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Abstract

New technologies for sensing and communication act as enablers for cooperative driving applications. Sensors are able to
detect objects in the surrounding environment and information such as their current location is exchanged among vehicles.
In order to cope with the vehicles’ mobility, such information is required to be as fresh as possible for proper operation of
cooperative driving applications. The age of information (AoI) has been proposed as a metric for evaluating freshness of
information; recently also within the context of intelligent transportation systems (ITS). We investigate mechanisms to
reduce the AoI of data transported in form of beacon messages while controlling their emission rate. We aim to balance
packet collision probability and beacon frequency using the average peak age of information (PAoI) as a metric. This
metric, however, only accounts for the generation time of the data but not for application-specific aspects, such as the
location of the transmitting vehicle. We thus propose a new way of interpreting the AoI by considering information
context, thereby incorporating vehicles’ locations. As an example, we characterize such importance using the orientation
and the distance of the involved vehicles. In particular, we introduce a weighting coefficient used in combination with
the PAoI to evaluate the information freshness, thus emphasizing on information from more important neighbors. We
further design the beaconing approach in a way to meet a given AoI requirement, thus, saving resources on the wireless
channel while keeping the AoI minimal. We illustrate the effectiveness of our approach in Manhattan-like urban scenarios,
reaching pre-specified targets for the AoI of beacon messages.
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1. Introduction

Vehicles are becoming more capable in terms of sensors
and computing power, we can already see first deploy-
ments of intelligent transportation systems (ITS). They are
able to do real-time monitoring of their surrounding envi-
ronment, which allows detection of objects such as other
vehicles or pedestrians. Such a detection can help in taking
driving decisions and might be performed collaboratively
among vehicles. Vehicle-to-everything (V2X) communica-
tion technologies such as IEEE802.11p (often referred to
as distributed short-range communication (DSRC)), and
cellular V2X (C-V2X) allow exchanging of information with
other vehicles or roadside infrastructure. Such communi-
cation capability enables cooperative driving applications,
which bring a set of new features and services for today’s
driving, but also demands new communication strategies
for proper operation [1].

Such applications require fresh (up-do-date) informa-
tion from other vehicles to operate properly. Due to the
inherent mobility of ITS, location-information may become
outdated and eventually no longer relevant to an appli-
cation because of position changes. To ensure up-to-date
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information, vehicles exchange their location with regular
beacons messages, such as cooperative awareness messages
(CAMs) [2]. Freshness of such information does not only
depend on frequent beacons’ transmissions but also on the
network capacities, which can lead to packet collisions and
the loss of data.

Balancing requirements to update beacons regularly
and network capacities, the concept of the age of informa-
tion (AoI) provides a framework to evaluate information
freshness [3, 4]. The AoI metric complements raw delay,
loss, and throughput in the network, which in turn ac-
counts for the process of emission and delays introduced in
the communication chain, all-together [3]. Inherently, this
distinguishes AoI metrics from conventional delay metrics
[5], allowing to optimize of the network freshness as the
best balance between throughput and delay.

Recent research illustrates the use of AoI metrics in
the vehicular context. The average AoI and the peak age
of information (PAoI) are used to find the best strategy
for the emission rate of beacon packets, see for instance
[6, 7, 8, 9, 10, 11, 12] (further discussion in the next Sec-
tion). However, these metrics do not consider information
context [13]; not all packets necessarily carry the same in-
formation’s importance, thereby not introducing the same
level of freshness for the status update. To illustrate the
significance of information context, let us consider an in-
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Figure 1: Example scenario: Vehicles in the direction of movement
of vehicle 1 (vehicles 2 and 3) are more relevant than others (vehicles
4, 5, and 6) when considering a safety application such as ICA.

tersection collision avoidance (ICA) scenario as depicted
in Fig. 1. Focusing on vehicle 1, the status updates of the
vehicles in front (i.e., vehicles 2 and 3) are more critical to
avoid potential collisions than those from the other vehicles
(i.e., vehicles 4, 5, and 6). Thus, it is preferable to collect
updated information about vehicles 2 and 3 rather than 4,
5, and 6 in order for vehicle 1 to avoid collisions at this
intersection. In this sense, we intent for an AoI-based met-
ric to account for this application-dependent information
context.

