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Abstract—Platooning or cooperative adaptive cruise control
(CACC or cooperative adaptive cruise controller) has been
investigated for decades, but debate about its lasting impact is
still ongoing. While the benefits of platooning and the formation
of platoons are well understood for trucks, they are less clear
for passenger cars, which have a higher heterogeneity in trips
and drivers’ preferences. Most importantly, it remains unclear
how to form platoons of passenger cars in order to optimize
the personal benefit for the individual driver. To this end, in
this paper, we propose a novel platoon formation algorithm that
optimizes the personal benefit for drivers of individual passenger
cars. For computing vehicle-to-platoon assignments, the algorithm
utilizes a new metric that we propose to evaluate the personal
benefits of various driving systems, including platooning. By
combining fuel and travel time costs into a single monetary value,
drivers can estimate overall trip costs according to a personal
monetary value for time spent. This provides an intuitive way
for drivers to understand and compare the benefits of driving
systems like human driving, adaptive cruise control (ACC), and,
of course, platooning. Unlike previous similarity-based methods,
our proposed algorithm forms platoons only when beneficial for
the driver, rather than solely for platooning. We demonstrate
the new metric for the total trip cost in a numerical analysis
and explain its interpretation. Results of a large-scale simulation
study demonstrate that our proposed platoon formation algorithm
outperforms normal ACC as well as previous similarity-based
platooning approaches by balancing fuel savings and travel time,
independent of traffic and drivers’ time cost.

Index Terms—Intelligent transportation systems, platoon for-
mation, vehicle-to-platoon assignment, platooning opportunities,
incentives, personal benefit.

I. INTRODUCTION

ROAD traffic has consistently grown in recent years, lead-
ing to increasing congestion and environmental pollution.

To cope with these adverse effects, modern vehicles are being
equipped with (advanced) driver assistance systems and V2X
communication technologies like 5G-based cellular vehicle-to-
everything (C-V2X) and IEEE 802.11p-based DSRC, which
allow vehicles to cooperate. These technologies improve not
only driving safety and comfort but also efficiency, enabling
new intelligent transportation system (ITS) solutions like
cooperative adaptive cruise control (CACC or cooperative
adaptive cruise controller) and platooning [1, 2]. Today, classic
adaptive cruise control (ACC) is the de facto standard for
all new cars as well as for (semi-)automated driving on the
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freeway. Going one step further, vehicular platooning allows
multiple vehicles to drive in convoys with small but stable
safety gaps using CACC. While both ACC and CACC improve
traffic flows and safety, platooning additionally increases road
utilization and reduces fuel consumption due to the slipstream
effect [2–4]. The benefits of ACC and platooning have been
researched for decades but debate about the lasting impact of
platooning is still ongoing [5, 6].

String-stable operation of platoons has been demonstrated [2,
7–11] and cooperative join maneuvers have been designed [12–
19] to form effective platoons. The integration of human driven
and automated (platooning) cars is a known issue [20]. It has
been addressed in several works, mainly on the control side. For
example, first model-predictive control solutions take human
reactions into account [21]. However, deciding which vehicles
best form a platoon together remains an unresolved challenge
towards large-scale deployment of platooning [22].

Although simple ad-hoc approaches facilitate the rapid
setup of platooning [23, 24], they typically rely solely on
the current position of vehicles and assume platooning is
universally desired. Computing vehicle-to-platoon assignments,
i.e., assigning vehicles to platoons, requires more complex
computations, typically aiming at optimizing macroscopic
objectives such as a smoother traffic flow and better road
utilization. However, there may be a trade-off between these
macroscopic results and individualized optimization as time
and cost savings for the individual vehicle may not be possible
for everybody.

Platooning is primarily promoted for trucks due to its
significant fuel-saving potential [2, 5, 6]. Trucks typically
perform long trips, allowing them to share platoon benefits
for a long time. In contrast, passenger cars typically undertake
more spontaneous, varied, and less predictable trips, making the
benefits of platooning less evident compared to the recurring
and structured routes of trucks in freight transport. Given the
resulting complexity, they are still a less interesting use case
for platooning from the perspective of the automotive industry.
Additionally, so far, individual drivers of passenger cars cannot
precisely assess their immediate benefits due to complex
and individualized utility functions consisting of components
difficult to offset, e.g., travel time, fuel savings, and increased
safety and comfort. These depend on the unique expectation of
the individual driver [25] and personal preferences and values,
so that the drivers’ individual and estimated benefits should
be considered [26–28].

A natural and thus intuitive incentive for drivers to employ
platooning is a potential reduction in the overall trip cost (cf.
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[29]). For instance, an optimal driving speed can result in less
fuel cost but causes an extended trip time compared to driving
faster yet fuel-inefficient. Vice versa, a shorter travel time
often leads to sub-optimal emissions and fuel cost [30]. Unlike
personal preferences, fuel costs and travel time can be captured
in a single monetary value: While the fuel cost is dependent on
the vehicle and the driving speed, the opportunity cost for travel
time and the desired level of fuel-efficient driving depends on
the individual driver and their personal preferences (cf. [26]). In
general, travel time can be measured as an opportunity cost [31,
32]. Opportunity costs are the costs one has to “pay” because
they are traveling and cannot perform productive tasks during
the driving time. Thus, there is always a trade-off between fuel
consumption as a variable cost of driving and time consumption
as opportunity cost of travel time. These are the two important
key metrics that the driver has to balance on to employ and
also assess the individual driving systems [30, 33].

Accordingly, in this paper, we extend the understanding
of personal benefit by proposing a metric that combines
multiple optimization factors in one monetary unit. In particular,
we make use of the consumed fuel and the travel time as
conceptually suggested in our earlier work [25]. By assigning a
personal monetary value for time spending, drivers can estimate
their overall trip cost induced by different driving systems.
We also show how the personal monetization of time can be
modeled by using real-world statistical data.

On top of this, we propose a novel platoon formation algo-
rithm that utilizes the trip cost metric for computing vehicle-to-
platoon assignments. The algorithm optimizes drivers’ personal
benefits by comparing the cost of individual driving using ACC
with the cost of driving in a platoon, including the cost of
joining and the expected benefits. Unlike previous similarity-
based methods, it forms platoons only when beneficial for the
driver, rather than solely for platooning.

We perform a large-scale simulation study with
PlaFoSim [34] to compare our proposed algorithm against
different driving systems including ACC (as a baseline) as well
as human driving and traditional platooning. Our results show
that standard ACC always outperforms conventional human
driving, but lacks behind platooning, especially in medium to
high-density traffic. Furthermore, our results demonstrate that
our new platoon formation algorithm outperforms traditional
similarity-based platooning in almost all situations, regardless
of traffic density or drivers’ time costs.

To the best of our knowledge, this is the first study that
evaluates and optimizes the drivers’ personal benefit from
driving systems with a dedicated metric and a corresponding
algorithm for platoon formation, respectively.

Our primary contributions can be summarized as follows:
• We introduce and demonstrate a new metric to estimate

the overall trip cost according to a personal monetary
value for time spending.

• We developed a novel platoon formation algorithm that
utilizes our proposed metric for computing vehicle-to-
platoon assignments.

• In a large-scale simulation study, we show that our
proposed algorithm can optimize drivers’ personal benefit
given as a monetary value. The benefit is maximized if

there are many other drivers with the same monetary value
for time spending.

The remainder of this paper is structured as follows: We
review related work from the literature in Section II. We
introduce our novel metric for the total trip cost and demonstrate
its concept in a numerical analysis in Section III. We describe
our novel algorithm for platoon formation utilizing our new
metric in Section IV. We illustrate our methodology for
evaluating the proposed algorithm and report corresponding
results in Section V. We discuss our evaluation results in
Section VI and conclude our findings in Section VII.

II. RELATED WORK

We aim to form platoons of individual passenger cars that
spontaneously start their trips on freeways. As a result, their
properties (e.g., destination) and drivers’ preferences (e.g., de-
sired speed) are unknown beforehand and can vary significantly.
Typical solutions designed for optimally forming platoons of
trucks [35], where transport assignments and deadlines are
predefined, are not applicable here. While simple approaches
enable ad-hoc platoon formation [23, 24], they typically only
consider vehicle positions and assume that platooning is always
desired. Since a vehicle’s platoon choice significantly impacts
the resulting benefits, its assignment should be optimized.
Therefore, assigning vehicles to platoons often requires more
complex computations to optimize specific factors [4]. Various
studies consider different optimization objectives and properties
but often prioritize macro-level goals, such as a smoother
traffic flow and better road utilization, rather than focusing on
outcomes for individual vehicles [27].

