiving end-system; different OSs reassemble overlapping/out-
of-order fragments in different manners. This means that in case of overlapping fragments
addressed to a Windows NT 4.0 host, the NIDS must favor old data while reassembling. If the
fragments are addressed to a Linux host, the NIDS must favor new data while reassembling.
A related problem is the question of which packets a NIDS should accept in order to process
identical packets as the end-hosts. For example some end-hosts will accept source routed
packets, but many will not. What about a packet seen by the NIDS that has a TTL of 2,
does it reach its destination or not?

Further, as a matter of principle, passive packet analysis IDSs are fail-open, which means
that the IDS does not provide any further protection in case that it is crashed/overloaded.
Accordingly, in case of a denial of service attack that tries to exhaust the victim’s resources
by flooding it, a fail-open IDS ceases attack detection. In contrast, a fail-close IDS would
block all traffic in case it crashes. A thorough discussion of the general flaws of network-based
intrusion detection systems can be found in the technical report of Ptacek [72].

For the purpose of addressing the above mentioned issues a NIDS should be provided
with:

• knowledge about the network,

• mechanisms that allow to identically process and interpret the packets as the receiving
end-system and

• a fail-close mechanism.

With regards to the second aspect, it must be taken into account that standards do not
specify the complete behavior of network protocols and hence, it is not sufficient to supply an
IDS with a protocol stack that is compliant to the standard. Actually, an ideal IDS should
be supplied with mechanisms that allow to accurately reproduce the protocol stack behavior
of all existing network protocol implementations.

Page 22

TU Berlin Section 2.3

Besides this, the following approaches are considered to eliminate the network traffic
ambiguities of an IDS:

• The deployment of a HIDS on each end-system which guarantees an accurate view of
the network traffic. But the operation of a HIDS on every system implicates a huge
management effort as each system must be deployed, configured and maintained.

• Gathering and providing the required network knowledge (network topology, end-systems
OSs). The challenging issue is to identify which host is running what operating system
(version, patch-level). Tools that assist the knowledge gathering process—like network
scanners as nmap [58]—exist and and are emerging.

• The bifurcating analysis technique creates multiple analysis threads in order to examine
each of the possible traffic interpretations for malicious content [106]. The approach
scales well as long as the number of possible interpretations is rather small.

• The operation of a traffic normalizer [65] which is deployed directly in the path of traffic
for the purpose of eliminating traffic ambiguities. For example, a traffic normalizer
effaces fragmentation specific ambiguities by reassembling the IP fragments itself before
forwarding them. But it must be taken into account that traffic normalization might
affect end-to-end semantics and in addition, traffic normalization has an impact on
the network performance (e.g. a packet cannot be reassembled until all fragments are
received by the traffic normalizer).

Based on the technology of traffic normalizers IDSs started to evolve into inline intrusion
detection systems. An inline IDS is directly in the data path and packets are either routed
through or bridged across it, both allowing to normalize the traffic to a certain degree. Next,
inline IDSs that allow to block attacking packets are called intrusion prevention systems
(IPS). Table 2.1 lists for the concepts of IDS and IPS the architectural differences, the dis-
advantages and the strengths.

First, the approaches differ in the realization of the E-box. IDSs do a passive packet
analysis whereas IPSs do an active packet analysis routing all traffic across the IPS itself
and, consequently, an IPS must at least be supplied with two network interface cards (NICs).
The system receives the packets on one NIC, analyzes them and sends them—in case of
benign communication activities—out via the other NIC. In addition, the realization of the
E-box determines the behavior of the IPS in overload situations and in the unlikely event of
an IPS crash. In this context an E-box can either be designed to drop packets (fail-close) or
to forward them un-inspected (fail-open).

Second, IPS and IDS differ in the functionality of the R-box(es). Generally, an IDS is
not designed to prevent attacks rather than to inform about an ongoing one. IDS response
mechanisms—if available at all—are limited to actions like the sending of a TCP RESET
packet or the reconfiguration of a firewall. Obviously, this results in a race condition between
attacker and response mechanism (often in favor of the attack). In contrast, the purpose
of an IPS is to efficiently stop attacks by doing access control up to the application layer
meaning that packets which belong to an attack can actually be filtered by the IPS. In other
words, an IDS analyzes a copy of the network traffic whereas an IPS analyzes the original
traffic. However, the evaluation method whether an attack is taking place—the realization

Page 23

TU Berlin Section 2.3

Table 2.1: A comparison of IDS and IPS

IDS IPS

E-box Copies network traffic and forwards
it to the A-box(es)

Redirects the original network traf-
fic to the A-box(es)

A-box For the purpose of identifying an attack IDS and IPS both use the same
set of detection techniques/algorithms

D-box IDS and IPS both provide the same set of logging capabilities

R-box Commonly integrated response
mechanisms—if present at all—are
limited to the re-configuration
of a firewall or the sending of
a TCP RESET packet in order
to stop the attack session (only
applicable to TCP based attacks).
But obviously, this results in a
race condition between attack and
response mechanism (often in favor
of the attack).

Theoretically, an IPS provides the
same set of response mechanisms
like an IDS but these are not re-
quired as an IPS additionally pro-
vides the capability to drop/filter
the attacking packets. The IPS ap-
proach allows for a fail-close realiza-
tion.

Weaknesses

• vulnerable to traffic ambigui-
ties

• fail-open

• impact on the network perfor-
mance

• traffic normalization might af-
fect end-to-end semantics

Strengths

• does not affect normal net-
work operations

• allows for efficient protection

• reduces traffic ambiguities

• fail-close (optional)

of the A-box(es)—do not differ between IDS and IPS because both can use the same set of
anomaly- and misuse-detection techniques respectively. Analogous is the realization of the
D-box(es) as there is no conceptually difference between IDS and IPS. An important rule of
thumb is that a good IPS can always be operated as an IDS.

Summarizing, an IPS allows to efficiently protect end-systems against attacks and in

Page 24

TU Berlin Section 2.3

Table 2.2: A Comparison of existing Security Technologies

Technology Function Strength Drawback

Firewall blocks or permits
traffic according
to specified rules

real-time filtering no attack detec-
tion functionality

Misuse-based IDS screens gathered
data for known
attack traffic pat-
terns

clear identifica-
tion of attacks

fails to detect un-
known attacks,
in addition,
multiple evasion
techniques exist

Anomaly-based IDS observes gath-
ered data for
anomalies

detection of un-
known attacks

high false alarm
rate

IPS screens original
network traf-
fic for attacks
making use of
anomaly and
misuse detection
methods

provides an
efficient pro-
tection against
attacks as ma-
licious packets
are immediately
filtered

the operation of
an IPS has an
impact on the
network perfor-
mance as each
packet is ana-
lyzed in terms
of malicious
content before
being forwarded

addition, an IPS can be realized in a fail-close manner. The disadvantages in the operation
of an IPS are that an IPS has an impact on the network performance as each packet is
analyzed in terms of malicious content before being routed. Further, an IPS normalizes the
network traffic to a certain degree which might affect end-to-end semantics.

The concepts of IDS and IPS are not contradicting. An IDS does not become obsolete due
to the existence of an IPS. The intention of an IDS is to monitor a networking/computing
environment in order to identify malicious activities like an ongoing network attack. An IDS
does not provide an efficient protection against network attacks whereas an IPS prevents
attacks from becoming successful by filtering the corresponding packets. An IPS combines
the blocking capabilities of a firewall with the more thorough packet inspection of an IDS.
IDS and IPS can be operated in a complementary manner. The IPS is assigned to filter out
the attacks and the IDS monitors if the IPS succeeded. Table 2.2 summarizes the distinctive
features, the advantages and the disadvantages of the discussed techniques.

Page 25

TU Berlin Section 2.3

Host A Host B

NIDS

Data Path

Sniffing

(a) Passive

Host A Host B

NIDS

Data Path

(b) Active

Figure 2.4: Packet Analysis

2.3.6 Approaches to Realize Intrusion Detection and Prevention Systems

In realizing an IDS or IPS two general approaches exist: hardware-based and software-
based. Hardware-based intrusion prevention systems consist of special purpose hardware
like Application-Specific Integrated Circuits (ASIC) and Field Programmable Gate Arrays
(FPGA). In contrast software-based IPSs consist of General Purpose Processors (GPP) and
potentially of Network Processors (NP). Hybrid approaches make use of special purpose
hardware as well as of GPPs and NPs. A GPP is an integrated circuit (IC) which is not
specifically developed for an application. The strength of a GPP is its flexibility, its generic
instruction set allows to implement a great variety of applications. In contrast a network
processor (NP) is an IC that contains an instruction set that is optimized for the processing
of information contained in packets headers (OSI/ISO layers 2. 3 and 4). Consequently,
header fields (e.g. IP-/TCP-header) are more efficiently evaluated by a NP compared to a
GPP. But a GPP, for example, is faster in searching for attack patterns in a packet’s payload.
A Field Programmable Gate Arrays (FPGA) is an IC that can be programmed to do a set
of operations on the data passed to it. Moreover, a FPGA can be reprogrammed in order
to change the set of operations performed by it. But the task of reprogramming FPGAs is
still complex [29]. Finally, an Application-Specific Integrated Circuit (ASIC) is an IC that is
specifically designed for a purpose. It contains hard coded instructions which it performs on
the data passed to it. An ASIC cannot be reprogrammed but in comparison to a FPGA it
is faster and it is cheaper in case of high production volumes. The initial costs to launch the
production of a specific ASIC are not negligible. An overview of the strengths and drawbacks
of the mentioned components is given in Table 2.3.

2.3.7 Evaluation of Intrusion Detection and Prevention Systems

The evaluation of an IDS/IPS is the systematic determination of its value for a networking
environment including answers to questions like how well does a given system detect intrusions
and how much effort is necessary to tune this system for a given networking environment?

Initially, an alarm generated by an IDS/IPS does not inevitably indicate the happening

Page 26

TU Berlin Section 2.3

Table 2.3: A Comparison of Hardware used for IPSs

Hardware Description Strength Drawback

GPP An IC that contains
a generic instructions
set; a GPP is not
designed for a spe-
cific application but
rather for a great
spectrum of applica-
tions

The provided in-
structions allow for
the implementation
of a great spectrum
of operations

Tradeoff between
provided capabilities
and performance

NP An IC that is specif-
ically designed for
the processing of net-
work traffic; contains
a specific instruction
set for processing lay-
ers 2,3,4 headers

Very efficient in ana-
lyzing packet’s head-
ers

Inefficient in analyz-
ing payload

ASIC An IC that performs
a set of hard-coded
instructions on the
data passed to it

Very fast and cheap
in case of high pro-
duction volumes oth-
erwise the costs per
ASIC are high

Lack of flexibility; an
ASIC is customized
for a specific oper-
ation(s) and it is
not possible to repro-
gram it

FPGA An IC that can be
programmed to per-
form certain opera-
tions on the data
passed to it

Gain of flexibility
compared to ASIC
due to programma-
bility

Lower performance
compared to an
ASIC; the process
of programming
a FPGA is still
complex

of an attack, it rather represents one of the following scenarios:

1. alarm/true positive: an IDS/IPS correctly identifies an attack which would harm
the targeted end-system.

2. false positive:

• an IDS/IPS thinks that the inspected network traffic belongs to an ongoing attack
although current activity is benign.

Page 27

TU Berlin Section 2.3

• an IDS/IPS correctly identifies an attack but the attack is non-threatening or not
applicable to the site.

3. false negative: a non-event and thus not correlated to an alarm, indicating that the
IDS/IPS failed to identify an applicable attack.

Based on the given alarm categories it is possible to evaluate IDSs/IPSs by using one or
more of the metrics that were introduced in [50, 85, 109]:

• accuracy: this metric represents that capability of an IDS/IPS to differentiate between
legitimate and illegitimate actions (aka false positive rate). Namely, an IDS/IPS should
not identify legitimate actions as illegitimate.

• completeness: an incomplete IDS/IPS fails to detect the entirety of all attacks. In
practice, it is hard to evaluate this metric because it would require knowledge of uniden-
tified attacks, which is not available.

• performance: the performance of an IDS/IPS is the rate at which audit events are
processed. This is the decisive factor whether an IDS is qualified for doing real-time
intrusion detection. Regarding an IPS the performance is the limiting factor in terms
of how much traffic can be analyzed.

Besides the given metrics, an IDS/IPS should also respect the properties of:

• fault tolerance: an IDS/IPS itself must be resistant against attacks.

• scalability: an IDS/IPS must always be able to process all events without ignoring
any. With respect to steadily growing traffic volumes and increasing number of attacks
this is an important property especially for network-based IDSs/IPSs.

Despite the given and measurable metrics like performance it remains difficult to compare
multiple IDSs/IPSs. First, one IPS can be tuned for a test such that it just tests for those
attack patterns that will be included in the network traffic whereas other IPSs check for all
known attack pattern. Or, some system may keep state whereas others do not. Second, the
traffic mix used for the evaluation of the IPSs has a strong impact on the individual results.
An example are single packet attacks versus multiple packet attacks or the fraction of IP
fragments.

The issue of evaluating IDSs is still an open topic in the research community. Up to
now no standard has been specified. An overview of is given in [94]. The need for an stan-
dardized evaluation process for IDSs was also recognized in 1998 by the Defense Advanced
Research Projects Agency (DARPA) which in turn initiated with the help of the MIT Lin-
coln Laboratory (MIT/LL) the DARPA Intrusion Detection Evaluation project. The project
created—based on network traffic that was collected at an Air Force base—the first formal
and repeatable evaluation process for IDSs [44, 64]. But the traffic traces collected in 1998 do
not any longer represent a realistic traffic mix which still can be observed in today’s networks.

Another issue is addressed by Axelson who explains the base-rate fallacy phenomena for
intrusion detection systems [20], saying that the effectiveness of an IDS is determined by the
ability of the system to suppress false alarms. He further deduces that an effective IDS has
to achieve a false positive rate in the challenging order of 1 · 10−5 per event.

Page 28

TU Berlin Section 2.4

2.4 Gathering Network-Related Information

An attack requires the existence of a concrete vulnerability to succeed. For example, the
Code Red attack exploits a buffer overflow of certain versions of Microsoft’s IIS (with enabled
indexing service). To qualify IDS alerts into false positives and true positives it is essential to
know whether the attack that triggered the corresponding alarm can actually harm the victim.
The process of identifying and quantifying vulnerabilities in a system is called vulnerability
assessment (VA). In addition, VA is also used to appropriately configure IDSs.

Generally, three techniques exist to gather vulnerability information: active scanning,
passive fingerprinting and cooperation. An active vulnerability scanner sends specifically
crafted packets to well defined addresses and evaluates the replies. The scanner either operates
in an intrusive or non-intrusive manner. The former technique identifies the vulnerabilities of
an end-system by actually exploiting them. On the one hand the results gained are accurate
but on the other hand this might result in a service-/system-crash. In contrast, a non-intrusive
network scanner identifies a vulnerability on the basis of the type and version of a running
service. Consequently, the results produced by a non-intrusive network scanner are not as
accurate as the results of an intrusive one, but normal network operations are not affected
by it. Either way, the gathered vulnerability information is only as current as the latest scan
and accordingly, the questions arise of when and how often to scan? In addition, an active
scanner creates traffic for the purpose of identifying end-systems. What might result in a
huge amount of scanning tasks for large networks.

The passive fingerprinting technique uses a network interface card (NIC) in promiscuous
mode to sniff the network. On the one hand the passive fingerprinting technique does not
collide with normal network operations but on the other hand it is impossible to predict the
point in time when all end-systems of an network will be identified. End-systems that do
not communicate cannot be detected by the passive fingerprinting technique, but still, those
systems are potential victims.

The cooperation technique requires an agreement between end-systems and network anal-
ysis tool. One approach is that each end-system runs a small application that registers at
the analysis tool and subsequently, it provides the analysis tool with the required knowledge
in terms of operating system and running applications. In a second approach, the network
analysis tool logs into the end-systems and autonomously gathers the relevant data, but the
end-systems must provide a login to the network analysis tool. The advantage of the cooper-
ation technique is accuracy. Operating system and running applications—including version
number and patch level—are precisely identified. But not all users feel comfortable about
either running a small network analysis client application on their machines or providing a
login to the network analysis tool.

Host Discovery

This section describes existing methods—starting with the active ones—to detect end-systems
in a given network. The first method is to query the Domain Name System (DNS) which
stores information associated with domain names in a distributed database. For example,
it translates Internet domain names into IP addresses and vice versa, a DNS reverse lookup
resolves an IP address into a domain name. But not every end-system of a network is

Page 29

TU Berlin Section 2.4

necessarily registered in the Domain Name System and in addition, the existence of such an
entry does not guarantee that the corresponding system really exists.

Moreover, the Internet Control Message Protocol (ICMP) provides mechanisms to dis-
cover the hosts in a network. A straightforward approach—also known as ping sweep—is
to send an ICMP Echo Request message to each potential target IP address. In accordance
to RFC 1122 [31], a running end-system should answer by sending an ICMP Echo Reply
message. The same result can be achieved by sending ICMP Echo Requests to the specific
addresses x.x.x.0 (network address) and x.x.x.255 (broadcast address). But two problems
may arise. Systems can be configured to remain silent upon the reception of an ICMP Echo
Request message and ICMP Echo Requests addressed to specific network addresses can be
filtered.

A more enhanced technique to discover the end-systems of a network is to provoke ICMP
error messages:

1. an ICMP Destination Unreachable Protocol Unreachable message (Code 3 Type 2) is
sent by a host in case that it received an IP packet with an unused protocol number.
Protocol numbers 134−−254 are currently not used.

2. an ICPM Destination Unreachable Port Unreachable message (Code 3 Type 3) is sent
by a host in case that it received an UDP/TCP packet which is addressed to an unused
port.

3. an ICMP Time exceeded Fragment Reassembly Time Exceeded message (Code 1 Type 11)
is sent by a host in case that it only received the first part of a fragmented IP packet. Af-
ter a certain period of time the host discards the first part and generates the mentioned
error message.

It must still be taken into account that ICMP is not reliable and, accordingly, it might happen
that an ICMP error message get lost on the way. Hence, in cases that no response is received
from a scanned address the scan should be repeated for the purpose of accuracy.

In contrast to the active methods presented above, the hosts of a network can also be
passively identified by observing source and destination addresses of the network traffic. But
passive host identification is accurate only if all hosts produce network traffic that can be
observed.

Remote Service Discovery

Now, once the end-systems of a network are known, it is of interest what services are offered
by each host. The most common active technique to identify running services is to do a
portscan. The seminal paper of Fyodor [59] introduces:

• TCP connect scanning,

• TCP SYN scanning,

• TCP FIN scanning,

• TCP ftp proxy scanning,

Page 30

TU Berlin Section 2.4

• SYN/FIN scanning using IP fragments,

• UDP recvfrom() scanning,

• UDP raw ICMP port unreachable scanning.

The two first scanning methods are shortly explained in the following, a detailed description
of all listed methods is given in [59]. A TCP connect scan executes the connect command
of the local operating system which tries to establish a TCP connection with the specified
destination (IP-address and TCP port). The system-call succeeds in case that the counterpart
listens on the addressed port. Moreover, the usage of non-blocking system calls allow to scan
in parallel many ports on the target machine within a short period of time. A further method
to identify open ports of a remote host is to do a TCP SYN scan. Here, the scanner sends
connection requests, TCP Syn packets, to the specified addresses. The reception of TCP Syn
Ack message indicates that the system scanned runs a service that listens on the corresponding
port whereas a TCP Rst packet indicates the contrary. Subsequently, the scanner closes the
half-opened connection by sending a TCP Rst packet.

The question is what service is bound to which listening port. To identify the listening
ports of an end-system, theoretically the enormous amount of 65, 536 TCP- and 65, 536
UDP-ports must be scanned. But usually not all ports are of interest as many services
were initially assigned by the Internet Assigned Numbers Authority (IANA) to a distinct
port number [114]. For instance, on Linux -based systems the file ”/etc/services” contains
information about the pairing of port number and service. Nevertheless, sometimes well
known services are configured to run on non-standard ports in which case it is more difficult
to identify the running service. An approach is to try to connect with a set of upper-layer
protocol clients (e.g. TELNET, SSH or FTP). Consequently, a scanning tool requires a
client for each protocol to be tested slowing down the scanning process. Summarizing, the
disadvantages of an active scanner are:

• Difficulty to discover end-systems that are rarely online,

• Difficulty to identify services that are not bound to standard ports and

• An active scanner may affect normal network operation:

– scanning traffic and

– unpredictable behavior of scanned machines.

Another possibility that does not suffer under the above mentioned weaknesses is to
passively identify services. For the purpose of identifying TCP-based services, a network
sniffer—a network interface card running in promiscuous mode—screens the network traffic
for TCP Syn Ack packets. Subsequent, the network sniffer searches those TCP messages for
a set of keywords/protocol patterns allowing to determine the service that is bound to the
related source port. But the detection of UDP-based services—besides services bound to the
standard ports—is more difficult. The fact that the UDP transport protocol is connectionless
complicates the task of identifying whether a UDP packet contains a request or a response.
Hence, all UDP packets must be analyzed for specific keywords/indications in order to identify
UDP-based services that are bound to non-standard ports.

Page 31

TU Berlin Section 2.4

Recapitulating, a network sniffer enables the identification of end-systems that are rarely
online and it allows to identify TCP-based services that are bound to unconventional port
numbers. The downturn related to the operation of a passive network sniffer are:

• Services cannot be identified until they start to communicate and

• Identification of UDP-based services that are bound to non-standard ports.

Further, a passive network sniffer identifies services as soon as these start to communicate
and hence, it is impossible to predict how long it takes to get a complete picture of all services
that are offered in a network.

Remote Operating System Identification

Another aspect in constructing an accurate view of a network is the active or passive de-
termination of the operating system that is running on an end-system. Active and passive
scanners exploit the fact that every operating system’s IP stack has its idiosyncrasies. An
active scanner sends malformed packet to the target system and subsequently it analyzes the
responses which vary from OS to OS.

For example, the provocation of ICMP error messages can be exploited to collect hints
for OS-specification. Normally, an error message quotes the header and at least 8 bytes of
the offending packet. But again, some operating systems quote more than 8 bytes and others
quote inaccurately (e.g. Linux adds 20 bytes). Some OSs even quote the IP header incorrectly,
e.g. the checksum and the TTL field are two candidates. Taken these effects together, with
up to five tests it is possible to specify groups of OSs. For instance the operating systems
Windows 95, Windows 98 and Windows NT 4.0 can be identified as follows. In a first step an
ICMP ECHO request is sent to the target host and subsequently, the corresponding ICMP
ECHO reply is analyzed. A TTL value of 32 clearly identifies a Windows 95 system. Other
Windows operating systems set by default a TTL value of 128. In a next step an Address
Mask request message is sent to the target host. A host which is running Windows 98 or
Windows NT 4.0 under Service Pack 4 would reply to the request. To distinguish between
these two Windows operating systems a Timestamp request message is sent. If the host is
running Windows NT, it would not respond to the request.

In [121] Spitzner describes how the OS of a host can be passively evaluated based on the
fields: TTL, Window Size, DF and TOS. For example, a TTL value of 45, a Window Size
of 0x7D78, the DF -bit set and a TOS value of 0x0 points towards a Linux box, potentially
Red Hat 6.0 kernel 2.2.5.

Page 32

TU Berlin Section 3

Chapter 3

State of the Art of Network Based
Intrusion Detection and Prevention

This chapter presents a related selection of intrusion detection and prevention systems. Sec-
tion 3.1 introduces host-based intrusion detection and prevention systems and Section 3.2
continues with a detailed presentation of network-based systems. Afterwards, Section 3.3
discusses limitations of the presented approaches and gives an overview of approaches taken
to address these. Finally, Section 3.4 recapitulates the state of the art and identifies open
issues in intrusion detection and prevention.

3.1 Host-Based Systems

Tripwire [9] emerged in 1992 and it is today one of the best-known and most widely-spread
HIDS. It exists in three versions: Open Source Tripwire, Tripwire for Servers and
Tripwire for Enterprises. The first is suitable to monitor a small number of servers where
centralized control and reporting is not needed. Both remaining versions provide a centralized
control station as well as professional support. The main principle used by all three versions
is the same: each Tripwire entity observes the integrity of chosen files by creating a secure
database of file and directory attributes. The database is used to detect changes of files
which indicate an attack (e.g. the replacement of the login application). Thus, Tripwire
is only capable of detecting an attack if it changes a supervised file and after it happened.
Open-source HIDS that make use of the file integrity testing method are also known as System
Integrity Verifier (SIV). Further SIVs are: Aide [1], md5deep [5], Samhain [138] or AFICK
(Another File Integrity CHecker) [60].

Snare (System iNtrusion Analysis & Reporting Environment) [8] is an open-source
HIDS for Linux-based systems which provides a C2-style logging system. C2 is a security
standard specified by the US Government National Computer Security Council (aka the
Orange Book) [10]. The standard differentiates between the security levels:

• D: a non-secure system

• C:

– C1 requires user log-on, but allows group ID

Page 33

TU Berlin Section 3.1

– C2 requires individual log-on with password and an audit mechanism.

• B:

– B1 access is based on standard Department of Defense (DoD) clearances

– B2 guarantees the path between the user and the security system and provides
assurances that the system can be tested and clearances cannot be downgraded

– B3 requires that the system is characterized by a mathematical model that must
be viable.

• A1:

– requires DOD clearance levels

– requires that a system can be characterized by a mathematical model that can be
proven.

Most Unix-based systems fulfill the C1 standard by default but further on, they can be
upgraded such that they satisfy the C2 requirements (e.g. Snare does so). In practice,
this means that certain forms of system calls performed by every process are logged with an
unique audit ID. This includes calls to open and close files, change directory, alter user process
parameters, and so on. The audit ID allows to identify the user who initiated the supervised
operation. In accordance to this, Snare consists of three parts: a kernel-module, a user-space
daemon and a graphical user interface. The kernel-module monitors which process executes
which system call and further who possesses the corresponding process. That information is
passed to the user-space damon which is responsible for the logging. Finally, the graphical
user interface is used for configuration and reporting issues.

The Linux Intrusion Detection System [4] is better known as LIDS and despite its
name it is not a real host-based IDS. First of all, it allows to limit the capabilities of root
on a given system. On common Linux-based systems root is allowed to do anything he
wants to and, users/processes (especially malicious ones) that have root privileges pose a
huge security risk. LIDS allows to limit the damage that could be caused, for example, by
a malicious user with root privileges, by enhancing the security of Linux based systems. In
practice, LIDS introduces access control lists (ACL) that allow for a fine-grain specification of
the authorizations of users and root. LIDS triggers an alarm in case that a user/root violates
a specified rule.

OSSEC HIDS [6] is another open-source host-based intrusion detection system for Unix-
based systems that does integrity checking, services detection and alerting. In addition, it
provides the capability to execute a specified binary as a response to a detected attack,
to monitor multiple systems (agents) on a central system (server) and to detect rootkits.
A rootkit is a collection of tools that an intruder brings along to a victim computer after
gaining initial access. It allows him to conceal his presence, processes and files on a system
to the legitimate user/administrator. Rootkits are categorized into kernel level, library and
application level rootkits:

• Kernel level rootkits either add code to the kernel or replace existing kernel routines; on
a Linux-based/Windows-based system this can be achieved via the means of loadable
kernel modules/device drivers.

Page 34

TU Berlin Section 3.2

• Library rootkits modify or replace system libraries in order to manipulate a chosen set
of system calls.

• Application level root-kits modify or replace existing application binaries on a system.

For the purpose of easily gaining access at a later point an intruder most-often installs a
back door—a means of remote access to a system that bypasses security mechanisms —on a
compromised system and consequently, this results in a ”unusual” open port. Accordingly,
an approach to detect an installed rootkit is to do a portscan from a remote system. OSSEC
HIDS does this in a slightly different manner, it tries to bind to every port on the local
machine in order to detect a suspicious open port.

PortSentry by Psionic Technologies (now Cisco) [111] is a HIDS that identifies suspicious
port connection requests and provides means to invoke countermeasures. The assumption
made is that as an attacker requires knowledge about operating system and/or open ports/
running services on a system and, accordingly, a system scan most often indicates an ap-
proaching attack. PortSentry is able to detect a variety of scans, for example a so-called
Null-scan. Thereby a TCP probe packet with no flags set is sent to a specific port. If the
port is closed then a RST/ACK packet is received, whereas if the port is open no response is
received. PortSentry provides the following set of responses to a detected scan:

1. the printing of an alert message to syslog,

2. the dynamic setting of a route in order to forward all traffic originating from the scan-
ning IP address to a non-existent destination,

3. the blocking of the scanning IP-address by adding an appropriate rule to a local packet
filter/firewall

4. the insertion of the scanning host into /etc/hosts.deny. Hosts that are listed in /
etc/hosts.deny cannot connect to any service as these are monitored by a local TCP
Wrapper.

It must be considered that responses 2, 3 and 4 can be exploited by an attacker who con-
tinuously forges his IP source address. In an extreme case this results in the blocking of all
network traffic.

The presented host-based intrusion detection systems make use of the techniques system
integrity verification, log analyses and system-call monitoring. Some HIDS have in addition
further capabilities: for example LIDS allows to restrict the power of root or OSSEC HIDS
provides capabilities to detect rootkits. In the remainder of this section the focus is on
network-based intrusion detection and prevention systems.

3.2 Network-Based Systems

This section discusses network-based intrusion detection and prevention systems. Initially,
stand-alone systems that are designed to run on a single machine are introduced. Afterwards,
the attention is drawn towards distributed approaches, including systems that make use of
mobile agents as well as systems requiring programmable routers.

Page 35

TU Berlin Section 3.2

Sniffer
Detection

Engine

Alerts/

Logging
Preprocessor

Packets

Rulesets

Log Files

Database
stream4

frag2

Plug-Ins

Figure 3.1: Snort: Packet processing

3.2.1 Stand-alone Systems

Snort [24] is the most popular open-source network-based intrusion detection system. Ini-
tially, Snort started in 1998 when Marty Roesch, the author, realized a packet sniffer for
Linux-based systems. One year later, in 1999, he added a first small signature-based analysis
engine to Snort. In the course of time, Snort developed into a full-grown (mainly) signature-
based NIDS.

Snort can be operated as sniffer, packet logger or network-based intrusion detection sys-
tem. When Snort is operated as sniffer it displays the current network packets on a local
console. The packet logging mode additionally allows to write the network packets into a
file. Further, Snort can be operated as a signature-based NIDS. Figure 3.1 depicts the Snort
architecture1 and the corresponding packet processing.

Basically, Snort consists of a sniffer, a preprocessor, a configurable amount of plug-ins,
a detection engine, a corresponding ruleset and a logging mechanism. The sniffer is used
to tap the network traffic. As already mentioned, a sniffer creates copies of the network
packets it sees and does not have any impact on the network performance. Next, the sniffer
forwards the network packets to the preprocessor which prepares the packets for the detection
engine. The preparation itself is done by a configurable amount of plug-ins. Two exemplary
plug-ins are the stream4 and the frag2 plug-ins. The former integrates the concepts of TCP
statefulness and session-reassembly into Snort. TCP statefulness means that only packets
belonging to an established TCP connection are forwarded to the detection engine; all others
are neglected. This plug-in was realized as an answer to tools like Stick [61] or PCP [105]
which were designed to trigger huge amounts of alarms on Snort. Session reassembly refers
to the capability to keep a memory of past TCP packets of existing TCP connections in order
to detect attacks that span multiple packets.

Further, the Snort-ruleset is organized by category, examples are: Trojan horses, buffer
overflows and access to various applications. Since new attacks emerge it is necessary to

1The discussed architecture refers to Snort 2.0

Page 36

TU Berlin Section 3.2

regularly update the ruleset. A Snort-rule consists of (see Figure 3.2):

• a rule header specifying rule action, protocol, source and destination,

• a rule body determining the pattern to look for in the network packets.

The rule header defines—based on the criteria of protocol, source and destination—if a net-
work packet must be checked against that specific rule and in addition, it assigns the action
to take (rule action) in case of a match. The next line contains a fictitious Snort rule:

alert udp any any -> $INTERNAL 21974 (msg: "Bad Worm Backdoor";)

This rule triggers an alert (as the rule action is alert) with the message ”Bad Worm Backdoor”
in case that a UDP packet originating from any source (specified by any any) is addressed
to an internal IP address (defined by the variable $INTERNAL) with the destination port
21974. Finally, in case that the data matched a rule (with a rule action: log, alert or activate)
then Snort logs the corresponding information and/or triggers the appropriate alert. Snort
provides the capability to send alerts via UNIX sockets or to trigger Windows Popups. In
addition, it is possible to integrate further output plug-ins between detection engine and the
alert/logging facility of Snort. At last, Snort-Inline—a modified version of Snort—processes
network packets inline and in addition, it can be configured as an intrusion prevention system.

Bro [106] developed at the Lawrence Berkeley Labs is another well-known Unix-based
open-source NIDS which does a passive protocol analysis. The principal structure of the Bro
system is depicted in Figure 3.3. The system is divided into two components:

• the event engine filters irrelevant packets of the incoming packet stream (from the
libpcab) and subsequently transforms the relevant ones in a stream of higher-level
network events.

• the policy script interpreter that is used to express a site’s security policy.

Moreover, Bro uses the functionality that is provided by the libpcap—an application pro-
gramming interface for packet capturing—to restrict the amount of packets that are captured
from the network. At the beginning of the Bro project, libpcap was configured to capture any
packet addressed to applications for which Bro was capable to perform specialized analysis
(Finger, FTP, Ident, Telnet, Rlogin and Portmapper) as well as any TCP packet with the
SYN, FIN, or RST control bits set (for the purpose of identifying start- and end-points of

Rule

Action
Protocol Source Destination

Rule Body

Rule

Header

Figure 3.2: The Snort rule structure

Page 37

TU Berlin Section 3.2

Network

libpcap

Packet stream

Filtered packet stream

Policy Script Interpreter

Event Engine

Event stream

Real-time notification

Record to disk
Policy script

Event control

Tcpdump filter

Bro

Figure 3.3: The structure of the Bro system

TCP connections). Packets that correspond to the described criteria are passed to the event
engine.

The event engine can be compared with the preprocessor of Snort as it is responsible for
packet reassembly and TCP connection state tracking. Besides this, it checks if a packet
header is in conformity with the protocol specifications, for example, it verifies the header
checksum. Packets which do not pass this initial test are discarded by the event engine. The
remaining packets are transformed into events and forwarded via a first-in-first-out (FIFO)
queue to the policy script interpreter.

Actually, the policy script interpreter detects attacks based on rules. Therefore, it exe-
cutes policy scripts—written in the specific Bro language and which contain the rules describ-
ing what sorts of activities are deemed malicious—against the stream of events. Consequently,
this is a more generic definition of an attack signature allowing for a more abstract analy-
sis. A policy script for example is able to create new events, to log data, to send real-time
notifications or to record data to disk.

ARPWatch [87] also developed by the Network Research Group at Lawrence Berkeley
National Laboratory addresses the issue of ARP spoofing. The address resolution protocol
(ARP) provides a mechanism to map an IP address to a host’s hardware address. Hence,
in case that an attacker has gained control over a system of an Ethernet LAN, then he
can use ARP spoofing/ARP (request) poisoning to eavesdrop/manipulate communications
between two systems of the switched network. In detail, an attacker pretends to be the
legitimate receiver for IP packets, addressed to a specific IP address, by sending appropriately
spoofed ARP messages. ARPWatch monitors and memorizes Ethernet/IP address pairs and
in addition, the system provides the capability to inform via email about changing pairs.

Page 38

TU Berlin Section 3.2

The discussed systems mainly focus on signature detection and additionally contain a
limited set of anomaly detection functionalities. They are intended to run on a single machine
and, accordingly, an automated and intelligent distribution of security operations over a set
of machines is not possible.

3.2.2 Distributed and Coordinated Systems

An initial project towards distributed intrusion prevention is described in [74]. The authors
explain the implementation of a distributed firewall system. Usually, a network firewall is
installed at the point where the protected subnetwork is connected to the Internet. This
concept is fine as long as one point of contact exists between the trusted subnetwork and
the Internet. In this context, the locations where to place the firewall entities can easily be
determined as the points of contact between the trusted subnetwork and the untrustworthy
Internet. Furthermore, the authors focus on the distribution and synchronization of policies.

Further, much work is done towards the distributed collection of intrusion relevant data.
For example, Prelude [7] is a hybrid IDS which means that it is both a network-based and
a host-based IDS. Basically, the system is made up of the following components:

• sensors which gather information. By default, Prelude comes with the following set of
exemplary sensors:

– Prelude LML a host-based sensor which monitors logfiles like syslog; it can also
receive syslog messages from remote hosts

– Prelude NIDS a network based IDS

– Snort—a patch which enables Snort to become a Prelude sensor is provided on
the project’s web-side.

– etc.

• manager which process the data gathered by the sensors. Managers can forward alerts to
other managers or to Counter Measure Agents. In a distributed environment managers
can act as a relay to the dedicated central manager.

• Counter Measure Agents which receive and process the alerts sent by the managers.

A particularity of the Prelude IDS is that it allows to integrate other security tools like for
example Snort as sensors. For this purpose Prelude provides the libprelude library which
provides an Application Programming Interface (API) to create Intrusion Detection Message
Exchange Format (IDMEF) based events. ”The purpose of the Intrusion Detection Message
Exchange Format is to define data formats and exchange procedures for sharing information
of interest to intrusion detection and response systems, and to the management systems
which may need to interact with them” [48].

The architecture of the Prelude NIDS is depicted in Figure 3.4. To capture packets
Prelude uses also the capabilities offered by libpcab. In addition, similar to Snort and Bro,
Prelude does initial checks on the network packets in order to filter irrelevant ones and IP
de-fragmentation as well as TCP stream reassembly is immediately done after the capturing
of network packets. The second stage of the Prelude NIDS consists of protocol plug-ins that

Page 39

TU Berlin Section 3.2

Signature

Matching

Signature

engine

Detection

Plugins

Reporting

Packet capture

Matching

function

Decoding

function

Network

flow

analysis

Protocol

plugins

Figure 3.4: The architecture of the Prelude NIDS

are capable of decoding several higher-level protocols. For example, the integrated HTTP
Decoding Plug-in searches for HTTP requests in TCP packets and transcodes/normalizes
all included escaped characters (HTTP-, UTF-8- and Unicode-escaping). Subsequently, the
normalized traffic is forwarded to the next level of the Prelude NIDS which actually screens
the packets for attacks, for instance, the Scan Detection Plug-in triggers an alert in case
that too many connections on different ports are detected within a given amount of time.
Another example is the Snort Rule Plug-in that allows to use the original rule set of Snort
for signature matching. Alert reporting is done via the mentioned libprelude.