In the literature, some reported studies address the
information’s content with the AoI. Examples include tech-
niques to best predict Markovian sources [14], to better
synchronize cache content with the remote source [15], to
account for only newly arrived information [5, 16], and to
use information-theoretic approaches for reduced uncer-
tainty about the source [3].

In a different approach, we consider the transmitting
vehicle’s location as a metric to quantify the importance
of their information. We emphasize such importance with
weighting coefficients to evaluate the average PAoI metric
in the context of cooperative driving. These coefficients
inherently devise some filtering of received packets, which
allows for treating vehicles’ information more selectively.
Using our model allows focusing on timely updates of
relevant vehicles only for meeting a given AoI requirement.

In this paper, which is an extension of the previous work
in [17], we further report on the impact of the scenario on
the PAoI when applying our spatial model. In addition,
we demonstrate the practical use of the proposed model by
applying it to an AoI-based beacon adaption algorithm.

Our main contributions can be summarized as follows:

• We propose a spatial model for interpreting the AoI
of received packets based on the spatial location of
the transmitting vehicle, making AoI context specific.

• We evaluate the AoI and the impact of our model
on individual communication links and the overall
network.

• We show that using our model helps controlling the

beacon rate necessary for achieving a given AoI re-
quirement.

• We demonstrate the practical use of the proposed
model by applying it to an AoI-based beacon adaption
algorithm.

Elaborating on the above contribution, the paper is
structured as follows. We discuss in further detail the use
of AoI metrics in the vehicular context in Section 2. We
present the new AoI model and introduce the weighting
coefficient in Section 3 with the corresponding analytic
description. We also introduce in Section 4 an adaptive
mechanism for the beacon rate with the proposed AoI model
using a proportional-integral-derivative (PID) controller. In
Section 5, we assess the performance of the proposed model
and the adaptive algorithm to meet freshness requirements.
Finally, we sketch some concluding remarks in Section 7.

2. Age of Information in ITS

Following the standard IEEE 802.11p, we already see a
number of studies that address the use of AoI metrics for
time-critical applications in vehicular networks [6, 7, 8, 9,
10, 11, 12] and including test-bed demonstrators [18]. The
AoI metric is reported to update the network freshness for
the exchange of vehicles’ speeds and positions. Some of
these works provide closed-form expressions for the AoI
metric [8, 9, 10, 11], while other works estimate the average
AoI metric numerically [6, 7].

Accounting for the AoI metrics, other works use ana-
lytic methods for the average AoI [9] and PAoI [12]. The
average AoI metric is formulated mainly in two different
approaches. On one hand, Lyamin et al. [9], Vinel et al.
[19] straightly formulate the average AoI as the average of
the time duration between two consecutive received packets.
They assume that the time duration distributes according
to the joint event where two transmissions do not collide in
the channel. The channel collision probability is evaluated
according to the formulation provided by Vinel et al. [19].

On the other hand, the average AoI is evaluated using
the formula for the remaining service time in a queue
[8, 11] and considering the hidden [8, 11] and non-hidden
node problem scenario [10]. In the hidden node scenario,
the time duration of message transmissions is expanded,
assuming that hidden nodes transmit independently with
a random phase between 0 and the transmission duration
parameter. In the non-hidden scenario, Andrea et al. [10]
also derive a formula for node and network levels. The
node-level accounts for the average AoI at any arbitrary
node, assuming they only transmit the most recent packet.
The network level evaluates the case where nodes do not
transmit new packets till the current one is sent. In this
case the network is modeled according to a Markov chain
model, the transition probabilities can be derived [19].

In a different direction, based on simulation results,
the existence of a unique beacon period minimizing the
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average AoI is illustrated for a certain number of vehicles,
and contention window (CW) sizes [6]. Following these
results, a rate control algorithm is derived from adapting
the broadcast period based on local measurements of the
average AoI. The vehicle reduces or increases the beacon
period by comparing it to the estimated average AoI metric
looking for the maximum network freshness.