A. Traditional Optimization Factors

A natural optimization factor is fuel consumption, as platooning
promises significant savings through the slipstream effect. As
a result, many studies aim to group platoons accordingly,
analyzing how to efficiently execute catch-up and slow-down
maneuvers [36–42]. However, most studies focus on trucks,
which typically have a fleet speed limit of around 80–90 km/h
and exhibit minimal speed variance, making platooning more
straightforward. In contrast, passenger cars not only have higher
technical speed capabilities but also exhibit a greater variance
in speed preferences due to the heterogeneity of drivers, making
platooning more challenging. Additionally, these studies often
do not consider other factors, such as route and travel time,
assuming that platooning is always beneficial.

A common approach, often also used for passenger cars, is
grouping vehicles based on their similarity in certain properties
and driver preferences, often also combining multiple optimiza-
tion factors. By grouping vehicles with similar destinations
or routes, the distance a platoon stays intact and vehicles
can share platoon benefits is maximized [43–46]. This allows
vehicles to save more fuel while increasing lane capacity
and traffic throughput. Additionally, studies propose grouping
vehicles with similar (desired) driving speeds and positions [28,
47, 48]. Thereby, all platoon members have similar driving
demands, resulting in less deviation from their preferences.
Additionally, join maneuvers are only performed with platoons
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in reasonable proximity. Approaches for optimizing even
more factors at the same time have been proposed, but the
objectives “may or may not be compatible” such that some
way of further prioritization is required [49]. Although these
approaches enable platooning benefits, grouping vehicles by
similarity has several drawbacks: It remains unclear which
properties, or combinations thereof, yield the best results in
terms of platooning benefits. Furthermore, in some situations,
not performing platooning and using only standard ACC instead
could be more beneficial [25].

Other approaches partly resolve these drawbacks by in-
creasing flexibility and also addressing the expected benefits
with the use of a utility function [23, 50]. However, these
utility functions are often abstract, and their significance is not
immediately clear to drivers. More generally, many approaches
only consider the properties of the platooning opportunities for
the assignment decision but ignore the join maneuver required
for establishing the desired formation.

B. Incentives and Cost

Niyato et al. [29] emphasize the importance of incentives such
as cost, revenue, and profit for sustaining IoT development
and operation, highlighting their relevance also for platooning.
A natural and intuitive incentive for drivers is the potential
reduction in overall costs. In the context of ITS, Sommer
et al. [30] argue for balancing emissions and fuel consumption
together with travel time, as optimizing for travel time alone
often results in suboptimal emissions and fuel consumption.
This creates a fundamental trade-off between these key metrics
that drivers must consider when assessing driving systems to
employ [30, 33]. While fuel cost depends on the vehicle and
driving speed, opportunity cost for longer travel time varies
based on individual factors, such as how much one can earn
when being productive instead of traveling (cf. [26]).

Monetary rewards have been proposed as a direct incen-
tive for promoting platooning. Ledbetter et al. [51] suggest
rewarding drivers for taking on the role of platoon leaders,
which is less fuel-efficient and more risky than being a follower.
Their payment system, based on estimated fuel savings and
a leadership bonus, uses smart contracts to securely facilitate
financial transactions in a distributed, trustless environment.
While this approach effectively prevents drivers from forfeiting
leadership for personal gain, it does not address the process of
forming the platoon. Extending this idea, Earnhardt et al. [52]
propose a compensation scheme for trucks that perform catch-
up and re-routing maneuvers to form platoons. This incentivizes
vehicles to sacrifice individual fuel economy for collective
fuel savings. However, this approach does not consider travel
time, lacks personalization of driver preferences, and requires
knowledge of vehicles’ trajectories & traffic patterns.

To address these limitations, Malik et al. [50] use a multi-
objective utility function including monetary rewards, such as
insurance discounts and toll reductions, aiming for a mutually
beneficial solution for authorities and drivers. While their
approach accounts for travel time, platoon distance, and speed
differences, it does not fully consider the trade-offs between fuel
savings and other factors. Also, it assumes that platooning is

always preferred and lacks personalization of drivers’ benefits,
which are unintuitively reported by the utility function.

Pelletier and Brennan [53] analyze the costs of platoon
formation by converting fuel and time costs into monetary
equivalents, aiming for the optimal conditions to form platoons.
While the travel time is included in their cost metric, it is
primarily used as a constraint in an optimization problem.
Their cost metric lacks personalization of drivers’ benefits and
its application is only briefly illustrated in a simple scenario
involving two vehicles on a shared route, leaving more complex
situations unexplored.

C. Contribution

In earlier work [25], we introduced a total trip cost metric
that combines fuel consumption and travel time into a single
monetary value for assessing different driving systems. Beyond
post-trip assessment, this metric can also be applied in real time.
By estimating the total cost before or during a trip, drivers can
select the most beneficial driving system or platoon based on
estimated savings in fuel and travel time. This allows for a more
intuitive decision-making process, offering practical insights
into which option minimizes overall costs while being in line
with drivers’ personal preferences. We aim to maximize drivers’
individual benefits by considering their personal monetary
value for time, offering a straightforward and intuitive decision-
making tool. Our approach ensures that platoons are formed
only when they result in actual benefits for the driver rather
than being enforced by default.

III. THE PERSONAL BENEFIT OF DRIVING SYSTEMS

In the following, we introduce our metric to quantify the drivers’
personal benefit from (or incentive for) platooning. Extending
our preliminary results in [25], we provide more elaborate
explanations and a numerical analysis.

A. Total Trip Cost Metric

We aim for an intuitive metric that allows an easier trade-off
between fuel consumption and travel time that drivers can
easily grasp and use for understanding their personal benefit
from driving systems, e.g., fuel and time savings due to reduced
air drag and improved traffic flow in platooning [2]. To achieve
that, we propose to map both factors into a common monetary
unit, allowing them to be combined to a single value for the
overall cost of a trip. In particular, we assess the total cost of a
trip Ctrip by summing up the (estimated) cost of the consumed
fuel and the (estimated) cost of the travel time as

Ctrip = fueltrip · Cfuel + timetrip · Ctime . (1)

Here, the cost of the consumed fuel is calculated as the product
of the (estimated) fuel consumption for the trip (fueltrip)1 and a
typical price for fuel (e.g., gasoline) per liter (Cfuel).2 The cost

1We illustrate the calculation and estimation of the fuel consumption in
Section III-III-C.

2We focus on the price of a liter, but this can easily be adjusted for
electric vehicles by using electric energy consumption and battery charging
cost (cf. Section VI-VI-D).
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of the travel time is calculated as the product of the (estimated)
travel time for the trip (timetrip) and a monetary value for time
spending (Ctime). The latter value can be configured by drivers
during trip planning via the navigational system, depending on
their personal preference. This can be compared with choosing
a route from multiple options such as fast or economic that
are provided by the navigational systems already today.

The desired level of fuel-efficient driving, as well as the
opportunity cost for an extended trip time, depends on the
individual drivers’ personal preferences [26]. Based on the
nominal values of Cfuel and Ctime, the prioritization between
fuel consumption and travel time can be adjusted. This allows
for a comparative and real-world applicable evaluation of all
kinds of driving systems, including platooning. If required, the
formula can be extended with additional monetary terms and
utilities that influence a driver’s overall trip cost. These may
include platooning-related costs and benefits (e.g., for leading,
profit-sharing, maneuver overhead, or toll discounts) [50–52,
54], as well as personal utilities (e.g., enjoyment of high speed,
satisfaction from reducing fossil fuel consumption, or reduced
stress and increased comfort through automation) [4, 55].
Subjective aspects like comfort can be approximated through
measurable proxies such as driving smoothness or time spent as
a follower within a platoon. These proxies could be integrated
as soft constraints (e.g., a minimum required resting period)
or incorporated as monetized utility terms, using appropriate
personal valuation factors.

B. Time Monetization based on Real-World Statistical Data

A key component of our cost metric is the driver’s personal
valuation of time, representing the opportunity cost associated
with time spent traveling. While trip duration does not incur
direct monetary costs like fuel consumption, it entails an
implicit opportunity cost that has to be “paid” through the
driver’s time investment. While drivers may subjectively choose
values for their personal valuation of time on a per-trip basis,
we require a consistent method for assigning these values
throughout this paper to enable a systematic analysis of the
total trip cost metric.