Summarizing, Prelude is a hybrid IDS meaning that data is captured on end-systems and
in the network. Further, effort was made to integrate further security tools like for example
Snort as sensors into the Prelude framework. It turned out that Snort is the preferred NIDS
sensor (compared to the described Prelude NIDS) as it provides more functionality and, in
addition, its ruleset is regularly updated. The project shows how a cooperation of multiple
security tools can be realized in order to achieve a better overall protection of a network.

Shadow is the open-source and Unix-based Secondary Heuristic Analysis for De-
fensive Online Warfare system [54] developed by the US Navy. It consists of sensors
capturing network traffic and an analysis station actually doing intrusion detection based on
the data gathered by the sensors. In contrast to the NIDS discussed so far, Shadow uses a
technique called traffic analysis doing network layer anomaly detection rather than content
analysis for the detection of attacks. In addition, since Shadow was designed as a supplement

Page 40

TU Berlin Section 3.2

to a misuse-based network intrusion detection system it cannot detect simple string based
attacks like a phf -attack against a WWW-server. Consequently, the analysis station is not
interested in the packets’ payload and accordingly, the sensors only capture IP-headers using
tcpdump. In addition, each sensor stores the network traffic in one hour chunks which are
regularly downloaded by the analysis station (no realtime detection). Furthermore, to detect
traffic anomalies the analysis station applies a set of filters on the downloaded data. An
exemplary filter collects information about how many different internal IP addresses and/or
ports each external source address contacts in order to identify scan attempts. Another filter
script is executed every 24 hours to generate a daily page of IP statistics.

The Domino (Distributed Overlay for Monitoring InterNet Outbreaks) project [140]
proposes an architecture for a globally distributed intrusion detection system on the basis of
an overlay network consisting of heterogeneous systems. The project focuses on the detection
of Internet outbreaks like, for example, the identifying of a yet unknown and self-distributing
worm; misuse-based NIDSs would fail to detect such a worm as so far no attack signature
exists. The system architecture includes an axis overlay, satellite communities and terrestrial
contributors. Each axis node runs a honeypot which is used to monitor unused IP addresses.
Satellite nodes and terrestrial contributors gather data from locally running NIDSs and fire-
walls. In contrast to terrestrial contributors satellite nodes are capable to do alarm clustering.
All data gathered by terrestrial contributors and satellites is forwarded to the axis overlay
which subsequently analyzes the data.

The Indra project [77] follows a distributed approach to network intrusion detection and
prevention. A prerequisite is that all hosts on a network run an Indra security daemon.
According to the PhD thesis of Howland [71], it takes a large number of attack attempts
before an attack finds a vulnerable machine. Most likely, the unsuccessful attempts could
be observed by the Indra clients which subsequently inform the other Indra clients of the
network in order to invoke countermeasures (e.g. blocking of the corresponding IP address).
This assumes that self-spreading attacks try to compromise further end-systems in a brute-
force manner, which is not always true; some worms use the technique of scanning to detect
vulnerable systems which will subsequently be attacked. In contrast to this approach, our
philosophy is not to modify the end-systems but to do intrusion prevention on routers in the
network.

Agent-Based Systems

The Intrusion Detection Agent System (IDA) [19], developed by the Information-
technology Promotion Agency (IPA) in Japan, is an IDS that uses mobile agents to trace
intruders, gather intrusion-related information along the intrusion-route, and decide whether
an intrusion has occurred. To detect intrusions IDA watches for events related to attacks
which the authors name Marks Left by Suspected Intruder (MLSI). An exemplary MLSI is a
modification of a security sensitive file like, for example, the system’s password file. But, the
observation of one MLSI cannot mandatorily be equated with an attack (perhaps a legitimate
user changed his password). IDA consists of a manager, sensors, bulletin boards, message
boards, tracing agents, and information-gathering agents (see Figure 3.5).

The manager detects intrusions by analyzing the data that is gathered by the information-
gathering agents (IA). Moreover, it coordinates the mobile agents and the bulletin board, and

Page 41

TU Berlin Section 3.2

Manager

BB IA

log

Sensor TA

MB

TA

Target A

log

Sensor

MB

IA

Target C

log

Sensor TA

MB

IA

Target B

TA

BB: Bulletin board

MB: Message board

TA: Tracing agent

IA: Information gathering agent

Figure 3.5: The Intrusion Detection Agent System (IDA)

finally, it is the interface between the IDA system and the administrator. A sensor resides on
each target system and at that place it monitors the system’s log file to spot MLSIs which it
reports to the manager. On receiving a MLSI the manager delegates a tracing agent (TA) to
the corresponding target system. The TA activates an information-gathering agent (IA) on
the target system and tries to identify the users which caused the MLSI remote site. For this
purpose the IDA system accumulates information about network connections and running
processes in advance. Further, the TA tries to move to the user’s remote site. There it
activates another IA. In case that the TA cannot move any further it returns to the manager.
The purpose of the IA is to gather data correlated to the MLSI. Subsequently, the IA returns
to the manager and writes its report to the bulletin board (BB).

Recapitulating, the IDA system tries to identify intrusions based on log file monitoring.
The authors do not precisely describe how multiple MLSIs are correlated in order to decide
whether an attack occurred on a system. Moreover, the system requires that sensors and
mobile agents have access to all target systems. In fact, a sensor must reside in advance on
each target system and it must have access to the system’s log file.

The Intrusion Blocker based on Active Networks (IBAN) [55] consists of a man-
agement station, mobile vulnerabilities scanners, and mobile intrusion blockers. A mobile
scanner is an application designed to detect one particular vulnerability by looking at system
fingerprints. If the scanner has found a vulnerable service an intrusion blocker is placed close
to the corresponding system which inspects the traffic for the vulnerable service and blocks
the traffic if it detects an attack attempt. IBAN focuses on the detection of automated known
attacks. A scanner and a blocker are designed for one particular vulnerability. Consequently,

Page 42

TU Berlin Section 3.2

UA KA CA UB KB CB UC KC CC

Trusted compiler

+ loader
UA UB UC

Execution environment

dispatcher KA KB KC

Specialized data-path

user

kernel

packet

Figure 3.6: The FLAME architecture

numerous mobile applications could exist in an average network. Further, each application
observes the traffic for a specific traffic pattern, thus each mobile application performs a big
set of identical operations. As the authors of the paper write themselves, often it is more
difficult to write a detection tool for a specific vulnerability than to provide an adequate
defense mechanism. Consequently, IBAN would not deploy a defense mechanism close to a
vulnerable host as long as it is not able to detect it.

Systems on Top of Programmable Routers

The approaches described in the following make use of enhanced/programmable routers.
The FLAME project [15] developed an architecture (Figure 3.6) that allows users to

create their own individual network monitoring application that will be deployed on enhanced
routers in the network—the proposals include active networks and an enhanced network
interface card. In detail, a user application is a kernel module that passively monitors packets
in real-time. A module consists of three components:

• kernel-level code Kx—responsible for time critical packet processing,

• user-level code Ux—offers additional functionality at lower time-scales—and

• a set of credentials Cx.

The user-code component can for example be used to open a standard socket in case that
an application requires to communicate with another peer. Code is written in the C-like
language Cyclone [78] and is processed by a trusted compiler. The set of credentials Cx is
used at compile to verify that the module is authorized to perform the requested actions. The
kernel-code is supervised by additional code that performs the policy checks (represented by
the black units in front of each Kx). An additional overhead is caused by doing run time

Page 43

TU Berlin Section 3.2

checks in order to ensure security. The project addresses the issue of executing user-code
in kernel-space for the purpose of performance. A downturn is that the presented approach
requires the disclosure of algorithms and programming code; source code must be transferred
to the system.

The approach presented in reference [130] discusses the issue of intelligently placing packet
filters on network routers in IP-carrier networks. A packet filter consists of a classifier and an
action. The latter is either of type allowing—packets that match the classifier are forwarded—
or disallowing—packets that match the classifier are dropped. A false negative occurs when
malicious packets pass an allowing packet filter, and analogously, a false positive occurs when
legitimate packets are dropped by a disallowing packet filter. The authors present an approach
to deploy packet filters on network routers such to minimize the risk that is associated with a
distributed packet filter configuration. To calculate the associated risk the specification of a
set of parameters is required. The authors differentiate between source nodes sO, adversary
nodes sA and destination nodes d. Legitimate traffic is transported through the network via
paths pO ∈ PO whereas attack traffic propagates through the network via paths pA ∈ PA.
Furthermore, parameter ωpO/ϕpA denotes the probability of a false positive/false negative
occurring on path pO/pA. Finally, DO/DA denotes the damage related to a false positive/
false negative. The authors demonstrate that it is possible, on the basis of these parameters,
to optimally deploy the packet filters on network routers also considering further aspects like
rerouting issues.

The authors of [81] make use of enhanced routers that are capable to do content filtering.
They developed a heuristic for the placement of content-filtering nodes in a network, and,
given the placement of such nodes, designed a fully polynomial time approximation scheme
(FPTAS) that maximizes the traffic carried by the network subject to the constraint that all
traffic passes through a content filtering node at least once. The authors did not take into
account the computational costs of doing content filtering; they rather considered costs in
terms of money.

3.2.3 Commercial Network-Based Intrusion Detection Systems

For the sake of completeness, also commercial solutions like RealSecure, Netprowler, Net-
work Flight Recorder and NetRanger must be mentioned. A detailed discussion of them is
impossible due to a lack of publicly accessible documentation.

RealSecure from ISS [75] is one of the most widely deployed commercial IDS. It consist
of managers and sensors. A manager is responsible for administrative and operational issues
whereas a sensor—which can be a network-based one as well as a host-based one—-creates
events.

Netprowler which originally was realized by Axent (now integrated into Symantec) [126]
is known for its proprietary Stateful Dynamic Signature Inspection (SDSI) technology which
separates intrusion analysis from the signature database. Accordingly, NetProwler allows to
dynamically load new updates without taking down the sensor.

NetRanger from Cisco [40] consists of network-based sensors and an analysis station
which is called ”director”. A sensor inspects the routers’ system logs as well as the packets
transmitted over the wire. In addition, NetRanger provides the capability to reassemble
packets in order to detect attacks which are distributed over multiple IP fragments.

Page 44

TU Berlin Section 3.3

Finally, the Network Flight Recorder (NFR) [100] is a general purpose security device
that allows to collect huge amount of data. For this purpose it uses a modified version of
the libpcap which is an application programming interface for packet capturing developed
by the Lawrence Livermore Laboratory of the Department of Energy. In addition, the filter
language—used to configure the modified libpcab—allows among other things to create filters
that monitor the network traffic for specific patterns.

3.3 Limitations of Intrusion Detection and Prevention Sys-
tems

In theory, the concept of IDSs and IPSs is clear and, numerous systems were implemented.
But in practice, those systems have shown to have their limitations in terms of accuracy,
performance and flexibility. This section analyzes the limitations and presents approaches
that were developed to address them.

3.3.1 Accuracy of Intrusion Detection/Prevention Systems

Intrusion detection systems are known to produce large amount of alarms per day [80, 119]
at which most of them are irrelevant ones in respect of the overall security of a network. For
example, the notification about an ongoing IIS -specific attack targeted against an Apache
web server is not relevant, since the targeted end-system is not vulnerable to this exploit.
Further, in [20], Anderson introduces the base-rate fallacy for intrusion detection systems. He
shows that the effectiveness of an IDS is determined by the ability of the system to suppress
false alarms. Multiple approaches have been taken to improve the accuracy of alerts.

An approach to reduce the false-positive rate of intrusion detection/prevention systems is
alert verification. In [84] the authors use this technique to determine the success of intrusion
attempts. In detail, all alerts executed by an intrusion detection/prevention system are
forwarded to an alert verification entity. The task of the alert verification entity is to evaluate
whether the reported attack harms the addressed system. The host-specific vulnerability
information is either gathered in an active or passive way which means:

• passive - the vulnerability information is gathered in advance,

• active - the vulnerability information is gathered after the occurrence of an alert.

In accordance to above given categorization, the Active Mapping approach [118] passively
analyzes the network, including the creation of a host profile for each end-system in the
network. The profiles are constructed by sending specially crafted packets to each host and
interpreting the responses. On the basis of that knowledge a NIDS is capable of deciding
whether an attack actually reaches the target host and if the attack is applicable.

Shoki [27] is an open-source signature-based NIDS which is able to identify the operating
system of an end-system via passive fingerprinting in order to evaluate the priority of an alarm.
Therefore, Shoki uses the techniques provided by p0f [142] which is a versatile passive OS
fingerprinting tool.

Article [119] compares three commercial IDSs—Cisco’s Threat Response, ISS’s Fusion
and Tenable’s Lightning Console—that consist of: a network scanner to collect and manage

Page 45

TU Berlin Section 3.3

vulnerability information, an intrusion detection system and a console that verifies the alerts
from the IDS. Cisco’s follows an active alert verification process, meaning target information
is gathered after the occurrence of an alert. The Cisco system requires a login to the target
machines in order to collect the requested target information. In contrast ISS uses a scanner
to regularly gather host-specific vulnerability information. The approach of Tenable is able
to collect the target information either by using an active (regularly) or passive scanner
(continuously). All three systems demonstrate that the approach of alert verification helps
to improve accuracy.

A further set of approaches uses the alarm-/alert-correlation technique which combines
alerts that are created by multiple IDSs [45, 46, 47, 49, 76, 93, 101, 124, 131]. The assumption
is that a real attack would be remarked by more than one IDS. Accordingly, alerts can be
collected, pre-processed (e.g. transformation into a readable format as the alerts stem from
varying IDSs) and aggregated into significant high-level alarms.

The techniques alert-verification, alert-correlation and active mapping require the corre-
lation of information stemming from different sources. For example, it must be possible to
evaluate—based on vulnerability information gathered by a network scanner and an alert
produced by an IDS—whether an harming attack is taking place. Reference [96] proposes
M2D2 which is a formal data model for IDS alert correlation that allows to interrelate four
types of information:

• network topology and end-systems (products),

• vulnerability information,

• the security tools used,

• generated events.

The network topology is modeled as a hypergraph and a product, a logical entity that is
executed by a host, is represented by quadruplet (vendor id, product id, version id,
type). The field type differentiates between operating system, server-like applications, lo-
cal applications and other entities. The configuration of a host is defined by the running
products of type: operating system, server-applications and local applications. The Common
Vulnerabilities and Exposures list [2] which provides the most comprehensive index of stan-
dardized names for vulnerabilities is used to identify vulnerabilities within M2D2. The third
information specifies what kind of security tools (e.g. vulnerability scanner, NIDS, etc) and
their methods (misuse/anomaly) were used to create events. Finally, the fourth information
type stores the events that are produced by the security tools.

Julisch follows another approach of alert correlation. He argues that each alarm that is
triggered by an IDS can be backtracked to a limited set of root causes [79]. The root cause of
an alarm is the reason why it occurs and further, according to Julisch, in most environments
a relatively small number of highly predominant root causes exist which are the reason for
over 90% of all alarms. Therefore he proposes a two step process: The alarms are clustered
by an offline data mining process which subsequently allows to identify the root causes.

Also automated learning has been considered as a means to improve IDS accuracy. In [108]
the authors describe the Adaptive Learner for Alert Classification (ALAC) which is an ap-
proach to reduce the amount of false positives. The system presented in the paper uses

Page 46

TU Berlin Section 3.3

supervised machine learning to tune an alert classification system based on observations of
a human expert. The ALAC systems learns to differentiate between false positives and true
positives by observing a security analyst who actually classifies alerts into true positives and
false positives. Alert classification is defined as attaching a label to an alert indicating its
importance.

3.3.2 The Requirements of Scalability and Flexibility

Scalability is the requirement that an IPS is able to analyze all network packets and to
decide in real-time whether an attack is taking place at the same time. Another important
requirement for an IPS is flexibility. To address the evolution of attacks it is of great benefit
to be able to dynamically deploy new detection and prevention techniques on the security
systems. Considering the hardware, two approaches to construct intrusion prevention systems
can be differentiated:

• Realization of a centralized high performance IPS using multiple GPPs, NPs as well as
special-purpose hardware like ASICs and FPGAs;

• Realization of a distributed IPS consisting of multiple software-based IPS entities on
top of ”conventional” hardware like GPPs and NPs.

As discussed in Section 2.3.6 special-purpose hardware (ASICs and FPGAs) is able to analyze
network packets at high-speed, but on the contrary it is very expensive and inflexible. Further,
the authors of [23] identified a set of weaknesses of centralized IDSs—systems that analyze
the gathered data, including systems that collect data from multiple sensors, for evidence of
attacks at one central place. The two most important arguments are:

• single point of failure and

• limited scalability as the performance of the central analyzing unit limits the amount
of data that can be evaluated in a given time.

For this purpose the authors propose the Autonomous Agents For Intrusion Detection ar-
chitecture (AAFID) that consists of autonomous agents, transceivers and monitors. An
autonomous agent is an entity that resides in a host and performs a set of specific security
operations. An end-system can host any number of autonomous agents and if at least one
autonomous agent resides in a system, a transceiver must also be installed. All agents of a
host report their findings to the local transceiver which might perform data reduction and
which subsequently forwards its results to one or more monitors. Finally, a monitor analyzes
the received data—originating from multiple systems and enables the detection of attacks
that involve several hosts. The approach requires that a user agrees on running multiple
autonomous agents and a transceiver on its system. Moreover, the authors do not indicate
how to correlate the gathered data.

Also, the authors of [29] recognized the difficulty in realizing a central intrusion detection/
prevention system that is capable to scan all network traffic. They propose to deploy an
intrusion detection/prevention system on each end-system’s network interface card. For this
purpose, they developed CardGuard which is a software-based signature detection system

Page 47

TU Berlin Section 3.4

that uses a NP—located on the network interface card. The advantages of CardGuard are
that no resources of the end-system are requested and the limited traffic volume that must
be analyzed. The downturns are that the intrusion detection capabilities of CardGuard are
limited to signature detection and, in addition, all users must agree to run CardGuard.
Furthermore, the authors do not address the issue of configuring CardGuard.

For example, the configuration of Snort requires the setting of:

• environment variables,

• configuration parameters,

• preprocessor configuration—this must be done for each activated preprocessor,

• output module configuration,

• definition of new action types (optional) and

• specification of the set of rules that the packets are checked for.

Taking the given possibilities into account, the task of configuring Snort—especially the last
item—is too difficult for most users. Moreover, anomaly based systems must repeatedly be
trained with current data and misuse-based systems must continuously be updated.

Summarizing, an extreme approach is the construction of a high-performance centralized
intrusion detection/prevention system using special-purpose hardware. The advantage of the
approach is that only one system must be configured and the downturn is that it lacks flex-
ibility. Further, considering growing traffic volumes—Internet traffic approximately doubles
each year [41]—and an increasing number of attacks this demand is difficult to fulfill. The
other extreme possibility is the deployment of a software-based intrusion detection/prevention
system on every end-system. But in the context of the CardGuard approach the effort to in-
stall and configure the system on every network interface card is huge. Hence, a compromise
between these two possibilities, the construction of a flexible intrusion detection/prevention
system running on selected nodes in the network, seems to be promising. In this context,
agent-based approaches have a fundamental downturn in common. An agent is a complete
mobile application implemented for a specific purpose, like for example to search for traces
of intrusions in a network. An agent performs all required operations on its own, and conse-
quently, an efficient distribution of operations between multiple agents is not possible which
affects the overall performance of the system.

3.4 What is Missing - A Discussion of the State of the Art

On the basis of the discussion of state of the art the requirements of autonomy from users
and end-systems, accuracy, efficiency, scalability and flexibility were identified as important
for an IPS.

First of all, an IPS should not require input of users as it cannot be expected that users
are able to appropriately protect their end-systems themselves. Further, users must not
be obliged to install an intrusion prevention system on their end-systems. The distributed
approaches discussed [19, 77, 29, 23] require a modification of the end-systems that are to be

Page 48

TU Berlin Section 3.4

protected. Hence, the relevant users must agree to that and, the corresponding hardware/
software must be installed and configured. The effort for this is too huge. A good IPS must
be autonomous from users and end-systems.

Moreover, to be effective an intrusion detection/prevention system must work as accu-
rately as possible. In intrusion prevention systems the false positive rate is even more critical
than in intrusion detection systems, since the harmless packets that trigger the alarm are fil-
tered by the system and, hence, valid communications are interrupted or even stopped. The
traditional approach to reduce the false positive rate of an intrusion detection/prevention
system is to manually maintain and configure it. Systems like Snort—this also counts for
Snort-Inline—or Bro belong to this group of security systems.

A promising approach to reduce the false positive rate without manual configuration effort
is to combine vulnerability assessment and intrusion detection/prevention. The approaches
[84, 118, 119] have in common that they do not use the gathered network knowledge to
correctly configure the corresponding systems, but instead, incorporate the knowledge on the
output side of the intrusion detection/prevention systems, after the generation of an alarm.
As a consequence, each intrusion detection/prevention system performs all security checks.
The vulnerability information can be used to restrict the number of security checks that must
be performed per end-system which in turn would improve the efficiency of the system.

Section 3.3.2 discussed the requirements of scalability and flexibility. With steadily grow-
ing traffic volumes and increasing number of attacks, the realization of a centralized intrusion
prevention system becomes impossible. In addition, the strict QoS requirements (end-to-end
delay, loss rate, jitter, etc.) of existing and emerging applications are challenging and special-
purpose hardware—often used in centralized high-performance IPSs—lacks flexibility in terms
of re-programmability. In contrast, software-based intrusion prevention systems provide more
flexibility but have a lower performance. Hence, a distributed and software-based IPS is a
good compromise to fulfill the requirements for performance and flexibility.

The philosophy followed in this thesis is not to modify end-systems and to do limited
intrusion prevention as a software process on selected routers in the network. The effort to
place a limited set of programmable routers in a network that are capable to do intrusion pre-
vention is smaller than to modify a significant higher number of end-systems. Furthermore,
this statement is also valid for maintenance tasks (update of attack rules, algorithms, etc.).
None of the distributed approaches considered intelligent deployment strategies, although
the placement of intrusion prevention functionality has an impact on the performance of the
network that is to be protected. Further, an intelligent, network-based and distributed intru-
sion prevention system must be able to adapt itself to network dynamics. For example, the
reconfiguration of existing routes—triggered by a dynamic routing protocol—might demand
to relocate certain intrusion prevention functionalities to another router in the network.

Page 49

TU Berlin Section 4

Chapter 4

Fidran: An Autonomous Intrusion
Prevention Overlay Network

According to the arguments presented in Chapter 1 it cannot be expected that all users and
administrators are able to keep their system(s) secure. Moreover, the fixing of security holes
as soon as patches become available can hardly be done in time on all end systems. Thus, in
order to relieve end-users and administrators from continuously having to deal with today’s
massive amount of security challenges the protection of end-systems should be done in the
network. This thesis develops a concept for an autonomous intrusion prevention overlay
network on top of programmable networking technology which intelligently protects the end-
systems of a networking environment against network-based attacks. The central question of
the thesis is:

What intrusion prevention functionality is required at which places of
a network for the purpose of adequately protecting the end-systems
of that network while simultaneously minimizing the impact on the
network performance?

It must be considered that the task of protecting end-systems by installing security services
on routers in the network poses demands to the architecture of those routers. Further, it
is necessary to decide on the set of security services that must be installed. And finally,
reasonable security services deployment strategies must be considered.

The presented concept of an intrusion prevention overlay network which is called Flexi-
ble Intrusion Detection and Response Framework for Active Networks (Fidran) is designed
for limited networks like an autonomous system (AS) as well as for high-speed networks
(backbone). The functionality provided by Fidran depends on the chosen scenario. When
deployed in a limited networking environment—in terms of a limited amount of connected
end-systems and traffic volumes—the IPS overlay network is able to autonomously identify
network topology, end-systems (operating system, running applications, etc.) and the set
of required security services. Subsequently, the requested security services are intelligently
distributed in the network such that, for example, the impact on the network performance
is minimized. When deployed in a backbone network the IPS framework does not analyze
network topology, end-systems and required security services since the amount of systems

Page 50

TU Berlin Section 4.1

to be analyzed is too big. In this scenario, that information must be provided to the au-
tonomous intrusion prevention overlay network. The Fidran overlay network comprises of
three functional parts:

1. the first functional part (not for high-speed deployment) includes the intelligence to
analyze the network to be protected:

• identification of the network topology,

• discovery of the hosts that are running and

• hosts profiling, identification of operating system and running applications.

2. the second functional part provides the intrusion prevention framework that actually
allows to dynamically deploy intrusion prevention services on programmable nodes in
the network.

3. the third functional part decides which intrusion prevention services are deployed on
which programmable routers.

The next section covers the requirements for an autonomous intrusion prevention overlay
network.

4.1 Requirements for an Autonomous Intrusion Prevention
Overlay Network

The integration of a self-configuring IPS promises to be highly beneficial for private users
and administrators. Especially, most consumers are not interested in security internals but
in having a well running and protected system. However a couple of pitfalls that lead to a
series of requirements for the design of such systems have to be avoided when planning an
autonomous intrusion prevention overlay network:

• Extensibility and flexibility: As new attacking patterns are appearing almost every day,
it is of prime importance that the IPS functionality can be easily augmented with
appropriate detection and prevention capabilities. Depending on the attacking pattern,
this might be realized by simply adding new attacking signatures up to the introduction
of new modules with specific detection logic, including stateful inspection techniques
and anomaly detection algorithms. The extension/modification of IPS functionality
must occur at runtime without having to restart the IPS.

• Efficiency and scalability: as an IPS is integrated into the communication path, effi-
ciency of the packet processing chain is of prime importance. With steadily growing
traffic volumes and increasing number of attacks, the realization of a centralized intru-
sion prevention system becomes virtually impossible because all packets would have to
be processed there. The strict QoS requirements (end-to-end delay, loss rate, jitter, etc.)
of existing and emerging applications are challenging. The possibility of distributing
the security services across the network offers the potential to optimize network perfor-
mance. Furthermore, the overall system design needs to be scalable in terms of packet
flows to be processed as well as attacking techniques to be supervised.

Page 51

TU Berlin Section 4.2

• User-friendliness and transparency: the protection of end-systems must occur in a
user-friendly manner. Many users are not sensible to security vulnerabilities affecting
their own machines or they are overstrained patching these (see Chapter 1). Farther,
many believe that they will never become the target of an attack, due to the perception
that their system or data is not of value for hackers. In this context it seems sensible
to integrate the required intrusion prevention functionalities into the network itself.
Moreover, the average user is not expected to be a skilled security expert who spends
much time on keeping his systems up-to-date. Furthermore, transparency means that
the end-systems and services must not be aware of the running IPS overlay network.

• No special hardware: the task of doing intrusion prevention should be realized as a
software process running on General Purpose Processors (GPP).

The proposed intrusion prevention overlay network makes use of the capabilities provided
by an underlying programmable network infrastructure. The decision in favor of the pro-
grammable networking technology is motivated in the following section.

4.2 Why Programmable Routers

Active/programmable networks were introduced in the early 90’s as a new networking paradigma
and they were announced to provide a solution to many difficulties in the field of communi-
cation networks. The programmable networking technology provides a framework for flexible
and rapid service creation on top of existing networks. It uses enhanced nodes—so called
active/programmable nodes—within the network for the provision of specific services. A
programmable node is able to execute services which are loadable on-demand from a remote
service repository (SR), and thus can enhance its functionality in a flexible manner. Applica-
tion examples for this technology are media transcoding services, network security enhancing
services or overlay networks, for example [21].

The decision to use active/programmable network technology as underlying infrastructure
for the realization of the intrusion prevention overlay network was made due to the following
arguing. Referring to Section 4.1, an autonomous intrusion prevention overlay network must
fulfil certain requirements. The demand for extensibility and flexibility is satisfied by pro-
viding the capability to dynamically start/stop arbitrary programmable networking services
on any programmable node. For the sake of security this capability must be restricted to a
limited group of authorized persons [69, 68]. The requirement for efficiency and scalability
can be achieved by an appropriate realization of the programmable networking infrastruc-
ture. To cope with increasing traffic volumes and to keep the additionally added intrusion
prevention delay as small as possible it is of outstanding importance that on the one hand a
programmable router captures network traffic as fast as possible and on the other hand the
intrusion prevention services are realized in an efficient manner. The scalability part of the
requirement is addressed by the ability of a programmable network infrastructure to deploy
a chosen service on a specified programmable router. To provide protection an intrusion
prevention service must be placed on a programmable router which lies on the data path
between attacker and potential victim. Consequently, the ability to deploy an intrusion pre-
vention service on a specified programmable router enhances the scalability of the intrusion

Page 52

TU Berlin Section 4.3

prevention overlay network. In the context of scalability it might be necessary to relocate a
running service from one programmable router to another one, for example in case of a chang-
ing network topology. For example, a new end-system, requesting the installation of further
intrusion prevention services, is attached to a router of the network. To optimally distribute
the intrusion prevention services among the programmable routers it might be necessary to
relocate running services—including state information like established TCP-sessions—from
one programmable router to another one.

Summarizing, a programmable networking environment must provide the following ca-
pabilities to qualify itself adequate for the operation of an autonomous intrusion prevention
overlay network:

• the programmable environment must allow to add/remove services at runtime,

• the programmable infrastructure must support the deployment of chosen services on
specified programmable routers at a given time,

• the programmable infrastructure must be able to dynamically relocate a service from a
programmable router to another one, and

• the programmable infrastructure must provide means to securely exchange information
between programmable routers.

In case a programmable networking infrastructure fulfils the above listed requirements, then
it is up to the developers of the security services to take care of an efficient realization of the
required intrusion prevention services.

4.3 The Principle of Demand-Driven Intrusion Prevention

This section elaborates on the proposed concept of an autonomous and distributed intrusion
prevention framework on top of programmable routers. The presented framework is designed
to be operated in an arbitrary network consisting of a number of routers ri that connect
several subnetworks nj to each other and to the Internet (see Figure 4.1). A subnetwork
consists of a varying amount of end-systems which must not be equal. Each router in the
network can either be of passive or programmable nature. An active router is automatically
a member of the IPS overlay network. For protecting the end-systems, there has to be at
least one programmable router on the path between potential attackers (Internet and all
subnets) and each subnet. Internal attacks—attacks that completely take place inside one
subnet—cannot be stopped, as only traffic between/to subnets is analyzed.

Demand-driven intrusion prevention makes use of the fact that attacks require the exis-
tence of one or multiple concrete vulnerabilities to succeed. For example, the Code Red attack
exploits a buffer overflow that exists in certain versions of Microsoft’s Internet Information
Server (IIS). In the approach followed, an intrusion prevention service provides protection
against attacks exploiting a concrete vulnerability. Flows towards an end-system are only
analyzed by intrusion prevention services that protect against attacks that could actually
harm it. In this way, the proposed approach reduces the amount of signatures for which each
flow is checked and as a result this also reduces the rate of false positives, as explained next.

Page 53

TU Berlin Section 4.3

Internet

N1 N8

N7N6

N5

N4

N3

N2
R5

R4

R7 R6

R3

R2

R1

R9R8

R11

R10

N10 N9

Programmable

Conventional
Routers

Figure 4.1: An Example Network

Let pi be the probability of falsely classifying a packet as malicious for signature i (false
positive rate of signature i). (1−pi) is then the probability of correctly classifying the packet,
and (1− p1) · (1− p2) · · · · · (1− pN) the probability that a benign packet is correctly classified
by N signatures. The false positive rate for N signatures is then

1−
N∏
i=1

(1− pi), 0 ≤ pi ≤ 1. (4.1)

Independently of the values of pi, the product decreases for increasing N and the false positive
rate increases for increasing number of signatures.

This requires knowledge of the relevant end-systems and their vulnerabilities and, since
networks vary over time, that knowledge must be continuously gathered automatically. In
detail, it is essential to identify:

• the network topology,

• the reachable end-systems:

– distance between Internet and end-system,

– running OS and applications or vulnerabilities,

– amount of traffic that is destined to an end-system.

This information enables to specify both the intrusion prevention services requested by each
end-system, and all placement possibilities for each service. The distance between Internet

Page 54

TU Berlin Section 4.3

Internet

R2

R1

R8

R11

R10

1 x Web-server: IIS

1 x SQL-DB: MySQL

N9

Figure 4.2: A detailed view of a path of the network

and an end-system is used to filter packets that would not reach its destination based on the
TTL. Further, the amount of traffic that is destined to an end-system is required to determine
an optimal deploy strategy of the intrusion prevention services.

An intrusion prevention service analyzes one or multiple flows (IP-source, IP-destination
address, port numbers) for specific attacks. Hence, the requested intrusion prevention services
must be distributed in the network such that any protection service required by a subnet is
deployed somewhere between potential attackers (Internet and subnets) and that subnet. For
each router the following degrees of freedom exist:

• Decision whether or not a router is programmable.

• Choice of protection services to be integrated.

• Specification of which traffic must be analyzed by which protection services.

The set of these decisions per router make up a deployment strategy for the Fidran archi-
tecture.

For example, assuming that subnetwork N9 of the exemplary network depicted in Fig-
ure 4.2 consists of two end-systems: a Windows NT system running Microsoft’s Internet
Information Server (IIS) with support for php-, cgi - and coldfusion-scripts and a Linux-
based system running the SQL database management system MySQL. An analysis of both
systems results in an initial request to install five application-specific intrusion prevention
services (IIS, php, cgi, coldfusion and MySQL), each service preventing attacks targeting the
eponymous application.

Assuming that all subnetworks can be trusted (the Internet is the only potential attacker),
this results in an overall number of five intrusion prevention services that must be deployed
on the four programmable routers R1, R8, R10 and R11 that are on the path between Internet

Page 55

TU Berlin Section 4.4

and subnetwork N9. Theoretically, the outcome of this are 45 = 1024 different deployment
strategies. In case that all five routers between Internet and subnetwork N9 can be made
programmable, then 55 = 3125 different possibilities exist.

The requested intrusion prevention services must be placed on all traffic paths to subnet
N9 in case that all subnets are potential attackers, and the amount of placement possibilities
can be calculated using Equation (4.2). The number of programmable routers on the path
from the origin o to destination d (Internet: o=d=0) is denoted routers(o, d) and sd denotes
the amount of services requested by destination d.

l∑
o=0

l∑
d=1

routers(o, d)sd (4.2)

Assuming that all routers in the network can be turned into programmable ones and all
subnets request the installation of five intrusion prevention services, then this results in an
overall amount of 468, 548 placement possibilities. Consequently, the question is how to
configure each router of a network in order to adequately protect the end-systems.

To do so, the self-configuring intrusion prevention overlay network must be capable of:

1. analyzing the network which is to be protected (only for limited networking environ-
ments),

2. determining an intelligent deployment strategies of the requested intrusion prevention
services,

3. distributing the requested security services in accordance to the previously defined
strategy, and

4. adapting itself to network dynamics.

The next section identifies the mechanisms—besides the above mentioned capabilities—
that are required to create an autonomous intrusion prevention overlay network.

4.4 The Fidran Intrusion Prevention System Architecture

This section discusses the Flexible Intrusion Detection and Response Framework for Active
Networks architecture depicted in Figure 4.3. Fidran is build on top of an underlying pro-
grammable networking environment which allows to dynamically deploy new security services
on Fidran routers. Its modular design provides the infrastructure for a constructive coop-
eration between modules of different security technologies. In addition, the programmable
networking infrastructure facilitates maintenance work and enables the distribution of secu-
rity tasks among different Fidran routers.

For developing Fidran the following design-requirements were identified and followed:

• modular concept:

– capability to fine-grain configure Fidran nodes thus enabling the principle of
demand-driven intrusion prevention

Page 56

TU Berlin Section 4.4

Traffic

Selector

Network

Control

Module

Queues

Packets

Security

Policy

Management

Module

Drop
Forward

SnS2S1
...

SlS5S4
...

SmS7S2
...

Service Process Chains

Figure 4.3: The Fidran Architecture

– capability to dynamically extend the functionality through the integration of new
security services

– facilitation and acceleration of maintenance work and configuration tasks

• efficiency

• (re-) configuration of the Fidran system at runtime

The framework consists of core components which run permanently and of add-on components—
the security services—which are dynamically integrated into the system as needed (cf. Fig. 4.3).
The core functionality comprises the traffic selector, the security policy, the control/management
module, the network scanner and the default queuing discipline. Security services are im-
plemented as loadable modules featuring IPS specific networking services. The system is
designed such that a dynamic reconfiguration at runtime (insertion and deletion of security
services) is possible. The capabilities provided by the underlying programmable networking
infrastructure allow to distribute the Fidran system on programmable routers. The dynamic
creation of an IPS overlay network is thereby enabled. Secure communication between pro-
grammable nodes is also provided. In the following sections all components of the framework
are explained in detail.

4.4.1 The Security Policy

Each Fidran node possesses a security policy which is depicted in Figure 4.4 and which
specifies the behavior of the system. As the tasks differ between last hop programmable
routers and the other programmable routers, two versions of the security policy exist. In
detail, they store:

• all Fidran systems:

Page 57

TU Berlin Section 4.4

Blacklist:
192.168.12.0/28

192.168.13.12

192.168.13.20-25

Whitelist
192.168.10.0/16

192.168.13.10-19

192.168.15.3

Known Destinations:

Ports

21

22

23

25

80

13

53

UDPTCP

IP Destination Addresses

192.168.15.3

2

D
is

ta
n
c
e

Only last hop

programmable

routers

192.168.15.3

IP
 S

o
u

rc
e

 A
d

d
re

s
s
e

s
192.168.11.0/16

S1

S5

S23

Service Assignment Table:

1Queue-ID

Figure 4.4: The security policy

– the traffic categories:

∗ process:
· mapping between flows and service process chain and
· mapping between flows and waiting queue

∗ drop: specification of packets that are dropped by the traffic selector
∗ forward: specification of the flows that are not analyzed by the local Fidran

system

• only last hop programmable routers:

– the distances between Fidran router and end-systems,

– a list of relevant and reachable destination-addresses

The structure of the security policy is depicted in Figure 4.4. All security policies contain
a whitelist, a blacklist and a service assignment table. The whitelist specifies the network
traffic belonging to traffic category process and the blacklist defines the network packets
which must be dropped by the traffic selector. Network traffic that neither is specified in
the whitelist nor in the blacklist is automatically assigned to traffic category forward. To
reduce the amount of entries the security policy supports the Classless Inter-Domain Routing
(CIDR) notation as well as the wildcard ”-” which allows to specify small IP address ranges.
The service assignment table memorizes the mapping between traffic flows and intrusion
prevention services and in addition, it assigns the traffic flows to the appropriate waiting

Page 58

TU Berlin Section 4.4

queue (queue-id). To implement flow specific assignment of intrusion prevention services—
based on the tuple IP destination and source address—the service assignment table associates
the list of assigned intrusion prevention services with the corresponding source and destination
address as depicted in Figure 4.4. For this purpose the service assignment table uses the
IP destination addresses of the whitelist as primary index and the IP source address as
second index. Entry (IPB/IPA) of the service assignment table points to the list of intrusion
prevention services that are assigned to the flow originating from IP address IPA and destined
to IP address IPB. Identification of intrusion prevention services happens via unique names.
The control module uses the service assignment table to generate the service process chains
(see Section 4.4.5). Finally, the waiting queue for a flow is specified in the corresponding
data field (IPB/IPA)→Queue-ID.