All the above studies conduct simulations based on the
IEEE802.11p standard for single-hop [6, 8, 11, 9, 8] and
multi-hop [7, 8, 6, 7] networks. Besides, a variety of scenar-
ios for the traffic of vehicles have been studied. Examples
include four lane roads [6], highways [12, 18], platooning
[7, 9], the more artificially Manhattan Grid [8, 11, 18], the
TapasCologne scenario [8, 11], and open environments [10].
Furthermore, the work in [18] recreates a traffic scenario
integrating simulators with software defined radio (SDR)
devices.

However, these reported solutions are only address-
ing protocol parameters (e.g., beacon rate, CW size) and
the channel impact (e.g., collisions, noise) to formulate
the average AoI metric. Addressing information context,
Michalopoulou et al. [20] seek to minimize the information
aging in the spatial dimension when evaluating the product
of the speed of the vehicle and the time duration between
received packets. The information age is reduced by stating
the optimization problem in the spatial domain to minimize
the predicted location error. Also in the spatial domain,
Parella et al. [21] implement a penalty function for the AoI,
addressing a better prediction trajectory of neighboring
vehicles. The penalty function (dependent on the AoI of
CAM messages) is defined using the distance difference
between the true and predicted position of the neighbor-
ing vehicles. The importance of information can also be
considered as a weight factor on the average AoI metric.
Zhang et al. [22] evaluate the weight while balancing the
message’s priority, persistence, and reliability.

In a different approach, we introduce a degree of impor-
tance in the AoI metrics concerning the intended direction
of the vehicle and its surrounding. In the form of weighting
coefficients as formulated by Sorkhoh et al. [23], we incor-
porate into the average PAoI metric the vehicular context
(direction, surrounding), looking for some meaning of re-
ceived beacon packets [4]. In doing so, we study the PAoI
metric weighting as more critical for those vehicles in the
direction of movement (cf. Fig. 1) and with less importance
otherwise, when considering a safety application such as
ICA [24] as an example use case. We use this modified
PAoI metric and compare it to a similarly modified AoI
requirement of 100 ms, which is often used in literature
as desired update interval [25, 26]. We thus identify how
many vehicles have fresh information, similar to using the
original AoI definition.

3. A Spatial Model for the AoI

Typically, the AoI metrics are measured per user irre-
spective of their location. All the packets received from

Figure 2: Visual representation of our spatial model for calculating
the weighting coefficient used for the AoI interpretation with an
example configuration of α = 0.75, β = 0.005.

surrounding vehicles are treated with equal importance.
However, the level of importance is application dependent:
E.g., while in platooning only the members of the platoon
itself are relevant, it is the surrounding vehicles within the
direction of movement that are important for safety-related
applications such as ICA. As one example use case, Fig. 1
thus shows such an intersection scenario. Here, the most
valuable information for vehicle 1 will be located in the
direction of its movement (shadowed area). Thus, vehicles
within this area (i.e., vehicles 2 and 3) should be assigned
a higher level of importance than other vehicles in the sur-
rounding. Beacon packets coming from vehicles in the rear
of the intended direction will not be that informative about
the traffic in the intended direction of vehicle 1. There-
fore, vehicles in front will be more demanded to reduce the
corresponding AoI metrics than the vehicles in the rear.
Since all vehicles are equal in the standard AoI, frequent
beacon transmissions from the less important vehicles can
lead to unnecessary channel load in this case. If the com-
munication protocol was aware of this application-specific
level of importance, it could update the periodicity of the
beacons in accordance and eventually reduce the load on
the wireless channel.

3.1. Weighted Peak AoI
To consider the location of the transmitting vehicle as a

metric of importance to the information, we propose a new
way of interpreting the AoI. To that end, we introduce a
weighting coefficient that is applied to the PAoI metric as
well as to an AoI requirement, emphasizing on packets from
important vehicles. Thereby, we introduce some level of
selectivity for the received packets which allows to treat ve-
hicles’ information differently according to the importance
to the application. Our model can be easily adjusted to the
requirement of a specific application through parameters
and does not modify the underlying AoI metric itself.
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Figure 3: Visual representation of our spatial model for calculating
the weighting coefficient used for the AoI interpretation with an
example configuration of α = 0.5, β = 0. This configuration only
takes the angle between vehicles i and j into account.