The opportunity cost of time is difficult to quantify directly,
as it varies across individuals and even for the same individual
depending on their outside options. In principle, opportunity
costs are an established economic category trying to capture
the resources in general (e.g., costs, time) that one spends for
choosing one option so that another option must be missed [56].
They are, in that sense, the lost profit for not using the second
option. This is useful as the first option’s competitive advantage
over the second option depends not only on the first option’s
utility but also on the difference to the second option.

With respect to time preferences, opportunity costs are a
useful measurement entity. In case a driver’s opportunity cost
is very low, the driver would probably spare more time for
completing the trip. A corresponding lower driving speed would
require less fuel and thus less actual cost. If, in contrast, a
driver’s opportunity cost is very high, the driver would probably
try to finish the trip as fast as possible in order to become
productive again after leaving the vehicle. The corresponding
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Figure 1. Distribution (and fit) of monthly gross income (in Euro) of German
full-time workers in April 2023.3

higher driving speed would, of course, require more fuel and
thus more actual cost.

There is a good rationale to assume that time spent for
traveling is directly linked to economic productivity. The time
to travel a fixed distance is correlated with productivity on
a global level: The higher the productivity of a country and
the according wages, the faster people tend to travel a given
distance [57, 58]. The same correlation also holds true on the
individual level: High individual productivity is associated with
the strong tendency to spend less time traveling and opt for
time saving [59, 60]. Similarly, highly productive humans
(measured in income) are less likely to have patience for
spending their time waiting in line [61]. Individuals’ value
of time is likely very heterogeneous as various groups value
their time differently (see also [62]). While some individuals
could earn a lot of money if they could be productive at work,
others could not. To phrase it differently, the drivers could ask
themselves “what would I earn during the time I (still) need
for completing my trip if I had reached my destination already?”
This time value disparities between individual drivers are best
measured in their opportunity costs of wages, reflecting their
productivity (cf. [63]).

We therefore consider a simple yet traditional and intuitive
mapping from time to a monetary value by looking at peoples’
salary as proposed in our earlier work [25]. The finding that
income and value of time are correlated is well established [60,
64–66]. Specifically, we use real-world statistical data for the
typical monthly gross income of German full-time workers
in April 2023.3 We fit a generic hyperbolic distribution from
scipy4 shown in Figure 1 to the data using the following
parameters:

a ≈ 0.62 , b ≈ 0.39 , p ≈ 1.23

l ≈ 2498.26 , s ≈ 363.96 ,
(2)

where a determines the shape, b the skewness, p the tail, l the
location, and s the scale.

To use the data, we sample values from the fitted distribution
to assign a monetary value to drivers’ time (cost) proportional
to their income. As shown in Figure 1, the values are in 0–
12 000e with a mode of 3000e, median of 3738e, and mean

3Statistisches Bundesamt (Destatis) 2024, statistics available at
https://www.destatis.de/DE/Themen/Arbeit/Verdienste/_Grafik/_Interaktiv/
verteilung-bruttomonatsverdienste-vollzeitbeschaeftigung.html, last accessed:
October 23, 2024.

4https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.
genhyperbolic.html, version 1.10.1
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of 4147e. Since the data and thus the samples from our fitted
distribution are values for the monthly income, we divide a
sample by 160 to transform it into an hourly value, which we
use as the cost per hour travel time. This results in a distribution
of 0–75e with a mode of 18.1e, median of 23.1e, and mean
of 25.7e. Note that the original fitted distribution produces
values larger than 12 000e, which is the maximum value in
the original data source. Therefore, we limit the samples to this
value and the corresponding hourly samples to 75e, resulting
in a small and thus negligible bias towards the right edge of the
distribution. We assume that drivers would choose a desired
driving speed in correlation to their respective monetary value
for time, such that their personal preference is reflected in the
expected travel time.

C. Understanding the Metric: Numerical Analysis

To illustrate the concept of our metric, we perform numerical
simulations for an abstract scenario: We consider a single
vehicle driving a fixed 50 km trip on an abstract empty freeway.
The driver can choose from various monetary values for Ctime ∈
[0, 75]e as cost per hour. Empirical data shows a consistent and
significant correlation between income and desired speed [60,
64–66]. These studies suggest that individuals with higher
incomes tend to travel faster (e.g., elasticity of about 0.2 [64]),
thereby reflecting a higher valuation of time. To capture this
effect, we model the relationship between the time cost Ctime
and desired driving speed of the vehicle vdesired using a linear
function as follows:

vdesired =
55m/s− 22m/s

75e− 0e
· Ctime + 22

m

s
. (3)

Thus, it is in [22, 55]m/s (roughly [80, 200] km/h) with an
average of 130 km/h and mode of 120 km/h.5 We model the
fuel consumption by using the handbook of emission factors for
road transport (HBEFA)6 version 3.1, following the approach
implemented in SUMO and used in our earlier work [28].
In particular, we use values from the PC_G_EU4 emission
class, which represents a gasoline-driven passenger car with an
engine corresponding to the European norm version 4. Thus,
we can calculate the vehicle’s instantaneous fuel consumption
rate given its driving speed and acceleration.

In addition to human driving, we simulate platooning by
assuming the same vehicle is part of a hypothetical platoon.
Applying the approach from our earlier work [28, 67], the
vehicle experiences a constant reduction in fuel consumption
of roughly 12 %7 due to the slipstream effect as a follower. We
model the compromise in driving speed that vehicles often have
to make when driving in a platoon by adjusting the vehicle’s

5The parameters roughly correspond to typical traffic observed on a
German Autobahn with a recommended driving speed of 120–130 km/h and
a wide range of driving behaviors – from slow moving vehicles and trucks
(80 km/h) to high-speed passenger vehicles (200 km/h).

6https://www.hbefa.net/
7According to Bruneau et al. [68], the position of the vehicle within a

platoon, its length, and the gap to the preceding vehicle determine the air drag
reduction. Here, we assume that the vehicle is driving in the middle of the
(hypothetical) platoon, which leads to a corresponding air drag reduction of
27 % (cf. [68, Table 5]). Sovran [69] defines a correlation between the change
of the air drag and the change of the fuel consumption (46 %), which we
utilize to calculate the overall reduction in fuel consumption of 12.42 %.
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Figure 2. Average travel time for human driving and platooning.
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Figure 3. Difference in travel time of platooning to human driving for various
speed adjustments.

desired speed by a constant value in [−5, 5]m/s, albeit limited
to the maximum driving speed of 55 m/s. Thereby, we are
able to show the impact of driving at slightly different speeds
than desired. In the following, we will be calling this updated
driving speed the speed adjustment.

1) Time-Cost-Speed Dependencies: Figure 2 shows the
average total travel time for human driving and platooning
with respect to various values for Ctime as cost per hour. Since
the travel time is inversely proportional to the driving speed, it
decreases with an increasing value of Ctime for both approaches.

The impact of the speed adjustments in platooning is shown
in Figure 3. A negative time difference represents time savings
compared to driving without platooning. The impact is relatively
large at low time costs (low absolute driving speeds). Here, an
absolute difference of 5 m/s changes the speed already by 23 %
at 22 m/s (Ctime = 0e). Additionally, negative adjustments
have a larger impact than positive ones, leading to a slightly
increased average travel time. For high time costs, the impact
is less dominant and savings are less likely due to a bounded
maximum speed.

Figure 4 shows the fuel consumption for human driving and
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Figure 4. Average fuel consumption for human driving and platooning.
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Figure 5. Difference in fuel consumption of platooning to human driving for
various speed adjustments.

platooning. The average fuel consumption increases with an
increasing value of Ctime for both approaches. In platooning,
the fuel consumption is generally lower due to the slipstream
effect. Due to the constant 12 % reduction, the absolute impact
is more dominant at higher absolute driving speeds.

To give more insights into the fuel savings in platooning,
we report the difference in fuel consumption of platooning
to human driving for various speed adjustments in Figure 5.
The relative difference in fuel consumption is negative for all
adjustments, indicating that platooning uses less fuel in all cases
regardless of the speed deviation. Naturally, no adjustment leads
to the constant saving of 12 %. In general, negative adjustments
(i.e., driving slower than desired) require less fuel and thus
lead to larger savings and vice versa for positive adjustments.