Security policies of last hop programmable routers, like router R5 in Figure 4.1, ad-
ditionally keep track of reachable and relevant destination addresses. The list memorizes
IP-addresses and listening port numbers (TCP and UDP) of end-systems that are reachable
and that belong to the corresponding subnetwork, for example, router R5 keeps track of all
reachable destination addresses of subnetwork N3. The list is continuously observed and
regularly updated by the network analysis process (Section 5). Last hop traffic selectors use
it to identify new destinations in terms of new end-systems or new running applications.
Supplementary, the list memorizes the distances between the local Fidran router and the
end-systems of the attached subnetworks. Last hop traffic selectors check the distance fields
to filter those packets that would not reach their destination.

4.4.2 The Traffic Selector

Initially, all network traffic captured by the network interfaces is forwarded to the traffic. It
is responsible for the tasks:

• all Fidran systems:

– of categorizing the network traffic into

∗ process - packets are analyzed by a set of security services,
∗ forward - packets are directly forwarded without being analyzed by a security

service, and
∗ drop - packets are dropped by the Fidran system:
· ingress-/egress-filtering
· packets that would not reach their destinations

• only last hop programmable routers:

– of measuring traffic volumes

– of screening network traffic for new destination addresses

All network traffic—downlink (traffic destined to a subnet) as well as uplink (traffic originat-
ing from a subnet) traffic—is redirected to the traffic selector. To appropriately divide the
network traffic into the categories process, forward and drop the traffic selector accesses the
corresponding entries of the security policy (black- and whitelist). First it checks the blacklist

Page 59

TU Berlin Section 4.4

to drop the specified network packets. Next it inserts the network packets, as specified by
whitelist and the corresponding entry of the service assignment table, into the appropriate
waiting queue. Network packets that neither are specified in the blacklist nor in the whitelist
are directly forwarded and not analyzed by any installed security service (see Figure 4.3).
It is either not necessary to check this traffic (e. g. encrypted traffic, IPSec), or another
programmable node on the route to the end-system is in charge of doing so.

Traffic selectors running either on the BGR or on a so-called last hop programmable
router—for example, router R7 in Figure 4.1 is the last programmable hop for subnetworks
N5 and N6—check the time to live (TTL) values of network packets addressed to a destination
within the network and drop those that would not reach their destination. The corresponding
distances between end-systems and programmable routers are specified during the network
analysis process described in Section 5 and are stored in the security policy (see Section 4.4.1).

The principle of demand-driven intrusion prevention is to analyze flows—identified via
the tuple (source-address, destination-address, source-port, and destination-port)—only with
the set of intrusion prevention services that protect against the attacks that could actually
harm the receiving end-system. To address the issue of IP address spoofing, BGR and last
programmable hops are assigned to do ingress/egress filtering. The former is done by the
traffic selector running on the BGR: packets that come in from the Internet and that have an
IP source address which belongs to the IP-address range of the network are dropped. Traffic
selectors running on last programmable hops are assigned to do egress filtering on the uplink
network traffic: network packets originating from a subnetwork of the network must have
a corresponding IP source address otherwise they are dropped. The relevant information is
extracted from the corresponding routing tables.

To optimally deploy the requested intrusion prevention services it is mandatory to know
how much traffic is destined to an end-system (see Section 6); this is done by last hop traffic
selectors. Finally, to identify new destinations within the network—networks vary over time—
last hop traffic selectors scan the network traffic for new destination addresses (IP-address,
destination port) that lie within the IP-address range of the network.

4.4.3 An Intrusion Prevention Service

It is emphasized that neither the development nor the improvement of new/existing attack
detection techniques is part of this thesis. The focus is on implementing an intrusion preven-
tion overlay network that efficiently and autonomously protects vulnerable end-systems of a
network. For this purpose the intrusion prevention overlay network uses existing techniques
to protect vulnerable systems.

Demand-driven intrusion prevention makes use of the fact that most attacks require the
existence of one or multiple concrete vulnerabilities to succeed and hence, flows to an end-
system are analyzed only by intrusion prevention services relevant to the systems’ vulnerabili-
ties. A vulnerability is a weakness in an information system that can be used by an attacker to
alter the intended operation of the system. To take advantage of a vulnerability the attacker
uses an exploit, for example, the Code Red attack exploits a buffer overflow that exists in
certain versions of Microsoft’s Internet Information Server (IIS). Several approaches to name
vulnerabilities exist. The Common Vulnerabilities and Exposures list [2] provides the most
comprehensive index of standardized names for vulnerabilities. Moreover, it must be taken

Page 60

TU Berlin Section 4.4

into account that multiple exploits can address one concrete vulnerability: metamorphic and
polymorphic variants of a primary exploit can be generated by altering instructions (or the
instruction sequence) or by applying different encryption/decryption techniques, respectively.
Polymorphism and metamorphism hamper the implementation of adequate intrusion preven-
tion services, but promising approaches are being developed: reference [33] discusses the
automated generation of vulnerability-based signatures, signatures that match all exploits of
a given vulnerability. Further approaches are presented in [86, 133, 39, 33].

All intrusion prevention services are stored on a central server, the Service Repository
(SR), where the programmable routers download the requested intrusion prevention services
from. Further, each security service is realized as programmable networking service and
accordingly, it can dynamically be integrated/removed on/from a Fidran router at runtime—
a programmable node must not be rebooted in order to extend its functionality.

An intrusion prevention service provides protection against attacks exploiting a concrete
vulnerability: it performs its individual set of operations—signature-detection, anomaly de-
tection algorithms or any kind of security intelligence—on the traffic passed to it. An ex-
emplary intrusion prevention service provides protection against the Land-attack. To crash
vulnerable end-systems, an attacker sends a single a TCP packet with the SYN flag set and
the same destination and source address and port.

To enable the dynamic generation of service process chains—which is done by the control
module (see Section 4.4.5)—each security service contains a header part specifying:

• the unique intrusion prevention service name,

• the author of the intrusion prevention service,

• a short description of what the intrusion prevention service is doing,

• the operating systems that are protected by the intrusion prevention service

• the applications that are protected by the intrusion prevention service.

• the protocol -field specifies which network packets must be forwarded to the intrusion
prevention service and

• the priority-field specifies the position in the process chain,

• finally, the field call contains the events to which an intrusion prevention service registers
itself.

The fields name, author, operating systems, applications and protocol are self-explaining. In
addition, the approach provides the possibility to label an intrusion prevention service with
a priority. The control module uses linked lists to handle the individual execution sequences
of packets and the priority determines the position of an intrusion prevention service inside
these linked lists. Finally, an intrusion prevention service registers itself—specified in the
call -field—to one of two events: the arrival of a packet or the reception of an alarm which
has been triggered by an intrusion prevention service.

Page 61

TU Berlin Section 4.4

Traffic

Selector

NIC-2

Control

Module

Queues

Packets

Security

Policy

Management

Module

Drop
Forward

SnS2S1
...

SlS5S4
...

SmS7S2
...

Service Process Chainsi Trace Point i

1

3 42

6

5

NIC-1

Figure 4.5: The trace points used for the performance evaluation

4.4.4 The Waiting Queues

Each Fidran system is provided with a configurable amount of first-in-first-out (FIFO)
waiting queues of limited length. A waiting queue is the buffer between traffic selector and
remaining Fidran system. A waiting queue is linked to a concrete service process chain.
The control module takes the packets from the waiting queues and forwards them to the
appropriate service process chain. The matching service process chain is identified by the
waiting queue that stored the corresponding packet.

4.4.5 The Control Module

The control module is the central unit of the Fidran system. Its main responsibility is to
take care of the service processing chains. This includes the task of handling the integration
of new and the removing of old security services. Further, the set of integrated security
services are dynamically linked by the control module into a set of service processing chains.
The particularity is that security services can be integrated into /removed from a Fidran
system at runtime. A system stop or a system’s reboot is not required. A security service
can be member of multiple security service processing chains. To create the security service
processing chains the control module evaluates the header parts of the security services and
the security policy. A security service is identified via an unique name and moreover, the
security policy specifies which security services must analyze which packets.

As stated in the previous section the control module also dequeues the waiting queues
whereas all waiting queues are assigned the same portion of processing time meaning that
the waiting queues are served without priority. This technique is known as Round-Robin
scheduling. Other scheduling algorithms could be integrated.

Page 62

TU Berlin Section 4.5

3.) Receiver1.) Sender
2.) Programmable

Router

Bandwidth

100 Mbps

NIC-1 NIC-2

Figure 4.6: The initial testbed

4.5 The Impact of a Fidran Router on the Processing of a
Packet

In the course of the thesis a Linux-based prototype of the Fidran system was implemented
to assess its performance. The prototype includes a small collection of intrusion prevention
services using the state-of-the-art pattern matching algorithms Boyer-Moore-Horspool [70],
which is a modified version of the original Boyer-Moore algorithm [30], and Aho-Corasick [12].
These intrusion prevention services search for specific patterns in the packets payload. The
security services, the control module, the traffic selector and the queuing disciplines were
implemented as loadable kernel modules, whereas the management module runs as a user-
space process. Moreover, the Fidran architecture is equipped with a configurable number
of waiting queues which were realized as first-in-first-out (FIFO) waiting queues.

To determine how a running Fidran system affects the network performance in terms of
delay, an initial testbed consisting of three systems was setup. The systems were connected
in line via Ethernet with a connection speed of 100 MBit/s (see Figure 4.6) and the middle
host—equipped with two network interface cards—was running the Fidran system. The
Fidran system was supplied with one waiting queue which was configured to maximally
buffer 100 packets. The remaining two hosts acted as sender—generating constant-bit-rate
traffic (CBR)—and receiver. No further tasks were running on the systems.

Fidran was analyzed for two types of systems: a Pentium III system, 733 MHz, 1024 MByte
main memory (PC733) and and a Dual Xeon node, 3000 MHz, 2048 MByte main memory
(PC3000). Sender and receiver were of type PC3000. Furthermore, all systems were running
a customized Fedora operating system with kernel 2.6.12. An experiment run included the
sending of 30, 000 packets for each parameter combination. For each packet, the following
timestamps were traced (see trace points in Figure 4.5):

T1) reception time at NIC-1,

T2) arrival time at the Fidran system,

Page 63

TU Berlin Section 4.5

T3) insertion time into the waiting queue,

T4) start time of the processing period,

T5) end time of the processing period and

T6) sending time at NIC-2.

The Time Stamp Counter (TSC), a feature of the Intel IA-32 instruction, was used to capture
the timestamps. The Read Time Stamp Counter instruction (RDTSC) returns the count of
ticks from processor reset and Equation 4.3 shows how to convert a number of counted ticks
into the corresponding delay. To correctly measure the delays the following precautions
were taken. On multi-processor systems—this also counts for multi-core systems—it is not
guaranteed that all processors have identical values in their TSC. This issue was addressed
by disabling the multi-processor support of the operating system. Consequently, on Dual
Xeon nodes packets were only processed by one CPU. In addition, to reduce the number of
wasted cycles modern processors support out of order execution. The CPUID instruction can
be executed to serialize instruction execution. Serializing instruction execution guarantees
that any modifications to flags, registers, and memory for previous instructions are completed
before the next instruction is fetched and executed.

delay[s] =
number of ticks

CPU frequency[Hz]
(4.3)

In a first set of experiments the basic delay Tbase representing the routing delay in a
standard network router—here the two systems mentioned above—was specified. In this
scenario no Fidran system was running on the programmable router. This delay is denoted
by Tbase and it also applies in case of a running Fidran system. Throughout the experiments
the packet reception times at network interface card 1 (NIC 1), tracepoint T1, were traced as
well as the sending times at NIC 2, tracepoint T6. The routing delay for a packet corresponds
to the difference between reception time and sending time.

Apart of the system that is used as router, also packet size and mean packet arrival rate
influence the average routing delay of a packet. For this reason Tbase was once measured
for varying traffic loads with packets of a constant size and once for varying packet sizes at
constant traffic load. In detail, Tbase was measured for varying constant-bit-rate traffic loads
starting at 1 Mbps and ending at 60 Mbps. The traffic rate was increased by 1 Mbps per
experiment run and the IP packet size was set to 1500 bytes. Tbase was measured for both
systems—PC733 and PC3000—and the results are depicted in Figure 4.7. The green curve
in Figure 4.7(a) shows the measured routing delay Tbase over the offered load for a system of
type PC733 and the green curve in Figure 4.7(b) depicts the measured values for a system of
type PC3000. It can be seen that the basic delay Tbase is a constant for a given system and
does not depend on the offered load or in other words the offered load has no influence on
Tbase.

Next, a Fidran system was started on the programmable router but no security services
were installed. In case of a running Fidran system, all traversing packets will additionally
be delayed because Fidran performs a security policy lookup in order to check whether the
current packet must be analyzed by security services. This delay can be measured between

Page 64

TU Berlin Section 4.5

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60

D
el

ay
 [u

s]

Load [Mbps]

Tactive

Tbase

(a) PC733

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0 10 20 30 40 50 60

D
el

ay
 [u

s]

Load [Mbps]

Tactive

Tbase

(b) PC3000

Figure 4.7: Tbase and Tactive: varying traffic rates and IP packet size of 1500 Bytes

Tracepoint 2 and Tracepoint 3, and is denoted by Tactive. During the experiment, each packet
was checked against ten destinations which are registered in the security policy. The red curve
in Figure 4.7(a) represents the security policy lookup delay Tactive over the offered load for a
system of type PC733 and the scenario of ten possible destination addresses. The analogous
values for a system of type PC3000 are depicted by the red curve in Figure 4.7(b). Again,
both curves show that for a given scenario—in terms of possible destination addresses—the
offered load does not influence the parameter Tactive.

In the following, the influence of the packet size on the delays Tbase and Tactive—again
each packet was checked against ten destinations—was analyzed for both system types using
CBR-traffic of 5, 10, 20, 30 and 40 Mbps. At the beginning, IP packets of size 40 Byte
were sent and in the course of the measurement the IP packet size was increased in steps of

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400

de
la

y
[u

s]

IP packet size [Byte]

5 Mbps
10 Mbps
20 Mbps
30 Mbps
40 Mbps

(a) Tbase

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

de
la

y
[u

s]

IP packet size [Byte]

5 Mbps
10 Mbps
20 Mbps
30 Mbps
40 Mbps

(b) Tactive

Figure 4.8: PC733: Tbase and Tactive for constant traffic rates and varying IP packet sizes

Page 65

TU Berlin Section 4.5

 0

 5

 10

 15

 20

 25

 0 200 400 600 800 1000 1200 1400

de
la

y
[u

s]

IP packet size [Byte]

5 Mbps
10 Mbps
20 Mbps
30 Mbps
40 Mbps

(a) Tbase

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

de
la

y
[u

s]

IP packet size [Byte]

5 Mbps
10 Mbps
20 Mbps
30 Mbps
40 Mbps

(b) Tactive

Figure 4.9: PC3000: Tbase and Tactive for constant traffic rates and varying IP packet sizes

100 Byte up to a maximal size of 1500 Byte. Figure 4.8(a) depicts the routing delay Tbase and
Figure 4.8(b) shows the delay Tactive as functions of the IP packet size for systems of type
PC733. The corresponding results for systems of type PC3000 are depicted in Figures 4.9(a)
and 4.9(b). Considering the measured Tbase values for both systems, it can again be seen
that the load has no influence on the delays. But on the opposite the IP packet size has
an impact on the routing delay Tbase as depicted in Figures 4.8(a). For both systems the
routing delay Tbase increases with growing packets. The reason for this are the operations
that are required once to transfer a packet from the receiving network interface card to the
router’s network stack and once to forward the packet to the sending network interface card.
The greater a packet the longer do these operations take. Finally, the influence of the packet
size is stronger for PC733 systems as the slopes of the curves in Figure 4.8(a) are greater
than those in Figure 4.9(a). Figures 4.8(b) and 4.9(b) depict the measured delays Tactive for
both systems. Considering the range of the depicted values Tactive can be assumed to be
constant for a given system. The reason for this is that the traffic selector (see Section 4.4.2)
exclusively evaluates IP-header fields to decide whether a packet must be processed by the
local router. Table 4.1 summarizes the measured delays Tbase and Tactive for both types of
systems.

Table 4.1: Tbase and Tactive

Delay [µs]
IP packet size [Byte] PC733 PC3000

Tactive 40-1500 0.293 0.042
Tbase 40 17.83 1.93

500 20.12 2.71
1500 22.74 3.23

Page 66

TU Berlin Section 4.5

 0

 5

 10

 15

 20

 25

 30

 0 10 20 30 40 50 60

de
la

y
[u

s]

Load [Mbps]

ICMP
IIS

Oracle

Frontpage
SQL
FTP

X11

(a) PC733

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

de
la

y
[u

s]

Load [Mbps]

ICMP
IIS

Oracle

Frontpage
SQL
FTP

X11

(b) PC3000

Figure 4.10: Processing times of example security services: varying load and constant IP
packet size 1500 Byte

In the next set of experiments security services were started on the programmable router,
additionally delaying the packets on their way from sender to receiver. The delay caused by
running security services can be split into two components:

• waiting time Twaiting and

• processing time Tprocess.

The waiting time Twaiting consists of the time that a packet spends inside the waiting queue
(T3–T4). The time Tprocess is measured between Tracepoints 4 and 5. For implementing
security services, the attack signatures of the current Snort rule database were used. The
security services used are listed in Table 4.2. The second column indicates the algorithm
used (AC: Aho-Corasick and BM: Boyer-Moore-Horspool). It is emphasized here that the
security services were only realized for the purpose of the performance evaluation. They
have their limitations; for example, they neither keep state information nor do they address
fragmentation. Again the processing time of each security service was measured for both
systems and for the scenarios: (i) varying load and constant IP packet size (1500 bytes) and
(ii) constant load and variable IP packet size (40-1500 Byte). At each experiment run exactly
one security service was deployed on the programmable router and each IP packet was checked
against ten destinations. Furthermore, the packets’ payload was generated by random.

Figure 4.10(a) depicts the processing times over the offered load for the seven security
services on a PC733 system and Figure 4.10(b) shows the corresponding results for a PC3000
system. Again for both systems it can be stated that the offered load has no influence on the
security services’ processing times. The processing times of the security services using the
Aho-Corasick algorithm are about the same value. The reason for this is that the algorithm
matches all patterns at once against the input stream. To do so it constructs a finite state
pattern matching machine based on the provided set of signatures. In contrast the Boyer-
Moore algorithm is only able to match an input string against a single signature at a time.

Page 67

TU Berlin Section 4.5

Table 4.2: The exemplary security services
Name Algorithm

S1 ICMP BM
S2 IIS AC
S3 Oracle AC
S4 Frontpage AC
S5 SQL AC
S6 FTP AC
S7 X11 BM

Consequently, the processing times of the ICMP security service (12 signatures) is greater
than the processing time of the X11 security service (2 signatures). But according to the
figures, the processing time of a security service is independent of the load and moreover, it
is a constant for a given security service.

In a subsequent set of experiment runs the impact of the IP packet size on the security
services’ processing times was studied. For constant traffic rates of 5, 10, 20, 30 and 40 Mbps
and IP packet sizes from 40 Byte up to 1500 Byte the security services’ processing times were
measured for both systems. The results for the PC733 system are depicted in Figure 4.11 and
the analogously measured delays for the PC3000 system are shown in Figure 4.12. Each figure
depicts a security service’s processing time over the IP packet size for the mentioned CBR-
traffic loads. All depicted curves show the effect of the IP packet size on the security service’s
processing time; the huger a packet the longer its processing time. The reason for this is that
the complexity of the algorithms Boyer-Moore and Aho-Corasick are linear in the length of
the input string. The linear relationship between processing time and input string (IP packet)
can clearly be seen in the figures. Finally, the curves of each figure—representing different
CBR-load scenarios—again prove the fact that the load does not influence the processing
time of a security service.

In a next experiment, the delay in dependence on the number of integrated security ser-

Table 4.3: The processing times ts of the security services [µs] for various IP packet sizes [Byte]

PC733 PC3000
40 500 1500 40 500 1500

ICMP 17.92 19.68 24.83 4.08 4.78 5.46
IIS 0.69 5.48 15.82 0.17 1.29 3.70
Oracle 0.67 5.45 15.80 0.17 1.28 3.71
Frontpage 0.65 5.49 15.75 0.12 1.27 3.67
SQL 0.63 5.47 15.83 0.16 1.33 3.72
FTP 0.64 5.34 15.33 0.14 1.25 3.61
X11 3.50 5.82 10.63 1.00 1.32 1.75

Page 68

TU Berlin Section 4.5

 0

 5

 10

 15

 20

 25

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(a) ICMP

 0

 5

 10

 15

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(b) IIS

 0

 5

 10

 15

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(c) Oracle

 0

 5

 10

 15

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(d) Frontpage

 0

 5

 10

 15

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(e) Sql

 0

 5

 10

 15

 200 600 1000 1400
de

la
y

[u
s]

IP packet size [Byte]

5
10
20
30
40

(f) FTP

 0

 2

 4

 6

 8

 10

 12

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(g) X11

Figure 4.11: PC733 processing times of the example security services: constant loads and
varying IP packet size

Page 69

TU Berlin Section 4.5

 0

 2

 4

 6

 8

 10

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(a) ICMP

 0

 1

 2

 3

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(b) IIS

 0

 1

 2

 3

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(c) Oracle

 0

 1

 2

 3

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(d) Frontpage

 0

 1

 2

 3

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(e) Sql

 0

 1

 2

 3

 200 600 1000 1400
de

la
y

[u
s]

IP packet size [Byte]

5
10
20
30
40

(f) FTP

 0

 0.5

 1

 1.5

 200 600 1000 1400

de
la

y
[u

s]

IP packet size [Byte]

5
10
20
30
40

(g) X11

Figure 4.12: PC3000 processing times of the example security services: constant loads and
varying IP packet size

Page 70

TU Berlin Section 4.5

vices was measured. This experiment considers the fact that the current Snort rule database
contains over 6,000 attack signatures which are stored in 48 separate files; for example, each
of the seven implemented security services contains the attack signatures of one of those
files. Consequently, it is expected that multiple security service will be deployed on a pro-
grammable router. For the purpose of traceability only one type of security service was used
throughout that experiment. Initially, one entity of the FTP security service was running
on the programmable router and continuously further FTP security services were integrated
into the Fidran system, up to a total number of 20. Figure 4.13 depicts the measured packet
waiting time Twaiting and Figure 4.14 depicts the corresponding processing time Tprocess. This
time only the results for a PC733 system are depicted as the results for the PC3000 system
show the same characteristics at another scale. The x-axis of the figure represents the amount
of installed FTP services, the y-axis represents the offered load in MBit/s.

Figure 4.13 depicting the measured delays Twaiting is divided into two regions: a lossy
one and a loss-free one. A router can be modeled as a finite queuing system. The packet
arrival rate λ is an input parameter which is influenced by a number of factors e.g. amount of
connected systems or the users’ behavior. The service rate µ is determined by the traffic mix
and the set of services that must be applied to each packet. When the arrival rate exceeds
the service rate (µ < λ) the queue fills up and the system starts to drop packets—it moves
from the loss-free to the lossy region. The average waiting time in the lossy and the loss-free
region actually depends on several factors: the traffic mix, the packet arrival rate, the security
services assignment, the queuing discipline (here: one FIFO queue) and the dropping policy.
However, the chart shows that the waiting time is either negligible (loss-free) or dominating
the total delay caused by the Fidran system (lossy).

The delay Tprocess represents the time that a packet needs to traverse all security services
that are assigned to it. In the experiments conducted, all packets were analyzed by the set
of integrated FTP security services. Accordingly, Tprocess is expected to be proportional to
the average processing time ts of the service and the amount n of installed security services
(Tprocess = n · ts). Figure 4.14 depicts Tprocess over the offered load and the amount of
installed services. The graphic shows that the processing time is constant for a given number
of installed services. This demonstrates once more that the actual load does not influence the
processing time. Furthermore, the delay Tprocess increases linearly with a growing number of
installed services, thus confirming the assumption that Tprocess = n · ts.

Summarizing, the results show that the additional overhead Tactive caused by starting a
Fidran system and redirecting all packets to it is rather small compared to the routing delay
Tbase. Furthermore, the processing time ts can reasonably be assumed constant for a given
security service s and a given IP packet size. The processing time ts of a security services
increases linearly with growing IP packets. Further, the total processing time Tprocess for a
packet can be approximated by the sum over the processing times ts of the security services
assigned. In addition, Figure 4.13 demonstrates that an IPS might become the bottleneck of
a network (lossy region), even in case of limited security services.

Page 71

TU Berlin Section 4.6

Figure 4.13: PC733: Twaiting (T3-T4) over the number of installed FTP-security services

4.6 Summary

This chapter introduced the concept of Fidran, which is a Flexible Intrusion Detection and
Response Framework for Active Networks. To build an intrusion prevention system either
special purpose hardware or general purpose hardware is used. Section 4.1 identified the
requirements of extensibility, flexibility and scalability to be important for an autonomous
intrusion prevention overlay network but special purpose hardware contradicts them as ex-
plained in Section 2.3.6. In addition, when considering increasing traffic volumes and an
increasing number of attacks the construction of a centralized intrusion prevention system is
hardly to realize.

The modular concept of Fidran addresses the demands of extensibility, flexibility and
scalability. Security services can be integrated into /removed from running Fidran systems.
Furthermore, scalability is provided by the capability to distribute security services over
multiple programmable routers. To do so, knowledge of the network is required to intelligently
deploy the security services on the programmable routers. Chapter 5 discusses how that
information can be gathered in an automated way and Chapter 6 introduces the deployment
strategies developed for Fidran.

Page 72

TU Berlin Section 4.6

Figure 4.14: PC733: Tprocess (T4-T5) over the number of installed FTP-security services

Page 73

TU Berlin Section 5

Chapter 5

Gathering Network Information

The capabilities of the intrusion prevention overlay network depend, as described in Chap-
ter 4, on the deployment scenario. When operated in a backbone network information like,
for example, the requested security services must be provided to the overlay network to follow
the principle of demand-driven intrusion prevention. When deployed in a limited networking
environment, an example is depicted in Figure 5.1, the intrusion prevention overlay network
can be configured such to autonomously gather network vulnerability information. Since
most attacks exploit one or multiple concrete vulnerabilities that are specific to an operating
system (OS) or application, it is essential to identify:
• the topology of the network,
• the reachable end-systems:

– distance between Internet and end-system,
– running OS and applications,
– amount of traffic that is destined to an end-system.

This information enables to specify both the intrusion prevention services requested by each
end-system, and all placement possibilities for each service. The distance between Internet
and an end-system is used to filter packets that would not reach its destination (based on
the TTL). Further, the amount of traffic that is destined to an end-system is required to
optimally deploy the intrusion prevention services.

Generally, three techniques exist to gather vulnerability information: active scanning,
passive fingerprinting and cooperation. An active vulnerability scanner sends specifically
crafted packets to well defined addresses and evaluates the replies. The scanner either operates
in an intrusive or non-intrusive manner. The former technique identifies the vulnerabilities of
an end-system by actually exploiting them. On the one hand the results gained are accurate
but on the other hand this might result in an application-/system-crash. In contrast, a non-
intrusive network scanner identifies a vulnerability on the basis of the type and version of a
running application. Consequently, the results produced by a non-intrusive network scanner
are not as accurate as the results of an intrusive one, but normal network operations are not
affected by it. Moreover, the gathered vulnerability information is only as current as the
latest scan and accordingly, the questions arise when and how often to scan? In addition, an
active scanner creates traffic for the purpose of identifying end-systems. Considering large
networks this might result in a huge amount of scanning tasks.

Page 74

TU Berlin Section 5.1

The passive fingerprinting technique uses a network interface card (NIC) in promiscu-
ous mode to sniff the network. It does not collide with normal network operations but it
is impossible to predict the point of time when all end-systems of a network will be identi-
fied. End-systems that do not communicate cannot be detected by the passive fingerprinting
technique even though those systems are potential victims.

The cooperation technique requires a consent between end-systems and network analysis
tool. One approach is that each end-system runs a small application that registers at the
analysis tool and subsequently, it provides the analysis tool with the required knowledge in
terms of operating system and running applications. In a second approach, the network anal-
ysis tool logs into the end-systems and gathers autonomously the relevant data. Therefore,
the end-systems provide a login to the network analysis tool. The advantage of the cooper-
ation technique is accuracy. Operating system and running applications—including version
number and patch level—are precisely identified. But not all users feel comfortable about
either running a small network analysis client application on their machines or providing a
login to the network analysis tool.

5.1 Requirements and Practical Considerations

The network knowledge gathering process should occur in an efficient manner such that the
scanning time is minimized and normal network operation is not disturbed. Further, the data
should be collected in a non-intrusive manner, such that services and operating systems do
not crash. Additionally, following practical issues must be considered:

• changing routing topologies due to link-/router-failures or overload situations which
trigger rerouting mechanisms of the applied Interior Gateway Protocols (IGP) like Open
Shortest Path First (OSPF) or the Routing Information Protocol (RIP).

• varying amount of reachable end-systems due to variable online times; for example a
special purpose server is expected to be permanently reachable whereas a private end-
system might only be connected to the Internet for a short period of time. A related
difficulty is the Dynamic Host Configuration Protocol (DHCP) [53] which dynamically
assigns IP-addresses to clients.

• varying end-system configuration: an end-system might become vulnerable due to the
start of a new service for which an exploit exist or a patch is applied to an end-system
eliminating a set of security holes.

• the publication of a new security hole/vulnerability which results in the need to install
adequate protection mechanisms in front of the relevant systems.

• the application of Network Address Translation (NAT) [17] veils the amount of end-
systems that are represented by a single visible IP-address. In some cases—depending
on the operating systems of the hosts—it is possible to identify the number of systems
that are located behind a NAT box [25].

Following the argument that intrusion prevention should not modify end-systems, the coop-
eration technique is inappropriate for gathering the required information about the network.

Page 75

TU Berlin Section 5.2

Internet

N1

N3

N4

N2

R5

R4

R2

R3

R1

Load-Balancing

Figure 5.1: A limited networking environment

Hence, the proposed network analysis process makes use of the techniques active scanning
and passive fingerprinting.

In detail, the analysis of a network consists of three phases:

1. the boarder gateway router (BGR) calculates the network-backbone using the routing
tables of all the routers of the network.

2. active scanners are used to discover and analyze the end-systems of the network in
terms of distance, operating system and running services.

3. always running passive fingerprinting components measure the end-systems’ specific
traffic volumes and observes the network traffic for new, not yet registered IP-addresses
(indicating new end-systems connected to the network).

The approach described requires the following preconditions: first, the BGRs—here R1

and R2—are programmable routers; second, the BGRs know the addresses of all routers—
programmable as well as conventional ones—of the limited networking environment; third,
the BGRs are capable to poll the routing tables, for example via SNMP, of the routers. Fi-
nally, the routes in the limited networking environment are symmetric such that the active
scanner(s) will see the responses sent by the probed end-systems.

Page 76

TU Berlin Section 5.2

5.2 Gathering Network Knowledge

Figure 5.1 depicts an example of a limited networking environment consisting of routers (R1–
R5) with R1 and R2 acting as BGRs and subnetworks (N1–N4); each one representing a
variable amount of varying end-systems. According to its name a boarder gateway router
connects a limited networking environment to the Internet and as shown in the scenario mul-
tiple BGRs between a network and the Internet can exist. The arrows in Figure 5.1 represent
the paths between the subnetworks and to the Internet. In order to provide protection an
intrusion prevention service must be placed on the path between attacker and victim.

Initially, the BGRs figure out the structure of the network, meaning they analyze how the
routers of the network are connected with each other. It must be remarked that the network
topology discovery process is restricted to network elements of the network-layer of the ISO/
OSI reference model. This means, network components that operate in the data-link layer
like hubs or switches remain invisible.

At system startup the BGRs request the routing table of the other routers in the network.
On the basis of these routing tables and the assumption of symmetric routes, they calculate
the network backbone using Algorithm 1. The algorithm starts by identifying the children of
a BGR which are the next-hop routers towards the network’s end-systems. For this purpose,
the routing tables of all routers of the network are searched for default routing entries (aka
default routes) which, if present, are the last entries in a routing table. Normally, the default
route points towards the router that has a connection to the Internet. Take the following
entry as an example:

Destination Gateway Genmask Flags ... Interface
0.0.0.0 192.168.50.1 0.0.0.0 UG ... eth1

The default route tells the routing daemon to send all IP-packet that have not yet been routed
via interface eth1 to the next hop, which is specified via the gateway entry (192.168.50.1).
The flags U and G indicate that the route is up and that the specified gateway must be used.
Now, in case that the default route lists the BGR as gateway, the router is directly connected
to the BGR and is its child. This children identification process is successively repeated for
all routers of the network. The outcome of the algorithm is graphically depicted in Figure 5.2.
In a next step, the BGR triggers the programmable routers next to subnetworks to scan the
corresponding IP-address range.

Each programmable router is supplied with a network scanning component which is used
to discover and analyze end-systems. To do so, the scanner sends specifically crafted packets
to the addresses specified by the BGR and evaluates the replies (see [58, 59]). The local
security policy stores all reachable destination addresses—tuple IP-address, port number—of
the corresponding subnetwork in a hash-table. Afterwards, each programmable router sends
its results to the BGR which combines them to an overall map of the AS, showing running end-
systems and their configurations. The AS-map is used by the BGR to calculate an optimal
distribution of the intrusion prevention services (see Chapter 6). Then, the BGR triggers
the programmable routers to install the required intrusion prevention services and to remove
those that are no longer requested according to the newly calculated optimal distribution.

To address network dynamics—the vulnerability information represents the view of the
last scan—the network analysis process is bipartite. On the one hand the active scanning

Page 77

TU Berlin Section 5.3

program buildnetwork

Parameters:
bgrlist; // List of BGRs of the network
routerlist; // List of routers of the network without BGRs

1.) Init
router r = bgrlist.first;

2.) Identify the children of r
for(allRouters of routerlist)
for(allInterfaces of router)
for(allRoutingEntries of interface)
if((routingentry == defaultroute) && (gateway == r))
r.addchild(router)

3.) Goto next router
if(r \in bgrlist)
r = r.childrenlist.first()

else if(r.childrenlist.next() != NULL)
r = r.childrenlist.next()

else
r = bgrlist.next()

r = r->childlist()->next
4.) Identify the children of router r

Goto step 2

end buildNetworkHelper
Algorithm 1: Specifying the Backbone of a given Network

process is repeated in regular intervals to update network map and security policies. On
the other hand, to immediately catch changes, last hop traffic selectors scan the downlink
network traffic for new destination addresses. Whenever one is detected, the traffic selector
triggers the BGR to actively scan it. Afterwards, the BGR updates the security policies.

5.3 A Case Study

To assess the feasibility of the approach a network scanner was integrated into the Linux-
based Fidran prototype was used. As network scanner Nessus-3.0.2 [52] was chosen as it
performed well in a comparison of existing vulnerability scanners [56, 103]. Moreover, Nessus
provides an overall amount of 10, 000 security checks which are updated each day. Further,
the testbed which is depicted in Figure 5.3) was setup:

1. host-1: the victim, running Windows XP, SP1, IIS,

2. host-2: the programmable router,

3. host-3: the attacker.

Page 78

TU Berlin Section 5.3

R
5

R
4

R
2

R
3

R
1

eth0 eth0

eth1eth1

eth2eth2

eth0 eth0

eth1

eth1

eth0

eth2

eth1

eth2

Figure 5.2: Outcome of Algorithm 1: Network backbone

All packets originating from the attacker and destined to the victim are routed via the
programmable router and, initially, no Fidran system was running on the programmable
router. To attack the victim the Metasploit framework [95] which is an open-source platform
for developing, testing, and using exploit code. With Metasploit it can be demonstrated that
an attacker is able to execute arbitrary code on the victim. The successful attack exploits the
vulnerability described in Microsoft’s security bulletin ms03-026 (superseded by ms03-039).
In detail, the victim is running a vulnerable implementation of the RPC interface which can
be compromised by an attacker to execute arbitrary code. Worms like Blaster, Nachia or
Welchia used, among others, that security hole to gain access to end-systems.

To specify the amount of intrusion prevention services that are required to protect a typical
user’s end-system, a host running Microsoft’s Internet Information Server on a Windows XP
Professional operating system—patched with Service Pack 1—was scanned. Nessus provides
several output formats, but all of them are inappropriate for an automated evaluation. The
output for two exemplary security holes is shown in Vulnerability 1 and 2.

1.) Attacker 3.) Victim2.) Fidran

Figure 5.3: Network Knowledge Gathering

Page 79

TU Berlin Section 5.3

results|192.168.100|192.168.100.68|epmap (135/udp)|11890|

Security Hole|

A security vulnerability exists in the Messenger Service

that could allow arbitrary code execution on an affected

system. An attacker who successfully exploited this

vulnerability could be able to run code with Local System

privileges on an affected system, or could cause the

Messenger Service to fail. Disabling the Messenger Service

will prevent the possibility of attack.

This plug-in actually checked for the presence of this flaw.

Solution : see

http://www.microsoft.com/technet/.../ms03-043.mspx

Risk factor : High

CVE : CVE-2003-0717

BID : 8826

Other references : IAVA:2003-A-0028, IAVA:2003-a-0017,

IAVA:2003-b-0007

Vulnerability 1: CVE-2003-0717

Several approaches to name vulnerabilities exist and most of them are supported by
Nessus. The Common Vulnerabilities and Exposures list [2] provides the most comprehensive
index of standardized names for vulnerabilities. Microsoft uses its Security Bulletin ID to
name Windows-specific vulnerabilities. Further examples, are Bugtraq- and IAVA-ID. But
unfortunately, none of them is exhaustive: For example, Vulnerability 1 is stored in the
CVE list (CVE-2003-0717) but Vulnerability 2 is not. Hence, to automatically configure the
Fidran overlay network a script parses and extracts the Nessus report for security holes.

To follow the principle of demand-driven intrusion prevention two types of intrusion pre-
vention services were implemented:

• intrusion prevention services containing all Snort attack signatures that compromise a

results|192.168.100|192.168.100.68|microsoft-ds (445/tcp)

|12209|

Security Hole|

Synopsis :

Arbitrary code can be executed on the remote host due

to a flaw in the LSASS service.

Description :

The remote version of Windows contains a flaw in the

function DsRolerUpgradeDownlevelServer of the Local

Security Authority Server Service (LSASS) which may allow

an attacker to execute arbitrary code on the remote host

with the SYSTEM privileges.

A series of worms (Sasser) are known to exploit this

vulnerability in the wild.