We choose the weighting coefficient as a raised-cosine
function with a decay factor as

ωj,i =
1

2
(1 + cos(αθi,j)) e

−β∥d⃗i,j∥ , (1)

where θi,j is the angle between the transmitting vehicle
j and the direction of movement of vehicle i and ∥ d⃗i,j ∥
is the distance between both vehicles, while α and β are
two coefficients to select the degree of selectivity in the
spatial domain. The coefficient α provides selectivity in
the radial direction, while β in the azimuth direction. The
larger the value of α or β is, the narrower is the beam
of vehicle i. Fig. 2 shows a visual representation of our
weighting coefficient with an example configuration of α =
0.75, β = 0.005.

To derive the angle and the distance between vehicles,
we assume that vehicles are equipped with global position-
ing system (GPS) receivers, and that this information is
exchanged between vehicles in periodic beaconing messages.
Using the configuration in Fig. 2, ωj,i is close to 1 when-
ever vehicle j is in the direction of movement of vehicle i.
Otherwise, it is close to 0 whenever vehicle j is away, being
0 when vehicle j is located at the rear of vehicle i.

In order to parameterize our proposed model, one needs
to select values for the model parameters α and β. Since
these will determine the relevance of vehicles’ information,
their values have to be selected carefully and application-
dependent. In order to give further intuition on the behav-
ior of these, Figures 3 and 4 show visual representations of
two more example configurations. In Fig. 3, the distance
between vehicles is not used for calculating the weighting
coefficient ωj,i due to a value of 0 for β. Thus, the area
around the vehicle i is mapped to the coefficient ωj,i by
the cosine-part of Eq. (1), using the angle towards vehicle
j. Here, a close vehicle and a far-away vehicle will receive

Figure 4: Visual representation of our spatial model for calculating
the weighting coefficient used for the AoI interpretation with an
example configuration of α = 0, β = 0.0075. This configuration only
takes the distance between vehicles i and j into account.

the same value for ωj,i if their angle towards vehicle i is
the same. In contrast, in Fig. 4, the angle between vehicles
is not used for calculating the weighting coefficient due to
a value of 0 for α. Thus, the distance from vehicle i to
other vehicles is mapped to the coefficient ωj,i by part with
Euler’s number of Eq. (1).

With this coefficient, we measure the importance of the
introduced age per received packet using the average PAoI
metric as

∆
(ω)
j,i = ωj,i∆

(p)
j,i , (2)

where ∆
(p)
j,i denotes the average PAoI metric for a link

between vehicles j and i. Correspondingly, the combined
PAoI per neighboring vehicle j at vehicle i will be calculated
after averaging the perceived ∆

(p)
j,i as

∆
(ω)
i =

1

N − 1

N−1∑
j=1

ωj,i∆
(p)
j,i . (3)

Finally, we account for the network operation after averag-
ing for the total of nodes as

∆(ω) =
1

N(N − 1)

N∑
i=1

N−1∑
j=1

ωj,i∆
(p)
j,i . (4)

The average PAoI (∆(p)
j,i ) can be derived by analytical or

numerical means through simulators. Analytically, it can be
obtained after calculating the expected average of the inter-
arrival (Yn) and system time (Tn) as ∆(p)

j,i = E{Y }+ E{T}
when all packets emitted are received [13]. However, some
packets will not be successfully received due to the system
and channel conditions (e.g., collisions, replacement of the
old beacon frames, low reliability during their reception,
etc.) [19]. Taking into account the impact of the system
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and channel effects in the packet reception process, as given
by the successful probability Psd, the average PAoI can be
calculated as

∆
(p)
j,i =

1

Psd
E{Y }+ E{T} , (5)

where the value for Psd in Eq. (5) can be directly com-
puted considering the impact of noise and collisions using
the closed-form expressions in [19, Eq. (7)], or through
simulations.