However, some interesting effects following the value of
Ctime can be observed. At low values for Ctime (i.e., 0–20e),
an increase of the time cost combined with a positive speed
adjustment leads to a reduction in fuel savings due to the faster
driving speed, while a negative adjustment leads to an increase
due to slower driving. At Ctime = 20e, we can observe the
minimum fuel savings for faster driving due to positive speed
adjustments (e.g., 5 m/s is almost equal to human driving).
On the other hand, for slower driving due to negative speed
adjustments, we observe the maximum fuel savings at Ctime =
30e. At medium to high values for Ctime (i.e., 30–75e), the
driving speed increases even further following the time cost
value. Now, the non-linear growth of the fuel consumption
with driving speed leads to a significantly higher absolute
consumption at higher speeds for both approaches. For positive
speed adjustments, the absolute fuel consumption is larger, but
the constant 12 % reduction due to the slipstream effect also
leads to larger absolute savings. In contrast, when looking at the
negative speed adjustments, we can observe that driving slower
than desired becomes less and less beneficial with increasing
desired speed (time cost) as fuel savings decrease.

2) Total Trip Cost: We now investigate the average total
trip cost Ctrip (our proposed metric) as a function of Ctime. We
show results for various values of Cfuel as cost per liter fuel in
Figure 6. Naturally, the total trip cost increases with the time
cost Ctime as well as the fuel cost Cfuel. Platooning generally
has lower (or equal) trip costs on average, and the difference
to human driving becomes larger at higher time and fuel costs.
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Figure 6. Total trip cost Ctrip (our proposed metric, see Equation (1)) for
human driving and platooning (average with standard deviation for various
speed adjustments). The markers distinguish human driving and platooning.
The color indicates various values for Cfuel (cost per liter).

At Ctime = 0e, the travel time is neglected in the calculation
of the total trip cost such that it only depends on the specific
fuel cost Cfuel. The average total trip cost of platooning is
slightly higher than with human driving due to more negative
speed adjustments and the limited driving speed at the largest
time cost values. The relationship of the fuel cost Cfuel to
Ctrip is straightforward, but the impact of increasing the time
cost Ctime is not immediately intuitive: While the travel time
decreases with larger time cost values (see Figure 2), the total
trip cost increases, but with a decreasing slope. This is due to
the travel time becoming a more significant part of the total
trip cost metric with larger values of Ctime. Thus, driving even
faster at already high speeds has less benefit than driving faster
at slow speeds but can be beneficial at low to medium time
costs. For better understanding, let us consider the curve for
Cfuel = 0e, where only travel time is considered in the total
trip cost. The time cost Ctime is included in both the total trip
cost metric as well as the travel time due to how the driving
speed is chosen (see Equation (3)). Thus, the trip cost metric
becomes a rational function (a ratio of a linear term and a
sum), which leads to a non-linear relationship between the
time cost and the total trip cost, which grows faster than the
time cost itself. A constant curve, for instance, would indicate
that the total trip cost and the driving speed (given by the
time cost) are perfectly balanced, leading to no change in the
combined result, e.g., doubling the speed would half the trip
cost (determined by the travel time), which is not the case.

If the fuel cost is considered (Cfuel > 0e) in the trip cost
metric, larger values decrease the impact of the travel time and
thus the aforementioned effect, making the curve more steep
even for higher time cost values. Thus, saving fuel by driving
slower becomes more relevant, especially at large fuel costs.
However, especially at higher values, the time cost (Ctime)
remains the dominant factor across the considered parameter
range (Ctime ∈ [0, 75]e, Cfuel ∈ [0, 2.5]e). This highlights
the implicit weighting between time cost and fuel cost in our
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Algorithm 1 Heuristic for Trip Cost-based Platoon Formation
Input: list of (available) platooning opportunities in range

estimate cost for the remaining trip driving individually;
for all platooning opportunities do

define case for join maneuver;
estimate distance & cost for join maneuver;
calculate distance shared with platoon;
estimate cost for distance shared with platoon;
if distance still remaining > 0 then

estimate cost for remaining distance;
if sum of costs for platooning < cost for individual driving
then

consider opportunity as feasible;
if feasible opportunities then

select opportunity with minimum cost;
trigger corresponding join maneuver;

Cost Platoon Driving (Section IV-IV-D)

Cost Join
Maneuver

(Section IV-D1)

Cost Shared
Distance

(Section IV-D2)

Cost Remaining
Distance

(Section IV-D3)

Cost Individual Driving (Section IV-IV-C)

Figure 7. Overview of all cost estimation parts of our algorithm.

metric.

IV. INCENTIVE-BASED PLATOON FORMATION

A. Assumptions

We focus on spontaneous individual traffic of passenger cars,
where drivers perform unsynchronized uncorrelated trips on
freeways. We assume drivers can freely customize their trip
based on an individually preferred traveling speed during trip
planning. Vehicles will start their trips driving individually
but immediately start searching for appropriate platooning
opportunities en route. We do not assume that platooning is
generally preferred and instead consider driving individually
(i.e., with ACC) and platooning as equally valid options. The
trips and drivers’ requirements are not known beforehand and,
thus, no pre-planning of platoon configurations can be realized.
We assume that vehicles can collect information about platoons
and other vehicles by means of 4G/5G-based C-V2X or IEEE
802.11p-based DSRC. Similarly, vehicles can exchange infor-
mation for maneuver control and platoon operation. Therefore,
the platoon formation, including (1) computation of vehicle-
to-platoon assignments and (2) performing corresponding join
maneuvers, happens on-demand and en route.

B. Platoon Formation Algorithm

A greedy formation algorithm is periodically executed on the
vehicle in order to evaluate available platooning opportunities.
Our recent work showed that such greedy heuristics perform

very well in comparison to a global optimum, and are much
faster in terms of finding a suitable platoon [28]. Forming
platoons always consists of the following steps: (1) data
collection of available vehicles and platoons, (2) computation
of vehicle-to-platoon assignments depending on the selected
approach, (3) execution of join maneuvers to implement the
computed assignments.

Using information about nearby vehicles, every vehicle
performs the heuristic given in Algorithm 1 for forming an
appropriate platoon. For every available platooning opportunity,
the algorithm estimates the total cost for the remaining trip
under the assumption of joining the target platoon (or forming a
new platoon), and compares it to the (estimated) cost of driving
individually (i.e., with ACC), using our total trip cost metric
from Section III. Thereby, we consider (cumulative) quantitative
benefits of ACC and platooning, instead of (instantaneous)
qualitative aspects such as (current) deviation in driving
speed (cf. [28, 47, 48]). If a vehicle cannot find a feasible
platooning opportunity, it continues to drive alone using ACC.
Feasibility is determined only by comparing the trip costs
and independent of a platooning opportunity’s deviation in
(desired) driving speed (cf. [28]). The trade-off between travel
time and fuel consumption given by the driving speed is done
exactly by applying the trip cost metric. An upper limit for
the deviation would artificially constrain platooning options,
making the algorithm less flexible. An overview of all parts of
the estimation including pointers to corresponding sub-sections
is shown in Figure 7.

Among all feasible platooning opportunities with a lower
estimated cost than driving alone, our algorithm picks the
one with the smallest cost and triggers a corresponding join
maneuver. Vehicles can join other vehicles or already existing
platoons at the front or at the back, thereby becoming the
new platoon leader or the new last member, respectively. A
joining vehicle has to close the gap to the target platoon by
either speeding up or slowing down, depending on its position,
and adjust its speed to the speed of the platoon. Vehicles
consider the overall maneuver time under ideal conditions, i.e.,
neglecting potential interference due to traffic conditions, for
simplicity. Solutions for coping with other vehicles interfering
the maneuvers have been proposed [12, 15, 70], but are not in
the focus of this work.

After successful completion of the join maneuver, vehicles
are driving with CACC and stay in the platoon as long
as possible, i.e., until they reach their destination or all
other platoon members leave.8 Assuming a fully operational
cooperative adaptive cruise controller, vehicles in a platoon
always mirror the behavior of the platoon leader and keep
a constant gap of 5 m [8, 10]. If the platoon leader leaves
the platoon, the next remaining vehicle within the formation
becomes the new leader, keeping all properties of the platoon.
If all other platoon members leave the platoon, the vehicle

8In this work, we focus on a single platoon assignment in order to
understand the effects of the speed trade-off in comparison to our recent
work [28]. However, our approach using the total trip cost metric can also
be applied to continuous evaluation of available platooning opportunities that
potentially leads to switching to a better platoon.
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continues to drive individually and starts searching for new
platooning opportunities.