Solution :

Microsoft has released a set of patches for Windows NT,

2000, XP and 2003 :

http://www.microsoft.com/technet/.../ms04-011.mspx

Risk factor : Critical

/ CVSS Base Score : 10

(AV:R/AC:L/Au:NR/C:C/A:C/I:C/B:N)

Other references : IAVA:2004-A-0006

Vulnerability 2: LSASS-specific

Page 80

TU Berlin Section 5.3

concrete vulnerability—the vulnerability is clearly identified via the Common Vulner-
abilities and Exposures (CVE) number, and

• intrusion prevention services containing all Snort attack signatures to protect a concrete
application—the application is identified via its name.

A Nessus plug-in checks for the presence of one or multiple concrete vulnerabilities and in
most cases they are reported via the corresponding CVE numbers. Accordingly, if all known
vulnerabilities of an application would have a CVE-number assigned then the vulnerable ap-
plication can be protected by the intrusion prevention service that contains all CVE-specific
attack signatures. Otherwise, if Nessus reports at least one vulnerability that does not pos-
sess a CVE number then the vulnerable application is protected by the intrusion prevention
service containing all application-specific attack patterns, even if that application also has
CVE-named vulnerabilities. In this way, at least for some applications, the number of at-
tack signatures can be significantly reduced and consequently the false positive rate (see
Equation (4.1)).

Next, Fidran was started on the programmable router and Nessus identified the following
vulnerabilities:

1. CVE-2003-0717: A security vulnerability exists in the Messenger Service that could allow
arbitrary code execution on an affected system

2. CVE-2003-0818: ASN.1 parsing vulnerabilities, arbitrary code can be executed on the remote
host

3. CVE-2003-0715, CVE-2003-0528, CVE-2003-0605: RPC interface buffer overrun, arbi-
trary code can be executed

4. CVE-2005-0048, CVE-2004-0790, CVE-2004-1060, CVE-2004-0230, CVE-2005-0688:
Arbitrary code can be executed on the remote host due to a flaw in the TCP/IP stack

5. CVE-2005-1984: Arbitrary code can be executed on the remote host due to a flaw in the
Spooler service

6. CVE-2005-1206: Arbitrary code can be executed on the remote host due to a flaw in the
SMB implementation

7. CVE-2004-0212: A remote code execution vulnerability exists in the Task Scheduler, arbitrary
code can be executed on the remote host (task scheduler).

8. CVE-2006-0034, CVE-2006-1184: A vulnerability in MSDTC could allow remote code
execution.

9. CVE-2005-2119, CVE-2005-1978, CVE-2005-1979, CVE-2005-1980: A vulnerability
in MSDTC could allow remote code execution.

10. No CVE number: Arbitrary code can be executed on the remote host due to a flaw in the
LSASS service.

This list would lead to the installation of 19 CVE-specific and 1 application-specific intru-
sion prevention services. But multiple CVE-specific intrusion prevention services contain the
same set of attack signatures, so that the total number of services to install is actually 11.

Page 81

TU Berlin Section 5.4

For example, vulnerabilities CVE-2003-0715, CVE-2003-0528 and CVE-2003-0605 (item 3
in the listing), the ones exploited in the attack, require one and the same intrusion prevention
service, containing two attack signatures. Fidran automatically loaded the demanded intru-
sion prevention service; repeated attack attempts failed as Fidran recognized and filtered
the attack. A default configured Snort system would check at least 76/810 signatures for each
TCP packet addressed to the victim’s destination ports 135/445—leading to a much higher
false positive rate. Of course Snort could also be manually configured like Fidran, but that
would require checking the applicability of each of the 886 rules by hand, and then keeping
it up-to-date—clearly a much more expensive and time-consuming task for a single security
hole.

Altogether, nine out of ten detected vulnerabilities can automatically be protected by
Fidran. But, the approach would fail to protect the task scheduler (Vulnerability 7 of the
above listing) because Snort does not provide adequate attack patterns (neither for CVE-
2004-212 nor for the Task Scheduler application).

5.4 Summary

This chapter discussed the possibilities for an autonomous intrusion prevention overlay net-
work, involving the capability to gather network knowledge and to self-configure itself. Reg-
ular active scans are used to discover running hosts and identify their vulnerabilities; in
addition, new hosts/applications are immediately identified by traffic selectors on the look
out for new destination addresses. The information gathered is then used by Fidran to
place the required intrusion prevention services—each service provides protection for a con-
crete vulnerability or application—in front of the end-system that need them. The principle of
demand-driven intrusion prevention reduces the amount of security checks that are performed
per flow and, as a consequence, reduces also the overall false-positive rate.

Based on a concrete vulnerability, the case study demonstrated that Fidran is able to
protect against known attacks which exploit a vulnerability that can remotely be identified.
The protection provided by the Fidran overlay network is limited by the availability of
adequate protection mechanisms and the capability of the integrated network scanner to
accurately identify vulnerabilities: end-systems remain vulnerable in case that the network
scanner fails to identify security holes (false negatives), and superfluous intrusion prevention
services are installed in case that Nessus reports vulnerabilities that actually do not exist
(false positives). Unfortunately, identifying all false negatives is not possible per definition.
Nevertheless, a more thorough study of the accuracy of Nessus would identify false positives.

Finally, an upcoming creation of vulnerability signatures—signatures that matches all
exploits of a given vulnerability [33]—facilitates the matching between vulnerability and
defense mechanism.

Page 82

TU Berlin Section 6

Chapter 6

Optimal Deployment Strategies

Strict quality of service (QoS) requirements of existing and emerging applications are chal-
lenging and contradicting the operation of an intrusion prevention overlay network which
inevitably decreases network performance as all packets are analyzed for malicious content
before being forwarded. Traffic engineering is the process of arranging how traffic flows
through a network [139]. Further, constraint based routing [43] is to find routes that are sub-
ject to some constraints such as delay requirements. While determining a route, constraint
based routing considers not only topology of the network, but also the specified requirement
of the flow and the resource availability of the links/nodes. The solution provided by con-
straint based routing may consist of longer but lighter loaded paths compared to the heavier
loaded shortest paths solution, and consequently, network traffic is thus distributed more
evenly.

This chapter introduces the optimization framework developed to calculate optimal se-
curity service deployment strategies including the determination of the paths to minimize
the impact of Fidran on the network performance. The flow requirements considered while
specifying the routes are described in Section 6.2. Mixed Integer Linear Programs (MILP)
are formulated to assign routes and placement of security services. Further, the optimization
framework covers the scenarios:

• Predefined routing:

– single-path

– multipath

• Joint traffic routing and security service distribution

Predefined routing implies that at least one path from any source to any destination is
specified—as a result the routing tables are set. In a single-path routing environment, a
single path exists between any two subnetworks: Figure 6.1(a) depicts a fixed path from
N2 to N1, N2 to N4 and N2 to N6. All traffic originating from N2 and destined to N1,
N4 or N6 is routed via the respective path. In a multipath routing environment multiple
paths exist between subnetworks, allowing for load-balancing. Figure 6.1(b) depicts for each
connection from source N2 to destinations N1, N4 and N6 two possible paths P1 and P2 to
route the corresponding traffic. For example, to balance the load half of the traffic can be

Page 83

TU Berlin Section 6

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

N
2

N
1

N
3

N
4

N
5

N
6

(a) Environment with predefined singlepath routes

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

N
2

N
1

N
3

N
4

N
5

N
6

P
2

P
1

P
1

P
2

P
2

P
1

(b) Environment with predefined multipath routes

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

LOSA

SNVA

STTL
CHIN

NYCM

WASH

(c) Joint routing and service deployment environment

Figure 6.1: Optimization scenarios

Page 84

TU Berlin Section 6.1

!

All router

no security

service

Active

router

Tbase

Tactive

Service

processing

chains

Tsi Tsn

Si Sn

Sj Sm

...

...
TsmTsj

"s#A1Ts

"s#A2Ts

µ

Figure 6.2: Decomposition of packet’s delay inside a router

routed via path P1 and the other half via path P2. Finally, in the last scenario the network
topology is given but no paths between the subnetworks are defined (see Figure 7.17). Hence,
the optimization framework specifies traffic routing—a single path from each source to each
destination—and the distribution of the requested security services.

Summarizing, a deployment strategy specifies the placement of programmable router
nodes, and the distribution of security services across such nodes so as to optimize certain
objectives. In case of joint traffic routing and security services deployment also the routes
(single paths) are specified by the optimization framework. The optimization framework
provides two objective functions that are discussed in detail in Section 6.2:

1. minimize the total number of programmable routers used and

2. minimize the maximum workload of any router node in the network.

The chapter is structured as follows. The subsequent section explains the system model
of a router that was used throughout the optimization framework. Section 6.2 covers both
objective functions. The remaining sections (Sections 6.3-6.5) describe the scenario-specific
MILPs.

6.1 Router System Model

The behavior of a router can be modeled as a finite queuing system consisting of an arrival
process, a queueing discipline and a service mechanisms (see Figure 6.2). The packet arrival

Page 85

TU Berlin Section 6.2

rate λ is an input parameter which is influenced by a number of factors e.g. amount of
connected systems or the users’ behavior. The service rate µ is determined by the traffic mix,
the set of services that must be applied to each packet and the number/performance of the
integrated processors. For example, in case of a dual-/multi-processor system, one processor
can be assigned to handle the arriving packets whereas the remaining processors perform the
security analysis. Consequently, the waiting time of a packet is bounded from below by the
service requests of the packets which are in front of it. In the following a programmable router
is modeled such that it resembles a single-processor system. Multiple processor machines are
respected by a performance parameter scaling down the overall processing time.

When the arrival rate exceeds the service rate (µ < λ) the queues fill up and the system
starts to drop packets. As has been shown empirically in Section 4.5, the processing time of
a packet at a router can be modeled as a sum of three components:

• the basic delay Tbase representing the routing delay in a standard network router;

• the delay Tactive representing the overhead necessary to decide whether a packet must
be processed on the programmable router (applies only if the router is programmable);

• the sum of the processing times Ts for each service s that is applied to a packet.

Accordingly, the total processing time for a packet that receives services in the set A ⊆ S at
a node is given by the sum:

Tbase + Tactive +
∑
s∈A

Ts (6.1)

6.2 Objective Functions

The presented optimization framework provides the following objective functions:

(i) the minimization of the number of programmable routers used in a network while ful-
filling all security requests and keeping all router queues bounded;

(ii) the minimization of the maximal workload of a programmable router while fulfilling all
security requests and keeping all router queues bounded.

The first objective is to minimize the number of programmable routers which can be
expressed as following:

min
∑
i

xi (OPT1)

The expenses of buying programmable routers as well as their complexity are much higher
than for standard routers. As a result of this, network operators are interested in protecting
communication infrastructures with the objective to minimize the costs/complexity. This cor-
responds to objective function (OPT1) which minimizes the overall number of programmable
routers in a network under the above mentioned constraints.

The idea for the second optimization model is to evenly distribute the load among routers.
The difference between processing time and interarrival time corresponds to the free capacity

Page 86

TU Berlin Section 6.3

N4

N1

N3
N5N6

N7

N8

N9

N10

N11

u63

u36

u64 u46

Demand k
1
:

s(1) = N10

d(1) = N2

t(1) = 100

S1={s1,s2,s3}

Demand k
2
:

s(2) = N11

d(2) = N2

t(2) = 175

S2={s3}

q3

qz

N2

!

w
3

1
=1

!

w
4

3
=1

Demand k
3
:

s(3) = N7

d(3) = N2

t(3) = 90

S3={}

D={k1,k2,k3}

Figure 6.3: Predefined singlepath routing - security services placement possibilities

of a programmable router. Minimizing the maximum router utilization which is denoted v,
thus improves the overall performance:

min v (OPT2)

The composition of v is explained in detail in the following sections.

6.3 Predefined Single-Path Routing

In the following an integer linear programming model [98, 116] for finding a deployment
strategy for the single-path routing scenario is introduced. A network can be modeled as
a directed graph with the set of nodes N representing the routers and the set of edges E
symbolizing the links. Figure 6.3 depicts the network graph corresponding to the network
shown in Figure 7.17. A link is an unidirectional connection between two routers that is
identified via the tuple start-/end-node. The bandwidth of a link e ∈ E is denoted ue.
Traffic is incorporated into the optimization framework in terms of traffic demands denoted
D. A traffic demand k ∈ D consists of a source node s(k), a destination node d(k) and a
value t(k) which defines the volume of it. Three exemplary traffic demands k1 with s(1) =
N10, d(1) = N2, t(1) = 100, k2 with with s(2) = N11, d(2) = N2, t(2) = 175 and k3 with
s(3) = N7, d(3) = N2, t(3) = 90 are depicted in Figure 6.3. The set of available services for
protecting subnetworks from intrusions is denoted by S = {s1, . . . , sm}. A set of security
services denoted Sk (Sk ⊂ S) can be assigned to a traffic demand k. The composition of
Sk depends on the specific properties of subnetworks s(k) and d(k) and their relationship.

Page 87

TU Berlin Section 6.3

In the given example, security services S1 = {s1, s3, s5} are assigned to traffic demand k1,
security service S2 = {s3} to traffic demand k2 and no security service is assigned to traffic
demand k3 (S3 = { }) as, for example, traffic from node N7 destined to N2 is sent through an
IPSec-tunnel and hence traffic k3 is encrypted and cannot be analyzed for malicious content.
The security services listed in Sk must be deployed on the routers such that all traffic of
demand k is routed through them. In this scenario one predefined path P k ∈ P to route
traffic of demand k from source s(k) to destination d(k) exists and as a result of this security
services Sk can only be deployed on routers that are part of this path. Figure 6.3 depicts the
security services placement possibilities for the three exemplary traffic demands. Parameter
wki denotes whether node i is part of path P k. In the given example, security services S1

can only be deployed on nodes N10, N3, N6, N5 and N2. Moreover, it can be seen that all
subnetworks are eliminated from the graph. Traffic demands and security service requests are
pushed into the corresponding gateway nodes. For example, subnetwork N4 of Figure 7.17
is connected to the network via gateway router R2 and hence, traffic demands k1 and k2 of
Figure 6.3 have node N2 as destination.

The processing time of security service i is denoted Ti. Tbase represents the routing delay
in a standard network router and Tactive represents the overhead necessary to decide whether
a packet must be processed on the programmable router.

The MILP decides on whether a node i is programmable and where to place the security
services. In accordance with the situation, the problem formulation includes two decision
variables. The decision whether or not a node i ∈ N is programmable, is represented by
variable xi ∈ {0, 1}. This variable has the following semantics:

xi =

{
1 if node i is programmable,
0 otherwise.

The decision where services should be placed is modeled by the decision variable ykis. Variable
ykis is either of type binary—ykis ∈ {0, 1}—or continuous/real—ykis ∈ [0, 1]. In the former, the
semantics of the variable is

ykis =

{
1 if service s is running on node i for traffic demand k,
0 otherwise.

In the latter, variable ykis denotes the fraction of demand k that is provided service type s
at node i. This increases the possibility of load balancing as a traffic demand k must not
be processed in its totality at a node i by service s ∈ Sk. However, it must be considered
that a flow cannot be divided into arbitrary smaller parts. A TCP flow that is fractionally
analyzed by a security service s at multiple nodes i suffers under varying RTTs and out-of-
order packet delivery. Here a traffic demand is the aggregation of many smaller flows defined
by a quadruple [sAddr, dAddr, sPort, dPort]. Such a small flow should be the smallest traffic
unit to be assigned to a tuple node, service. The parameters and variables which are the basis
for the formulation of the optimization problem are summarized in Table 6.1 and Table 6.2.

First of all, to protect the end-systems connected to a node n ∈ N all security service
s ∈ Sk must be placed such that all network traffic is routed through them. Consequently, to

Page 88

TU Berlin Section 6.3

secure all end-systems of a network the security service requests s ∈ Sk of all traffic demands
k ∈ D must be fulfilled. This can be modeled by the following linear constraint:∑

i∈Pk

ykis ≥ 1 ∀ i ∈ N,∀ s ∈ Sk,∀ k ∈ D. (6.2)

For placing a security service on a node, the referring node has to be a programmable. In
terms of the defined variables, this requirement can be expressed as follows:

xi ≥ ykis ∀ i ∈ N,∀ s ∈ Sk, ∀ k ∈ D. (6.3)

An assignment of the variables x and y that satisfies (6.2) and (6.3) corresponds to a
deployment strategy. In order to avoid an explosion of the waiting time and operate in the
loss-free region—see Figure 4.13—a stability constraint is added to the MILP. The idea is the
following: a programmable router should be able to process the incoming packets fast enough
such that its buffer does not overflow. In other words, the average packet processing time
per packet—can be calculated using Equation (6.1)—must not exceed the average packet
interarrival time.

A packet belonging to traffic demand k ∈ D thus has at node i ∈ N a processing time of:

Tbase + Tactive · xri+
∑
s∈Sk

Ts · ykis

Assuming that all packets at the router have the same characteristics, the average processing
time can now be calculated as a weighted average of the traffic demands that are served by
node i. With parameter wki defining whether node i is part of path P k for traffic demand k,
the total traffic entering node i is:

fi =
∑
k∈D

t(k)wki ∀i ∈ N (6.4)

Thus, the average time between consecutive packet arrivals is 1/fi. The average processing
time of a packet at a programmable router node i is:

Tbase + Tactive +
∑
k∈D

t(k)wki
fi

∑
s∈Sk

Tsy
k
is

The bilinear product term wki y
k
is is 0 when wki = 0, i.e., when node i is not on the path for

demand k. In that case, ykis is also 0. Otherwise, when wki = 1, the product term equals ykis,
and thus, in both cases wki y

k
is = ykis. Hence, the average processing time becomes:

Tbase + Tactive +
1
fi

∑
k∈D

t(k)
∑
s∈S

Tsy
k
is

This must be at most 1/fi, whence:

fi · (Tbase + Tactive) +
∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ 1 ∀i ∈ N

Page 89

TU Berlin Section 6.4

Hence, the stability constraint for a programmable node (xi = 1) is:∑
k∈D

t(k)wki (Tbase + Tactive) +
∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ 1 ∀i ∈ N.

In a more general way, taking into account standard routers as well as programmable ones,
the complete stability constraint is:∑

k∈D
t(k)wki (Tbase + Tactive) +

∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ 1 + C(1− xi) ∀i ∈ N (6.5)

with
C =

∑
k∈D

t(k)(Tbase + Tactive +
∑
s∈S

Ts). (6.6)

C is a so-called indicator -variable [135] (aka as big-M formulation), it is specified such that
constraint (6.5) is correct when node i is a programmable router (xi = 1), and is redundant
otherwise (xi = 0). The complete mixed integer program with the objective to minimize the
number of programmable routers is summarized in MILP 1.

The idea of the second optimization model is to evenly distribute the load among nodes.
The slack in (6.5)—the difference between processing time and interarrival time—corresponds
to the free capacity of node i. If this slack vanishes or almost vanishes for any node, the delay
performance of the node will degrade rapidly. Thus, the goal of the second objective function
to maximize the minimum slack in (6.5) over all nodes. This is equivalent to minimizing the
maximum left-hand side in (6.5). The corresponding problem formulation is given in MILP 2.

minimize
∑

i∈N xi

subject to: ∑
i∈Pk

ykis ≥ 1 ∀ i ∈ N,∀ s ∈ Sk,∀ k ∈ D

xi ≥ ykis ∀ i ∈ N,∀ s ∈ Sk, ∀ k ∈ D∑
k∈D

t(k)wki (Tbase + Tactive) +
∑
k∈D

t(k)
∑
s∈Sk

Tsy
k
is ≤ 1 + C(1− xi) ∀i ∈ N

xi ∈ {0, 1} ∀ i ∈ N

ykis ≥ 0 ∀i ∈ N, k ∈ D, s ∈ Sk

MILP 1: Predefined Single-Path Routing - Minimizing the Amount of Programmable Routers

Page 90

TU Berlin Section 6.4

Table 6.1: Predefined Single-Path Routing - Parameter Space

Parameter Description

N set of nodes
E set of links
D set of traffic demands
s(k) source node of traffic demand k
d(k) destination node of traffic demand k
t(k) value of traffic demand k [flow units]
S set of security services S = {s1, s2, . . . , sa}
Sk set of security services assigned to traffic demand k
P set of paths P = {P 1, P 2, . . . , Pn}
P k predefined single-path from s(k) to d(k) for routing demand k
wki defines whether node i is on the predefined path for demand k
Tbase core routing delay
Tactive additional delay caused by a programmable router
Ts processing time of service s
ue bandwidth of link e [flow units]
fi total network traffic entering node i
C is specified such that constraint (6.5) is correct when node i is

a programmable router (xi = 1), and is redundant otherwise
(xi = 0)

Table 6.2: Predefined Single-Path Routing - Decision Variables

Variable Description

xi defines whether node i is a programmable router
ykis specifies the fraction of demand k that is provided service type

s at node i

6.4 Predefined Multipath Routing

To increase the potential for load balancing, the problem formulation of the preceding section
is extended towards multipath routing, meaning that a traffic demand k can be split across
multiple paths from source s(k) to destination d(k). Figure 6.4 depicts for traffic demands
k1, k2 and k3 two possible paths (solid and dotted arrows) and as it can be seen—in contrast
to the previous problem formulation—more possibilities to deploy the requested security
services Sk exist. Here P k = {p1, p2, . . . } denotes the set of available paths from source s(k)
to destination d(k) for routing demand k. For example, the K-shortest hop paths from s(k)
to d(k) can be chosen as the set P k.

The extension of the problem formulation towards multipath routing increases the number
of decision variables as the optimization model must decide on:

• whether a node i is programmable

Page 91

TU Berlin Section 6.4

minimize v

subject to: (6.2), (6.3)∑
k∈D

t(k)wki (Tbase + Tactive) +
∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ v + C(1− xi) ∀i ∈ N (6.7)

xi ∈ {0, 1} ∀ i ∈ N (6.8)

ykis ≥ 0 ∀i ∈ N, k ∈ D, s ∈ Sk

(6.9)

MILP 2: Predefined Single-Path Routing - Minimizing the Maximal Router Utilization

Table 6.3: Predefined Multipath Routing - Additional/Modified Parameters and Variables

Parameter Description

P k predefined set of paths from source s(k) to destination d(k) for
routing demand k

Variable Description

zk(P) specifies the amount of traffic on path P for routing demand k
ykis(P) specifies the amount from zk(P) that is provided service type

s at node i

• where to place the security services and

• how much traffic of a demand k to route via which path.

Like in the previous section variable xi ∈ {0, 1} decides whether a router i is programmable or
not. To decide on the routing a third variable zk(P) is introduced which denotes the amount
of traffic on path P for routing demand k. Also the definition of variable ykis varies to the one
given in the previous section: service distribution variable ykis(P) specifies the amount (and
not fraction) from zk(P) that is provided service type s at node i. The variable ykis(P) is
defined only if node i appears on path P . P denotes either the set of nodes or the set of links
on path P , the specific use will be clear from the context. The multipath routing version of
the problem can be expressed as the polynomial size mixed integer linear program shown in
MILP 3.

Constraint (6.10) guarantees that all traffic t(k) of demand k is routed via a predefined
path P ∈ P k from s(k) to d(k). Equation (6.11) assures that a programmable router i run-
ning service s for traffic demand k maximally processes t(k) traffic units of that demand.
The requirement that all traffic of a demand k must be analyzed related security services
assigned Sk is satisfied by Constraint (6.12). Equation (6.13) ensures that no node i—this
constraint also counts for non-programmable standard routers—must route more traffic than

Page 92

TU Berlin Section 6.5

N4

N5

N7

N8

N10

p1p2

N11

N1

N2

N3
N6

N9

N1

N5

Figure 6.4: Predefined multipath routing - security services placement possibilities

it is capable to (Routing delay = Tbase). Next, Equation (6.13) represents the stability con-
straint for programmable routers saying that a programmable router must process incoming
packets fast enough such that its buffer does not overflow. The stability constraint (6.14) is a
modified version of Constraint (6.5) that was introduced in the previous section. Parameter
ue denotes the capacity of link e and Constraint (6.15) ensures that these are taken into
account when splitting the traffic demands k ∈ D between the set of predefined paths. Equa-
tion (6.16) states that a node is either a standard router or a programmable one. Finally,
Constraint (6.17) specifies that variables zk(P) and ykis(P) must be greater than or equal
zero.

In a manner analogous to that in the previous section, the maximum ratio of average
packet processing time to the average packet inter-arrival time at each node can be minimized.
The value of this ratio at a node i is the left-hand-size of Constraint (6.13) if node i is not
a programmable router, or Constraint (6.14) if node i is a programmable router. Again the
maximum value of this ratio over all nodes i ∈ N is denoted v. The corresponding linear
program is presented in MILP 4.

6.5 Joint Traffic Routing and Distribution of Security Services

The scenario described in this section provides a further degree of freedom: single-path rout-
ing without consideration of predefined paths and a simultaneous optimal distribution of
security services. The optimization model routes each traffic demand k on a single path
through the network and deploys the requested security services Sk ∈ S on nodes in accor-
dance to the chosen objective function. Theoretically, a security service assigned to a traffic
demand k can be located on any node of the network (see Figure 6.5,). The optimization

Page 93

TU Berlin Section 6.5

minimize
∑

i∈N xi

subject to: ∑
P∈Pk

zk(P) = t(k) ∀k ∈ D (6.10)

ykis(P) ≤ t(k)xi ∀i ∈ N, P ∈ Pk, k ∈ D, s ∈ Sk (6.11)∑
i∈P

ykis(P) = zk(P) ∀P ∈ Pk, k ∈ D, s ∈ Sk (6.12)∑
k∈D

∑
P3i

zk(P)Tbase ≤ 1 ∀i ∈ N (6.13)∑
k∈D

∑
P3i

zk(P)(Tbase + Tactive)+∑
k∈D

∑
P3i

∑
s∈Sk

Tsy
k
is(P) ≤ 1 + C(1− xi) ∀i ∈ N (6.14)

∑
k∈D

∑
P3e

zk(P) ≤ ue ∀e ∈ E (6.15)

xi ∈ {0, 1} ∀i ∈ N (6.16)

zk(P), ykis(P) ≥ 0 ∀i ∈ N, P ∈ Pk, k ∈ D, s ∈ Sk (6.17)

MILP 3: Predefined Multipath Routing - Minimizing the Amount of Programmable Routers

model decides:

• whether a node i is programmable or not,

• where to place the security services and

• how to route the traffic demands k ∈ D on a single-path through the network, involving
the decisions:

– what set of links e ∈ E to use and

– what set of nodes i ∈ N to use.

For this purpose, the optimization model introduced in the previous sections must be modi-
fied, additional and modified variables/parameters are listed in Table 6.4. Parameter E+(i)
denotes the set of outbound links of node i and analogously, parameter E−(i) denotes the
set of inbound links of node i. Like in Section 6.3, variable xi is of value 1 if node i is a
programmable router node and otherwise it is of value 0. Also, security service distribution
variable ykis is defined as in Section 6.3, specifying the fraction of demand k that is provided
service s at node i. Traffic demands can be split into smaller flows allowing for load bal-
ancing. Apart form this, two additional decision variables—specifying the routing (links and

Page 94

TU Berlin Section 6.5

minimize v

subject to: (6.10) – (6.12) and (6.15) – (6.17)∑
k∈D

∑
P3i

zk(P)Tbase ≤ v ∀i ∈ N (6.18)∑
k∈D

∑
P3i

zk(P)(Tbase + Tactive)+∑
k∈D

∑
P3i

∑
s∈Sk

Tsy
k
is(P) ≤ v + C(1− xi) ∀i ∈ N (6.19)

MILP 4: Predefined Multipath Routing - Minimizing the Maximal Router Utilization

nodes)—are integrated into the problem formulation. The decision whether or not a link e
is used by a traffic demand k is represented by variable zke ∈ {0, 1}. The semantics of this
variable is

zke =

{
1 if the routing of demand k uses link e,
0 otherwise.

Further, variable wki states whether a node i is on the path of traffic demand k. Analogously,
the semantics of this variable is

wki =

{
1 if node i is on the routed path for traffic demand k,
0 otherwise.

Based on the introduced parameters and variables, the optimization problem can be ex-
pressed as the polynomial size mixed integer linear program represented in MILP 5. Equa-
tions (6.20)–(6.24) contain the routing constraints of the demands k ∈ D. Flow conservation

Table 6.4: Joint Traffic Routing and Security Services Distribution - Additional/Modified
Parameters and Variables

Parameter Description

E+(i) set of outbound links of node i
E−(i) set of inbound links of node i

Variable Description

xi specifies whether node i is programmable
ykis specifies the fraction of demand k that is provided service type

s at node i
zke specifies whether link e is part of the routed path for demand k
wki specifies whether node i is part of the routed path for demand k

Page 95

TU Berlin Section 6.5

N4
N1

N3
N5N6

N7

N8

N9

N11

N2

N1

N3

N4

N5N6

N7

N8

N9

N10N10

N11

E+(6) E-(6)

Figure 6.5: Joint traffic routing and distribution of security services

is ensured by Constraint (6.20). A traffic demand k arises at its source s(k) and hence, at a
source node the sum of all inbound and outbound traffic flows must be +1:∑

e∈E+(i)

zke −
∑

e∈E−(i)

zke = +1 if i = s(k), ∀i ∈ N, ∀k ∈ D.

Correspondingly, a traffic demand ends at its destination d(k) and consequently, there the
sum of inbound and outbound traffic flows must be −1:∑

e∈E+(i)

zke −
∑

e∈E−(i)

zke = −1 if i = d(k), ∀i ∈ N, ∀k ∈ D.

Finally, intermediate nodes must conserve traffic demands, the sum of incoming traffic flows
must equal the sum of outgoing traffic flows:∑

e∈E+(i)

zke −
∑

e∈E−(i)

zke = 0 if i 6= d(k) or s(k), ∀i ∈ N, ∀k ∈ D.

A further claim is that the resulting routes are loop-free and to guarantee this the following
equations must be fulfilled. It must be enforced that the total in-degree and out-degree of
links used for the routing of any traffic demand k is at most 1 at any node.∑

e∈E−(i)

zke ≤ 1 ∀i ∈ N, k ∈ D

∑
e∈E+(i)

zke ≤ 1 ∀i ∈ N, k ∈ D

Page 96

TU Berlin Section 6.5

minimize
∑

i∈N xi

subject to:

∑
e∈E+(i)

zke −
∑

e∈E−(i)

zke =


+1 if i = s(k)
−1 if i = d(k)
0 otherwise

∀i ∈ N, k ∈ D (6.20)

∑
e∈E−(i)

zke ≤ 1 ∀i ∈ N, k ∈ D (6.21)

∑
e∈E+(i)

zke ≤ 1 ∀i ∈ N, k ∈ D (6.22)

pkj − pki + (1− eps) ≥ zke ∀e ∈ {E+(i) ∩E−(j)}, k ∈ D
(6.23)

wki =

{
1 if i = s(k) or d(k)∑

e∈E−(i) z
k
e otherwise

∀i ∈ N, k ∈ D (6.24)

ykis ≤ wki ∀i ∈ N, k ∈ D, s ∈ Sk

(6.25)

ykis ≤ xi ∀i ∈ N, k ∈ D, s ∈ Sk

(6.26)∑
i∈N

ykis = 1 ∀k ∈ D, s ∈ Sk (6.27)∑
k∈D

t(k)wki Tbase ≤ 1 ∀i ∈ N (6.28)∑
k∈D

t(k)wki (Tbase + Tactive)+∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ 1 + C(1− xi) ∀i ∈ N (6.29)∑

k∈D
zke t(k) ≤ ue ∀e ∈ E (6.30)

zke , w
k
i , xi ∈ {0, 1} ∀e ∈ E,∀i ∈ N, k ∈ D

(6.31)

ykis ∈ [0, 1] ∀i ∈ N, k ∈ D, s ∈ Sk

(6.32)

MILP 5: Joint Traffic Routing and Security Service Distribution - Minimizing the Amount
of Programmable Routers

But the two constraints do not suffice to guarantee loop-free routes as a node i can simulta-
neously be startpoint and endpoint of different links used to route a demand k. For example

Page 97

TU Berlin Section 6.5

a path via nodes N1, N2, N3, N1 would not violate the above conditions. Thus, another con-
straint is required to generate loop-free routes and for this reason the following lemma is
postulated:

Lemma 1. No feasible solution can have a flow on a (directed) cycle in the network.

To respect Lemma 1 the continuos variable pki for each node i and demand k as well as
the parameter eps = 1

n (n is the number of network nodes) are introduced. Now Lemma 1
can be formulated as:

pkj − pki + (1− eps) ≥ zke , ∀e ∈ {E+(i) ∩E−(j)}, k ∈ D

Proof of Lemma 1. (by contradiction)

• Suppose a feasible solution has a flow, for some demand k, along a cycle N1, . . . , Nm, N1

of length m ≤ n

• Write down the above constraint for each link on this cycle

• Adding all these m constraints and using telescopic cancellation for the p(i,k) terms on
the left, this results in: m(1− eps) ≥ m → Contradiction!

• Further it must be noted that up to (m−1) links on this cycle can be used by the flow,
since the inequality m(1− eps) ≥ m− 1 is valid (eps = 1

m and m ≤ n). Consequently,
no cycle-free feasible solution is excluded.

By adding the above three constraints it is guaranteed that the resulting routes are loop-
free. Drawing back the attention to the formulation of the MILP, a node i is on the path for
traffic demand k if it is either source- or destination-node:

wki = 1, if i = s(k) or d(k), ∀i ∈ N, ∀k ∈ D.

Furthermore, an intermediate node i is part of the routed path if it has an incident link that
is used. This can be modelled as follows:

wki =
∑

e∈E−(i)

zke if i 6= s(k) or d(k), ∀i ∈ N, ∀k ∈ D.

Next, a security service s assigned to traffic demand k must be deployed on a programmable
router i that is part of the routed path:

ykis ≤ wki ∀i ∈ N, ∀k ∈ D,∀s ∈ Sk
ykis ≤ xi ∀i ∈ N, ∀k ∈ D,∀s ∈ Sk.

The former constraint models the fact that a routed demand k can receive some security
service at node i only if node i is on the path and the latter models the additional requirement

Page 98

TU Berlin Section 6.5

that such a node i must be programmable. In addition, the optimization model must ensure
that all traffic of a demand k is analyzed by the corresponding security services s ∈ Sk. This
is achieved by constraint: ∑

i∈N
ykis = 1 ∀k ∈ D, s ∈ Sk.

The stability constraints are given in Equations (6.28) and (6.29). The total traffic entering
node i is fi =

∑
k∈D t(k)wki . Thus, the average time between consecutive packet arrivals is

1/fi. The stability condition for a non-programmable node i is Tbase ≤ 1/fi, or fiTbase ≤ 1
and consequently, the complete stability constraint is∑

k∈D
t(k)wki Tbase ≤ 1 ∀i ∈ N

and analogously to Section 6.3, the stability constraint for programmable nodes is:∑
k∈D

t(k)wki (Tbase + Tactive) +
∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ 1 + C(1− xi) ∀i ∈ N.

This constraint is correct when node i is a programmable router (xi = 1), and is redundant
otherwise (xi = 0). The following equation guarantees that link capacities ue are considered
by the optimization framework: ∑

k∈D
zke t(k) ≤ ue ∀e ∈ E.

Finally, variables zke , wki , xi are of type binary, implying a value of either 1 or 0 (6.31). Variable
ykis is like in Section 6.3 of type continuous within the specified value range ykis ∈ [0, 1].

In accordance to the previous sections, the problem formulation for the second optimiza-
tion function—minimizing the maximal router utilization—varies slightly (see MILP 6).

minimize v

subject to: (6.20)–(6.27), (6.30)–(6.32) and∑
k∈D

t(k)wki Tbase ≤ v ∀i ∈ N (6.33)∑
k∈D

t(k)wki (Tbase + Tactive)+∑
k∈D

t(k)
∑
s∈S

Tsy
k
is ≤ v + C(1− xi) ∀i ∈ N (6.34)

MILP 6: Joint Traffic Routing and Security Service Distribution - Minimizing the Maximal
Router Utilization

The mixed integer linear programs outlined in this chapter can be solved using a standard
(MI)LP solver like CPLEX [73].

Page 99

TU Berlin Section 6.6

N4

N1

N3
N5N6

N7

N8

N9

N10

N11

Demand k
1
:

s(1) = N10

d(1) = N2

t(1) = 100

S1={s1,s2,s3}

N2

5.0
1

,10 1
=Sy

5.0
1

,3 1
=Sy

8.0
1

,6 2
=Sy

2.0
1

,5 2
=Sy

1
1

,5 3
=Sy

Figure 6.6: Predefined singlepath routing - sequence constraint placement of security services

6.6 Optimal Placement of Security Services under the Con-
straint of a Predefined Order

Occasionally, it can be reasonable to deploy the requested security services in accordance to a
predefined sequence. For example, a TCP state keeping service which filters packets that do
not belong to an existing TCP-connection should be placed in front of the security services
that analyze TCP-packets for malicious content. Such a predefined order can also be used to
respect the activity of current threats as security services that detect and filter fast spreading
worms (or viruses, etc.) should be placed close to the edge of the corresponding network to
reduce the overall amount of packets that must be processed by the security services located
on inner network routers. It is emphasized that the described approach places two security
services s1 and s2—service s1 must precede service s2—on different nodes. This can be
modified such that the two security services s1 and s2 could be placed on one and the same
node i. Then service s1 must be inserted into the services processing (see Section 4.4) chains
ahead of service s2; in this case the placement fulfils the condition of placing service s1 in
front of service s2.

A security service sequence is expressed with the help of a corresponding S×S matrix (see
Table 6.5). In the given example, security service S1 must be placed ahead of security service
S2 and in turn, security service S2 must precede security service S3. To deploy the security
services under the constraint of a predefined order the optimization models—introduced in
Sections 6.3 to 6.5—must be extended. The extension of the problem formulation requires the
introduction of variable akis and the parameters listed in Table 6.5. Variable akis determines
whether a node i analyzes any packets belonging to demand k with service s. The semantics

Page 100

TU Berlin Section 6.6

Table 6.5: An Exemplary Security Services Sequence (S1 → S2 → S3)

Security Service S1 S2 S3

S1 0 1 1
S2 0 0 1
S3 0 0 0

Table 6.6: Variables and Parameters for Order Constraint Deployment of Security Services
Predefined Routing (Single-path and multipath)

Parameter Description

akis specifies whether node i runs service s for (fraction of) demand
k

Parameter Description

os1s2 defines whether security service s1 must be placed in front of
security service s2

bki1i2 specifies whether node i1 is in front of node i2 on path P that
is predefined for demand k

of this variable is:

akis =

{
1 if ykis > 0,
0 otherwise.

Variable akis equals variable ykis (akis = ykis) in case that no fractional assignment of traffic
demands is allowed

(
ykis ∈ {0, 1}

)
. Parameter os1s2 , specified by the corresponding security

services sequence table, defines whether security service s1 must be deployed ahead of security
service s2. The semantics of the parameter is:

os1s2 =

{
1 if security service s1 must precede security service s2,
0 otherwise.