The Eq. (5) can be directly computed by recalling
the use of the negative binomial distribution as described
in [27]. However, it can be intuitively derived based on
the meaning of the related variables in Eq. (5). Psd can be
interpreted as the ratio of successfully transmitted packets;
thus, its inverse will provide the total of attempts to have
a successful transmission. Therefore, the first term in
Eq. (5) will provide the waiting period before a packet is
successfully transmitted. Adding the average time spent
on the system (E{T}) will thus provide the average PAoI.

3.2. Remarks
The introduced coefficients in Eq. (3) provide a mean to

“filter” packets according to their relevance. For instance,
in the intersection scenario depicted in Fig. 1, the average
PAoI of packets from the vehicles 4, 5, and 6 will be lowered
as less relevant, thus emphasizing those packets from vehi-
cles at the front side of vehicle 1 (vehicles 2 and 3). In this
way, the resulting average PAoI will be characterized the
most by those links of interest according to the application
context.

Eq. (3) is also useful in different ITS scenarios, and,
also with a different dependency for the coefficients other
than Eq. (1). Overall, the Eq. (3) comprises a mean to
emphasize some communication links in contrast to others.
Once the links of interest are determined, they will shape
the resulting average PAoI whenever their corresponding
coefficients are close to 1. In contrast, those links whose
coefficients are close to 0 will not contribute to the age of
information metric.

Besides, we selected the dependency of the coefficients
with the spatial coordinates in Eq. (1) as a two-dimensional
function in two separable terms. One dimension for the
azimuth direction defines the raised-cosine function [28],
which conveniently allows multiplying by 0 to those packets
coming from the rear side of vehicle i. The second dimen-
sion is in the radial direction and defines a decay factor,
which decrements as long as the distance increases. Overall,
both terms let to a function that is also all-orders differen-
tiable, which accounts for its mathematical tractability.

3.3. Weighted Target AoI
The derived weighted PAoI metric can be used to fairly

evaluate the freshness of the status updates with a given
target, i.e., when the age of received packets is less than
a given threshold. This approach is particularly relevant

when we want to save resources looking at the PAoI metric
just performing below a given threshold T (target). In
this way, we avoid the network to operate on the mini-
mum average where demanding resources are higher. After
applying the same weighting coefficient (cf. Eq. (1)) to a
given threshold T by

T
(ω)
j,i = ωj,iT , (6)

we can compare the derived average PAoI with the weighted
target T

(ω)
j,i

∆
(ω)
j,i ≤ T

(ω)
j,i (7)

for a link between vehicles j and i. A single vehicle i can
to this for all of its neighboring vehicles j by

T
(ω)
i =

1

N − 1

N−1∑
j=1

ωj,iTj,i (8)

and
∆

(ω)
i ≤ T

(ω)
i . (9)

Correspondingly, we account for the network operation
after averaging for the total of nodes as

T (ω) =
1

N(N − 1)

N∑
i=1

N−1∑
j=1

ωj,iTj,i (10)

and
∆(ω) ≤ T (ω) . (11)

Further discussions on the utility of these expressions and
their interpretation are given within Section 5.

4. Adaptive Beaconing based on AoI

In this section, we aim to show the practical use of
our spatial model for cooperative driving by applying it to
an algorithm for adapting the beacon rate based on the
age of information. We use a simple proportional-integral-
derivative (PID) controller-based algorithm that controls
a vehicle’s beacon rate based on PAoI measurements from
neighboring vehicles. In contrast to other work from the
literature [6, 29], our goal is to keep peak AoI values below a
fixed requirement (100 ms), rather than achieving minimal
AoI for all nodes. Applying our spatial model should help
to focus on relevant vehicles while selecting the beacon
rates.