C. Estimating the Trip Cost for Individual Driving

On every execution of the formation algorithm, it first estimates
the cost for the remaining trip distance assuming individual
driving with ACC. This cost serves as a baseline for selecting
the platooning opportunities resulting in cost saving. Using the
vehicle’s desired driving speed defined by the driver’s time cost
value Ctime, we first estimate the remaining travel time. Then,
the fuel model from our earlier work [28] (cf. Section III-III-C)
is used to estimate the fuel consumption rate for driving at
the desired speed. Using the estimated fuel consumption (in
liters) and the estimated travel time (in hours), we calculate
the estimated trip cost using our total trip cost formula given
in Equation (1).

D. Estimating the Trip Cost for Platoon Driving

The total cost for platooning consists of the following parts: (1)
the cost for a corresponding join maneuver (see Section IV-D1),
(2) the cost for the part of the trip that can be driven in the target
platoon, and (3) the cost for the remaining part of the trip after
all other platoon members left (see Section IV-D3). Of course,
these costs are a function of the quality of the vehicle-to-platoon
assignment algorithm. If the total of these costs is lower than
the cost of individual driving, the corresponding platooning
opportunity is considered feasible. Thereby, we make sure that
driving individually (i.e., with ACC) always stays a valid option
if beneficial in terms of the total cost for the remaining trip,
not enforcing platooning like pure similarity-based approaches
(cf. Section II-II-A). Additionally, we are able to balance the
trade-off between a well-fitting platooning opportunity and a
lengthy join maneuver, which pure similarity-based approaches
can not.

1) Join Maneuver: While estimating the trip cost including
travel time and fuel consumption for a fixed distance and a
given desired speed is straightforward, estimating the cost for a
join maneuver is more difficult. We model every join maneuver
case by the following steps: (1) adjusting the current speed
of the joiner to a constant speed for approaching the target
platoon (closing the gap), (2) closing the gap to the target
platoon by driving at this constant speed, and (3) adjusting
the current speed of the joiner to the current speed of the
target platoon. Depending on the specific situation, the joiner
will need to accelerate or decelerate in steps (1) and (3). We
generally assume that maneuvers will not be performed as fast
as possible by always accelerating to the maximum possible
speed for approaching, even if the joining vehicle is already
faster than the target platoon. Instead, the constant speed for
closing the gap is defined based on the current driving speed of
the target platoon and a fixed coefficient (e.g., 15 %). However,
we enforce at least a 1 m/s speed difference between the joiner
and the target platoon to finish a join maneuver in reasonable
time.

First, we estimate the distance and time required for steps (1)
and (3), and use the result together with the estimated distance
the target platoon will be driving during the join maneuver

to estimate step (2). If the gap between joining vehicle and
target platoon can be closed already in step (1) or in steps
(1) & (3) combined, step (2) is skipped. Second, we estimate
the fuel required for each step as the product of time and
fuel rate at either constant acceleration & deceleration (with
average speed of the steps (1) and (3)), or constant speed (with
0 acceleration). Finally, we sum up the distance, time, and fuel
for all steps and estimate the total cost for the join maneuver
by applying our trip cost metric.

2) Shared Distance Driving in Platoon: After estimating
the distance driven during the join maneuver, we calculate
the part of the remaining trip that the vehicle can actually
drive in the target platoon. We call this the shared distance.
If all other (already existing) members of the target platoon
reach their destination and, thus, leave the platoon earlier than
the searching vehicle reaches its destination, it will need to
switch to driving individually. In order to calculate the shared
distance, the algorithm first finds the furthest destination of
all platoon members. If this destination is further than the
searching vehicle’s destination, it can actually share the entire
remaining trip with the platoon. Otherwise, the shared distance
is the distance until the furthest destination subtracted by the
distance required for the join maneuver. We can now estimate
the total cost for the shared distance based on the estimated
travel time and fuel consumption. Instead of the vehicle’s
desired driving speed, this time, we use the desired driving
speed of the platoon. For the calculation of fuel consumption,
we need to consider that vehicles can join a platoon as a new
leader at the front or as a new last vehicle at the end. Thus,
we calculate the reduction in fuel consumption (and emissions)
based on their position within the platoon [68] after joining.
We apply the constant reduction (either 5 % as leader or 11 %
as last vehicle) to the calculated fuel consumption to integrate
the slipstream effect in the trip cost estimation.

3) Remaining Distance: The remaining distance can be
calculated by subtracting the shared distance and the distance
required for the join maneuver from the distance of the entire
trip. This remaining distance will be driven using ACC at the
vehicle’s original desired driving speed. Thus, the estimation of
the cost for this part of the trip follows the individual driving
case (cf. Section IV-IV-C). Note that, even though we assume
the vehicle will drive individually for the given part of the trip,
this might not be the case later on. The vehicle might find and
join another platoon, profiting again from platooning benefits.

V. EVALUATION

We evaluate our proposed trip cost-based platoon formation
algorithm by comparing it to an existing, similarity-based
vehicle-to-platoon assignment algorithm and two baseline
approaches without platooning. In the following, we first
present the simulation setup in Section V-V-A. We then report
results for a time monetization using real-world statistical data
for workers’ income (see Section III-III-B) in Section V-V-B.
Finally, we present results for an artificial monetization of
drivers’ time cost value in Section V-V-C.
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Table I
SIMULATION PARAMETERS FOR ROAD AND TRAFFIC.

Parameter Value

Freeway length 100 km
Number of lanes 3
Ramp interval 10 km
Depart positions random on-ramp
Arrival positions random off-ramp at trip end

Car Following model Krauss, ACC, and CACC
Krauss desired headway 1 s
ACC desired headway 1 s
CACC desired gap 5 m
Max. speed 55 m/s (roughly 200 km/h)
Max. acceleration 2.5 m/s2

Max. deceleration 10 m/s2

Fixed trip length 50 km
Cost of 1 h Ctime according to distribution
Desired speed according to cost of 1 h Ctime
Min. desired speed 22 m/s (roughly 80 km/h)
Max. desired speed 55 m/s (roughly 200 km/h)

Desired density 5, 10, 15, 20 and 25 veh/km/lane
Desired no. of vehicles 1500, 3000, 4500, 6000 and 7500 veh
Departure rate 3564, 7129, 10 693, 14 257 and 17 822 veh/h

A. Simulation Setup

We aim to analyze the behavior of the platoon formation
algorithms and observe corresponding platooning benefits in a
large-scale scenario with many vehicles. All results presented
in the following were obtained in a large-scale simulation
study using PlaFoSim,9 which is tailored towards simulation
of platoon management rather than microscopic control of the
involved vehicles [34]. In our study, we conduct individual
simulations for the following approaches:

• human driving – manual driving (following the Krauss
model [71]).

• ACC – vehicles controlled by ACC [72, Eq. 6.18].
• similarity-based platooning – vehicle platooning (CACC)

using the distributed greedy approach from [28].
• trip cost-based platooning – vehicle platooning (CACC)

using our proposed approach (see Section IV).
We follow the scenario and general methodology described

in our recent work [28] for better comparability: We consider
a 3-lane freeway of 100 km length with periodic on-/off-
ramps every 10 km, which allow vehicles to enter and leave
the freeway. Vehicles perform trips of 50 km between a pair
of randomly (equally distributed) selected on-/off ramps. To
abstract from the detailed dynamics of merging from an on-
ramp onto the freeway, vehicles are initialized directly at their
designated position on the freeway, using their desired driving
speed and occupying the right-most feasible lane. Similarly,
the process of merging from the freeway onto an off-ramp is
simplified by removing (individually driving) vehicles from
the simulation once they reach their assigned destination. We
assume a road network without any disturbances to the road
infrastructure (e.g., by road construction) or by traffic accidents.

Vehicles start their trips driving individually, using either the
popular Krauss model [71] for human driving or a standard

9https://www.plafosim.de/, version 0.17.3

Table II
SIMULATION PARAMETERS FOR FORMATION LOGIC.