Further, parameter bki1i2(P) specifies whether node i1 lies ahead of i2 on path P for demand
k. Analogously, the semantics is:

bki1i2 =

{
1 if node i1 lies in front of node i2 on the predefined path P for demand k,
0 otherwise.

The following constraint is added to the optimization model to ensure the correct placement
of two security services s1 and s2 for demand k whereas service s1 must be placed ahead of
service s2 (see Figure 6.6):

bi1,i2 ·
(
aki1,s2 + aki2,s1

)
≤ 1 ∀i1, i2 ∈ P

Page 101

TU Berlin Section 6.7

N4

N1

N3
N5N6

N7

N8

N10

N11

Demand k
1
:

s(1) = N10

d(1) = N2

t(1) = 100

S1={s1,s2,s3}

N2

N9 200
1

,3 1
=Sy

140
1

,6 2
=Sy

60
1

,5 2
=Sy

200
1

,5 3
=Sy

90
1

,9 1
=Sy

10
1

,7 1
=Sy

100
1

,4 2
=Sy

100
1

,1 3
=Sy

100)(2 =Pz
k 200)(1 =Pz

k

Figure 6.7: Predefined multipath routing - sequence constraint placement of security services

This equation ensures—even in case of a fractional flow assignment
(
ykis ∈ [0, 1]

)
—that all

packets of a demand k are completely processed by security service s1 before being processed
by security service s2. In detail, it guarantees that there is no pair of nodes (i1, i2) on
path P with node i1 running service s2 and lying in front of node i2 which runs service s1.
Consequently, the general constraint which is also valid for the predefined multipath scenario
depicted in Figure 6.7 is:

bi1,i2 ·
(
aki1,s2 + aki2,s1

)
≤ 2− os1,s2 ∀i1, i2 ∈ Pk,∀k ∈ D, ∀s1, s2 ∈ Sk and s1 6= s2

(6.35)

6.7 Varying Computational Speeds of Routers

It is a reasonable assumption that the routers in a network will not be of one type and
consequently, varying amounts of security services can be deployed on the different types
of routers. For example, Section 4.5 discussed the performance of routers of type PC733
an PC3000 and when respecting the stability constraint a PC3000 is capable to run more
security services compared to a PC733 system. To respect the computational speeds of
varying router types the MILPs presented so far must be extended. In detail, the parameters
Tbase, Tactive, Ts and C are no longer given for a complete network they are rather extended
towards Tbase,n, Tactive,n, Ts,n and Cn to be valid for router n. Consequently, the Equation 6.5

Page 102

TU Berlin Section 6.8

is then reformulated to∑
k∈D

t(k)wki (Tbase,n + Tactive,n) +
∑
k∈D

t(k)
∑
s∈S

Ts,ny
k
is ≤ 1 + Cn(1− xi) ∀i ∈ N

with
Cn =

∑
k∈D

t(k)(Tbase,n + Tactive,n +
∑
s∈S

Ts,n).

6.8 A Remark on Fractional Service Assignments

The decision variable ykis(P) in Section 6.4 is of type real and its value ranges from zero to
t(k) of the corresponding traffic demand. By definition, the predefined multipath routing
scenario—represented by MILP 5 and MILP 4—allows to split a single security service as-
signment ykis(P) over multiple routers of the relevant path P . In other words, a router A
could be assigned to inspect 80% of a flow and a router B which lies on the same path is
responsible to analyze the remaining 20% of the flow. In practice this is hard to realize.
Either a marking mechanism must be implemented or a stochastic approach must be taken.

The approach followed here is the atomic placement of security services. A possibility
to achieve atomic security service assignments would be to extend MILP 5 and MILP 4 by
constraint:

ykis(P) == zk(P) ∀ykis(P) > 0, ∀i ∈ N, P ∈ Pk, k ∈ D, s ∈ Sk. (6.36)

But the introduction of the above constraint tremendously increases the solution times. Thus,
optimal solutions are calculated using MILP 5 and MILP 4 respectively and furthermore,
these solutions are subsequently processed by the following algorithm.

1. Select all fractional security service assignments and sort them according to the load
caused by them (ykis(P) · ts)

2. Take first fractional security service assignment

3. Search for matching and completing candidates (identical demand k, service s, path P)

4. Deploy complete security service on the node that will have to suffer least

5. Add additional load to the corresponding node.

6. Remove candidates from list and return to step 2.

An example is given below that shows how the algorithm merges nine fractional security
service assignments into four atomic ones. The first column shows the variable names, the
second column their values. The third column specifies the amount of traffic of demand k
that is routed via path P . Finally, the fourth column presents the load that is caused by the
security service assignment.

The amount of 352 units network traffic is routed via path 1 from node 11 to node 8
(z[11, 8, 1] = 352). Furthermore, 237 units of this flow are analyzed by security service 1

Page 103

TU Berlin Section 6.8

on router 11—y[1, 11, 11, 8, 1] = 237—and the remaining 115 units are treated by security
service 1 on router 8—y[1, 8, 11, 8, 1] = 115. The processing of 237 units of network traffic on
router 1 causes a load of about ykis(P)∗ ts = 0.13 and analogously, the processing of 115 units
of network traffic by the same security service on node 8 generates a load of about 0.06.

In a next step, the best candidate to atomically deploy the security service is chosen.
Therefore, the loads that have been added so far to the candidates as well as the extra load—
caused by adding the other candidates’ fractional assignments—are considered and compared.
As a result of this Node 11 is chosen to process all 352 units of network packets with security
service 1 as the sum AdditionalLoad[11] + 0.06 is smaller than AdditionalLoad[8] + 0.13
(at startup AdditionLoad[i] = 0∀i ∈ N). Subsequently, the candidates are removed from
the list of fractional service assignments and the algorithm proceeds with the assignment
y[2, 7, 7, 2, 2]. The resulting atomic security service assignments are listed an the end of the
output.

y[s,r,o,d,p] z[o,d,p] y*t[s]
y#1#11#11#8#1 237.000000000 352.000000000 0.130350000
y#2#7#7#2#2 337.000000000 338.000000000 0.124690000
y#4#11#8#11#1 320.000000000 322.000000000 0.118400000
y#1#2#11#8#2 169.000000000 174.000000000 0.092950000
y#1#8#11#8#1 115.000000000 352.000000000 0.063250000
y#1#5#11#8#2 3.000000000 174.000000000 0.001650000
y#1#1#11#8#2 2.000000000 174.000000000 0.001100000
y#4#8#8#11#1 2.000000000 322.000000000 0.000740000
y#2#5#7#2#2 1.000000000 338.000000000 0.000370000

Candidate y#1#11#11#8#1 0.673295455 352.000000000
Candidate y#1#8#11#8#1 0.326704545 352.000000000
LoadAdded[11] = 0.063250000

Candidate y#2#7#7#2#2 0.997041420 338.000000000
Candidate y#2#5#7#2#2 0.002958580 338.000000000
LoadAdded[7] = 0.000370000

Candidate y#4#11#8#11#1 0.993788820 322.000000000
Candidate y#4#8#8#11#1 0.006211180 322.000000000
LoadAdded[11] = 0.063990000

Candidate y#1#2#11#8#2 0.971264368 174.000000000
Candidate y#1#5#11#8#2 0.017241379 174.000000000
Candidate y#1#1#11#8#2 0.011494253 174.000000000
LoadAdded[2] = 0.002750000

Resulting Assignments:

y#1#11#11#8#1 1.000000000

Page 104

TU Berlin Section 6.9

y#2#7#7#2#2 1.000000000
y#4#11#8#11#1 1.000000000
y#1#2#11#8#2 1.000000000

6.9 Summary

This section introduced three optimal security service deployment strategies which can be
combined with two objective functions. The most limited deployment strategy Pre assumes
predefined routes and the two other strategies combine the task of routing with the deploy-
ment of security services. Thereby strategy SP specifies a single route for each traffic demand
and strategy MP might assign multiple routes to a commodity. In the latter, the commodity
is divided by the strategy into multiple smaller flows that are routed via different paths.

The first objective function implemented aims at minimizing the number of programmable
routers in a network as their architecture is more complex than the one of traditional routers.
Hence, it could be the intention of a provider to minimize the number of programmable routers
used in his network. The second objective function minimizes the maximum utilization of any
router node in the network. In other words, the strategy fairly distributes the workload caused
by doing intrusion prevention among all router nodes. Further, the strategies implemented
allow to consider different router types in terms of computational speeds additionally, security
services can also be optimally deployed under the constraint of a predefined order. For
example, a security service A must be placed in front of security service B. Section 7.6
provides information of the time required to calculate optimal security service deployments.

Page 105

TU Berlin Section 7

Chapter 7

Fidran Performance Evaluation

This chapter presents the performance evaluation of the Fidran-framework and the optimal
deployment strategies that were introduced in Chapter 6. To achieve realistic results the
operation of Fidran was emulated in the in the Cyber Defense Technology Experimental
Research testbed (Deter) for two network topologies: a tree- and a high-speed network. The
experiments show that the intelligent deployment of security services reduces the impact of
doing intrusion prevention on the network performance. The Deter-testbed and the conducted
emulations of the networks are described in detail in Section 7.1.

Section 7.2 describes the generation of network traffic, respecting measurements of local-
area [88], [136] and wide-area [107] network traffic which have shown that packet-switched
data traffic is self-similar. Section 7.3 evaluates the results of the first scenario which is
a limited networking environment, and Section 7.4 discusses the emulation of the Abilene
network. Finally, Section 7.7 discusses the lessons learnt in this section.

7.1 Emulation: The DETER Testbed

The operation of Fidran in a network was emulated with the help of the Cyber Defense Tech-
nology Experimental Research testbed (DETER) [22, 26, 113] which is a shared infrastructure
designed for medium-scale repeatable experiments in computer security. The testbed provides
a pool of over 300 computers of varying hardware which can be used to emulate networks.
Each experiment requires a configuration file defining network topology and the sequence of
events that should happen in course of the experiment. The specification of the topology
includes:

• the assignment of the hardware to a node (e.g. NodeA is a Pentium III system at
733 MHz),

• the determination of the OS image to be activated on a node (e.g. NodeA runs a Linux
Fedora image),

• the definition of how the nodes are connected with each other including specification of
bandwidth and delay for each link.

Page 106

TU Berlin Section 7.1

Internet

N
1

N
3

N
2

L
A

N

R
2

R
1

I!N
3

I!N
2

I!N
1

N
1
!I

N
2
!I

N
3
!I

Emulated NetworkExtra LAN

Figure 7.1: Testbed setup: Sending packets back to the sender for the purpose of using one
clock to measure end-to-end delays

The DETER testbed provides links of up to 1 Gbps and to model link delays so-called shape
nodes are used. The minimum possible non-zero delay is 2 ms due to the scheduling gran-
ularity of the shaping nodes. Topologies are specified in the language provided by the ns-2
Network Simulator [110] and so-called program-agents are used to schedule actions to hap-
pen on defined nodes at the specified points in time. For example, a program-agent can be
used to start a traffic generator on a chosen node at a specified time. To avoid that control
information is sent via a link that is part of experiment, each node of a network is by default
connected to the control network .

Throughout the experiments all nodes were running a customized Fedora Core 4 operating
system with a 2.6.12 kernel. Routes between nodes were setup with the native IP routing
functions provided by the OS. The purpose of the experiments is to evaluate the impact of the
different deployment strategies on the network performance in terms of the end-to-end delay
and packet loss rate. To capture incoming and outgoing traffic on a node the tool tcpdump was
used. By means of those files the packet loss rate can be calculated. To accurately measure
end-to-end delays of packets sent from a node A to a node B well synchronized clocks are
required. The DETER testbed uses the Network Time Protocol (NTP) to synchronize the
nodes’ clocks and according to the DETER manual NTP keeps all clocks within a few ms
of each other. But this is not sufficient to measure end-to-end delays in the order of several
milliseconds. To evade the difficulties associated with using clocks of different nodes (the
sender’s and the receiver’s clock) all packets send from a node A to a node B are sent back

Page 107

TU Berlin Section 7.2

via an extra path from node B to node A.
Figure 7.1 depicts an exemplary network consisting of subnetworks (N1, N2 and N3),

the Internet and the routers (R1 and R2). Traffic send from the Internet to the subnets is
routed via routers R1 and R2. Each packet that is received by a subnet is send back to the
Internet via the depicted LAN. To do so the subnet must modify the source (source address
translation—SNAT) and the destination address (destination address translation—DNAT)
of the packet. The LAN is dimensioned such that the probability of packet loss on this part
of the transmission path is very small. Of course, the sending back of a packet via the LAN
adds to the overall end-to-end delay which is the difference between the sending time and the
reception time measured at the Internet. But the comparison of the deployment strategies is
still valid as the overhead is added to all packets.

Furthermore, the emulations run in an IEEE 802.3 [18] environment. IEEE 802.3 contains
a flow control mechanism in order to optimize throughput and accordingly, the placement of
the security services influences the sending rate of the subnets. It can happen that routers
receive packets faster than they transmit them and then the packet queues fill up. In case
that the packet queue of a router is filled to a certain threshold value, it sends a so-called
Xoff message to the link partner in order to stop it from sending for a specific length of
time. Further on, the MAC control sub-layer continues to transmit PAUSE frames with the
programmed idle time as long as the threshold has been exceeded. If the queue falls under the
threshold prior to the expiration of this time, another PAUSE frame is sent with a zero time
specific to re-enable transmission, referred to as Xon. Flow control was turned off throughout
the emulations.

7.2 The Generation of Self-Similar Network Traffic

Measurements of local-area [88], [136] and wide-area [107] network traffic have shown that
packet-switched data traffic is self-similar. A self-similar object is exactly or approximately
similar to a part of itself, a popular example are fractals as they can be divided into parts
and each part is a reduced copy of the whole. In the context of network traffic self-similarity
means that packet bursts, also known as packet trains, appear on a wide range of time
scales. References [104, 127] explain how self-similar network traffic can be modelled by the
superposition of a large number of 0/1 renewal processes whose ON and OFF periods are
heavy tailed distributed. The main characteristic of a random variable obeying a heavy-
tailed distribution is that it exhibits extreme variability and thus very large values have a
non negligible probability. The Pareto distribution is a heavy tailed distribution and it has
the probability density function (PDF):

P (x) =
α · bα

xα+1
, x ≥ b (7.1)

A Pareto distribution is specified by two parameters: shape parameter α determines the
heaviness of the tail and parameter b defines the minimum value of the random variates.
Figure 7.2 shows exemplary density functions for Pareto distributions with a minimum value
b = 1 and shape parameters α = {1.1, 1.5, 1.9}. The principle of generating self-similar
network traffic by multiplexing independent traffic sources whose ON and OFF periods are
heavy tailed distributed is depicted in Figure 7.3. The figure shows the sending activity over

Page 108

TU Berlin Section 7.2

0 1 2 3 4 5

1

2
α=1.9
α=1.5
α=1.1
b=1

P(x)

Figure 7.2: Pareto distributions with shape parameter α = {1.1, 1.5, 1.9} and mini-
mum value b = 1

Table 7.1: IP packet size distribution measured by Caida

IP packet size [Byte] Packets [%] Bytes [%]

40 33.5 3.0
552 4.7 5.7
576 5.3 6.7
1500 16.5 54.6
other 40 30

the time for three traffic sources (X1, X2 and X3) and the overall traffic flow (X1 +X2 +X3)
which is the result of the aggregation of the individual flows. The last graph in this figure
illustrates the multiplexed traffic of the three sources. It can be seen how packet bursts
occur. Typically. the Pareto distributions used to generate the ON and OFF periods of the
sources are not identical. Reference [88] recommends a shape parameter αon = 1.7 and a
shape parameter αoff = 1.2 to generate self-similar network traffic for a LAN environment.
Further, shape parameters found in WAN traces [88] are typically around αoff = 1.0 and
αon = 2.0.

Inspired by the ideas presented in reference [127] Glen Kramer implemented a self-similar
network traffic generator [83]. A slightly modified version that was implemented to address
the IP packet size distribution in the Internet was used throughout the conducted experi-
ments. The red curve in Figure 7.4(a) shows the cumulative distribution function (cdf) for
the packet sizes of 5.7 million IP packets [34] that were collected in an Internet backbone by
the Cooperative Association for Internet Data Analysis (CAIDA), and the green curve shows

Page 109

TU Berlin Section 7.2

X1(t)

X
3
(t)

X2(t)

X
1
(t)+X

2
(t)+X

3
(t)

On Off On Off On

Figure 7.3: Superposition of On- and Off -renewal processes

the corresponding cdf for the carried byte volume. A finding of the measurement done by
Caida is that almost half of the packets are less than 44 Byte (red curve) but over half of the
byte volume is carried by packets of size 1500 Byte (green curve). Table 7.1 lists the results of
the mentioned traffic analysis in more detail. To model the IP packet size distribution in the
Internet a flow from a source A to a destination B is the aggregated flow of five ON and OFF
sources of different packet sizes. In detail, each ON and OFF source generates a flow of a
fixed packet size (40, 552, 576, 1500 Byte and a randomly chosen packet size between 40 and
1500 Byte) and the according load is calculated via the desired load of the aggregated flow
and the fraction of bytes carried by the respective IP packet size. For example, to generate
a flow between source A and destination B of load 1 Mbps, the ON and OFF source of IP

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

fu
nc

tio
n

Packet Size [Byte]

Packets
Bytes

(a) 5.7 million IP packets collected in a backbone by
Caida

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

di
st

ri
bu

tio
n

fu
nc

tio
n

Packet Size [Byte]

Packets
Bytes

(b) Trace generated for experiments (6.6 million IP
packets)

Figure 7.4: Packet size distributions

Page 110

TU Berlin Section 7.3

 0

 0.5

 1

 1.5

 0 400 800 1200 1600

D
at

a-
ra

te
 [M

bp
s]

Time [s]

0.1s

(a) Time-scale 0.1s

 0

 1

 2

 3

 0 400 800 1200 1600

D
at

a-
ra

te
 [M

bp
s]

Time [s]

1s
mean

(b) Time-scale 1s

 0

 1

 2

 3

 0 400 800 1200 1600

D
at

a-
ra

te
 [M

bp
s]

Time [s]

10s

(c) Time-scale 10s

Figure 7.5: An exemplary flow at different time scales

packet size 1500 Byte produces a flow of 0.546 Mbps (= 1 Mbps ·0.546). Figure 7.4(b) depicts
the cdf for the IP packet size (red curve) as well as the cdf for the byte volume carried (green
curve) for a traffic trace that was produced with the presented network traffic generator for
an experiment. It can be seen that the curves resemble those of Figure 7.4(a).

Figure 7.5 shows an exemplary flow that was generated with the network traffic generator
(five ON OFF sources, αon = 1.7, αoff = 1.2) introduced above. The figures depict the
sending-rate for a time period of 1800 s for the time-scales 0.1, 1 and 10 s. The burstiness of
the generated traffic can clearly be seen for the three time scales. Besides the sending rate
over the time, Figure 7.5(b) additionally depicts the overall mean sending rate (66 Mbps) of
the flow. Finally, to avoid effects of congestion and flow control mechanisms all experiments
were restricted to Udp-traffic.

7.3 A Limited Networking Environment

A limited networking environment is a network that consists of a manageable number of
identifiable systems implying that network topology as well as the security services requested
by the connected end-systems can be analyzed in the automated way described in Chapter 5.
The tree network depicted in Figures 7.6 was setup to get a first impression of the benefit
of optimal deployment strategies. The goal of the experiment described was to assess the
benefit of intelligent deployment strategies for a typical restricted networking environment
for three different load scenarios and three different types of subnetworks. Intuitively, it can
be assumed that the benefit of deployment strategies that incorporate the traffic rates when
calculating the optimal distribution of security services increases with growing traffic-rates.
For this purpose, a low, a medium and a high traffic scenario was modeled. Further, flows
destined to subnetworks that do not require the protection of a security service will suffer to a
certain degree under the operation of the intrusion prevention overlay network. The effect of
heterogeneous security requirements was analyzed by specifying three types of subnetworks.
The first type does not require protection by a security service, the second requests the
installation of five security services and finally, the third type needs to be protected by ten
security services.

As tree networks provide a single path from each sender to each receiver the optimal

Page 111

TU Berlin Section 7.3

R5R4

R7R6

R3R2

Internet

R1

N1

N3

N2

N4

N6

N5

N7 N9N8
N10 N12N11

0 Security Services

5 Security Services

10 Security Services

Attack direction

Figure 7.6: An exemplary tree network

deployment strategy for the predefined singlepath routing scenario of Section 6.3 was com-
pared with the Late- and early-deployment strategy which are depicted in Figure 7.7. The
late-deployment strategy places the requested security services as close as possible to the
requesting subnet/end-system. As a consequence, the same security services are loaded and
executed at the same time at several routers of the network, which, in that case, operate on
smaller traffic flows than security services that are deployed further upstream. In contrast,
the early-deployment strategy uses the first available router on the path from the Internet
to the requesting subnet/end-system. This means that fewer routers must run the intrusion
prevention framework yet with a higher load. The predefined singlepath deployment strategy
distributes the security services under the objective of:

• fulfilling all security requests while minimizing the number of active routers in a network
and keeping the router queues bounded (see MILP 1 in Section 6.3);

• fulfilling all security requests while minimizing the maximal workload of an active router
(see MILP 2 in Section 6.3);

The network consists of twelve subnets (N1 . . . N12) and seven routers (R1 . . . R7). All links of
the network have a bandwidth of 100 Mbps and do not cause a propagation delay. To reduce
complexity, it is initially assumed that all attacks originate from the Internet as indicated
by the arrow in Figure 7.6. Furthermore, a ”hotspot”-scenario was assumed throughout the
experiments resulting in disproportionate flows. All traffic was generated at the Internet
as defined in Table 7.2: 80% of all Internet-traffic was send in equal portions to subnets

Page 112

TU Berlin Section 7.3

R
5

R
4

R
7

R
6

R
3

R
2

R
1

(a) S1: Late

R
5

R
4

R
7

R
6

R
3

R
2

R
1

(b) S2: Early

Figure 7.7: The early and the Late deployment strategy—yellow routers represent the de-
ployment of the security services

N10, N12 and N12 and the remaining traffic was uniformly distributed among networks N1−
N9. The flows were generated with the traffic generator introduced in Section 7.2. The
shape parameters αon and αoff were set to 1.95 and 1.05. The minimum packet train size
was set to 1, consequently at least one packet is sent at each ON period. To consider the
hardware resources provided by the DETER testbed, the network was emulated on a scale
of 1 : 15 which means that traffic rates were divided by 15 and services times as well as the
programmable router delay Tactive were multiplied by 15. For example, regarding the high
load scenario the overall mean traffic rate that is generated in the Internet is 18.145 Mbps.
The generation of 272.175 Mbps (= 18.145 · 15) is out of scope for the hardware provided by
the DETER testbed. Figure 7.8 depicts the sending rate over the time for the flow from the
Internet to network N12. The red line shows the trace produced by the traffic generator, the
green curve represents the measured sending-rate at the Internet and the blue line depicts the
difference between the produced traffic trace and the traffic generated during an experiment.
Referring to the blue line, it can be seen that the sending application running on the Internet
node is not always able to send the packets exactly at the points in time specified by the
trace file. Furthermore, the higher the traffic rates the bigger the difference between traffic
trace and the actually generated traffic. This is one reason why the network is emulated on
a scale of 1 : 15.

The current Snort rule database contains over 6.000 attack signatures which are stored
in 48 separate files and consequently, a multitude of security services would be running on
an active router in case that a security service would be implemented for each of the 48 files.
Further, as mentioned, to analyze the effect of heterogeneous protection demands, three types
of subnetworks requiring the protection of 0, 5 and 10 security services were specified. For
the purpose of traceability only one type of security service, namely the Frontpage security
service (see Table 4.3), was used. The service processing times Tservice of security services
using the Aho-Corasick algorithm are about the same size as the complexity of the algorithm

Page 113

TU Berlin Section 7.3

does not depend on the number or on the length of the attack signatures. On average the
Frontpage security service delays an IP packet—the average IP packet size is 529 Byte—by
5.85µs when running on a PC-733 system. Analogous to the scaling down of the traffic rates,
the services times Tservice have to be multiplied by 15—the security service is executed 15
times resulting in an average service time of time 87.75µs.

The traffic rates listed in Table 7.2 were scaled—under the assumption of constant bit
rate traffic and the deployment of the security services corresponding to the Late strategy—so
that router R7 is overloaded in case of the high traffic scenario. The Late strategy places all
security services requested by networks N10 (no security service), N11 (5 security services) and
N12 (10 security services) on router R7. In conformity to Equation 6.1 the total processing
time for a packet destined to the subnet N12 is:

Tbase + Tactive + 10 · Ts(Frontpage)

Then, the average processing time of a packet at router R7 is:

Tbase + Tactive +
1

3390
(1073 · 0 + 1191 · 5 · 87.75µs+ 1126 · 10 · 87.75µs) = 470µs.

The average load of router R7 is 1.59 (= 3390 · 470 · 10−6) and as explained in Section 6.1
a routers becomes overloaded in case that the average packet inter arrival time equals or
exceeds the mean processing time. Figure 7.9 depicts the aggregated flow arriving at router
R7 over the time for the three traffic scenarios as well as the router capacity of router R7.
In the medium traffic scenario the router capacity of R7 is utilized on average by 70% but
few traffic bursts exceed the router capacity. Finally, in the low traffic scenario no router is
overloaded at any time. Table 7.3 summarizes the parameters used for the emulation of the
tree-network. Each router was capable of buffering 100 packets.

7.3.1 The Benefit of Optimal Deployment Strategies in a Tree-Network

In a first set of experiment runs the deployment strategies early, Late and predefined singlepath
routing—for both objective functions presented in Section 6.2—were compared for the three
traffic scenarios low, medium and high with each other. In the following the objective function
minimizing the number of programmable routers in a network while fulfilling all security
requests and keeping all router queues bounded is abbreviated as minRouter. Analogously
the second objective function which minimizes the maximal workload of a programmable
router while fulfilling all security requests and keeping all router queues bounded is referred
to as minQueue. All router nodes were systems of type PC-733, the corresponding parameters
are listed in Table 7.3. Further Tables 7.4 to 7.6 represent the optimal solutions calculated
by MILP 1 and MILP 2 for all three traffic scenarios.

As depicted in Figure 7.7 all security services are deployed on router R1 in case of the
early strategy and when deployed pursuant to the Late strategy routers R2, R4 R6 and R7

are assigned to run the requested security services. The optimal solutions are calculated
using average traffic rates as well as mean packet processing times as input parameters.
Regarding Tables 7.4 and 7.5, it can be seen that the minRouter strategy places for the low
and the medium traffic scenario all requested security services on router R1, correspondingly,
in these two cases the minRouter strategy equals the early strategy. But the difference

Page 114

TU Berlin Section 7.3

-20000

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 10 20 30 40 50 60 70 80 90 100

Se
nd

in
g-

R
at

e
[B

yt
e/

s]

Time [s]

Trace
Dump

Difference

Figure 7.8: Comparison between generated trace and measured dump file for flow from
Internet to N12

Table 7.2: Traffic matrix

Subnet Low Load Medium Load High Load
Packets Load Packets Load Packets Load

[Mbps] [Mbps] [Mbps]

N1 18830 0.038 25479 0.175 59861 0.428
N2 20799 0.044 25025 0.172 59940 0.395
N3 19722 0.045 25969 0.179 60474 0.431
N4 17384 0.023 26358 0.183 62323 0.439
N5 20384 0.047 25987 0.167 57762 0.421
N6 18852 0.047 24178 0.161 60813 0.428
N7 20032 0.046 26652 0.191 62092 0.433
N8 16164 0.048 26375 0.182 61119 0.435
N9 21132 0.048 26970 0.189 52246 0.387
N10 266534 0.596 321341 2.335 648304 4.541
N11 259873 0.587 305735 2.150 695383 5.041
N12 265399 0.620 331250 2.321 670445 4.766

Page 115

TU Berlin Section 7.3

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

A
gg

re
ga

te
d

Fl
ow

 [
M

bp
s]

Time [s]

High
Mid
Low

Router-Capacity

Figure 7.9: Scaling of the traffic scenarios: Aggregated Flow arriving at router R7

Table 7.3: Delay and traffic parameters of the LAN scenario

Parameter Value

Average IP packet size 529 Byte
Service delay Tservice 90.660µs
Routing delay Tbase 19.880µs
Active router delay Tactive 4.395µs
Fidran queue length 100
Number of requested services 0, 5, 10
Traffic shape αon 1.95

αoff 1.05
Traffic sources per packet size 10
Experiment duration low 1800 s

medium 600 s
high 600 s

Page 116

TU Berlin Section 7.3

Table 7.4: Optimal security services deployment for the low traffic scenario

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 10 5 - 10 5 - 10 5 - 10 5 -
R2 - - - - - - - - - - - -
R3 - - - - - - - - - - - -
R4 - - - - - - - - - - - -
R5 - - - - - - - - - - - -
R6 - - - - - - - - - - - -
R7 - - - - - - - - - - - -

(a) Strategy: minRouter

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 - - - - - - - - - 2 1 -
R2 10 5 - - - - - - - - - -
R3 - - - - - - - - - 3 1 -
R4 - - - 10 5 - - - - - - -
R5 - - - - - - - - - 3 1 -
R6 - - - - - - 10 5 - - - -
R7 - - - - - - - - - 2 2 -

(b) Strategy: minQueue

between both strategies becomes evident for the high traffic scenario. In contrary to the
minRouter strategy the early strategy does not consider traffic rates. According to Table 7.6
the minRouter strategy uses three routers to optimally deploy the security services for the high
traffic scenario. The reason for this is depicted in Figure 7.10. The left column of the figure
depicts the theoretical workload of the routers—equaling the right side of Equation (6.5)—
based on the outcome of MILP 1. In addition, the right column of the figure shows the
mean packet dropping rates obtained from the experiments carried out. Now, considering
the workloads of router R1 for the early strategy and for the three traffic scenarios it can be
seen that stability constraint is fulfilled for the low and medium traffic scenario. But in case
of the high traffic scenario router R1 is overloaded (> 2) and consequently, the minRouter
strategy relocates security services from router R1 to routers R3 and R7.

To minimize the maximal workload of a router the minQueue strategy, in contrary to
the other strategies, uses as many as possible routers. For all three traffic scenarios the
strategy places the security services requested by subnets N1, N2, N4, N5, N7 and N8 on the
corresponding last hop routers R2, R4 and R6. The security services requested by networks
N10 and N11 which receive a good portion of all Internet traffic are distributed over four
routers, namely routers R1, R3, R5 and R7. Looking at the workloads associated with
the minQueue strategy in Figure 7.10 it can be seen that for all three traffic scenarios the
workloads are well balanced and smaller than one.

Under the assumption of constant-bit-rate traffic, a router starts to drop packets in case
that the packet processing time is larger than the packet inter arrival time. A workload of one
means that the packet processing time equals the packet inter arrival time. In real networks
traffic rates and packet processing times vary due to the self-similar nature of network traffic
and due to diverse packet characteristics, but the correlation between theoretical workload
and measured packet drop rate is still evident in Figure 7.10. According to the presented
results a router is more likely to drop packets the more its workload approaches /exceeds one.

Page 117

TU Berlin Section 7.3

Table 7.5: Optimal security services deployment for the medium traffic scenario

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 10 5 - 10 5 - 10 5 - 10 5 -
R2 - - - - - - - - - - - -
R3 - - - - - - - - - - - -
R4 - - - - - - - - - - - -
R5 - - - - - - - - - - - -
R6 - - - - - - - - - - - -
R7 - - - - - - - - - - - -

(a) Strategy: minRouter

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 - - - - - - - - - 3 - -
R2 10 5 - - - - - - - - - -
R3 - - - - - - - - - 3 1 -
R4 - - - 10 5 - - - - - - -
R5 - - - - - - - - - 3 1 -
R6 - - - - - - 10 5 - - - -
R7 - - - - - - - - - 1 3 -

(b) Strategy: minQueue

Table 7.6: Optimal security services deployment for the high traffic scenario

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 10 5 - 10 1 - 9 5 - 1 4 -
R2 - - - - - - - - - - - -
R3 - - - - 4 - 1 - - 1 - -
R4 - - - - - - - - - - - -
R5 - - - - - - - - - - - -
R6 - - - - - - - - - - - -
R7 - - - - - - - - - 8 1 -

(a) Strategy: minRouter

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 - - - - - - - - - 3 1 -
R2 10 5 - - - - - - - - - -
R3 - - - - - - - - - 3 1 -
R4 - - - 10 5 - - - - - - -
R5 - - - - - - - - - 3 1 -
R6 - - - - - - 10 5 - - - -
R7 - - - - - - - - - 1 2 -

(b) Strategy: minQueue

Page 118

TU Berlin Section 7.3

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

W
or

kl
oa

d

Router

Early/minRouter
Late

minQueue

 0.1

 1

 1 2 3 4 5 6 7

D
ro

p-
R

at
e

[P
ac

ke
ts

/s
]

Router

Early/minRouter
Late

minQueue

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

W
or

kl
oa

d

Router

Early/minRouter
Late

minQueue

 1

 10

 1 2 3 4 5 6 7

D
ro

p-
R

at
e

[P
ac

ke
ts

/s
]

Router

Early/minRouter
Late

minQueue

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 3 4 5 6 7

W
or

kl
oa

d

Router

Early
Late

minRouter
minQueue

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7

D
ro

p-
R

at
e

[P
ac

ke
ts

/s
]

Router

Early
Late

minRouter
minQueue

Figure 7.10: Left column depicts the theoretical average workload of the routers as an outcome
of the MILPs and the right column shows the associated mean dropping rates for the traffic
scenarios low, medium and high for the tree-network

Page 119

TU Berlin Section 7.3

For the traffic scenarios medium and high the routers R1 and R7 have the highest utilization
as well as the highest drop rates. Furthermore, the packet loss rate increases tremendously
for workloads larger than one. For example, routers R1 and R7 have a load of 0.99 and
0.97 for the high traffic scenario and the minRouter deployment strategy. The corresponding
packet loss rates are 5.53 packets

s and 4.77 packets
s . Under the same traffic conditions router R1

(R7) has a workload of 2.02 (1.59) in case that the security services are deployed pursuing
the early (Late) strategy. The related drop rates are 885.97 packets

s and 346.93 packets
s and

consequently, the relation between workload and drop rate is nonlinearly.
However, a small portion of packets may also be dropped in case of small workloads.

For example, router R1 in case of the early deployment strategy and router R7 in case of
the Late deployment strategy drop a small amount of packets although their workloads are
smaller than one in case of the low traffic scenario. This can be explained with the help of
Figure 7.9 which depicts the aggregated flows for all traffic levels from the Internet to router
R7. Considering the blue curve, representing the aggregated flow for the low traffic scenario,
the router is capable to handle all arriving packets on average, but few packet bursts exceed
its capacity leading to packet loss.

In the following the impact of the deployment strategies on the packets’ end-to-end-delays
is analyzed. Figure 7.11 depicts the flow-specific average end-to-end delays as well as the flow-
specific average packet drop rates for each emulated network scenario. The results for the
low traffic scenario show that the early and the minRouter strategy cause the highest end-to-
end-delays. Referring to the delay caused by the operation of an intrusion prevention overlay
network the minQueue strategy performs best. But overall it can be said that the differences
between the deployment strategies are considerably small for the low traffic scenario. The
reason for this is that the packet loss rate even for the early deployment strategy is negligible
and as a result, it can be inferred that in this scenario the time Twaiting—the time that a
packet must wait before being served—is very small. Drawing the attention towards the traffic
scenarios medium and high the differences between the security services deployment strategies
increase but still the early strategy causes the largest end-to-end-delays. Additionally, the
results clearly indicate a correlation between packet loss rates and end-to-end-delays. The
higher the packet loss rate the longer it takes a packet to reach its destination. The reason for
this is the waiting time Twaiting which increases with growing traffic volumes. For example,
the contribution of the delay Twaiting to the overall end-to-end-delay is visible for the flows
addressed to subnets N10, N11 and N12 for the Late deployment strategy. Packets destined to
the former two subnets are inspected by ten and five security services respectively resulting
in theoretical minimum end-to-end-delays of:

e2eN10 = 10 · 90.660µs+ 1 · 4.395µs+ 4 · 19.880µs = 990.5µs

e2eN11 = 5 · 90.660µs+ 1 · 4.395µs+ 4 · 19.880µs = 537.2µs

In practice, end-to-end-delays of 2263µs and 1627µs were measured for the low traffic sce-
nario. These increase to 5300µs and 4308µs for the medium traffic scenario and in case of
the high traffic scenario it takes a packet 31668µs and 30178µs on average to reach subnets
N10 and N11 respectively. The theoretical calculated values ignore the time periods that are
needed to send and receive a packet. Further, although the link propagation delays are set to
zero, the emulation of them will add a minimal overhead to the delay of each packet. However

Page 120

TU Berlin Section 7.3

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12

E
nd

-t
o-

en
d-

de
la

y
[m

s]

Subnet

No
Early/minRouter

Late
minQueue

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 2 4 6 8 10 12

L
os

s
[%

]

Subnet

No
Early/minRouter

Late
minQueue

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 4 6 8 10 12

E
nd

-t
o-

en
d-

de
la

y
[m

s]

Subnet

No
Early/minRouter

Late
minQueue

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 2 4 6 8 10 12

L
os

s
[%

]

Subnet

No
Early/minRouter

Late
minQueue

 0.1

 1

 10

 100

 2 4 6 8 10 12

E
nd

-t
o-

en
d-

de
la

y
[m

s]

Subnet

No
Early
Late

minRouter
minQueue

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12

L
os

s
[%

]

Subnet

No
Early
Late

minRouter
minQueue

Figure 7.11: The figures in the left column depict the flow-specific end-to-end delays and the
figures on the right side show the flow-specific drop-rate for the traffic scenarios low, medium
and high for the tree-network

Page 121

TU Berlin Section 7.3

the discrepancies between the measured end-to-end-delays are mainly caused by the waiting
times Twaiting. But when applying the minQueue deployment strategy delays of 2626µs and
2478µs were measured for the same flows in case of the high traffic scenario. The minQueue
strategy reduces the waiting time as it minimizes the maximal workload of all Fidran routers
or in other words, it minimizes the maximal average waiting time Twaiting of all programmable
routers. The effect is clearly visible for the high traffic scenario as end-to-end-delays as well
as packet loss are significantly smaller compared to the other strategies.