4.1. Communication Setup
Fig. 5 shows the two-hop mechanism of our adaption

approach which is used to evaluate the weighted PAoI
∆

(p)
i locally at vehicle i, according to Eq. (3). Since the

information in the beacons of vehicle i are relevant to
vehicles j and k, the AoI as well as the information’s
relevance (given by the weighting coefficient) needs to be
computed at vehicles j and k. As only vehicle i can control
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Figure 5: Two-hop mechanism of our adaption approach for evaluating
the weighted PAoI at vehicle i.

its beacon rate, we need this two-hop mechanism to inform
i about any required changes. Note that the indices i and
j here are different in comparison to Section 3.

In the first hop, vehicles j and k compute the weighted
PAoI ∆(ω)

i,j and ∆
(ω)
i,k upon reception of a beacon from vehicle

i. This is done based on Eq. (1) and the spatial locations
of the corresponding vehicles. In the second hop, vehicle
j and k transmit these weighted PAoI values to vehicle i
within their own regular beacons. In this way, vehicle i

is able to compute ∆
(ω)
i by averaging all weighted PAoI

measurements from its neighbors j and k, following Eq. (3).
∆

(ω)
i here corresponds to the freshness of i’s information as

a combined perspective from vehicle j and k. Following the
same procedure, vehicle i also computes the weighted target
AoI Tω

i using Eq. (8). Vehicle i is now able to evaluate the
freshness of its own information ∆

(ω)
i perceived at vehicles

j and k against the shared requirement Tω
i . Thus, it can

determine whether the information is fresh enough and
whether it needs to adjust its beacon rate.

4.2. Beacon Adaption Algorithm
We use a PID controller [30] on all vehicles to adjust

their beacon rate such that PAoI values converge to the
target AoI. To achieve this, we use the PAoI as input and
the target AoI as set-point for the PID controller. A PID
controller in general consists of (1) a Proportional part,
which produces a control output proportional to the error
between the set-point and the actual output, (2) an Integral
part, which accumulates the error over time and generates
an output proportional to the integrated error, and (3) a
Derivative part, which produces an output proportional to
the rate of change of the error. The controller output is
given by

u(t) = GP · e(t) +GI ·
∫

e(t) dt+GD · de(t)
dt

, (12)

where u(t) is the controller output at time t, e(t) is the
error (difference to the set-point) at time t,

∫
e(t) dt is the

integral of the error over time (the accumulated error), and
de(t)
dt is the derivative of the error with respect to time (the

rate of change of the error). GP , GI , and GD are gain
coefficients to control the impact of the individual parts of
the PID controller towards the output.

As input and set-point for the PID controller, we specif-
ically use the average weighted PAoI measurement ∆

(ω)
i

and the average weighted target AoI T
(ω)
i , respectively.

Thereby, we expect the controller to eventually select bea-
con rates that result in the PAoI measurements converging
to the target AoI. We implement the individual terms of
Eq. (12) in the following way. The error e(t) at vehicle i in
iteration t is given by

e(t) = T
(ω)
i −∆

(ω)
i (13)

and the derivate error de(t) evaluated in the discrete domain
as

de(t)

dt
≈ e(t−∆t)− e(t)

∆t
, (14)

using only the error from the previous algorithm execution.
The gain coefficients for the individual parts of the PID
controller are chosen by observing the stable system be-
havior. We use Gp = 1.0, GI = 0, thereby disabling the
integral part, and GD = 0.1.

Using Eq. (12), the adjustment u(t) of the current
beacon interval λi at vehicle i in iteration t is calculated
and added to the current beacon interval λi. We update
the new beacon interval within the limits of 10 ms (100 Hz)
and 100 s (0.01 Hz), such that only valid beacon rates are
produced. The algorithm is executed on a regular basis (i.e.,
at an interval of 2 × target AoI) on all vehicles individually.

5. Evaluation

In this section, we evaluate the PAoI and the impact of
the weighting coefficient ωj,i from our spatial model (see
Section 3). For this, we perform simulative experiments
within the Veins simulator [31]. First, we provide an initial
analytical assessment of our model in Section 5.1. After
that, we consider simulative results and discuss the impact
of the link distance on the standard PAoI in Section 5.3.
We continue selecting two specific link distances (i.e., a
short and a long one) and analyze the combined PAoI
without and with our spatial model in Sections 5.4 and 5.5.
Next, we show the impact of our spatial model on the
network PAoI in Section 5.7. Afterwards, we analyze the
impact of the model parameters and the scenario on the
network PAoI in Sections 5.8 and 5.9. Finally, we analyze
the behavior of our AoI-based algorithm for adapting the
beacon rate from Section 4 in Section 5.10.