Parameter Value

Penetration rate 100%
Execution interval 60 s
Communication range for advertisements 500 m

For similarity-based platooning (cf. [28]):
Speed Window m 0.2
Search range r 1000 m
Weight of speed vs. position α 0.5

ACC [72, Eq. 6.18], the de facto standard for all modern
vehicles. They use a constant time-based safety gap, realistic
acceleration & deceleration limits (see Table I), and safe
maneuvering logic in order to avoid collisions. All vehicles
obey traffic rules, including lane-keeping (i.e., “keep-right”)
and desired speed targets. We model vehicle demand in a
macroscopic way: vehicles are created at a constant insertion
(departure) rate in order to maintain a fixed desired traffic
density (see Table I and [28, Eq. 14-16]). We do so because
we are only interested in a relative comparison between the
approaches and not in the maximum possible traffic flow
for every approach. In line with our previous work [28], we
chose 25 veh/km/lane as highest traffic density as, at higher
densities, the scenario is too crowded to insert further vehicles
in all simulated approaches. We assign desired vehicle speeds
following the drivers’ hourly time cost Ctime distribution as
described in Section III-III-C. We assume that drivers who
assess more value to their time also tend to drive faster to reduce
the travel time (cf. Section III-III-B). The desired driving speed
is in [22, 55]m/s (roughly [80, 200] km/h) with an average of
130 km/h and mode of 120 km/h (cf. Section III-III-C). All
vehicles use a fixed fuel cost Cfuel = 1.84e/L, reflecting the
typical price of Euro-super 95 fuel in Germany during April
2023 – the reference period for the income data shown in
Figure 1.10 This allows a focused evaluation of the impact of
personal time valuation, while anchoring fuel cost in a realistic
and consistent baseline. The relationship between time cost
and fuel cost is explored analytically in Section III-C2. The
fuel consumption of a vehicle is calculated and estimated using
the approach described in Section III-III-C. A summary of all
simulation parameters for the road network and traffic can be
found in Table I.

In both platooning approaches, platoon formation is per-
formed in regular intervals every 60 s. We assume that vehicles
have information (i.e., desired speed, speed, position, destina-
tion, platoon state, and maneuver state) about all other cars
within their communication range (500 m). Vehicles can join
other vehicles or already existing platoons at the front or at
the back, thereby becoming the new platoon leader or the
new last member, respectively. After successfully completing
the join maneuver, platoon members use a standard CACC
with constant spacing [8, Eq. 6] and stay within the platoon

10Price with taxes on April 3, 2023 according to https://energy.ec.
europa.eu/document/download/906e60ca-8b6a-44e7-8589-652854d2fd3f_
en?filename=Weekly_Oil_Bulletin_Prices_History_maticni_4web.xlsx, last
accessed October 23, 2024

https://www.plafosim.de/
https://energy.ec.europa.eu/document/download/906e60ca-8b6a-44e7-8589-652854d2fd3f_en?filename=Weekly_Oil_Bulletin_Prices_History_maticni_4web.xlsx
https://energy.ec.europa.eu/document/download/906e60ca-8b6a-44e7-8589-652854d2fd3f_en?filename=Weekly_Oil_Bulletin_Prices_History_maticni_4web.xlsx
https://energy.ec.europa.eu/document/download/906e60ca-8b6a-44e7-8589-652854d2fd3f_en?filename=Weekly_Oil_Bulletin_Prices_History_maticni_4web.xlsx
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Figure 8. Average driving speed (with standard deviation) under different traffic densities. The x-axis shows various values for Ctime (cost per hour) based on
the income-based distribution (see Section III-III-B). The dashed lines indicate the maximum desired driving speed of 55 m/s (also the maximum possible
speed).

until they reach their destination ramp. Platoon leaders use
ACC, while followers use a simplified CACC implementation,
abstracting low-level control, wireless communication details,
and platooning maneuvers [34]. We generally assume robust
and string-stable CACC operation, as safety aspects such as
handling sudden disturbances or system failures are beyond
the scope of this work. Moreover, we assume a penetration
rate of 100 % for platooning capabilities on top of ACC in
both platooning approaches.11 A summary of all simulation
parameters for the platoon formation can be found in Table II.

We simulate 7200 s (2 h) of traffic in multiple repetitions for
every approach after pre-filling the road with the desired number
of vehicles, using the different (fixed) traffic density values.
We only consider results from vehicles that departed after an
initial transient period of 1800 s (0.5 h). We simulate 5 runs
per density and approach, resulting in a total of 100 individual
simulation runs for each time monetization configuration.

B. Time Monetization using Real-World Data

We study the performance of our platoon formation algorithm
using the trip cost metric to optimize drivers’ trip costs. We
first use real-world statistical data for drivers’ personal time
cost value to achieve realistic results.

1) Driving Speed: Figure 8 shows the average driving speed
(with standard deviation) for human driving (blue), ACC (or-
ange), similarity-based platooning (green), and trip cost-based
platooning (red) for different Ctime (cost per hour) values and
different vehicle densities. Following the configuration of the
desired speed and the effects explained in Section III-III-C,
the driving speed increases proportional to the drivers’ time
cost due to the correlated desired driving speed. Note that the
actual driving speed can differ from the desired speed, since
vehicles are influenced by speed adjustments due to platooning
decisions as well as by traffic. In general, we can observe
that the speeds of human driving, ACC, and similarity-based

11While lower penetration rates leading to a mixed-traffic environment
are more realistic for the future deployment of platooning, we focus on its
effects in large-scale environments. High penetration rates of platooning have
been shown to increase traffic flow, mitigate traffic oscillations, and enhance
safety in mixed-traffic scenarios [73]. By assuming a 100 % penetration rate,
our study provides an upper bound on the potential benefits of platooning in
future deployments. Nonetheless, independent of the actual penetration rate,
all vehicles can already benefit from ACC, and some will additionally benefit
from platooning.

platooning are mostly similar, but trip cost-based platooning
almost always leads to significantly increased driving speed.
While human driving and ACC can only drive as fast as their
desired speed, both platooning approaches actually can exceed
their desired speed in order to find (and join) suitable platooning
opportunities. In similarity-based platooning, positive and
negative speed adjustments are equally possible as long as
the relative deviation is within the defined speed window (i.e.,
20 %). However, in reality, the deviation in this approach is
often negative and larger due to traffic effects.

As can be seen, similarity-based platooning has a lower
positive deviation than trip cost-based platooning, resulting
also in a lower actual driving speed. In general, this approach
has no upper limit for speed adjustments and thus always tries
to maximize the driving speed depending on the time cost
value. If a driver is comfortable only until a certain driving
speed, they can use a low time cost value that will favor slower
driving in most cases. An upper limit, similar to the speed
window used in similarity-based platooning may improve the
driving experience if slower driving is preferred. However, such
a limit would generally constrain platooning options, making
the algorithm less flexible and thereby reducing the feasibility
of platooning. On the other hand, a larger speed window for
similarity-based platooning increases platooning opportunities
but leads to more deviation from the desired driving speed [28]
and can thus lead to increased cost. The investigation of such
speed limits was not the main focus of this work.

When increasing the desired vehicle density in the scenario,
the effects of traffic become prominent, and reduce the vehicles’
driving speed. At mid to high densities, human driving and
ACC allow for faster driving than similarity-based platooning
at large time costs. The reason is that only a few platooning
opportunities exist at these high time cost values, requiring
the algorithm to pick slower-driving vehicles and platoons.
In comparison, trip cost-based platooning achieves a higher
driving speed under the same condition since this approach
allows driving individually if there is no beneficial platooning
opportunity. In general, platooning can cope better with
crowded traffic due to many more vehicles being synchronized,
which is in line with previously reported results [28].

2) Travel Time: Figure 9 shows the average travel time
(with standard deviation) for human driving (blue), ACC (or-
ange), similarity-based platooning (green), and trip cost-based
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Figure 9. Average travel time (with standard deviation) under different traffic densities. The x-axis shows various values for Ctime (cost per hour) based on the
income-based distribution (see Section III-III-B).
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Figure 10. Average fuel consumption (with standard deviation) under different traffic densities. The x-axis shows various values for Ctime (cost per hour)
based on the income-based distribution (see Section III-III-B).

platooning (red) for vehicles’ fixed 50 km trip and different
vehicle densities. The x-axis shows various values for Ctime
(cost per hour). The travel time follows the patterns observed
from the driving speed as drivers with larger time costs have
shorter travel times due to the higher (desired) driving speed.
Among all time costs and densities, trip cost-based platooning
leads to the shortest travel time due to the higher driving speed
and the smoother traffic flow. Using ACC leads to the largest
travel time due to a decreased driving speed of all vehicles
being synchronized in dense traffic. The slope of the travel
time curve becomes less steep with increasing density. This
indicates that higher demands for driving speed (given by the
time cost) become less effective if the traffic increases, which
we have observed already in Figure 8 and Section III-C1. While
platooning generally leads to the shortest travel time, similarity-
based platooning achieves worse results than human driving
and ACC for high time costs at the largest densities.