Recapitulating, the benefit of the optimal deployment strategies minRouter and min-
Queue—compared to the intuitive strategies early and Late—becomes more apparent with
increasing traffic rates. Both optimal strategies show that they reduce the impact—in terms
of packet loss and end-to-end-delay—of an intrusion prevention overlay network on the net-
work performance. Finally, packets that must not be analyzed by any security services are
additionally delayed by the Fidran framework. In the given example, this counts for the
flows addressed to networks N3, N6, N9 and N12 and according to Figure 7.11 the related
packet loss rates are negligible. Further, the figure also shows the measured end-to-end-
delays in case that no Fidran system was running on a router of the network (deployment
strategy no). Considering the end-to-end-delays of the flows to subnets N3, N6, N9 and
N12 it can be seen that the additional delay added by the Fidran framework to the overall
end-to-end-delay is rather small.

A finding of the performance evaluation of the Fidran prototype conducted in Section 4.5
was that the processing times of the implemented security services depend on the size of the
packets. But the results shown in Figures 4.11 and 4.12 only count for packets of a constant
size that have to be inspected by a single security service. Hence the next paragraph analyzes
how the size of an IP packet affects the overall end-to-end-delay of a flow that has to traverse
multiple routers to reach its destination and which in addition must be analyzed by multiple
security services. Figure 7.12 depicts for each deployment strategy the PDF of the end-to-
end-delays of packets of size 40, 5xx and 1500 Byte that were send in case of the low traffic
scenario to subnet N10. The label 5xx includes the packet sizes 552 and 576 Byte. Further,
the low traffic scenario was chosen to minimize the influence of the waiting time Twaiting on
the overall end-to-end-delay. The following findings can be inferred from the figure:

• the larger a packet the longer is it delayed and

• the minQueue strategy efficiently reduces the time that packets must wait to be served.

The larger a packet the longer it takes the packet to reach its destination whether or not
a Fidran system is running. For instance, on average it lasts 0.61 ms till a packet of size
40 Byte completes the way from the Internet to subnet N10 in case that no router is running
the Fidran system (no-strategy). However, under the same conditions the average travel
time for a packet of size 5xx Byte is 1.1 ms and a packet of size 1500 Byte actually requires
2.0 ms to complete the same distance. The reason for this is that it takes more time to send
and receive large packets compared to small ones. Moreover, the operation of the Fidran
framework aggravates the effect of the packet size on the end-to-end-delay. On average the
time period of 0.83 ms elapses till an IP packet of size 40 Byte reaches network N10 in case
that the security services are deployed according to the minQueue strategy. In the same
scenario packets of size 5xx Byte and 1500 Byte require 1.77 ms and 3.66 ms respectively to
arrive at the destination.

Page 122

TU Berlin Section 7.3

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6

PD
F

[%
]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(a) 40 Byte packets

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6 7 8

PD
F

[%
]

End-to-end-delay [ms]

(b) 5xx Byte packets

 0

 10

 20

 30

 40

 0 1 2 3 4 5 6 7 8

PD
F

[%
]

End-to-end-delay [ms]

(c) 1500 Byte packets

Figure 7.12: Probability density functions of measured end-to-end-delays—flow addressed to
subnet N10 and low traffic scenario—for packets of size 40, 5xx and 1500 Byte

The second finding says that the minQueue strategy efficiently reduces the time that
packets must wait to be served. Considering the graphs in Figure 7.12(c) which depict the
results of the strategies early, Late and minRouter it can be seen that some packets require
more time than 4 ms to arrive at subnet N10 and this is not the case for the minQueue
strategy. In addition, the PDFs related to the minQueue strategy have for all packet sizes
the highest peaks compared to the other deployment strategies. In other words, the wider
the shape of a graph the longer do packets wait to be served.

Figures 7.13 and 7.14 depict the cumulative distribution functions (CDF) as well as the
PDFs of the end-to-end-delays measured at subnets N10 and N12 for all traffic scenarios. The
two flows were chosen because the paths from the Internet to subnets N10 and to subnet
N12 are the longest of the network. In addition, the flow destined to subnet N10 must
be analyzed by ten security services whereas packets addressed to N12 must not traverse
any security service. Accordingly, it is assumed that the contrast between both flows has
noticeable implications on the corresponding end-to-end-delays.

Figures 7.13(a), 7.14(c) and 7.14(e) depict the PDFs of the delays measured for the
flow between the Internet and network N10. Each curve has three peaks and as shown in
Figure 7.12 packets of size 40, 5xx and 1500 Byte respectively can be assigned to them.
Furthermore, the figures reveal the impact of the traffic scenario on the end-to-end-delays.
The more traffic is transported through the network the more increases the average end-to-
end-delay. This can also be seen in Figures 7.13(b), 7.13(d) and 7.13(f) as the slopes of the
depicted CDFs decrease for increasing traffic volumes. In addition, the figures show that
the impact of the deployment strategies increases for growing traffic rates. The difference
between the results in case that no router is running the Fidran system and the case that
security services are located in the network increases for growing traffic volumes. The figure
shows the benefit of the developed optimal strategies which perform better compared to the
strategies early and Late.

Figure 7.14 shows the impact of the Fidran framework on a flow that must not be ana-
lyzed by security services. Again the overhead caused by Fidran increases for growing traffic
volumes and again strategies minRouter and minQueue have a smaller influence compared
to strategies early and Late on the end-to-end-delay in case of the high traffic scenario. To
explain this it must be kept in mind that single processor systems were used throughout the

Page 123

TU Berlin Section 7.3

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9 10

PD
F

[%
]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(a) PDF low traffic

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

C
D

F
[%

]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(b) CDF low traffic

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9 10

PD
F

[%
]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(c) PDF medium traffic

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

C
D

F
[%

]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(d) CDF medium traffic

 0

 10

 20

 0 1 2 3 4 5 6 7 8 9 10

PD
F

[%
]

End-to-end-delay [ms]

No
Early
Late

minQueue
minRouter

(e) PDF high traffic

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6 7 8 9 10

C
D

F
[%

]

End-to-end-delay [ms]

No
Early
Late

minQueue
minRouter

(f) CDF high traffic

Figure 7.13: PDFs and CDFs of the end-to-end-delays measured at subnet N10 for traffic
scenarios low, medium and high.

Page 124

TU Berlin Section 7.3

 0

 10

 20

 0 1 2 3 4 5 6

PD
F

[%
]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(a) PDF low traffic

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

C
D

F
[%

]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(b) CDF low traffic

 0

 10

 20

 0 1 2 3 4 5 6

PD
F

[%
]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(c) PDF medium traffic

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

C
D

F
[%

]

End-to-end-delay [ms]

No
Early/minRouter

Late
minQueue

(d) CDF medium traffic

 0

 10

 20

 0 1 2 3 4 5 6

PD
F

[%
]

End-to-end-delay [ms]

No
Early
Late

minQueue
minRouter

(e) PDF high traffic

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5 6

C
D

F
[%

]

End-to-end-delay [ms]

No
Early
Late

minQueue
minRouter

(f) CDF high traffic

Figure 7.14: PDFs and CDFs of the end-to-end-delays measured at subnet N12 for traffic
scenarios low, medium and high.

Page 125

TU Berlin Section 7.3

experiments. The following happens in case that a Fidran system serves a packet when
another one arrives at a NIC of that router. The arriving packet triggers the execution of an
hard interrupt which have priority over soft interrupts as well as kernel threads. Accordingly,
the processor halts the execution of the active Fidran kernel thread and then it executes
the requested hard interrupt routine which transfers the packet from the NIC buffer to the
kernel space. Subsequently the processor schedules the appropriate soft interrupt which is
responsible for the further processing of the packet and it reactivates the interrupted Fidran
thread. The newly arrived packet stays in the kernel buffer until the soft interrupt routine
becomes active. Consequently, the probability that a packet must wait to be passed to the
Fidran system is higher the higher the workload of the latter. As the minQueue strategy
minimizes the maximal workload over all routers and hence it also reduces the overall wait-
ing time. In case of a multi-processor system, one processor can be assigned to handle the
arriving packets whereas the remaining processors perform the security analysis.

To validate this, the behavior of a Fidran router was examined for the case that the
packet arrival rate exceeds the router’s capacity. Again the testbed depicted in Figure 4.6
was setup—using systems of type PC3000—and the security service deployed on the router
delays all packets by 0.25 ms. Further, traffic was send at constant rates from the sender to
the receiver and all IP packets were of size 1500 Byte. Figure 7.15 depicts the measured delays
tsystem, tfidran, tbase over the offered data-rate as well as the theoretical delay that is caused
by processing 100 packets with security service s (processing time ts). The delay tsystem is
the overall time that a packet stays on the router whereas tfidran represents the period of
time that a packet remains inside the Fidran system, corresponding to tracepoints T2 and
T5 depicted in Figure 4.5. Delay tbase is the core routing delay which in this case equals
the difference between the delays tsystem and tfidran. Finally, the last curve represents the
theoretical period of time that it takes to empty a filled waiting queue (buffer size 100 packets)
under the assumption that the packets must be inspected by security service s and no further
packets arrive. Referring to Figure 7.15, the router is working to capacity at a traffic-rate of
about 31 Mbps and consequently, at that point there is a sudden increase of the delays tsystem
and tfidran. For higher traffic rates, the Fidran waiting queue is filled and consequently,
both delays are bounded by the length of that queue. Further, the discrepancy between the
delay tfidran and the purple curve is caused by the effect described above, but according to
the figure the waiting time is still dominating the overall delay tsystem.

7.3.2 Programmable Routers of Heterogeneous Performance

To emulate the cooperation of routers of varying computational speeds, routers R1, R3 and R5

of the tree network depicted in Figure 7.6 were substituted by routers of type PC3000. The
security service requirements were the same as in the previous section and the deployment
strategies minRouter and minQueue calculated for the high traffic scenario are listed in
Table 7.7. To facilitate the identification of the routers of type PC3000 routers R1, R3 and
R5 are underlined in the table. Intuitively, the substitution of the routers affects strategies
early, minRouter and minQueue as they use at least one of these routers to inspect the
network traffic. In contrast the Late strategy might not benefit of the substitution.

A first finding when comparing Table 7.7 with Table 7.6 is that for both scenarios the
results calculated for the deployment strategy minRouter are identical. In both scenarios all

Page 126

TU Berlin Section 7.3

 0

 5

 10

 15

 20

 25

 30

 20 25 30 35 40 45 50 55 60 65

D
el

ay
 [

m
s]

Data-rate [Mbps]

system
fidran

base
100 x ts

Figure 7.15: Delays caused by a PC3000 system

Table 7.7: Optimal security services deployment for the high traffic scenario and heteroge-
neous routers

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 10 5 - 10 5 - 10 5 - 10 5 -
R2 - - - - - - - - - - - -
R3 - - - - - - - - - - - -
R4 - - - - - - - - - - - -
R5 - - - - - - - - - - - -
R6 - - - - - - - - - - - -
R7 - - - - - - - - - - - -

(a) Strategy: minRouter

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

R1 3 - - 1 2 - 1 2 - 2 2 -
R2 7 5 - - - - - - - - - -
R3 - - - - - - - - - 4 1 -
R4 - - - 9 3 - - - - - - -
R5 - - - - - - - - - 4 1 -
R6 - - - - - - 9 3 - - - -
R7 - - - - - - - - - - 1 -

(b) Strategy: minQueue

security services are placed on router R1. But regarding the results for the minQueue strategy
it can be seen that security services are relocated: security services are removed from slower
routers and inserted on routers of higher performance. For example, in the previous section
routers R2, R4 and R6 were assigned to run 15 security services (Table 7.6), but by upgrading
routers R1, R3 and R5 three security services are relocated from each of the routers to router
R1.

Figure 7.16 depicts the results for the heterogeneous network setup. The workloads cal-

Page 127

TU Berlin Section 7.4

culated for every strategy and router are illustrated in Figure 7.16(a). Furthermore, the
absolute number of packets dropped per second by the Fidran systems, the flow specific
end-to-end-delay as well as the flow specific packet loss rates are shown for every strat-
egy in the remaining figures. A comparison of the results depicted in Figure 7.16 with the
results presented in the previous section, approves the assumption that the Late strategy
does not benefit of the substitution of the routers. Differently the remaining strategies are
able to use the improved performance of routers R1, R3 and R5 resulting in a reduction of
packet loss and end-to-end-delays. For the strategies early and minRouter almost no packet
loss is observed. Drawing the attention towards the minQueue strategy there the maximal
workload v is reduced by the substitution of the three routers from vpc733 = 0.399085 to
vheterogeneous = 0.116541. But the packet drop rate measured for the minQueue strategy is
slightly higher than for strategies early and minRouter respectively. In detail, the Fidran
system running on router R2 which is of type PC733 drops on average 0.03 packets per
second. The objective of the minQueue strategy is to reduce the maximal workload of all
routers. A router’s workload of 0.2 means that on average the router is occupied at 20% of
any given time period. Consequently, during 80% of that interval the router is idle and it
has free capacity to process packets. But it must be kept in mind that the free capacity of
a router of type PC733 is faster exhausted, for example through the occurrence of a traffic
peak, than the free-capacity of PC3000 router.

Summarizing, this section showed the benefit of optimally deploying security services in
a tree network. The deployment strategies introduced in Section 6.3 were assessed for the
traffic scenarios low, medium and high. The experiments demonstrated that the impact of
doing intrusion prevention in terms of packet loss and end-to-end-delay can be reduced by the
intelligent distribution of security services. Furthermore, the penalty for flows that do not
require any protection is within acceptable limits and finally, it was shown that it is possible
to consider routers of heterogeneous performance.

7.4 A High-Speed Networking Environment: The Abilene Net-
work

The Abilene network, depicted in Figure 7.17, was the second evaluated scenario. Abilene
is a research IP backbone connecting multiple universities across the US which makes real
world data—traffic flows and link capacities—available on the project’s web-site [11]. Abilene
is an example for the deployment of Fidran in a high-speed networking environment like a
backbone. The propagation delay for each link was specified by dividing the distance from
start node to end node by the speed of light.

In the network each subnet sends data to all other subnets resulting in an overall number
of 30 traffic flows. Table 7.8 represents the traffic matrix, the column index specifies the source
and the row index the destination. To avoid effects of congestion and flow control mechanisms
all experiments were restricted to Udp-traffic. To consider the hardware resources provided
by the DETER testbed, the network was emulated on a scale of 1 : 100 which means that
traffic rates were divided by 100 and accordingly the delays were multiplied by 100. To
generate the traffic each subnet is supplied with an UDP sender for each destination which
generates self-similar traffic as described previously. The durations of the ON and OFF

Page 128

TU Berlin Section 7.4

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7

W
or

kl
oa

d

Router

Early/minRouter
Late

minQueue

(a) Theoretical workload

 0.01

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7

D
ro

p-
Ra

te
 [P

ac
ke

ts/
s]

Router

Early/minRouter
Late

minQueue

(b) Packets dropped per second by Fidran

 0.1

 1

 10

 100

 2 4 6 8 10 12

En
d-

to
-e

nd
-d

el
ay

 [m
s]

Subnet

No
Early/minRouter

Late
minQueue

(c) Flow-specific end-to-end-delays

 0.01

 0.1

 1

 10

 100

 2 4 6 8 10 12

Lo
ss

 [%
]

Subnet

No
Early/minRouter

Late
minQueue

(d) Flow-specific packet loss

Figure 7.16: The results for the LAN network with heterogeneous routers for the high traffic
scenario

states are Pareto-distributed with parameters: αON = 1.7, αOFF = 1.2 and location = 1.
Each experiment lasted 300 s and included the sending of over 850, 000 packets and each
experiment was conducted with three different traces.

The experiments described in following examine the benefit of combining the process
of routing traffic demands with the placement of the security services. In the previously
discussed tree network scenarios the routes were predefined. Consequently, singlepath routing
as well as multipath routing in combination with the deployment of security services means
a further degree of freedom in the optimization.

The security services listed in Table 4.2 were used throughout the conducted experiments.
In a first series of experiments it was assumed that each flow in the network is analyzed by
the first six security services and in a second series each flow is inspected by all seven security
services. The security services processing times were adapted as explained to the Deterlab
network environment.

Table 7.9 lists the deployment strategies that are compared in this section. The Late

Page 129

TU Berlin Section 7.4

r
1

r
2

r
3

r
4

r
5

r
6

r
7

r
8

r
9

r
10

r
11

LOSA

SNVA

STTL
CHIN

NYCM

WASH

Figure 7.17: The Abilene network topology

strategy uses the shortest paths calculated by the Dijkstra algorithm and it places the re-
quested security services as close as possible to the requesting subnets. Furthermore, the
performance of the solutions obtained of the MILPs introduced in Chapter 6 with the objec-
tive of minimizing the maximum router utilization are studied and compared. In the context
of predefined singlepath routing scenario also the Dijkstra algorithm is used to calculate the
predefined paths. The Pre strategy (for predefined) optimally distributes the security services
among the routers in the shortest path.

7.4.1 Abilene Network: Securing each Commodity by Six Security Ser-
vices

In this scenario each demand k is analyzed by six security services Sk = {S1 . . . S5}. To better
understand the differences in the service placement, Tables 7.10 show the amount of service
assignments for each destination-router pair that is the sum of services multiplied by the flow
or flow-fraction processed by each router. In total a number of 180 service assignments must
be made as five flows are sent to each subnet. Fractional flow assignments happen in case
of the multipath routing strategy MP which splits given commodities into multiple smaller
flows.

The Late strategy places the security services as close as possible to the requesting subnets
on the shortest paths. It neither considers the volume routed via a path nor does it regards
the load that is caused by the deployment of security services. Accordingly, security services
are only deployed on six out of eleven routers. The Pre strategy distributes the requested

Page 130

TU Berlin Section 7.4

Table 7.8: The Abilene Traffic Matrix [Mbps]

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN X 35.53 6.77 3.75 8.37 14.77
LOSA 113.58 X 51.50 10.30 26.26 58.90
NYCM 71.82 64.68 X 10.44 31.91 108.35
SNVA 5.68 34.09 3.29 X 55.06 2.13
STTL 66.26 27.79 21.84 9.02 X 15.63
WASH 93.45 75.20 176.86 8.22 36.30 X

Table 7.9: The Scenarios Emulated
Scenario Description

Late Security services are deployed as close as possible to the re-
questing subnet/end-system on the shortest paths

Pre Security services are optimally distributed among the routers
in the shortest path

SP Security services are optimally distributed among the routers
in a single path obtained from joint optimization

MP Security services are optimally distributed among the routers
of multiple paths obtained from joint optimization

Page 131

TU Berlin Section 7.4

Table 7.10: Service assignments under the constraint that each commodity must be analyzed
by 6 security services

To → CHIN LOSA NYCM SNVA STTL WASH

R1 x x x x x x
R2 30 x x x x x
R3 x x x x x x
R4 x x x x x x
R5 x x x x x x
R6 x x x x x x
R7 x 30 x x x x
R8 x x 30 x x x
R9 x x x 30 x x
R10 x x x x 30 x
R11 x x x x x 30

(a) Late strategy

To → CHIN LOSA NYCM SNVA STTL WASH

R1 x 5 x x x 6
R2 11 x 1 x x 3
R3 2 x 1 x 1 x
R4 x 1 x x x x
R5 2 1 x x x x
R6 7 x x x x x
R7 x 14 2 6 3 x
R8 1 x 6 x x 6
R9 6 4 10 24 6 6
R10 1 5 5 x 20 6
R11 x x 5 x x 3

(b) Pre strategy

To → CHIN LOSA NYCM SNVA STTL WASH

R1 x 9 x x x 5
R2 8 x 6 x x x
R3 10 x 6 4 x 5
R4 x 2 3 x x x
R5 1 5 1 2 1 3
R6 4 x 6 6 13 x
R7 x 3 5 1 x 5
R8 4 x 1 x x 3
R9 1 7 x 14 5 5
R10 2 4 x 3 11 1
R11 x x 2 x x 3

(c) SP strategy

To → CHIN LOSA NYCM SNVA STTL WASH

R1 3.05 1.00 0.10 x 0.29 3.17
R2 6.65 x 6.00 x x 6.00
R3 8.63 2.20 7.36 1.00 5.73 0.06
R4 0.75 4.05 2.55 1.00 0.76 4.00
R5 4.67 3.26 2.04 1.00 2.00 0.49
R6 2.25 4.28 2.97 4.00 3.00 2.33
R7 1.37 7.11 2.70 x 0.47 3.00
R8 x x 2.90 x x 1.53
R9 1.63 5.88 0.45 17.00 3.81 5.02
R10 1.00 2.22 0.03 6.00 13.94 2.87
R11 x x 2.90 x x 1.53

(d) MP strategy

security services among the routers of the shortest paths. This leaves little flexibility for the
optimization of service placement. The shortest paths between neighboring subnets often
consists of a considerably small number of hops. For example, the security services for the
commodities between NYCM and WASH—the largest and the third largest commodity—can
be deployed on two routers. This can easily result in resource shortages. Finally, strategies
SP and MP, combine the task of routing traffic through the network with the task of placing
security services in the network. As a result of this both strategies deploy security services
on all routers of the network.

The resulting path lengths in terms of hops are given in Tables 7.11. Strategies Late
and Pre—in contrast to strategies SP and MP—use symmetric routes for the commodities
between two subnets. In context of the multipath routing strategy the number of routers is
counted over all paths used by the corresponding commodity but a hop that lies on multiple
paths is only considered once. For example, the demand from CHIN to LOSA is routed via
paths:

• R2 → R5 → R6 → R4 → R7

• R2 → R5 → R6 → R3 → R9 → R7

Page 132

TU Berlin Section 7.4

Table 7.11: Path lengths under the constraint that each commodity is secured by 6 security
services

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 6 2 5 5 3
LOSA 6 x 7 2 3 4
NYCM 2 7 x 6 6 2
SNVA 5 2 6 x 2 7
STTL 5 3 6 2 x 7
WASH 3 4 2 7 7 x

(a) Late and Pre strategy

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 5 2 5 5 4
LOSA 6 x 6 2 3 4
NYCM 2 6 x 6 6 2
SNVA 5 2 6 x 2 5
STTL 5 3 6 2 x 6
WASH 3 4 7 5 6 x

(b) SP strategy

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 7 2 5 5 3
LOSA 9 x 10 2 3 4
NYCM 5 5 x 6 6 10
SNVA 5 2 6 x 2 5
STTL 5 3 8 2 x 8
WASH 5 9 5 5 9 x

(c) MP strategy

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 2 1 1 1 1
LOSA 2 x 2 1 1 1
NYCM 2 1 x 1 1 3
SNVA 1 1 1 x 1 1
STTL 1 1 2 1 x 3
WASH 2 3 2 1 3 x

(d) MP strategy paths used

Accordingly, the commodity is routed over seven—to point them out they are underlined—
unique nodes. Table 7.11(d) states how many paths are used to transmit the individual
commodities.

On average a commodity traverses 4.47 hops in case of the Late and Pre strategy. The
singlepath routing strategy generates an average path length of 4.37 hops. 5.37 unique hops
are passed on average by a flow in the multipath scenario. To specify the average number
of hops per megabit routed the weighted average defined in Equation (7.2) is calculated for
each strategy.

t(k)hops(k)∑
k∈D t(k)

(7.2)

The outcome is that on average a megabit traverses 3.96, 4.50 and 6.11 hops for strategies
Late/Pre, SP and MP. The load caused by the security services can better be balanced
the higher the value. Combining the task of routing with the task of deploying security
services increases the number of hops per megabit transmitted. The singlepath strategy
achieves this by creating longer paths for large commodities and the multipath strategy split
commodities into multiple smaller flows which are routed over different paths; referring to
Table 7.11(d) the 30 commodities are divided into 45 flows. The effect of the strategies is
illustrated in Figure 7.18 which shows the routes for the commodities destined for WASH
for the strategies discussed. The shortest path routing does not consider the load due to
the security services and additionally, it must be kept in mind that in case of the shortest
path algorithm the calculated routes are symmetric. Hence, the resulting configuration of
the network leaves little flexibility for the optimization of the service placement, especially
for large commodities like the one from Wash to NYCM. In contrast the singlepath strategy
routes the same demand over seven hops and the multipath strategy splits the commodity
into two smaller flows.

Page 133

TU Berlin Section 7.4

LOSA

SNVA

STTL

NYCM

WASH

CHIN

(a) Predefined routing strategies Late and Pre

LOSA

SNVA

STTL

NYCM

WASH

CHIN

(b) Singlepath strategy SP

LOSA

SNVA

STTL

NYCM

WASH

CHIN

(c) MP strategy MP

Figure 7.18: Routes for commodities towards WASH

Page 134

TU Berlin Section 7.4

Table 7.12 shows the overall statistics for the scenario emulated. The first column repre-
sents for each strategy the measured relative packet-loss and the second column shows the
packet loss caused by Fidran. Further, in the third column the average end-to-end-delay
and the corresponding 95% confidence interval of a packet is given. Referring to the table
it can be stated that doing intrusion prevention in the network increases packet loss and
end-to-end-delay. Moreover, almost all packet loss is caused by Fidran but the benefit of
the strategies Pre, SP and MP is visible. Although the resulting paths are longer from a link
delay perspective, the strategies introduced perform better as packet loss and end-to-end-
delays are reduced. Strategy Late causes 2.1% of all packets to be dropped and on average it
takes a packet 34.75 ms to reach its destination. 1.4% of all packets are lost when applying
the Late strategy and a packet loss of 1.1% is caused by strategies SP and MP. For all three
optimal deployment strategies it can be said that on average packets reach their destination
ten milliseconds earlier than in case of the Late strategy.

Table 7.13 and Table 7.14 compare the deployment strategies in more detail by specifying
flow-specific drop-rates as well as flow-specific end-to-end-delays. Throughout the tables the
three largest commodities (WASH-NYCM, LOSA-CHIN and NYCM-WASH) are writ-
ten bold and the three smallest commodities (SNVA-WASH, SNVA-NYCM and SNVA-CHIN)
are written underlined. Router R2 is the bottleneck in context of the Late strategy. It in-
spects all traffic destined to CHIN and according to the traffic matrix 7.8 node CHIN receives
the largest volume of network traffic of all subnets. This is illustrated in more detail by Fig-
ure 7.19. The figure on the left depicts the routers’ packet processing rates and the figure on
the right depicts the routers’ packet drop rates. Router R2 can be identified as bottleneck
when employing strategy Late and its impact on the corresponding flow drop rates is given
in Table 7.13(b). The drop-rates of the flows addressed to CHIN are significantly higher than
for the remaining strategies. In addition, the bottleneck caused by router R2 also affects the
average end-to-end-delays of the corresponding flows as illustrated in Table 7.14. On average
a packet needs about 53 ms to get from LOSA to CHIN in case of the Late strategy. When
applying a more advanced security services deployment strategy, this delay can be reduced
by over 20 ms.

Next, the number of flows with a packet loss higher than 2.5% are counted for each
deployment strategy. For the Late strategy ten commodities were counted and three for
the Pre strategy. However, it must be remarked that strategy Pre causes a packet loss of
8.1%—this is the highest drop rate measured in this scenario—for the traffic demand between

Table 7.12: Overall statistics for scenario Abilene under the constraint that each commodity
must be secured by 6 security services

Strategy Loss [%] Fidran Loss [%] End-to-end-delay [ms]

No 0 0 13.412 ±0.019
Late 2.100 2.100 34.756 ±0.059
Pre 1.400 1.300 24.803 ±0.038
SP 1.100 1.000 25.300 ±0.034
MP 1.100 1.000 23.665 ±0.032

Page 135

TU Berlin Section 7.4

Table 7.13: Flow specific packet loss [%] for scenario Abilene under the constraint that each
commodity must be secured by 6 security services; the three largest/smallest commodities
are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0 0 0 0 0
LOSA 0 X 0 0 0 0
NYCM 0 0 X 0 0 0
SNVA 0.100 0.200 0 X 0.300 0
STTL 0 0.100 0 0 X 0
WASH 0.100 0 0.100 0.100 0 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 2.800 0.800 0 0 0.100
LOSA 2.700 X 1.900 0.300 0.700 1.400
NYCM 2.800 2.400 X 0 1.300 1.200
SNVA 3.600 4.300 3.100 X 1.000 0
STTL 2.500 2.400 1.100 1.100 X 0.600
WASH 3.600 2.800 2.900 0 0.900 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.600 0.600 0 0 0.100
LOSA 0.700 X 0.600 0.700 0.300 1.100
NYCM 1.000 1.700 X 0.100 1.500 1.200
SNVA 0.400 3.600 1.100 X 1.000 0
STTL 0.300 2.100 8.100 1.100 X 4.300
WASH 0.700 2.000 2.300 0 0.800 X

(c) Strategy Pre

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.900 0.200 0 0 0.100
LOSA 0.800 X 0.500 0.400 0.500 1.100
NYCM 0.600 2.000 X 0.200 1.200 0.800
SNVA 0 3.600 0.100 X 1.300 0
STTL 0.800 2.000 0 1.600 X 0.700
WASH 0.700 1.600 1.600 0 1.300 X

(d) Strategy SP

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.300 0.200 0 0 0
LOSA 0.700 X 0.500 0.600 0.100 1.000
NYCM 0.500 1.800 X 0 1.300 1.000
SNVA 0.700 3.300 0.200 X 1.200 0
STTL 0.400 1.800 0.100 1.400 X 0.400
WASH 0.600 2.300 1.600 0.300 1.100 X

(e) Strategy MP

STTL and NYCM. Further, strategies SP and MP reduce the amount of flows with a drop
rate higher than 2.5% to a single commodity. Next, the results given in Table 7.14 show
that the proposed security service deployment strategies reduce the impact of doing intrusion
prevention in the network on a packet’s end-to-end-delay. Finally, Table A.1 in Appendix A
stores for each commodity and for each strategy the flow specific absolute packet drop rate
(95 % confidence interval). The table gives an impression of the relation between relative and
absolute packet loss.

In this scenario the performance of the three optimal deployment strategies, in terms of
packet loss and end-to-end-delay, is comparable. In the next section the number of requested
security services is increased there each flow must be analyzed by all seven security services
of Table 4.2.

Page 136

TU Berlin Section 7.4

Table 7.14: Flow specific end-to-end-delay [s] for scenario Abilene under the constraint that
each commodity must be secured by 6 security services

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 20.68 ±0.01 5.59 ±0.01 17.54 ±0.04 18.49 ±0.03 7.96 ±0.01
LOSA 20.66 ±0.01 X 25.76 ±0.01 3.79 ±0.01 9.06 ±0.01 19.32 ±0.01
NYCM 5.81 ±0.00 25.71 ±0.01 X 22.77 ±0.03 23.12 ±0.01 2.55 ±0.00
SNVA 17.65 ±0.03 3.93 ±0.01 22.68 ±0.05 X 6.09 ±0.01 25.21 ±0.09
STTL 19.28 ±0.01 9.27 ±0.02 24.29 ±0.02 6.18 ±0.03 X 26.25 ±0.02
WASH 8.84 ±0.01 19.91 ±0.01 3.59 ±0.01 25.56 ±0.04 26.35 ±0.02 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 37.57 ±0.33 27.85 ±0.70 22.72 ±0.31 28.02 ±0.46 20.54 ±0.36
LOSA 53.19 ±0.26 X 51.40 ±0.31 9.56 ±0.42 20.87 ±0.35 32.26 ±0.22
NYCM 37.84 ±0.34 44.11 ±0.21 X 28.26 ±0.17 33.36 ±0.14 14.18 ±0.10
SNVA 48.78 ±1.04 21.27 ±0.24 50.31 ±1.41 X 18.98 ±0.20 36.67 ±0.91
STTL 53.92 ±0.35 26.84 ±0.28 49.84 ±0.51 11.65 ±0.32 X 39.47 ±0.25
WASH 44.06 ±0.27 38.94 ±0.20 37.39 ±0.18 33.82 ±0.29 39.71 ±0.15 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 30.22 ±0.20 16.17 ±0.43 25.25 ±0.56 26.08 ±0.35 24.73 ±0.48
LOSA 27.89 ±0.10 X 35.16 ±0.15 10.55 ±0.41 19.61 ±0.28 27.82 ±0.17
NYCM 17.33 ±0.18 33.94 ±0.13 X 30.11 ±0.29 30.88 ±0.11 10.11 ±0.07
SNVA 29.50 ±0.46 13.16 ±0.14 29.19 ±0.47 X 17.75 ±0.17 31.10 ±0.54
STTL 28.12 ±0.14 18.22 ±0.19 32.96 ±0.27 12.91 ±0.35 X 33.59 ±0.18
WASH 23.48 ±0.15 30.41 ±0.12 29.06 ±0.15 35.47 ±0.34 37.41 ±0.12 X

(c) Strategy Pre

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 28.56 ±0.19 10.14 ±0.22 25.45 ±0.47 23.04 ±0.17 16.87 ±0.20
LOSA 30.53 ±0.10 X 30.51 ±0.11 10.49 ±0.40 18.51 ±0.28 25.86 ±0.13
NYCM 12.77 ±0.12 33.54 ±0.11 X 29.69 ±0.24 29.72 ±0.09 8.64 ±0.06
SNVA 25.21 ±0.34 13.90 ±0.14 28.98 ±0.37 X 17.23 ±0.15 26.39 ±0.33
STTL 32.89 ±0.15 19.75 ±0.18 31.94 ±0.18 15.48 ±0.31 X 35.22 ±0.20
WASH 17.30 ±0.09 30.39 ±0.12 42.02 ±0.10 30.65 ±0.31 33.27 ±0.11 X

(d) Strategy SP

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 28.04 ±0.16 11.63 ±0.30 24.58 ±0.45 24.74 ±0.25 14.52 ±0.25
LOSA 32.11 ±0.09 X 28.86 ±0.11 8.84 ±0.33 16.46 ±0.26 27.12 ±0.13
NYCM 15.96 ±0.13 28.69 ±0.12 X 28.94 ±0.22 30.45 ±0.11 14.44 ±0.08
SNVA 27.68 ±0.36 11.71 ±0.10 28.44 ±0.37 X 15.47 ±0.14 28.22 ±0.67
STTL 32.17 ±0.15 18.90 ±0.16 34.64 ±0.17 13.05 ±0.29 X 37.43 ±0.17
WASH 19.89 ±0.12 37.25 ±0.11 19.06 ±0.09 30.31 ±0.29 34.34 ±0.10 X

(e) Strategy MP

Page 137

TU Berlin Section 7.4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10

Pr
oc

es
sin

g
Ra

te
 [p

kt
/s]

Router ID

Late
Pre
SP

MP

(a) Packet processing rates

 0

 5

 10

 15

 20

 25

 2 4 6 8 10

D
ro

p
Ra

te
 [p

kt
/s]

Router ID

Late
Pre
SP

MP

(b) Packet drop rates

Figure 7.19: Router statistics for scenario Abilene under the constraint that each commodity
must be secured by 6 security services

7.4.2 Abilene Network: Securing each Commodity by Seven Security Ser-
vices

The scenario emulated in this section is identical to the one discussed previously, but the fact
that each commodity must now be analyzed by seven security services. In the following the
scenario is analogously analyzed as the previous.

Table 7.15 shows for each emulated strategy the number of service assignments per router.
The corresponding paths lengths are given in Table 7.16 and Table 7.16(b) reflects how many
paths are used by strategy MP to route a specific commodity. The average path length re-
mains 4.47 hops for strategies Late and Pre. Strategy SP generates routes of an average length
of 4.20 hops and strategy MP requires 4.97 hops per commodity. However when calculating
the average number of hops that each megabit traverses as defined in Equation (7.2), the out-
come is 3.96 for strategies Late and Pre. The singlepath and multipath deployment strategies
achieve average values of 4.09 and 5.05. Comparing them to those that were achieved in the
previous scenario (4.50 for strategy SP and 6.11 for strategy MP) it can be expected that
the impact of all strategies on the network performance increases.

The assumption is evidenced by Table 7.17 which represents the overall statistics for this
scenario in terms of the packet loss, the packet loss caused by Fidran and the average end-
to-end-delay of all packets. By increasing the protection requirements from six services to
seven, packet loss rates and end-to-end-delays increase:

• Late: packet loss from 2.1 % to 3 % and end-to-end-delay from 34.76 ms to 42.13 ms,

• Pre from 1.4 % to 2.4 % and end-to-end-delay from 24.80 ms to 30.15 ms,

• SP from 1.1 % to 2.1 % and end-to-end-delay from 25.30 ms to 27.38 ms,

• MP from 1.1 % to 1.4 % and end-to-end-delay from 23.67 ms to 25.73 ms.

Page 138

TU Berlin Section 7.4

Table 7.15: Service assignments under the constraint that each commodity must be analyzed
by 7 security services

To → CHIN LOSA NYCM SNVA STTL WASH

R1 x x x x x x
R2 35 x x x x x
R3 x x x x x x
R4 x x x x x x
R5 x x x x x x
R6 x x x x x x
R7 x 35 x x x x
R8 x x 35 x x x
R9 x x x 35 x x
R10 x x x x 35 x
R11 x x x x x 35

(a) Late strategy

To → CHIN LOSA NYCM SNVA STTL WASH

R1 x 5 x x x 7
R2 11 x 6 x x 5
R3 1 x 1 x 1 x
R4 x 2 x x x x
R5 8 x 1 1 1 x
R6 9 x 5 12 5 1
R7 2 12 4 1 x x
R8 1 x 3 x x 7
R9 x 9 4 21 7 7
R10 1 7 6 x 21 6
R11 2 x 5 x x 2

(b) Pre strategy

To → CHIN LOSA NYCM SNVA STTL WASH

R1 2 3 2 1 x 2
R2 6 x 6 x x 1
R3 10 x 1 3 11 3
R4 x 8 1 1 x 6
R5 5 1 1 1 2 x
R6 5 2 3 1 3 1
R7 1 6 5 x x 3
R8 1 x 6 x x 3
R9 3 11 6 26 6 3
R10 1 3 4 2 13 2
R11 1 1 x x x 11

(c) SP strategy

To → CHIN LOSA NYCM SNVA STTL WASH

R1 3.05 1.00 0.10 x 0.29 3.17
R2 6.65 x 6.00 x x 6.00
R3 8.63 2.20 7.36 1.00 5.73 0.06
R4 0.75 4.05 2.55 1.00 0.76 4.00
R5 4.67 3.26 2.04 1.00 2.00 0.49
R6 2.25 4.28 2.97 4.00 3.00 2.33
R7 1.37 7.11 2.70 x 0.47 3.00
R8 x x 2.90 x x 1.53
R9 1.63 5.88 0.45 17.00 3.81 5.02
R10 1.00 2.22 0.03 6.00 13.94 2.87
R11 x x 2.90 x x 1.53

(d) MP strategy

Page 139

TU Berlin Section 7.4

Table 7.16: Path lengths for the optimal deployment strategies under the constraint that
each commodity must be secured by 7 security services

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 5 2 5 5 3
LOSA 5 x 5 2 3 4
NYCM 2 5 x 6 6 2
SNVA 5 2 6 x 2 5
STTL 5 3 6 2 x 6
WASH 4 4 5 5 6 x

(a) SP strategy

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 5 2 5 5 4
LOSA 5 x 7 2 3 6
NYCM 5 10 x 7 11 2
SNVA 6 2 6 x 2 5
STTL 5 3 6 2 x 6
WASH 5 6 5 5 6 x

(b) MP strategy

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN x 1 1 1 1 1
LOSA 1 x 1 1 1 2
NYCM 2 3 x 1 2 1
SNVA 2 1 1 x 1 1
STTL 1 1 1 1 x 1
WASH 2 2 2 1 1 x

(c) MP strategy: number of paths used to route com-
modity

Strategies Late and Pre suffer most under the requirement that each commodity must be
additionally inspected by a seventh security service. When employing the Late strategy
0.9 % more packets are dropped and the average end-to-end-delay increases by 7.37 ms. Also
strategy Pre cannot cope with the increased security requirements. Packet loss increases
by 1 % and on average it takes a packet 5.35 ms longer to reach its destination. However
the singlepath strategy drops 1 % more packets but the average end-to-end-delay increases
only by 2.08 ms. Finally, strategy MP deals best with the increased security requirements as
packet loss increases and delay increase by 0.3 % and 2.06 ms respectively.