5.1. Initial Analytical Assessment
To provide further intuition on the impact of the coeffi-

cient ωj,i, we now perform an initial analytical assessment
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Parameter Value

Scenario Size 550 m × 550m
Simultaneous Vehicles N 200
Beacon Size L 512 Byte
Bitrate R 6Mbit/sec
CW size W 4–8
Preamble duration TP 32 µ sec
PLCP duration TPLCP 8 µ sec
Propagation delay δ 1 µ sec
AIFS 58 µ sec

Table 1: Parameters used for analytical evaluation

Parameter Value

Scenario Type Manhattan Grid
Simulation Time 10 s
Beacon Rates 1, 2, 5, 8, 10, 16, 20, 25, 40, 50, 100Hz
Carrier Frequency 5.89GHz
Access Category AC_VO
EDCA Queue Size 1
TX Power 20mW
Attenuation Model Free-space only (α = 2)

Table 2: Additional parameters used for simulation experiments

of the perceived average PAoI given by Eq. (3). We com-
pute it for a given link between 200 vehicles that are all
moving randomly in a free-space grid. The correspond-
ing communication parameters are listed in Table 1. To
compute ∆

(p)
j,i , we use Eq. (5) where the probability of suc-

cessful beacon reception Psd is obtained from simulation
(cf. Sections 5.2 and 5.3). We consider a contention-based
communication system according to IEEE802.11p, where
vehicles broadcast beacon messages following a collision
avoidance mechanism without retransmissions. Frames are
emitted after verifying free channel access during the arbi-
tration inter-frame space (AIFS) and CW time windows.
We assume that only the most updated message is queued
at the emitter, waiting for a free slot to be transmitted [8].

Figures 6 and 7 plot analytical results for the impact
of the model parameters α and β, which define the degree
of selectivity for computing the PAoI metric. The case
α = 0, β = 0 results in ωj,i = 1, i.e., no spacial selectivity
at all, which corresponds to highest PAoI metric (standard
definition from Eq. (5)). However, as α and β increase, the
perceived PAoI metrics are reduced due to the reduced im-
portance of those vehicles not in the direction of movement
and not that close to the moving vehicle (cf. link 1-5 in
Fig. 1). In this case, the contribution of the given link to
the total PAoI in Eq. (3) will become less, thus less critical.
Comparing both figures indicates that the distance has a
higher impact on the calculation of the weighting coefficient
than the angle.

5.2. Simulation Setup
After the initial analytical assessment of our model, we

now move on and consider simulative results. For our simu-
lation, we use the well-known vehicular network simulation
framework Veins [31] to enable a realistic evaluation. In
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Figure 6: Average PAoI for different angle coefficients when β = 0.
The spatial model only focuses on the angle.
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Figure 7: Average PAoI for different distance coefficients when α = 0.
The spatial model only focuses on the distance.

particular, we use OMNeT++ 5.6.2, SUMO 1.6, and Veins
5.1. Tables 1 and 2 together summarize the most important
parameters used in our simulations.

We focus on an urban simulation environment and, for
simplicity, chose a 550 m × 550 m Manhattan grid scenario
(see Fig. 8). The scenario contains 200 vehicles that depart
at random positions and follow random trips. Vehicles are
transmitting beacons such as CAMs via IEEE802.11p at
a static beacon rate. In our simulation, we are able to
switch off the attenuation effect of buildings by disabling
the obstacle shadowing [32]. Furthermore, we modified the
medium access control (MAC)-layer queue to replace the
most recent packet if the maximum queue size is reached
and a new beacon was generated from the application layer.
Together with a queue size of 1, this results in always
transmitting the most recent data in the beacon [8].