3) Fuel Consumption: We show the average fuel con-
sumption (with standard deviation) for human driving (blue),
ACC (orange), similarity-based platooning (green), and trip
cost-based platooning (red) in Figure 10 for vehicles’ fixed
50 km trip and different vehicle densities. The x-axis shows
various values for Ctime (cost per hour). A larger value for
Ctime in general increases the fuel consumption, while a higher
vehicle density in general reduces the fuel consumption due
to reduced speed in traffic. For human driving, starting at
15 veh/km/lane, the traffic is not in free flow mode anymore
as vehicles begin to significantly influence each other’s driving
behavior (cf. [74]). Under these conditions, gaps between
vehicles approach the desired safety gap, causing frequent
acceleration & deceleration maneuvers, which in turn increase

fuel consumption. Synchronized driving using ACC already
helps reducing fuel consumption, but also suffers from reduced
driving speed due to traffic effects (cf. Figure 8). For platooning
approaches, fuel consumption (also related to driving speed)
is influenced by traffic effects and platoon formation. Vehicles
using similarity-based platooning almost always consume less
fuel than with trip cost-based platooning, and often also
less than human driving and ACC. The reason is, similarity-
based platooning allows slower driving based on the speed of
other vehicles in the target platoon, whereas trip cost-based
platooning often leads to a faster driving as long as it improves
the overall trip cost. Note that trip cost-based platooning
generally outperforms ACC at the highest density although
it is driving faster (cf. Figure 8).

4) Total Trip Cost: Figure 11 shows the average gain in total
trip cost Ctrip (as defined by our metric in Equation (1)) for
human driving (blue), similarity-based platooning (green), and
trip cost-based platooning (red), relative to ACC (orange). A
positive gain indicates a reduction in total trip cost Ctrip, while
a negative value reflects an increase in total trip cost relative
to ACC. As expected, we can observe that both platooning
approaches generally lead to a positive gain in comparison to
ACC, while human driving almost always has no or even a
strongly negative gain. Our proposed formation algorithm used
in trip cost-based platooning consistently yields the highest
overall gain, achieving improvements of up to 13 % in total
and outperforming the similarity-based platooning approach
by as much as 6 %. This is caused by the higher driving speed
in combination with the slipstream effect in platooning.

When fuel consumption is prioritized over time (lowest
values of Ctime), all approaches perform rather similarly. This
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Figure 11. Average gain on trip cost Ctrip relative to ACC. Positive values indicate a trip cost Ctrip lower than ACC. The x-axis shows various values for Ctime
(cost per hour) based on the income-based distribution (see Section III-III-B).
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Figure 12. Average gain on trip cost Ctrip relative to ACC. Ctime (cost per hour) values are sampled from a bathtub distribution.

is due to the fact that only a few such cars exist at corresponding
time cost values according to the income distribution. As a
result, these vehicles drive mostly alone. At medium time
cost values, we observe a valley in the gain curves for both
platooning approaches due to an initial decrease followed by
an increase. According to the distribution used for the time
monetization, most of the vehicles sample a medium value
for Ctime, i.e., in 15–40e. Hence, the desired speed remains
rather low and demands are rather similar such that vehicles
can achieve a smooth traffic flow using ACC.

When further increasing the time cost, generally ACC leads
to a lower driving speed than platooning approaches, resulting
in longer travel time. For high densities, this effect is reversed as
platooning helps increase road capacity and fewer traffic-related
effects are observed. At the largest density, trip cost-based
platooning becomes again increasingly beneficial at high time
cost values as several platooning opportunities exist also for
high speed demands and the algorithm. In contrast, the strict
platooning requirement of similarity-based platooning leads to
joining mostly slower driving vehicles, resulting in a negative
gain in comparison to ACC.

C. Artificial Time Monetization
To demonstrate the general applicability and benefits of our
proposed platoon formation algorithm, we now present results
based on a different, more artificial time-cost distribution.
While we experimented with multiple distributions, we found
the bathtub distribution particularly interesting. It represents
a scenario where all monetary interest values are generally
present, but the extremes are emphasized: (a) those who place
minimal importance on travel time, and (b) those who prioritize
travel time above all else.

Figure 12 shows the results again in form of the average
gain in total trip cost Ctrip for human driving, similarity-
based platooning, and trip cost-based platooning, relative
to ACC. Platooning starts with substantial gains at low time
cost values due to the abundance of vehicles, which presents
ample opportunities for forming platoons. However, these
gains quickly diminish at mid-range time cost values due to
the reduced number of vehicles available. For higher cost
values, the benefit increases significantly. This is due to
the platooning gain both in terms of faster driving as well
as the slipstream effect. Here, trip cost-based platooning
achieves slightly improved gains compared to similarity-based
platooning due to the absence of a speed window, allowing for
more feasible platooning opportunities. Only for high traffic
densities, the effect is diminished as the road occupancy is too
high for significant gains. Nonetheless, these results illustrate
that our approach functions even in an edge-case scenario with
extreme values for drivers’ time valuation.

VI. DISCUSSION

In this section, we discuss relevant remarks and limitations of
our proposed trip cost-based platooning approach.

A. Assumptions on CACC Stability and Safety

In this work, we assume robust, string-stable CACC opera-
tion on an idealized, disturbance-free freeway (see Section V-
V-A). These simplifying assumptions allow us to focus on the
core effects of platoon assignment and formation strategies.

Stable and efficient CACC-based platooning, such as under
constant spacing policies [8], is technically feasible if key
conditions are met [2, 75]. String stability requires that
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vehicles exchange accurate state data (e.g., speed, acceleration)
with neighbors – typically the platoon leader and immediate
predecessor – at sufficiently high frequency [2].

In real-world settings, communication may suffer from
issues such as congestion, delay, or message loss. To en-
hance robustness, multi-technology CACC systems integrate
heterogeneous V2X technologies, including DSRC, C-V2X,
visible light communication (VLC), and mmWave [76–83].
Additional resilience can be achieved through time-delay
compensation [84], packet loss mitigation [85], predictive
filtering [86], or by utilizing data from the vehicle closest to
the intended source [87]. Moreover, fallback mechanisms are
also critical for maintaining safety during degraded operation.
Typical strategies include switching to ACC or dissolving
the platoon. As abrupt fallback may reduce safety in dense
formations [88, 89], graceful degradation schemes have been
proposed [86, 90]. More advanced controllers dynamically
adapt control laws (e.g., switching from constant spacing [8] to
time-based headway [91]) based on current link conditions [92]
and even take human-driver interactions into account [21].

In case of sudden traffic disruptions (e.g., obstacles or
accidents), emergency braking protocols (e.g., [93]) remain
effective under CACC [94–96]. It is important to note that while
individual vehicle failures or sudden, driver-initiated maneuvers
within a platoon may pose risks, such hazards are not unique
to platooning and are equally present in conventional traffic
scenarios. Should a platoon dissolve, our assignment algorithm
can be re-applied to form new platoons once the situation
stabilizes.

B. Misestimation of Platooning Benefits & Trip Costs

Our trip cost-based platooning approach uses the desired
driving speed for estimating the remaining trip cost during
the decision-making. The actual driving speed of vehicles
can be (much) lower than the desired driving speed due to
traffic effects. This will cause misestimations of the individual
trip cost, the maneuver cost, and platoon benefits (mainly
in travel time savings), thereby also of the remaining trip
cost. Additionally, updates to a platoon’s desired speed upon
joins and leaves, if considered, will lead to a deviation from
the speed used during estimation. In fact, similarity-based
platooning suffers from the same effects after decision-making.
While we did observe small misestimations of join maneuver
costs (roughly 1 %), maneuvers make up for only a small part
of the 50 km trips, and can thus be neglected. A potential
solution to reduce misestimation of the actual driving speed is
to apply a correction coefficient to the desired driving speed of
platooning opportunities. This coefficient should depend on the
current traffic situation (e.g., density or flow) and, in reality,
could be estimated directly by vehicles. While this correction
coefficient could reduce misestimations, it makes vehicles more
conservative in joining platoons at the same time.