Next, the flow specific packet losses given in Table 7.13 are examined and again the
commodities are counted for which a packet loss higher than 2.5 % was measured. This is the
case for nine commodities when deploying the security services in conformity to strategy Late.
The highest packet drop rate of 7.80 % is observed for the traffic demand from NYCM to

Table 7.17: Overall statistics the Abilene scneario under the constraint that each commodity
must be secured by 7 security services

Strategy Loss [%] Fidran Loss [%] End-to-end-delay [ms]

No 0 0 13.208 ±0.019
Late 3.000 3.000 42.130 ±0.071
Pre 2.400 2.400 30.151 ±0.044
SP 2.100 2.100 27.379 ±0.036
MP 1.400 1.400 25.733 ±0.036

Page 140

TU Berlin Section 7.4

Table 7.18: Flow specific packet losses [%] for scenario Abilene under the constraint that each
commodity must be secured by 7 security services; the three largest/smallest commodities
are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0 0 0 0 0
LOSA 0 X 0 0 0 0
NYCM 0.100 0 X 0 0 0
SNVA 0 0 0 X 0 0
STTL 0 0 0 0 X 0
WASH 0.100 0.100 0.100 0 0 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.200 0.900 0 0 0.500
LOSA 5.700 X 0.500 0.300 3.300 3.100
NYCM 7.800 1.200 X 0 1.500 2.900
SNVA 1.700 3.700 2.400 X 1.200 0
STTL 4.000 0.800 0.800 1.200 X 0.100
WASH 5.400 2.200 3.100 0 0.700 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.800 0.900 0 0 1.400
LOSA 2.200 X 0.200 0.100 3.400 2.500
NYCM 4.100 1.200 X 0 1.400 4.700
SNVA 0 3.500 0 X 1.200 0
STTL 0.200 0.100 0.200 1.300 X 0
WASH 2.600 1.700 4.200 1.000 0.700 X

(c) Strategy Pre

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.400 0.100 0 0 0.100
LOSA 2.000 X 0.400 0.400 3.400 2.700
NYCM 2.400 1.300 X 0.100 1.100 2.600
SNVA 0.400 3.800 0.200 X 1.600 0
STTL 0.300 0.200 0.100 1.000 X 0
WASH 3.500 4.500 3.100 2.300 0.600 X

(d) Strategy SP

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.700 0.600 0 0 0.100
LOSA 2.000 X 0 0.300 2.800 2.400
NYCM 2.500 0.800 X 0 1.200 2.300
SNVA 0 3.500 2.600 X 0.800 0
STTL 0.200 0 0.200 1.000 X 0
WASH 0.600 1.400 1.700 0.300 1.100 X

(e) Strategy MP

CHIN. When choosing strategy Pre still seven flows have a packet drop rate higher than the
threshold value specified. This time the highest packet loss rate of 4.70 % is observed for the
traffic demand between NYCM and WASH. Also seven flows were counted when applying
the singlepath strategy. Here the maximum drop rate of 4.50 % is monitored for the flow
from WASH to LOSA. Finally, only three commodities are counted for strategy MP and the
highest packet loss rate of 3.50 % was measured for the flow from SNVA to LOSA.

Table A.2 in Appendix A stores for each commodity and for each strategy the flow specific
absolute packet drop rate (95 % confidence interval). The table gives an impression of the
relation between relative and absolute packet loss.

Figure 7.20 depicts for each emulated strategy the router statistics in terms of packet
processing rate and packet dropping rate. According to Figure 7.20(b) and analogously to the
preceding scenario router R2 is the bottleneck when choosing strategy Late. This correlates
to the results shown in Table 7.18(b) as for all flows destined to CHIN high packet loss rates
were observed. Switching to strategy Pre, there routers R8 and R11 attract the attention.
According to Table 7.15(b) router R8 runs 11 security services and router R11 nine. Both
routers are assigned to inspect the commodities between NYCM and WASH (both directions)

Page 141

TU Berlin Section 7.4

Table 7.19: Flow specific end-to-end-delay [ms] for scenario Abilene under the constraint that
each commodity must be secured by 7 security services

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN X 20.50 ±0.01 5.58 ±0.01 17.52 ±0.04 18.46 ±0.03 7.92 ±0.01
LOSA 20.68 ±0.01 X 26.08 ±0.02 3.77 ±0.01 9.07 ±0.01 19.11 ±0.01
NYCM 6.51 ±0.01 26.86 ±0.02 X 23.59 ±0.04 24.41 ±0.02 3.23 ±0.01
SNVA 17.45 ±0.03 3.91 ±0.01 22.78 ±0.05 X 6.09 ±0.01 25.25 ±0.09
STTL 18.46 ±0.01 9.03 ±0.01 23.54 ±0.02 5.76 ±0.01 X 25.46 ±0.02
WASH 8.91 ±0.01 20.05 ±0.01 3.66 ±0.01 25.66 ±0.04 26.73 ±0.02 X

(a) Strategy No

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN X 41.67 ±0.32 33.26 ±0.79 23.21 ±0.35 27.76 ±0.38 26.40 ±0.46
LOSA 63.85 ±0.34 X 54.87 ±0.37 10.13 ±0.45 20.04 ±0.28 38.19 ±0.24
NYCM 55.47 ±0.40 51.11 ±0.24 X 30.19 ±0.18 37.39 ±0.19 29.95 ±0.15
SNVA 53.87 ±1.21 24.65 ±0.26 48.45 ±1.25 X 19.68 ±0.20 42.62 ±1.29
STTL 61.31 ±0.42 28.45 ±0.39 51.24 ±0.49 11.54 ±0.32 X 41.90 ±0.45
WASH 55.95 ±0.33 43.10 ±0.23 40.60 ±0.19 34.73 ±0.33 41.22 ±0.21 X

(b) Strategy Late

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN X 30.44 ±0.19 23.27 ±0.54 22.85 ±0.30 25.93 ±0.35 27.75 ±0.46
LOSA 30.62 ±0.11 X 39.28 ±0.21 16.22 ±0.57 18.29 ±0.25 28.31 ±0.16
NYCM 33.46 ±0.24 44.04 ±0.18 X 32.30 ±0.31 33.33 ±0.15 29.59 ±0.14
SNVA 22.04 ±0.23 21.33 ±0.20 29.91 ±0.47 X 20.03 ±0.20 31.36 ±0.56
STTL 27.98 ±0.16 18.41 ±0.27 31.47 ±0.20 14.24 ±0.39 X 33.21 ±0.25
WASH 31.97 ±0.18 31.65 ±0.14 29.90 ±0.15 36.66 ±0.39 37.73 ±0.17 X

(c) Strategy Pre

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN X 27.30 ±0.15 11.26 ±0.23 24.86 ±0.43 25.24 ±0.29 17.49 ±0.28
LOSA 26.75 ±0.11 X 31.39 ±0.14 11.29 ±0.47 17.86 ±0.24 30.07 ±0.14
NYCM 18.17 ±0.16 34.14 ±0.13 X 32.27 ±0.35 31.59 ±0.12 20.59 ±0.11
SNVA 24.14 ±0.38 15.54 ±0.16 29.42 ±0.51 X 19.28 ±0.18 33.50 ±0.89
STTL 26.44 ±0.15 17.56 ±0.25 30.33 ±0.17 13.99 ±0.41 X 34.81 ±0.28
WASH 30.77 ±0.14 41.88 ±0.16 32.59 ±0.09 40.92 ±0.42 33.34 ±0.14 X

(d) Strategy SP

To → CHIN LOSA NYCM SNVA STTL WASH

CHIN X 29.07 ±0.18 13.69 ±0.34 23.66 ±0.33 25.06 ±0.23 19.33 ±0.28
LOSA 29.75 ±0.12 X 33.58 ±0.11 9.95 ±0.45 15.86 ±0.19 28.93 ±0.13
NYCM 22.41 ±0.19 37.88 ±0.12 X 41.83 ±0.36 37.19 ±0.14 19.72 ±0.11
SNVA 26.41 ±0.34 12.53 ±0.12 32.63 ±0.54 X 15.36 ±0.13 30.96 ±0.88
STTL 25.66 ±0.10 16.05 ±0.17 30.89 ±0.16 11.96 ±0.31 X 31.04 ±0.21
WASH 23.83 ±0.11 31.66 ±0.11 23.83 ±0.11 40.51 ±0.42 39.44 ±0.15 X

(e) Strategy MP

Page 142

TU Berlin Section 7.5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10

Pr
oc

es
sin

g
Ra

te
 [p

kt
/s]

Router ID

Late
Pre
SP

MP

(a) Packet processing rates

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10

D
ro

p
Ra

te
 [p

kt
/s]

Router ID

Late
Pre
SP

MP

(b) Packet drop rates

Figure 7.20: Router statistics for scenario Abilene under the constraint that each commodity
must be secured by 7 security services

as well as the commodities between CHIN and WASH (both directions) and referring to
Table 7.18(c) many packets of these flows get dropped. Consequently, they cause the bigger
part of all packet loss. When employing strategy SP router R1 becomes overloaded. The
router runs ten security services which it provides to seven different commodities. But overall
the strategy reduces the packet loss. Finally, the workload that is caused by doing intrusion
prevention is balanced out very well by strategy MP.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 225 226 227 228 229 230

Se
nd

in
g

Ra
te

 [M
bp

s]

Time [s]

Low
High

(a) Commodity from WASH to NYCM

 0

 5

 10

 15

 20

 25

 30

 35

 40

 35 36 37 38 39 40

Se
nd

in
g

Ra
te

 [M
bp

s]

Time [s]

Low
High

(b) Commodity from LOSA to CHIN

Figure 7.21: The impact of the bandwidth on the traffic generation process

Page 143

TU Berlin Section 7.5

Table 7.20: Measured sending-rates of the Abilene nodes

High Low
Node Mean [bit/ms] Standard deviation 95% c.i. Mean [bit/ms] Standard deviation 95% c.i.

CHIN 656 4550 16.48 565 2386 8.64
LOSA 2379 8451 30.61 2380 4849 17.56
NYCM 2697 8480 30.72 2700 5066 18.35
SNVA 933 8257 29.91 936 7361 26.66
STTL 1369 11175 40.48 1384 10113 36.63
WASH 3626 19599 70.99 3609 18617 67.44

(a) Scenario with 6 security services

High Low
Node Mean [bit/ms] Standard deviation 95 % c.i. Mean [bit/ms] Standard deviation 95% c.i.

CHIN 665 4131 14.96 609 2462 8.92
LOSA 2300 8756 31.72 2335 4663 16.89
NYCM 2634 16585 60.07 2637 15301 55.42
SNVA 928 8044 29.14 929 7348 26.62
STTL 1271 6266 22.70 1318 3529 12.79
WASH 3779 20556 74.46 3472 15335 55.55

(b) Scenario with 7 security services

7.5 Self-Similar Network Traffic of Smaller Bandwidth

In this section the Abilene-scenarios of the previous section—each commodity must be ana-
lyzed by six and seven security services respectively—are re-emulated with another set of traf-
fic traces. So far the Abilene network was emulated on a scale of 1:100 (see Section 7.4) which
means that a link of bandwidth 9.92 Gbps was emulated by a link of bandwidth 99.2 Mbps.
Further, the traffic generation process described in Section 7.2 regards the link capacities that
are defined for the Abilene network. To limit the size of the packet bursts while considering
the traffic rates defined in Table 7.8 the link capacities were downscaled by a factor of 10
throughout the network traffic generation process. In the following the traffic traces that
were originally generated are indicated high and the set of traces generated while considering
smaller link capacities is labelled low. The effect is depicted for two exemplary commodi-
ties in Figure 7.21. Figure 7.21(a) showing the sending rates of node WASH towards node
NYCM. The green curve represents the high network trace and the red one is the outcome of
the modified traffic generation process. Figure 7.21(b) depicts the analogous curves for the
commodity from LOSA to CHIN. Besides the traffic generation process, the emulation setup
of the Abilene network was not any further modified.

Using the lower link capacities for the traffic generation results in flows with smaller
packet bursts as depicted for the two exemplary traffic demands. In addition, Table 7.20
compares the sending rates that were measured for each node throughout the emulations.
The nodes’ mean sending-rates are for traffic scenarios high and low about the same size but
standard deviations as well as confidence intervals are smaller for the latter and accordingly,
there the traffic streams are more steadily.

Page 144

TU Berlin Section 7.5

Table 7.21: Overall statistics for scenario Abilene under the constraint that each commodity
must be secured by 6 security services for both types of generated self-similar traffic

High Low
Strategy Loss [%] Fidran Loss [%] End-to-end-delay [ms] Loss [%] Fidran Loss [%] End-to-end-delay [ms]

No 0 0 13.412 ±0.019 0 0 13.163 ±0.019
Late 2.100 2.100 34.756 ±0.059 1.900 1.900 33.837 ±0.059
Pre 1.400 1.300 24.803 ±0.038 0.900 0.800 23.341 ±0.035
SP 1.100 1.000 25.300 ±0.034 0.600 0.600 24.469 ±0.033
MP 1.100 1.000 23.665 ±0.032 0.600 0.600 22.565 ±0.030

7.5.1 Protecting each Commodity with Six Security Services

Initially, the scenario where each traffic demand is analyzed by six security services was re-
emulated using the traffic traces generated in the preceding section. The emulation setup—
routes as well as service deployment—was identical as described in Section 7.4.1. The overall
statistics for this scenario and for both sets of traffic traces are given in Table 7.21. The
results labeled high are the same as in Table 7.12.

A finding is that packet loss is reduced when generating the network traffic in conformity
to the low traffic traces (see Table 7.21). The reason for this is that packets bursts cause
the Fidran queues to fill up and consequently, the larger a packet burst the more packets
will be dropped. The effect is illustrated for strategy SP and the commodity from WASH
to NYCM in Figure 7.22. The left figure depicts the sending rate—the red curve—of node
WASH as well as the reception rate—green curve—of LOSA over the time for the high traffic
traces. In addition, the blue curve shows the number of packets that are dropped (y-axis
on the right) over the time. The right figure depicts the corresponding curves for the low
traffic traces. Packets are either delayed—as they have to wait to be served—or dropped—as
the queues are already filled—when the green and red curve do not match each other. The
figures show that the fitting between the red and the green curve is better when using the low
traffic traces and consequently, the packet loss is smaller in that case. Table 7.22 represents
the flow specific packet drop rates.

In the next section the scenario with seven security services is re-emulated.

7.5.2 Protecting each Commodity with Seven Security Services

Analogously to the preceding section the scenario described in Section 7.4.2 at which each
commodity must be analyzed by seven security services, is re-emulated using the traffic traces
described above. Average packet loss and end-to-end-delay are given for both traffic scenarios
in Table 7.23. This time, both packet loss and end-to-end-delay increase tremendously when
using the low traffic traces for the emulation of the scenario.

Table 7.24 points to the bottleneck as it stores the flow specific packet losses for each
security service deployment strategy. First of all for each strategy the highest packet loss
rate is observed for the commodity from WASH to NYCM and further, for each deployment
strategy the following routers can be identified as bottleneck:

• Late: router R8 causes over 80 % of all packet loss,

Page 145

TU Berlin Section 7.6

• Pre: routers R8 and R11 cause over 90 % of all packet loss,

• SP : router R1 causes over 90 % of all packet loss,

• MP : router R11 causes over 90 % of all packet loss.

The implications of a bottleneck router can be described as follows. For example, when
employing strategy SP the bottleneck router R1 is configured to serve seven commodities.
These can easily be identified in Table 7.24(d) as they all have packet loss rates larger than
5 %. Furthermore, all routers that were identified as bottleneck, except router R11 for strat-
egy Pre, have in common that they are running security service 1 for the traffic demand
from WASH to NYCM. The commodity is analyzed in more detail in Figure 7.23. There,
sending-, reception- and drop-rates are depicted for both traffic traces and strategy SP. The
difference between sending and reception rate is clearly higher for the low traffic scenario.
As a consequence, also the resulting packet loss is tremendously higher.

Recapitulating it can be stated that an outcome of the modified traffic generation process
is the emergence of at least one router that is overloaded independent of the security service
deployment strategy applied. The reason for this are the reduced variances of the sending
rates which leads to more constant traffic flows and which eliminates periods of times of low
traffic volumes. Hence, the queues of the bottleneck routers are constantly filled resulting in
high drop rates.

7.6 Time Required to Calculate Optimal Deployment Strate-
gies

Table 7.25 shows the time needed to calculate the optimal distribution of the security services
for the Abilene scenarios. All deployment strategies were solved to optimality on a Pentium IV
3.2 GHz machine using the CPLEX optimization software version 10.1.1. According to the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300
 0

 50

 100

 150

 200

 250

D
at

a-
Ra

te
 [M

bp
s]

D
ro

p-
Ra

te
 [P

kt
/s]

Time [s]

Send
Receive

Drop

(a) High

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300
 0

 50

 100

 150

 200

 250

D
at

a-
Ra

te
 [M

bp
s]

D
ro

p-
Ra

te
 [P

kt
/s]

Time [s]

Send
Receive

Drop

(b) Low

Figure 7.22: Sending and reception rate as well as packet loss rate of the traffic demand from
WASH to NYCM, the commodity is secured by 6 security services and strategy SP is applied

Page 146

TU Berlin Section 7.6

Table 7.22: Flow specific packet losses [%] for scenario Abilene under the constraint that
each commodity must be secured by 6 security services/using the low traffic traces; the three
largest/smallest commodities are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0 0 0 0 0
LOSA 0 X 0 0 0 0
NYCM 0 0 X 0 0 0
SNVA 0.200 0.200 0 X 0.200 0
STTL 0 0 0 0 X 0
WASH 0.200 0 0.100 0 0.100 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.400 0.200 0.300 0 3.200
LOSA 3.000 X 1.700 0 0 1.500
NYCM 2.000 1.200 X 0 1.400 1.000
SNVA 5.200 2.900 0.700 X 1.200 0.100
STTL 4.600 0.400 1.300 0.500 X 0.800
WASH 4.500 1.200 2.600 0 0.400 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.100 0 0.400 0.100 0.800
LOSA 0.300 X 0.700 0.100 0 0.700
NYCM 0.300 0.300 X 0.100 1.300 0.700
SNVA 0.200 2.800 0 X 1.100 0
STTL 0.400 0.400 2.300 1.100 X 3.700
WASH 1.100 0.300 1.700 0.100 0.400 X

(c) Strategy Pre

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0 0 0.700 0 0.400
LOSA 0.500 X 0.200 0 0 0.500
NYCM 0.300 0.100 X 0.300 1.200 0.500
SNVA 0.400 2.500 0 X 0.900 0
STTL 0.900 0.300 0 0.900 X 0.200
WASH 1.000 0.600 1.000 0.100 0.700 X

(d) Strategy SP

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0 0.100 0.500 0 1.900
LOSA 0.400 X 0.300 0 0 0.700
NYCM 0.100 0.200 X 0.600 1.300 0.700
SNVA 0.200 2.100 0 X 0.800 0
STTL 0.700 0.300 0 1.300 X 0.200
WASH 0.900 0.600 1.200 0.100 0.600 X

(e) Strategy MP

Table the solution times for both Abilene scenarios are about the same size. Strategy Pre
is specified to optimality in less than 10 s whereas Strategy SP requires already 700 s and
specifying the multipath strategy takes about 2700 s. But it must be considered that the
bigger part of the solution time is required to improve good solutions to optimality. In context
of the SP strategy, the solutions found after 60 s have a gap of about 1.5 % to optimality and
the solutions provided after 1000 s for strategy MP have a gap of about 5 % to optimality.

In consideration of strategy MP, the solution time strongly depends on the number of
paths provided to the problem. For example, the presented optimal solutions were calculated
using 250 predefined routes. Hence, to assess the mentioned influence, the number of paths
were restricted per commodity to 5 and 3 paths resulting in an overall amount of 150 paths
and 90 paths. It takes about 500 s and 150 s respectively to calculate the corresponding
solutions.

Based on these figures it can be assumed that the optimal deployment strategies for bigger
networks can be specified within acceptable periods of time.

Page 147

TU Berlin Section 7.7

Table 7.23: Overall statistics for scenario Abilene under the constraint that each commodity
must be secured by 7 security services for both types of generated self-similar traffic

High Low
Strategy Loss [%] Fidran Loss [%] e2e [ms] Loss [%] Fidran Loss [%] e2e [ms]

No 0 0 13.208 ±0.019 0.200 0 10.833 ±0.016
Late 3.000 3.000 42.130 ±0.071 15.600 15.600 47.799 ±0.066
Pre 2.400 2.400 30.151 ±0.044 14.300 14.300 33.301 ±0.038
SP 2.100 2.100 27.379 ±0.036 14.100 14.100 31.355 ±0.035
MP 1.400 1.400 25.733 ±0.036 10.500 10.500 30.417 ±0.035

7.7 Summary

This section evaluated the performance of the optimal deployment strategies developed. Two
different network topologies were emulated for varying traffic scenarios. In Section 7.3 the
benefit of the Fidran architecture in combination with strategy Pre was evaluated. A
finding was that the penalty for commodities that must not be protected is within acceptable
limits. Furthermore, the results show that the impact on the network performance can be
reduced by intelligently deploying the security services. In Section 7.4 the Abilene network
was emulated for two types of security requirements as well as two types of self-similar traffic.
The emulations demonstrated that the optimal strategies reduce packet loss and end-to-end-
delay. Furthermore, strategy MP better compensates than strategies SP and Pre the impact
caused by the security services. Comparing the two latter strategies with each other, the
singlepath strategy performs better in terms of packet loss and end-to-end-delay.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300
 0

 200

 400

 600

 800

 1000

 1200

D
at

a-
Ra

te
 [M

bp
s]

D
ro

p-
Ra

te
 [P

kt
/s]

Time [s]

Send
Receive

Drop

(a) High

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250 300
 0

 200

 400

 600

 800

 1000

 1200

D
at

a-
Ra

te
 [M

bp
s]

D
ro

p-
Ra

te
 [P

kt
/s]

Time [s]

Send
Receive

Drop

(b) Low

Figure 7.23: Sending and reception rate as well as packets dropped of the traffic demand from
WASH to NYCM, commodity is inspected by 7 security services and strategy SP is applied

Page 148

TU Berlin Section 7.7

Table 7.24: Flow specific packet losses [%] for scenario Abilene under the constraint that
each commodity must be secured by 7 security services/Low traffic traces; the three largest/
smallest commodities are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0 0 0 0 0
LOSA 0 X 0 0 0 0
NYCM .100 0 X 0 0 .100
SNVA 0 0 0 X 0 0
STTL 0 0 0 0 X 0
WASH 0 0 .100 0 0 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 2.300 10.600 0 0 1.300
LOSA 7.000 X 18.200 0 1.500 2.500
NYCM 12.900 1.100 X 0 1.100 2.700
SNVA 3.700 3.500 8.900 X 1.300 0
STTL 6.900 .500 10.500 .500 X .100
WASH 8.600 1.600 36.200 0 .900 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.900 5.100 0 .100 5.900
LOSA .700 X 8.200 .100 1.400 1.900
NYCM 13.300 .700 X 0 1.100 16.400
SNVA 0 3.400 0 X 1.200 0
STTL .600 .200 0 .900 X 0
WASH 11.700 .600 32.100 .100 .600 X

(c) Strategy Pre

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.400 0 1.600 0 .800
LOSA .400 X 11.100 0 1.000 5.200
NYCM 2.300 7.000 X 0 1.000 2.500
SNVA 0 3.000 0 X 1.000 .300
STTL .400 .200 0 .600 X 0
WASH 22.200 24.400 30.300 18.700 .700 X

(d) Strategy SP

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.500 0 0 0 .400
LOSA .600 X 8.200 .200 .700 1.200
NYCM 2.200 .800 X 0 1.600 8.800
SNVA 0 2.700 0 X .900 0
STTL .300 .300 0 .700 X 0
WASH .400 .700 26.300 .500 .900 X

(e) Strategy MP

Table 7.25: Time needed to specify optimal deployment strategies

Solution time for Abilene scenarios [s]
Strategy 6 Services 7 Services

Pre < 10 < 10
SP ∼ 700 ∼ 700
MP ∼ 2700 ∼ 2700

Page 149

TU Berlin Section 8

Chapter 8

Conclusions

At the beginning of this thesis the need for a flexible intrusion prevention overlay network
that relieves users from continuously maintaining their systems was analyzed. Recent develop-
ments show that communication networks cannot be secured by sporadic and uncoordinated
security devices like firewalls at users and cooperates sites. The reasons behind this trend
originate from multiple developments. The number of DNS-registered hosts in the Internet
keeps Taking those trends into account, it can hardly be expected that all users and admin-
istrators will be able to keep their system(s) secure. Furthermore, fixing security holes as
soon as patches become available can hardly be done in time on all end systems. Further,
Chapter 3 discussed existing approaches to intrusion prevention and it addition, it showed
that current systems do not address the above listed aspects. Thus, in order to relieve end-
users and administrators from continuously having to deal with today’s massive amount of
security challenges, the protection of end systems should be done in the network. For this
purpose, a flexible overlay network of intrusion prevention systems running on top of an active
networking environment named Fidran was developed.

The concept followed by Fidran is introduced in Chapter 4. The main principle is called
demand-driven intrusion prevention which uses the fact that attacks require the existence of
one or multiple concrete vulnerabilities to succeed. For example, the Code Red attack exploits
a buffer overflow that exists in certain versions of Microsoft’s Internet Information Server
(IIS). In the approach followed, an intrusion prevention service provides protection against
attacks exploiting a concrete vulnerability. Flows towards an end-system are only analyzed
by intrusion prevention services that protect against attacks that could actually harm it.

Recapitulating the proposed Fidran architecture comprises three functional parts:

1. the first functional part (not for high-speed deployment) includes the intelligence to
analyze the network to be protected:

• identification of the network topology,
• discovery of the hosts that are running and
• hosts profiling, identification of operating system and running applications.

2. the second functional part provides the intrusion prevention framework that actually
allows to dynamically deploy intrusion prevention services on programmable nodes in
the network.

Page 150

TU Berlin Section 8

3. the third functional part decides which intrusion prevention services are deployed on
which programmable routers.

In a limited networking environment Fidran is capable to gather network knowledge which is
used to limit security checks. The network analysis process is described in detail in Chapter5.
Summarizing, it can be said that in analyzes:

• the topology of the network,

• the reachable end-systems:

– distance between Internet and end-system,

– running OS and applications,

– amount of traffic that is destined to an end-system.

The case study conducted in Chapter 5 demonstrates that the approach to automatically
gather network information reduces the amount of security checks that are performed. As a
consequence, this reduces also the overall false-positive rate.

In the proposed concept a security service provides protection to a concrete application
or it either prevents attacks from exploiting a concrete vulnerability. Security services can be
inserted and removed from a Fidran system at runtime. Furthermore, a local security policy
specifies which traffic flows must be inspected by which security services. Consequently, for
each router the following degrees of freedom exist:

• decision whether or not a router is active.

• choice of protection services to be integrated.

• specification of which traffic must be analyzed by which protection services.

To assess our concept we implemented a Fidran prototype including a set of seven pattern
matching security services. A performance evaluation of the prototype verified the router
system model that was introduced in Section 6.1, and router specific parameters like Tbase

and Tactive were measured.
To decide on what security services to deploy on which router an optimization framework

was formulated. We differentiate between scenarios:

• Deploying security service along predefined paths:

– single-path

– multipath

• Joint traffic single-path routing and security service distribution

Predefined routing implies that at least one path from any source to any destination is
specified—as a result the routing tables are set. In a single-path routing environment, a single
path exists between any two subnetworks. In contrast, in a multipath routing environment
multiple paths exist between subnetworks, allowing for load-balancing. Finally, in the last
scenario the network topology is given but no paths between the subnetworks are defined.

Page 151

TU Berlin Section 8

Hence, the optimization framework specifies traffic routing—a single path from each source
to each destination—and the distribution of the requested security services.

Each deployment strategy can be combined with one of two objective functions:

• the minimization of the number of programmable routers used in a network while
fulfilling all security requests and keeping all router queues bounded;

• the minimization of the maximal workload of a programmable router while fulfilling all
security requests and keeping all router queues bounded.

The first objective is to minimize the number of programmable routers and the idea for the
second optimization model is to evenly distribute the load among routers.

The benefit of the proposed intrusion prevention overlay network was shown in Chapter 7.
There a limited tree-network as well as the Abilene network were emulated for varying sets of
self-similar network traffic traces. The generation process of the traffic traces considered the
IP packet size distribution discussed in Section 7.2. Each emulation conducted verified that
the intelligent deployment of intrusion prevention services reduces the impact on the network
performance in terms of packet loss rate and end-to-end-delay. The proposed framework
allows to consider routers of varying computational capabilities as well as the placement of
security services under the constraint of a predefined order. Commodities that do not require
any protection—for example encrypted commodities—are only slightly penalized.

The emulation of the Abilene scenarios—topology and traffic matrix base on a real
network—showed the effect of combining the task of routing with the task of deploying
security services. Strategies SP and MP achieved better results that strategy Pre which
places the services on the routers of the predefined paths. The scenario under consideration
showed that the joint optimization of single path routing and service placement is a big im-
provement with respect to optimal service placement over routes calculated with the Dijkstra
algorithm, since the latter does not take the additional router load due to security processing
into account.

The singlepath strategy tends to generate long paths to disburden heavy loaded routers.
In contrast the multipath strategy splits huge flow into smaller ones and reroutes these
over different paths. Both solutions show that they balance the load well. However, it
must be considered that a flow cannot be divided into arbitrary smaller parts. A TCP flow
transmitted via multiples paths suffers under varying RTTs and out-of- order packet delivery.
Furthermore, some attacks span more than one packet, and might not be recognized by
services that see only a fraction of the attacking traffic. A flow in a high-speed network is
the aggregation of many smaller flows

Summarizing, the presented optimization framework for joint traffic routing and security
service distribution allows to deploy security functions on routers in high-speed networks
according to a chosen objective. The framework is also well suited to study the impact of
topology changes, like capacity increases, new nodes, new links, on network performance.

Page 152

TU Berlin Section A

Appendix A

Additional Results

Page 153

TU Berlin Section A

Table A.1: Flow specific packet loss rates [pkt/s] for scenario Abilene under the constraint
that each commodity must be secured by 6 security services using the high traffic traces;
the three largest/smallest commodities are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X - - - - 0.01 ±0.002
LOSA - X - - - -
NYCM - 0.01 ±0.001 X - 0.03 ±0.004 -
SNVA - 0.17 ±0.020 - X 0.28 ±0.032 -
STTL - 0.09 ±0.011 0.03 ±0.004 - X -
WASH 0.23 ±0.027 0.01 ±0.001 0.37 ±0.042 - 0.01 ±0.001 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 2.19 ±0.250 0.19 ±0.022 - 0.01 ±0.002 0.03 ±0.004
LOSA 6.64 ±0.761 X 2.51 ±0.287 0.08 ±0.009 0.41 ±0.047 1.69 ±0.193
NYCM 4.00 ±0.458 4.39 ±0.503 X - 2.47 ±0.284 6.02 ±0.691
SNVA 0.55 ±0.062 4.94 ±0.567 0.23 ±0.027 X 1.25 ±0.144 -
STTL 3.37 ±0.385 2.22 ±0.254 0.55 ±0.062 0.24 ±0.028 X 0.34 ±0.039
WASH 7.34 ±0.841 4.83 ±0.553 11.80 ±1.354 - 1.40 ±0.161 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.25 ±0.143 0.14 ±0.017 - 0.01 ±0.002 0.04 ±0.005
LOSA 1.73 ±0.198 X 0.89 ±0.102 0.16 ±0.018 0.20 ±0.023 1.39 ±0.159
NYCM 1.45 ±0.166 3.11 ±0.356 X 0.03 ±0.006 2.88 ±0.331 5.98 ±0.686
SNVA 0.07 ±0.009 4.21 ±0.483 0.09 ±0.011 X 1.25 ±0.144 -
STTL 0.49 ±0.056 1.94 ±0.223 0.10 ±0.011 0.24 ±0.028 X 0.36 ±0.041
WASH 1.39 ±0.160 3.32 ±0.380 8.94 ±1.026 - 1.25 ±0.143 X

(c) Strategy Dijkstra

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.53 ±0.175 0.06 ±0.007 0.01 ±0.002 0.02 ±0.002 0.05 ±0.006
LOSA 2.02 ±0.231 X 0.67 ±0.077 0.11 ±0.013 0.27 ±0.031 1.37 ±0.157
NYCM 1.00 ±0.114 3.58 ±0.411 X 0.05 ±0.007 2.27 ±0.261 4.20 ±0.482
SNVA 0.02 ±0.002 4.12 ±0.473 0.02 ±0.003 X 1.52 ±0.175 0.01 ±0.002
STTL 1.10 ±0.126 1.84 ±0.211 0.05 ±0.006 0.34 ±0.039 X 0.40 ±0.045
WASH 1.30 ±0.149 2.69 ±0.308 6.40 ±0.734 - 1.90 ±0.217 X

(d) Strategy Single-Path

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.03 ±0.118 0.06 ±0.007 - - -
LOSA 1.92 ±0.220 X 0.68 ±0.078 0.15 ±0.017 0.10 ±0.012 1.27 ±0.146
NYCM 0.81 ±0.092 3.36 ±0.385 X 0.02 ±0.002 2.46 ±0.283 4.79 ±0.550
SNVA 0.12 ±0.014 3.87 ±0.444 0.03 ±0.004 X 1.47 ±0.168 -
STTL 0.64 ±0.073 1.65 ±0.189 0.08 ±0.009 0.30 ±0.035 X 0.21 ±0.024
WASH 1.17 ±0.134 3.86 ±0.442 6.43 ±0.738 0.08 ±0.009 1.57 ±0.179 X

(e) Strategy Multipath

Page 154

TU Berlin Section A

Table A.2: Flow specific packet loss rates [pkt/s] for scenario Abilene under the constraint
that each commodity must be secured by 7 using the high traffic traces; the three largest/
smallest commodities are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X - - - - 0.01 ±0.002
LOSA - X - - - -
NYCM 0.13 ±0.014 0.01 ±0.001 X - 0.01 ±0.002 0.16 ±0.018
SNVA - - - X - -
STTL - - 0.03 ±0.004 - X 0.01 ±0.001
WASH 0.19 ±0.022 0.20 ±0.023 0.76 ±0.088 0.01 ±0.001 0.04 ±0.004 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.19 ±0.137 0.21 ±0.024 - - 0.18 ±0.020
LOSA 11.51 ±1.319 X 0.52 ±0.060 0.09 ±0.010 1.76 ±0.201 4.51 ±0.516
NYCM 11.60 ±1.323 1.81 ±0.207 X - 1.31 ±0.151 9.79 ±1.123
SNVA 0.27 ±0.031 4.32 ±0.496 0.18 ±0.021 X 1.46 ±0.167 -
STTL 5.41 ±0.618 0.51 ±0.059 0.44 ±0.051 0.25 ±0.029 X 0.06 ±0.007
WASH 11.00 ±1.260 3.78 ±0.434 12.44 ±1.427 - 0.58 ±0.067 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.83 ±0.095 0.22 ±0.025 - 0.01 ±0.001 0.51 ±0.057
LOSA 4.12 ±0.473 X 0.23 ±0.027 0.05 ±0.005 1.84 ±0.211 3.67 ±0.421
NYCM 6.18 ±0.705 1.77 ±0.203 X 0.01 ±0.002 1.23 ±0.141 15.84 ±1.817
SNVA - 4.02 ±0.462 - X 1.40 ±0.160 -
STTL 0.38 ±0.044 0.11 ±0.013 0.16 ±0.018 0.27 ±0.031 X -
WASH 5.15 ±0.590 2.73 ±0.313 16.74 ±1.920 0.25 ±0.029 0.57 ±0.066 X

(c) Strategy Dijkstra

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.44 ±0.050 0.05 ±0.005 - - 0.06 ±0.007
LOSA 3.64 ±0.418 X 0.45 ±0.051 0.10 ±0.012 1.80 ±0.207 3.99 ±0.457
NYCM 3.53 ±0.403 1.89 ±0.216 X 0.03 ±0.004 1.05 ±0.120 8.94 ±1.026
SNVA 0.07 ±0.009 4.27 ±0.490 0.02 ±0.003 X 1.79 ±0.205 0.01 ±0.001
STTL 0.43 ±0.049 0.15 ±0.018 0.10 ±0.012 0.23 ±0.026 X 0.02 ±0.002
WASH 7.27 ±0.832 7.67 ±0.878 12.60 ±1.446 0.57 ±0.065 0.55 ±0.063 X

(d) Strategy Single-Path

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.74 ±0.084 0.14 ±0.016 - - 0.07 ±0.008
LOSA 3.89 ±0.447 X 0.02 ±0.003 0.08 ±0.010 1.50 ±0.173 3.52 ±0.403
NYCM 3.82 ±0.436 1.26 ±0.144 X 0.02 ±0.002 1.13 ±0.130 8.06 ±0.925
SNVA 0.01 ±0.001 4.00 ±0.459 0.20 ±0.023 X 1.02 ±0.117 -
STTL 0.27 ±0.031 0.03 ±0.003 0.13 ±0.015 0.22 ±0.025 X -
WASH 1.26 ±0.144 2.53 ±0.290 6.97 ±0.800 0.09 ±0.011 0.87 ±0.099 X