Additionally, misestimation of trip costs can occur due
to underestimating the distance vehicles travel in a platoon.
Vehicles calculate the distance shared with the platoon before
it fully splits due to other members leaving. If other vehicles
with a destination further than the one of the ego vehicle join

the same platoon, the platoon will not automatically split fully
at the initially estimated location, as it still has other members.
Thus, the vehicle will stay longer in the platoon than estimated
(i.e., until it reaches its destination). This situation generally
results in greater platoon benefits, as the desired driving speed
of a platoon remains unchanged when new vehicles join, and
a longer distance is traveled with reduced air drag.

C. Time Monetization

We base our time monetization on income as a proxy for
productivity, which correlates with individuals’ pace of life and
travel behavior. To account for drivers’ heterogeneity, we assign
monetary values to travel time using a distribution rather than a
fixed, arbitrary value. In reality, individuals would choose such
monetary value, but may overestimate their opportunity costs.
One opportunity to avoid that would be to insert an hourly
wage based on the payslip as an upper boundary for the cost of
time for each individual. While we use real-world income data
to model opportunity cost, validating the correlation between
this cost and actual driving behavior with real-world traffic data
remains challenging. This difficulty arises because individual
driving behaviors are significantly influenced by platooning and
related maneuvers, which create synthetic traffic conditions that
differ from those captured in conventional traffic datasets [97].

Our approach abstracts from personal preferences beyond
opportunity costs. For example, some drivers may enjoy
speeding despite low opportunity costs, while others may
prioritize fuel savings even when their time is highly valued.
Additional factors – such as the total amount of spare time
or the perceived joy of “leisure time” – can also influence
how individuals value time. Moreover, drivers may respond
differently to peer effects (e.g., seeing many vehicles in a
platoon) [98] or to moral considerations, such as guilt over not
minimizing energy consumption and pollution.

While heterogeneity in individual preferences certainly
exists [55], these preferences are inherently subjective and
typically known only to the individual. As a result, we
do not explicitly model strong subjective aspects such as
driving comfort. Although proxies like driving smoothness
or time spent as a follower in a platoon are measurable and
likely correlate with comfort [4], they are not necessarily the
most relevant factors in the context of automated driving
systems [4]. Moreover, their value is again dependent on
individual perception – some drivers may regard following time
as restful “leisure time”, while others may view it as a loss of
autonomy. In both cases, we currently lack a meaningful way
to assign personal valuation to these proxies. This limitation
is not unique to our monetization-based approach, but applies
broadly to attempts to incorporate comfort as an optimization
criterion. Doing so would require either additional assumptions
not grounded in empirical evidence or actual empirical data
on subjective valuation, which falls outside the scope of this
work.

In addition to inter-individual differences, situational factors
– such as current conditions (e.g., road, weather, traffic), trip
purpose (e.g., business or leisure), and driver mood (e.g.,
relaxed or agitated) – can further influence drivers’ value of
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time and, consequently, their desired driving speed. Previous
empirical findings in this area, however, remain inconclusive.
For instance, Tseng [99] finds more speeding for business-
related trips, whereas Zhang et al. [100, 101] find more speeding
on weekends than on workdays.

Given the ambiguities and the lack of reliable, individual-
level data on the influence of such factors on time valuation,
we concentrate on income – a variable with a well-established
correlation to desired speed. Nonetheless, real-world prefer-
ences vary across drivers irrespective of income and may also
fluctuate within individuals based on context. Many of the
personal preferences, however, are at least indirectly captured
through the concept of opportunity cost, which remains central
to our modeling approach.

The decision to use systems like ACC and platooning also
depends on psychological aspects such as perceived safety &
comfort, perceived control, and mental effort [98, 102–104]
that affect drivers’ acceptance of the technologies. These
aspects are not captured in our approach due to the challenge
of quantifying subjective trust or discomfort. Nevertheless,
future extensions could include psychological preferences
as constraints (e.g., enforcing a minimum accepted gap or
maximum accepted deceleration) or through probabilistic
adoption models reflecting heterogeneous acceptance.

In this work, we generally assume a 100 % penetration rate
and that drivers will adopt platooning if it yields net utility
(lower cost), based on their personal preferences. While more
detailed behavioral models could enhance realism, they would
complement rather than contradict our current approach. As
shown in Section V, our proposed platoon formation algorithm
functions even in high density traffic and extreme time cost
distributions.

D. Application to Electric Vehicles

To apply our trip cost metric and platoon formation algorithm
to electric vehicles (EVs), the fuel component must be adjusted.
Specifically, fuel consumption fueltrip and fuel price Cfuel can
be replaced with energy consumption and recharging costs.
Additionally, the time spent recharging and waiting at charging
stations can be incorporated into the overall travel time (cf.
[105]). An important aspect that requires further investigation
is that electric vehicles can recuperate energy during braking,
which can affect both the final trip cost and platooning decisions
due to the potential overestimation of energy consumption.
As frequent acceleration & deceleration maneuvers caused by
vehicle interactions can lead to more energy recuperation [106],
automated driving using ACC in crowded conditions (i.e., mid
to high traffic densities) might become more advantageous.
However, the overall benefit will still depend on the driver’s
time cost value. The impact of energy consumption on the
trip cost metric is significant only when time costs are low
to moderate. Overall, we would expect reduced gains from
platooning in scenarios with crowded traffic, but significant
benefits in other cases (e.g., very low and very high traffic
densities, or high time cost values).

VII. CONCLUSION

The benefits of ACC and platooning have been researched for
decades. While classic ACC became the de facto standard for
all new cars as well as for (semi-)automated driving on the
freeway, debate about the lasting impact of platooning is still
ongoing. Both offer macroscopic and microscopic benefits such
as improved traffic flow and safety as well as reduced fuel
consumption. While these benefits are rather well understood
for trucks and utilized in truck platooning, they are less clear
for passenger cars. Accordingly, it remains unclear how to
form platoons of passenger cars that optimize the personal
benefit for the individual driver.

To this end, in this paper, we proposed a novel platoon
formation algorithm that optimizes the personal benefit for
drivers of individual passenger cars. For computing vehicle-
to-platoon assignments, the algorithm utilizes a new metric
that we propose to evaluate the personal benefits of various
driving systems, including platooning. By combining fuel and
travel time costs into a single monetary value, drivers can
estimate overall trip costs according to a personal monetary
value for time spent. This provides an intuitive way for drivers
to understand and compare the benefits of driving systems
like human driving, ACC, and, of course, platooning. To the
best of our knowledge, this is the first study to evaluate and
optimize drivers’ personal benefits from driving systems using
a dedicated metric and an algorithm for platoon formation.

Our vehicle-to-platoon assignment algorithm estimates trip
costs for both individual driving with ACC and platooning,
selecting the option with the lowest cost. It considers both join
maneuver costs and the platoon distance for more accurate
estimations. Thereby, it optimizes individual drivers’ personal
benefits based on their personal value for time spent. Results
show that while ACC consistently outperforms human driving,
it lacks behind platooning, especially in medium to high-
density traffic. Our algorithm for platoon formation outperforms
traditional similarity-based platooning by as much as 6 %, even
in high density traffic and extreme time cost distributions. It
optimizes drivers’ personal benefits by balancing fuel savings
and faster travel times, particularly well when many drivers
have similar time costs. Unlike traditional similarity-based
approaches, our algorithm is more flexible by performing
platoon formation only when beneficial, and without strict
constraints for filtering opportunities.

In future work, we want to investigate how we can avoid
misestimations of platooning benefits and trip costs by detecting
mismatches in speed caused by traffic effects and leaving the
platoon at the initially planned location. We further aim to
allow the algorithm to continuously estimate the cost for the
remaining trip in order to react to changes in platoon benefits.
Alongside these optimizations, we have yet to understand the
impact of the total trip length on the platooning benefits. To
better capture real-world dynamics, we plan to adopt more
sophisticated traffic simulation models that incorporate driver
heterogeneity and stochastic variability. Finally, we plan to
consider more aspects of time monetization, such as personal
preferences and time-invariant as well as time-variant aspects.
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