(e) Strategy Multipath

Page 155

TU Berlin Section A

Table A.3: Flow specific packet loss rates [pkt/s] for scenario Abilene under the constraint
that each commodity must be secured by 6 security services /using the low traffic traces;
the three largest/smallest commodities are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X - - - - -
LOSA - X - - - -
NYCM - - X - - 0.01 ±0.001
SNVA 0.01 ±0.001 0.05 ±0.006 - X 0.14 ±0.016 -
STTL - - - - X -
WASH 0.42 ±0.048 0.10 ±0.011 0.44 ±0.050 0.01 ±0.002 0.12 ±0.014 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.31 ±0.035 0.03 ±0.004 0.06 ±0.007 0.03 ±0.004 1.03 ±0.118
LOSA 7.27 ±0.833 X 2.24 ±0.257 - 0.03 ±0.004 1.87 ±0.215
NYCM 2.86 ±0.327 1.83 ±0.210 X 0.03 ±0.004 0.95 ±0.108 4.81 ±0.551
SNVA 0.78 ±0.087 3.35 ±0.384 0.07 ±0.008 X 1.39 ±0.160 0.01 ±0.007
STTL 7.34 ±0.840 0.31 ±0.036 0.76 ±0.087 0.11 ±0.012 X 0.44 ±0.050
WASH 10.40 ±1.191 1.90 ±0.217 10.44 ±1.197 - 0.61 ±0.069 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.10 ±0.011 0.02 ±0.002 0.06 ±0.007 0.04 ±0.005 0.28 ±0.032
LOSA 0.96 ±0.110 X 0.97 ±0.111 0.05 ±0.006 0.05 ±0.006 0.92 ±0.106
NYCM 0.54 ±0.061 0.56 ±0.064 X 0.09 ±0.010 0.88 ±0.101 3.50 ±0.401
SNVA 0.04 ±0.005 3.26 ±0.374 - X 1.33 ±0.153 -
STTL 0.66 ±0.076 0.26 ±0.030 - 0.21 ±0.024 X 0.01 ±0.001
WASH 2.48 ±0.284 0.54 ±0.062 6.73 ±0.772 0.04 ±0.004 0.61 ±0.069 X

(c) Strategy Dijkstra

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.04 ±0.005 - 0.10 ±0.011 - 0.15 ±0.018
LOSA 1.32 ±0.151 X 0.37 ±0.043 0.02 ±0.003 0.04 ±0.004 0.69 ±0.079
NYCM 0.46 ±0.052 0.17 ±0.020 X 0.19 ±0.021 0.80 ±0.091 2.73 ±0.314
SNVA 0.07 ±0.008 2.93 ±0.337 - X 1.09 ±0.125 -
STTL 1.48 ±0.170 0.25 ±0.029 0.03 ±0.004 0.18 ±0.020 X 0.13 ±0.014
WASH 2.33 ±0.267 0.98 ±0.112 3.81 ±0.437 0.01 ±0.002 0.97 ±0.111 X

(d) Strategy Single-Path

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 0.05 ±0.006 0.02 ±0.003 0.08 ±0.009 0.04 ±0.004 0.62 ±0.071
LOSA 0.97 ±0.111 X 0.47 ±0.054 - 0.01 ±0.001 0.84 ±0.096
NYCM 0.25 ±0.029 0.38 ±0.044 X 0.39 ±0.044 0.88 ±0.100 3.29 ±0.377
SNVA 0.04 ±0.005 2.48 ±0.285 0.01 ±0.002 X 0.98 ±0.112 -
STTL 1.23 ±0.141 0.24 ±0.028 0.03 ±0.003 0.25 ±0.029 X 0.12 ±0.014
WASH 1.91 ±0.219 0.93 ±0.106 4.44 ±0.509 0.02 ±0.002 0.92 ±0.106 X

(e) Strategy Multipath

Page 156

TU Berlin Section A

Table A.4: Flow specific packet loss rates [pkt/s] for scenario Abilene under the constraint
that each commodity must be secured by 7 security services /using the low traffic traces;
the three largest/smallest commodities are emphasized/underlined

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X - - - - -
LOSA - X - - - -
NYCM 0.24 ±0.028 0.07 ±0.008 X 0.01 ±0.001 0.02 ±0.002 0.50 ±0.057
SNVA - - - X - -
STTL - - - - X -
WASH 0.11 ±0.012 0.05 ±0.005 1.53 ±0.176 0.02 ±0.002 0.01 ±0.001 X

(a) Strategy No

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.70 ±0.194 1.54 ±0.168 - 0.02 ±0.004 0.38 ±0.044
LOSA 22.06 ±2.529 X 17.42 ±1.991 - 0.30 ±0.035 3.66 ±0.420
NYCM 19.41 ±2.218 1.69 ±0.193 X - 0.94 ±0.108 9.15 ±1.050
SNVA 0.50 ±0.055 4.06 ±0.465 0.75 ±0.078 X 1.49 ±0.171 -
STTL 11.08 ±1.267 0.34 ±0.039 5.84 ±0.661 0.11 ±0.013 X 0.05 ±0.006
WASH 17.46 ±1.995 2.91 ±0.333 485.85 ±55.805 - 0.58 ±0.066 X

(b) Strategy Late

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.46 ±0.167 0.76 ±0.083 - 0.02 ±0.003 1.73 ±0.193
LOSA 2.46 ±0.282 X 7.95 ±0.913 0.05 ±0.006 0.31 ±0.036 2.86 ±0.328
NYCM 20.03 ±2.285 1.02 ±0.117 X 0.02 ±0.003 0.96 ±0.110 55.23 ±6.332
SNVA - 3.88 ±0.445 - X 1.48 ±0.169 0.01 ±0.007
STTL 0.99 ±0.113 0.17 ±0.020 0.04 ±0.005 0.17 ±0.020 X 0.02 ±0.002
WASH 23.58 ±2.692 1.18 ±0.135 431.43 ±49.553 0.03 ±0.004 0.49 ±0.056 X

(c) Strategy Dijkstra

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.06 ±0.121 0.02 ±0.002 0.12 ±0.015 0.02 ±0.003 0.25 ±0.028
LOSA 1.38 ±0.159 X 10.80 ±1.237 0.02 ±0.003 0.12 ±0.014 7.59 ±0.867
NYCM 3.54 ±0.405 10.22 ±1.165 X 0.01 ±0.002 0.87 ±0.099 8.49 ±0.974
SNVA 0.01 ±0.001 3.46 ±0.397 0.01 ±0.002 X 1.20 ±0.138 0.02 ±0.005
STTL 0.67 ±0.077 0.18 ±0.020 0.01 ±0.001 0.12 ±0.013 X 0.02 ±0.002
WASH 44.73 ±5.108 42.80 ±4.893 407.10 ±46.759 4.60 ±0.510 0.62 ±0.071 X

(d) Strategy Single-Path

→ To CHIN LOSA NYCM SNVA STTL WASH

CHIN X 1.13 ±0.129 0.02 ±0.003 0.01 ±0.001 0.01 ±0.001 0.14 ±0.016
LOSA 2.00 ±0.229 X 7.96 ±0.914 0.05 ±0.006 0.09 ±0.011 1.88 ±0.215
NYCM 3.45 ±0.395 1.18 ±0.135 X 0.02 ±0.002 1.40 ±0.160 29.71 ±3.406
SNVA - 3.19 ±0.366 0.01 ±0.001 X 1.12 ±0.128 0.01 ±0.003
STTL 0.56 ±0.064 0.22 ±0.025 0.05 ±0.006 0.15 ±0.017 X 0.02 ±0.003
WASH 0.90 ±0.103 1.14 ±0.131 352.78 ±40.520 0.11 ±0.013 0.74 ±0.084 X

(e) Strategy Multipath

Page 157

TU Berlin Section LIST OF FIGURES

List of Figures

2.1 The AN architectural framework . 14
2.2 Security attacks . 16
2.3 CIDF representation of an exemplary IDS-architecture 20
2.4 Packet Analysis . 26

3.1 Snort: Packet processing . 36
3.2 The Snort rule structure . 37
3.3 The structure of the Bro system . 38
3.4 The architecture of the Prelude NIDS . 40
3.5 The Intrusion Detection Agent System (IDA) 42
3.6 The FLAME architecture . 43

4.1 An Example Network . 54
4.2 A detailed view of a path of the network . 55
4.3 The Fidran Architecture . 57
4.4 The security policy . 58
4.5 The trace points used for the performance evaluation 62
4.6 The initial testbed . 63
4.7 Tbase and Tactive: varying traffic rates and IP packet size of 1500 Bytes 65
4.8 PC733: Tbase and Tactive for constant traffic rates and varying IP packet sizes 65
4.9 PC3000: Tbase and Tactive for constant traffic rates and varying IP packet sizes 66
4.10 Processing times of example security services: varying load and constant IP

packet size 1500 Byte . 67
4.11 PC733 processing times of the example security services: constant loads and

varying IP packet size . 69
4.12 PC3000 processing times of the example security services: constant loads and

varying IP packet size . 70
4.13 PC733: Twaiting (T3-T4) over the number of installed FTP-security services . 72
4.14 PC733: Tprocess (T4-T5) over the number of installed FTP-security services . 73

5.1 A limited networking environment . 76
5.2 Outcome of Algorithm 1: Network backbone 79
5.3 Network Knowledge Gathering . 79

6.1 Optimization scenarios . 84

Page 158

TU Berlin Section LIST OF FIGURES

6.2 Decomposition of packet’s delay inside a router 85
6.3 Predefined singlepath routing - security services placement possibilities 87
6.4 Predefined multipath routing - security services placement possibilities 93
6.5 Joint traffic routing and distribution of security services 96
6.6 Predefined singlepath routing - sequence constraint placement of security services100
6.7 Predefined multipath routing - sequence constraint placement of security services102

7.1 Testbed setup: Sending packets back to the sender for the purpose of using
one clock to measure end-to-end delays . 107

7.2 Pareto distributions with shape parameter α = {1.1, 1.5, 1.9} and minimum value b =
1 . 109

7.3 Superposition of On- and Off -renewal processes 110
7.4 Packet size distributions . 110
7.5 An exemplary flow at different time scales . 111
7.6 An exemplary tree network . 112
7.7 The early and the Late deployment strategy—yellow routers represent the

deployment of the security services . 113
7.8 Comparison between generated trace and measured dump file for flow from

Internet to N12 . 115
7.9 Scaling of the traffic scenarios: Aggregated Flow arriving at router R7 116
7.10 Left column depicts the theoretical average workload of the routers as an out-

come of the MILPs and the right column shows the associated mean dropping
rates for the traffic scenarios low, medium and high for the tree-network . . . 119

7.11 The figures in the left column depict the flow-specific end-to-end delays and
the figures on the right side show the flow-specific drop-rate for the traffic
scenarios low, medium and high for the tree-network 121

7.12 Probability density functions of measured end-to-end-delays—flow addressed
to subnet N10 and low traffic scenario—for packets of size 40, 5xx and 1500 Byte123

7.13 PDFs and CDFs of the end-to-end-delays measured at subnet N10 for traffic
scenarios low, medium and high. 124

7.14 PDFs and CDFs of the end-to-end-delays measured at subnet N12 for traffic
scenarios low, medium and high. 125

7.15 Delays caused by a PC3000 system . 127
7.16 The results for the LAN network with heterogeneous routers for the high traffic

scenario . 129
7.17 The Abilene network topology . 130
7.18 Routes for commodities towards WASH . 134
7.19 Router statistics for scenario Abilene under the constraint that each commod-

ity must be secured by 6 security services . 138
7.20 Router statistics for scenario Abilene under the constraint that each commod-

ity must be secured by 7 security services . 143
7.21 The impact of the bandwidth on the traffic generation process 143
7.22 Sending and reception rate as well as packet loss rate of the traffic demand

from WASH to NYCM, the commodity is secured by 6 security services and
strategy SP is applied . 146

Page 159

TU Berlin Section LIST OF FIGURES

7.23 Sending and reception rate as well as packets dropped of the traffic demand
from WASH to NYCM, commodity is inspected by 7 security services and
strategy SP is applied . 148

Page 160

TU Berlin Section BIBLIOGRAPHY

Bibliography

[1] Aide - advanced intrusion detection environment. http://sourceforge.net/projects/aide.

[2] Common Vulnerabilities and Exposures. http://cve.mitre.org/cve/downloads/allcves.html.

[3] Computer emergency response team (cert) - statistics. www.cert.org/stats.

[4] LIDS - Linux Intrusion Detection System. http://www.lids.org.

[5] md5deep. http://md5deep.sourceforge.net/.

[6] OSSEC HIDS - Open Source HIDS. http://www.ossec.net/.

[7] Prelude. http://www.prelude-ids.org/.

[8] Snare - system intrusion analysis reporting environment.
http://www.intersectalliance.com/projects/Snare/.

[9] Tripwire. http://www.tripwire.com.

[10] Trusted computer system evaluation criteria. http://csrc.nist.gov/secpubs/rainbow/std001.txt.

[11] The Abilene Network. http://abilene.internet2.edu.

[12] A. V. Aho and M. J. Corasick. Efficient string matching: an aid to bibliographic search.
In Communications of the ACM, volume 18, pages 333–340, 1975.

[13] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar, A. Keromytis, J. Moore, C. Gunder,
S. Nettles, and J. Smith. The switch ware active network architecture. IEEE Network
Special Issue on Active and Controllable Networks, 12:29–36, June 1998.

[14] Edward Amoroso. Intrusion Detection: An Introduction to Internet Surveillance, Cor-
relation, Trace Back, Traps, and Response. Intrusion Net Books, 1999.

[15] K. G. Anagnostakis, S. Ioannidis, S. Miltchev, J. Ioannidis, Michael B. Greenwald,
and J. M. Smith. Efficient packet monitoring for network management. In Proceedings
of IFIP/IEEE Network Operations and Management Symposium (NOMS) 2002, April
2002.

[16] James P. Anderson. Computer security threat monitoring and surveillance. Technical
report, James P. Anderson Co, 1980.

Page 161

http://abilene.internet2.edu

TU Berlin Section BIBLIOGRAPHY

[17] K. Egevang andP. Francis. The ip network address translator (nat). RFC 1631, May
1994.

[18] ANSI. Information processing systems: local area networks — Part 3. Carrier sense
multiple access with collision detection (CSMA/CD) access method and physical layer
specifications. ANSI/IEEE Std 802.3-1990 edition. International standard ISO/IEC
8802-3, IEEE product number: SH13482 edition, 1992.

[19] M. Asaka, S. Okazawa, and S. Goto. A Method of Tracing Intruders by Use of Mobile
Agents. In 9th Annual Conference of the Internet Society (INET), San Jose, CA, USA,
1999.

[20] S. Axelsson. The base-rate fallacy and its implications for the intrusion detection
security. In Proc. of 6th ACM Conference on Computer and Communications Security,
Singapore, 1999.

[21] Christian Bachmeir and Peter Tabery. PIRST-ONs: a service architecture for em-
bedding and leveraging active and programmable networks technology. In IEEE 10th
International Conference on Software, Telecommunications and Computer Networks,
SoftCOM, October 2002.

[22] R. Bajcsy, T. Benzel, M. Bishop, B. Braden, C. Brodley, S. Fahmy, S. Floyd,
W. Hardaker, A. Joseph, G. Kesidis, K. Levitt, B. Lindell, P. Liu, D. Miller, R. Mundy,
C. Neuman, R. Ostrenga, V. Paxson, P. Porras, C. Rosenberg, J. Tygar, S. Sastry,
D. Sterne, and S. Wu. Cyber defense technology networking and evaluation. Commu-
nications of ACM, 47(3):58–61, March 2004.

[23] J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zam-
boni. An architecture for intrusion detection using autonomous agents. In ACSAC
’98: Proceedings of the 14th Annual Computer Security Applications Conference. IEEE
Computer Society, 1998.

[24] Jay Beale, James C. Foster, Jeffrey Posluns, Ryan Russell, and Brian Caswell. Snort
2.0 Intrusion Detection. Syngress, 2003.

[25] Steven M. Bellovin. A Technique for Counting Natted Hosts. In IMW ’02: Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages 267–272, New
York, NY, USA, 2002. ACM Press.

[26] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. Sklower, R. Ostrenga, and
S. Schwab. Experience with DETER: a testbed for security research. In Testbeds
and Research Infrastructures for the Development of Networks and Communities TRI-
DENTCOM, March 2006.

[27] Stephen P. Berry. Shoki. http://shoki.sourceforge.net/.

[28] BITKOM. Private Computernutzung steigt in Deutschland auf 70 Prozent. http:
//bitkom.de/49795_49655.aspx.

Page 162

http://bitkom.de/49795_49655.aspx
http://bitkom.de/49795_49655.aspx

TU Berlin Section BIBLIOGRAPHY

[29] Herbert Bos and Kaiming Huang. Towards software-based signature detection for intru-
sion prevention on the network card. In Proceedings of Eighth International Symposium
on Recent Advances in Intrusion Detection (RAID2005), Seattle, WA, September 2005.

[30] R. S. Boyer and J. S. Moore. A fast string search algorithm. Communications of ACM,
20(10):762–772, 1977.

[31] R. Braden. Requirements for Internet Hosts – Communication Layers. RFC 1122, Oct.
1989.

[32] H. K. Browne, W. A. Arbaugh, J. McHugh, and W. L. Fithen. A trend analysis of
exploitations. In Francis M. Titsworth, editor, Proceedings of the 2001 IEEE Symposium
on Security and Privacy, pages 214–231, Los Alamitos, CA, May 14–16 2001. IEEE
Computer Society.

[33] David Brumley, James Newsome, Dawn Song, Hao Wang, and Somesh Jha. Towards
automatic generation of vulnerability-based signatures. In SP ’06: Proceedings of the
2006 IEEE Symposium on Security and Privacy (S&P’06), pages 2–16, Washington,
DC, USA, 2006. IEEE Computer Society.

[34] Caida. Packet sizes and sequencing. http://www.caida.org/analysis/learn/
packetsizes/, March 1998.

[35] K. L. Calvert, S. Bhattacharjee, E. Zegura, and J. Sterbenz. Directions in active
networks. IEEE Communications Magazine, 36(10):72–78, Oct 1998.

[36] Andrew T. Campbell, Herman G. De Meer, Michael E. Kounavis, Kazuho Miki, John B.
Vicente, , and Daniel Villela. A survey of programmable networks. ACM SIGCOMM
Computer Communications Review, 29(2):7–23, April 1999.

[37] CERT. W32/blaster worm. http://www.cert.org/advisories/CA-2003-20.html, August
2003.

[38] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security: Repelling
the Wily Hacker. Addison-Wesley Publishing Company, 1994.

[39] Ramkumar Chinchani and Eric van den Berg. A fast static analysis approach to detect
exploit code inside network flows. In Valdes and Zamboni [132], pages 284–308.

[40] Cisco. NetRanger. http://www.cisco.com/univercd/cc/td/doc/product/iaabu/netrangr/.

[41] K. G. Coffman and A. M. Odlyzko. Internet growth: is there a ”moore’s law” for data
traffic? pages 47–93, 2002.

[42] Internet Systems Consortium. Isc internet domain survey.
http://www.isc.org/index.pl?/ops/ds/, 2005.

[43] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick. A Framework for QoS-based
Routing in the Internet. RFC 2386, Aug. 1998.

Page 163

http://www.caida.org/analysis/learn/packetsizes/
http://www.caida.org/analysis/learn/packetsizes/

TU Berlin Section BIBLIOGRAPHY

[44] R. K. Cunningham, R. P. Lippmann, D. J. Fried, S. L. Garfinkel, I. Graf, K. R. Kendall,
S. E. Webster, D. Wyschogrod, and M. A. Zissman. Evaluating intrusion detection
systems without attacking your friends: The 1998 darpa intrusion detection evaluation.
In ID, 1999.

[45] F. Cuppens. Managing alerts in a multi-intrusion detection environment. In AC-
SAC ’01: Proceedings of the 17th Annual Computer Security Applications Conference,
page 22, Washington, DC, USA, 2001. IEEE Computer Society.

[46] F. Cuppens and Alexandre Miège. Alert correlation in a cooperative intrusion detection
framework. In SP ’02: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, page 202, Washington, DC, USA, 2002. IEEE Computer Society.

[47] O. Dain and R. Cunningham. Fusing heterogeneous alert streams into scenarios.

[48] H. Debar, D. Curry, and B. Feinstein. The Intrusion Detection Message Exchange
Format. IETF Internet-Draft, Feb. 2006.

[49] H. Debar and A. Wespi. Aggregation and correlation of intrusion-detection alerts. In
RAID ’00: Proceedings of the 4th International Symposium on Recent Advances in
Intrusion Detection, pages 85–103, London, UK, 2001. Springer-Verlag.

[50] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of intrusion-
detection systems. Comput. Networks, 31(9):805–822, 1999.

[51] Dorothy E. Denning. An intrusion-detection model. IEEE Trans. Softw. Eng.,
13(2):222–232, 1987.

[52] R. Deraison, H. Meer, R. Temmingh, C. v. d. Walt, R. Alder, J. Alderson ando A. John-
ston, and G. A. Theall. Nessus Network Auditing. Syngress, 2004.

[53] R. Doms. Dynamic host configuration protocol. RFC 2131, Mar. 1997.

[54] Steven Northcutt et al. Shadow. http://www.nswc.navy.mil/ISSEC/index.html, 1998.

[55] W. La Cholter et al. IBAN: Intrusion Blocker based on Active Networks. In Proc. of
Dance 2002, 2002.

[56] Jeff Forristal and Greg Shipley. Vulnerability Assessment Scanners. Network Comput-
ing, Jan. 2001.

[57] Thomas Fuhrmann, Till Harbaum, Marcus Schöller, and Martina Zitterbart. Amnet
2.0: An improved architecture for programmable networks. In James P. G. Sterbenz,
Osamu Takada, Christian F. Tschudin, and Bernhard Plattner, editors, IWAN, volume
2546 of Lecture Notes in Computer Science, pages 162–176. Springer, 2002.

[58] Fyodor. Remote os detection via tcp/ip stack fingerprinting.
http://www.insecure.org/nmap/nmap-fingerprinting-article.html.

[59] Fyodor. The Art of Port Scanning. Phrack Magazine, 7, 1997.

Page 164

TU Berlin Section BIBLIOGRAPHY

[60] E. Gerbier. Afick (another file integrity checker). http://afick.sourceforge.net/.

[61] Coretez Giovanni. Fun with packets: Designing a stick.
http://www.eurocompton.net/stick/papers/Peopledos.pdf.

[62] AN Security Working Group. Security architecture for active nets. online:
ftp://ftp.tislabs.com/pub/activenets/secarch2.ps, July 1998.

[63] AN Working Group. Architectural framework for active networks, 1998.

[64] Joshua Haines, Lee Rossey, Rich Lippmann, and Robert Cunnigham. Extending the
1999 evaluation. In DISCEX, Anaheim, CA, USA, June 2001.

[65] M. Handley, C. Kreibich, and V. Paxson. Network intrusion detection: Evasion, traf-
fic normalization, and end-to-end protocol semantics. In Usenix Security Symposium,
Washington, DC, USA, 2001.

[66] A. Hess and g. Schäfer. Isp-operated protection of home networks with fidran. In Proc.
of first IEEE Consumer Communications and Networking Conference (CCNC’2004),
Las Vegas, Nevada, USA, Jan. 2004.

[67] A. Hess and G. Schäfer. A flexible and dynamic access control policy framework for
an active networking environment. In Proc. of Kommunikation in Verteilten Systemen
(KiVS 2003), pages 321–333, Leipzig, Germany, February 2003.

[68] A. Hess and G. Schäfer. Realizing a flexible access control mechanism for active nodes
based on active networking technology. In Proc. of 2004 IEEE International Conference
on Communications (ICC 2004), Paris, France, June 2004.

[69] A. Hess, M. Schoeller, G. Schäfer, M. Zitterbart, and A. Wolisz. A dynamic and
flexible access control and resource monitoring mechanism for active nodes. In Proc. of
OpenArch 2002, pages 11–16, New York City,New York, USA, June 2002. Short Paper.

[70] R. N. Horspool. Practical fast searching in strings. Softw., Pract. Exper., 10(6):501–506,
1980.

[71] J. Howard. An Analysis of Security Incidents on the Internet. PhD thesis, Carnegie
Mellon University, 1998.

[72] Thomas H.Ptacek and Timothy N.Newsham. Insertion, evasion, and denial of service:
Eluding network intrusion detection. January 1998.

[73] ILOG CPLEX Division. CPLEX 9.0 Reference Manual, 2003. http://www.cplex.com.

[74] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M. Smith. Implementing a
distributed firewall. In CCS ’00: Proceedings of the 7th ACM conference on Computer
and communications security, pages 190–199. ACM Press, 2000.

[75] ISS. RealSecure. http://www.iss.net/support/documentation.

Page 165

http://www.cplex.com

TU Berlin Section BIBLIOGRAPHY

[76] G. Jakobson and M. D. Weissman. Alarm correlation. IEEE Network Magazine, 7:52–
59, Nov. 1993.

[77] R. Janakiraman, M. Waldvogel, and Q. Zhang. Indra: A peer-to-peer approach to net-
work intrusion detection and prevention. In IEEE WET ICE Workshop on Enterprise
Security, Linz, Austria, June 2003.

[78] Trevor Jim, Greg Morrisett, Dan Grossman, Michael Hicks, James Cheney, and Yanling
Wang. Cyclone: A Safe Dialect of C. In USENIX Annual Technical Conference, pages
275–288, Montery, CA, USA, Jun. 2002.

[79] Klaus Julisch. Clustering intrusion detection alarms to support root cause analysis.
ACM Transactions on Information and System Security, November 2003.

[80] Klaus Julisch and Marc Dacier. Mining intrusion detection alarms for actionable knowl-
edge. In KDD ’02: Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 366–375, New York, NY, USA, 2002.
ACM Press.

[81] M. Kodialam, T. V. Lakshman, and Sudipta Sengupta. Configuring networks with
content filtering nodes with applications to network security. In IEEE INFOCOM,
2005.

[82] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Transactions on Computer Systems, 18(3):263–297,
August 2000.

[83] Glen Kramer. Synthetic traffic generation. http://wwwcsif.cs.ucdavis.edu/

~kramer/research.html.

[84] C. Kruegel and W. Robertson. Alert Verification Determining the Success of Intrusion
Attempts. In 1st Workshop on the Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA), Dortmund, Germany, Jul. 2004.

[85] C. Kruegel, F. Valeur, and G. Vigna. Intrusion Detection and Correlation: Challenges
and Solutions, volume 14 of Advances in Information Security. Springer, 2005.

[86] Christopher Krügel, Engin Kirda, Darren Mutz, William Robertson, and Giovanni
Vigna. Polymorphic worm detection using structural information of executables. In
Valdes and Zamboni [132], pages 207–226.

[87] Network Research Group Lawrence Berkeley National Laboratory. ARPWatch.
http://www-nrg.ee.lbl.gov/.

[88] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On the self-
similar nature of Ethernet traffic. In Deepinder P. Sidhu, editor, ACM SIGCOMM,
pages 183–193, San Francisco, California, 1993.

[89] U. Lindqvist and E. Jonsson. How to systematically classify intrusions. In IEEE
Symposium on Security and Privacy, Oakland, California, USA, 1997.

Page 166

http://wwwcsif.cs.ucdavis.edu/~kramer/research.html
http://wwwcsif.cs.ucdavis.edu/~kramer/research.html

TU Berlin Section BIBLIOGRAPHY

[90] Avivah Litan. Phishing Attacks Escalate, Morph and Cause Considerable Damage.
http://www.gartner.com, December 2007.

[91] Point Topic Ltd. World broadband statistics: Q3 2006. http://www.point-topic.com,
2006.

[92] Andrew Mackie, Jensenne Roculan, Ryan Russell, and Mario Van Velzen. Nimda worm
analysis. Technical report, SecurityFocus, Sep. 2001.

[93] Robert Mathonet, Herwig Van Cotthem, and Leon Vanryckeghem. Dantes: An expert
system for real-time network troubleshooting. In IJCAI, pages 527–530, 1987.

[94] Peter Mell, Vincent Hu, Richard Lippmann, Josh Haines, and Marc Zissman. An
overview of issues in testing intrusion detection systems. Technical report, National
Institute of Standards and Technology ITL and Massachusetts Institute of Technology
Lincoln Laboratory, 2003.

[95] H.D. Moore. The metasploit project. http://www.metasploit.com.

[96] Benjamin Morin, Ludovic Mé, Hervé Debar, and Mireille Ducassé. M2d2: A formal
data model for ids alert correlation. In RAID, pages 115–127, 2002.

[97] S. Murphy, E. Lewis, R. Puga, R. Watson, and R. Yee. Strong security for active
networks. In IEEE Open Architectures and Network Programming, pages 63–70, 2001.

[98] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. J. Wiley,
New York, 1988.

[99] Peter G. Neumann and Donn B. Parker. A summary of computer misuse techniques.
In 12th National Computer Security Conference, pages 396–407, Oct. 1989.

[100] NFR. Network Flight Recorder. http://www.nfr.com/.

[101] Peng Ning, Yun Cui, and Douglas S. Reeves. Constructing attack scenarios through
correlation of intrusion alerts. In CCS ’02: Proceedings of the 9th ACM conference on
Computer and communications security, pages 245–254, New York, NY, USA, 2002.
ACM Press.

[102] Stephen Northcutt, Lenny Zeltser, Scott Winters, Karen Kent Frederick, and
Ronald W. Ritchey. Network Perimeter Security. New Riders, 2002.

[103] Kevin Novak. VA Scanners Pinpoint Your Weak Spots. Network Computing, Jun. 2003.

[104] K. Park, G. Kim, and M. E. Crovella. Self-similar network traffic and performance
evaluation, chapter 14, pages 349–366. John Wiley & Sons, Inc., 2000.

[105] Samuel Patton, William Yurcik, and David Doss. An achilles heel in signature-based
ids: Squealing false positives in snort. In Proc. of fourth International Symposium on
Recent Advances in Intrusion Detection (RAID), Davis, California, USA, Oct. 2001.

Page 167

http://www.gartner.com

TU Berlin Section BIBLIOGRAPHY

[106] Vern Paxson. Bro: a system for detecting network intruders in real-time. Computer
Networks (Amsterdam, Netherlands: 1999), 31(23–24):2435–2463, 1999.

[107] Vern Paxson and Sally Floyd. Wide area traffic: the failure of Poisson modeling. IEEE/
ACM Transactions on Networking, 3(3):226–244, 1995.

[108] Tadeusz Pietraszek. Using adaptive alert classification to reduce false positives in in-
trusion detection. In In Proc. of 7th Recent Advances in Intrusion Detection (RAID),
pages 102–124, Sophia Antropolis, France, Sep. 2004.

[109] Phillip A. Porras and Alfonso Valdes. Live traffic analysis of TCP/IP gateways. In
Internet Society’s Networks and Distributed Systems Security Symposium, March 1998.

[110] The Vint Project. The ns-2 Network Simulator. http://www.isi.edu/nsnam/ns/doc/
index.html.

[111] Psionic. PortSentry - Sentry Tools. http://sourceforge.net/projects/sentrytools/.

[112] E. Rescorla. Security holes...who cares? In 12th USENIX Security Symposium, pages
75–90, Washington, DC, USA, Aug. 2003.

[113] Cyber Defense Technology Experimental Research. The deter testbed: Overview. http:
//www.isi.edu/deter/docs/testbed.overview.htm, Oct. 2004.

[114] J. Reynolds and J. Postel. Assigned Numbers. RFC 1700, Oct. 1994.

[115] G. Schäfer. Security in Fixed and Wireless Networks: An Introduction to securing data
communications. John Wiley & Sons, 2004.

[116] Schrijver. Combinatorial Optimization – Polyhedra and Efficiency. Springer, Berlin,
2002.

[117] Beverly Schwartz, Alden W. Jackson, W. Timothy Strayer, Wenyi Zhou, R. Dennis
Rockwell, and Craig Partridge. Smart packets: applying active networks to network
management. ACM Trans. Comput. Syst., 18(1):67–88, 2000.

[118] Umesh Shankar and Vern Paxson. Active mapping: Resisting nids evasion without
altering traffic. In IEEE Symposium on Security and Privacy, pages 44–61, 2003.

[119] Joel Snyder. Taking aim. Information Security, Jan. 2004.

[120] Sophos. Sophos annual security report. http://www.sophos.com/pressoffice/news/
articles/2005/12/toptensummary05.htm, July 2005.

[121] Lance Spitzner. Iding remote hosts, without them knowing - passive fingerprinting.
2000.

[122] William Stallings. Network and Internetwork Security Principles and Practice. Prentice
Hall, 1995.

Page 168

http://www.isi.edu/nsnam/ns/doc/index.html
http://www.isi.edu/nsnam/ns/doc/index.html
http://www.isi.edu/deter/docs/testbed.overview.htm
http://www.isi.edu/deter/docs/testbed.overview.htm
http://www.sophos.com/pressoffice/news/articles/2005/12/toptensummary05.htm
http://www.sophos.com/pressoffice/news/articles/2005/12/toptensummary05.htm

TU Berlin Section BIBLIOGRAPHY

[123] S. Staniford, G. Grim, and R. Jonkman. Flash worms: Thirty seconds to infect the
internet. http://www.silicondefense.com/flash.

[124] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical automated
detection of stealthy portscans. J. Comput. Secur., 10(1-2):105–136, 2002.

[125] S. Staniford-Chen, B. Tung, and D. Schnackenberg. The common intrusion detection
framework. In In Proc. of the second Information Survivability Workshop, Orlando,
Florida, USA, Oct. 1998.

[126] Symantec. NetProwler. http://www.symantec.com/region/can/eng/product/np/.

[127] Murad S. Taqqu, Walter Willinger, and Robert Sherman. Proof of a fundamental result
in self-similar traffic modeling. SIGCOMM Comput. Commun. Rev., 27(2):5–23, 1997.

[128] David L. Tennenhouse, Jonathan M. Smith, W. David Sincoskie, David J. Wetherall,
and Gary J. Minden. A survey of active network research. IEEE Communications
Magazine, 35(1):80–86, 1997.

[129] David L. Tennenhouse and David J. Wetherall. Towards an active network architecture.
Computer Communication Review, 26(2), 1996.

[130] Birger Toedtmann and Erwin P. Rathgeb. Anticipatory distributed packet filter configu-
ration for carrier-grade ip-networks. In IFIP TC6 Networking, pages 928–941, Coimbra,
Portugal, May 2006.

[131] Alfonso Valdes and Keith Skinner. Probabilistic alert correlation. In RAID ’00: Pro-
ceedings of the 4th International Symposium on Recent Advances in Intrusion Detection,
pages 54–68, London, UK, 2001. Springer-Verlag.

[132] Alfonso Valdes and Diego Zamboni, editors. Recent Advances in Intrusion Detection,
8th International Symposium, RAID 2005, Seattle, WA, USA, September 7-9, 2005,
Revised Papers, volume 3858 of Lecture Notes in Computer Science. Springer, 2006.

[133] Ke Wang, Gabriela Cretu, and Salvatore J. Stolfo. Anomalous payload-based worm
detection and signature generation. In Valdes and Zamboni [132], pages 227–246.

[134] David J. Wetherall, John V. Guttag, and David L. Tennenhouseing. Ants: A toolkit
for building and dynamically deploying network protocols. In IEEE OPENARCH, San
Francisco, USA, April 1998.

[135] H.P. Williams. Model Building in Mathematical Programming, volume 3rd edition.
Wiley, New York, USA, 1990.

[136] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson. Self-
similarity through high-variability: statistical analysis of Ethernet LAN traffic at the
source level. IEEE/ACM Transactions on Networking, 5(1):71–86, 1997.

[137] Adam Wolisz, Christian Hoene, Berthold Rathke, and Morten Schläger. Proxies, Active
Networks, Re-configurable Terminals: The Cornerstones of Future Wireless Internet.
In IST Mobile Commuications Summit, pages 795–803, Galway, Ireland, October 2000.

Page 169

http://www.silicondefense.com/flash

TU Berlin Section BIBLIOGRAPHY

[138] B. Wotring, B. Potter, and M. J. Ranum. Host Integrity Monitoring Using Osiris and
Samhain. Syngress, 2005.

[139] Xipeng Xiao and L. M. Ni. Internet qos: a big picture. Network, IEEE, 13(2):8–18,
1999.

[140] V. Yegneswaran, P. Barford, and S. Jha. Global intrusion detection in the domino over-
lay system. In The 11th Annual Network and Distributed System Security Symposium,
San Diego, CA, feb 2004.

[141] William Yurcik. Controlling intrusion detection systems by generating false positives:
Squealing proof-of-concept. In LCN, pages 134–135. IEEE Computer Society, 2002.

[142] M. Zalewski. p0f. http://lcamtuf.coredump.cx/p0f.shtml.

Page 170

	Introduction
	A Review of Network-Based Intrusion Detection and Prevention
	Communication Networks
	Active/Programmable Networking Technology
	Intrusion Detection and Prevention Systems
	What is an Attack?
	Access Control
	Intrusion Detection and Prevention System Architecture
	Taxonomy of Intrusion Detection and Prevention Systems
	Difference between Intrusion Detection and Intrusion Prevention
	Approaches to Realize Intrusion Detection and Prevention Systems
	Evaluation of Intrusion Detection and Prevention Systems

	Gathering Network-Related Information

	State of the Art of Network Based Intrusion Detection and Prevention
	Host-Based Systems
	Network-Based Systems
	Stand-alone Systems
	Distributed and Coordinated Systems
	Commercial Network-Based Intrusion Detection Systems

	Limitations of Intrusion Detection and Prevention Systems
	Accuracy of Intrusion Detection/Prevention Systems
	The Requirements of Scalability and Flexibility

	What is Missing - A Discussion of the State of the Art

	Fidran: An Autonomous Intrusion Prevention Overlay Network
	Requirements for an Autonomous Intrusion Prevention Overlay Network
	Why Programmable Routers
	The Principle of Demand-Driven Intrusion Prevention
	The Fidran Intrusion Prevention System Architecture
	The Security Policy
	The Traffic Selector
	An Intrusion Prevention Service
	The Waiting Queues
	The Control Module

	The Impact of a Fidran Router on the Processing of a Packet
	Summary

	Gathering Network Information
	Requirements and Practical Considerations
	Gathering Network Knowledge
	A Case Study
	Summary

	Optimal Deployment Strategies
	Router System Model
	Objective Functions
	Predefined Single-Path Routing
	Predefined Multipath Routing
	Joint Traffic Routing and Distribution of Security Services
	Optimal Placement of Security Services under the Constraint of a Predefined Order
	Varying Computational Speeds of Routers
	A Remark on Fractional Service Assignments
	Summary

	Fidran Performance Evaluation
	Emulation: The DETER Testbed
	The Generation of Self-Similar Network Traffic
	A Limited Networking Environment
	The Benefit of Optimal Deployment Strategies in a Tree-Network
	Programmable Routers of Heterogeneous Performance

	A High-Speed Networking Environment: The Abilene Network
	Abilene Network: Securing each Commodity by Six Security Services
	Abilene Network: Securing each Commodity by Seven Security Services

	Self-Similar Network Traffic of Smaller Bandwidth
	Protecting each Commodity with Six Security Services
	Protecting each Commodity with Seven Security Services

	Time Required to Calculate Optimal Deployment Strategies
	Summary

	Conclusions
	Additional Results