The data from the received packets including its gen-
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Figure 8: Manhattan grid with randomly distributed vehicles

eration and reception times is stored in a simple 1-hop
neighbor table on every vehicle. We are thus able to calcu-
late the standard AoI for a given link by using this time
stamp of the last successfully received update. Whenever a
new beacon from vehicle j is received by vehicle i, the data
as well as the time stamp is updated and we record the
PAoI as the current AoI value of this link at i. Similarly, we
calculate the weighting coefficient according to Eq. (1) for
a particular link upon successful packet reception by using
the sender’s position from within the packet. Thus, these
values are only calculated upon reception of at least the
second beacon. From our simulation, we obtain, on average,
a total of 1500 samples for PAoI and corresponding target
AoI per vehicle and simulated beacon rate, which we are
going to use for the following results.

5.3. Impact of Link Distance on Standard AoI
In order to underline the issues with the standard AoI,

we first have a look at the impact of the link distance on
the AoI. The PAoI, as defined in Eq. (5), is influenced
by the beacon rate (cf. E{Y }), system delay (cf. E{T}),
and probability of successful packet reception (cf. 1

Psd
).

Thus, even if multiple vehicles use the same beacon rate for
beacon transmission, the observed PAoI metrics can be very
different due to the effects of the wireless communication
channel, especially over large distances. Since the longest
possible distance between two vehicles in our scenario is
only about 780 m, we can neglect the system delay as an
influencing factor.

The probability for successful reception of a packet,
however, has to be considered. It depends on the signal-
to-noise-and-interference-ratio (SNIR), which is, among
others, influenced by scenario-related effects such as at-
tenuation of the signal as well as interference from other
vehicles. In our scenario, the signal is attenuated by free-
space path loss, which weakens its strength proportional
to the link distance. Also, at large distances, hidden nodes

0 100 200 300 400 500 600

Link Distance [m] - Rounded to 10m

10−2

10−1

100

101

A
v
e
ra

g
e

P
e
a
k

A
o
I

[s
]

Beacon Rate [Hz]

1

2

5

8

10

16

20

25

40

50

100

Figure 9: Average PAoI based on the link distance (rounded to 10m)
with different beacon rates

can introduce additional interference and collisions, which
further degrades the SNIR. At some point, a packet cannot
be received successfully anymore and the AoI of the cor-
responding link increases further until the next successful
reception. Therefore, the link distance can have a huge
impact on the PAoI, especially for far away vehicles.

Fig. 9 shows the average PAoI per link distance (rounded
to 10 m) with different beacon rates that we obtained from
the simulation. Indeed, we see that the link distance has an
impact on the PAoI according to our hypothesis described
previously.

For small link distances (less than 50 m) and low beacon
rates (e.g., 1 Hz), the observed PAoI closely follows the
beacon interval (i.e., the multiplicative inverse of the beacon
rate) as the signal distortion due to the impact of the
wireless communication channel is minimal. However, at
higher beacon rates (e.g., 16 Hz), the effect is increased and
becomes visible more clearly. Latest at roughly 400 m, we
start to see a massive increase in PAoI, which is way above
the beacon interval. Here, the probability for a successful
reception of a packet is so low that many updates are
lost and the PAoI increases a lot. For very high rates
(e.g., 40 Hz and above), the PAoI already steeply rises at
even low distances of below 100 m. As a result, we see
that, even when using the same beacon rate, two links
can have a very different PAoI because of different node
distances. Hence, the freshness of the information from
close vehicles is typically much better than from those far
away, as expected.

5.4. Combined Standard AoI
Consider an arbitrary cooperative driving application

that requires regular updates from surrounding vehicles
(e.g., ICA, cf. Section 3). This application will likely define
a target AoI (i.e., maximum allowed AoI) that is required by
the application to work successfully and reliably. In order
to determine whether certain information is fresh enough,
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Figure 10: Average PAoI plotted for all as well as separated for two
specific node distances (i.e., short and long). The red circle indicates
the intersection of the average PAoI with the (static) target AoI of
100ms.

the average PAoI can be evaluated against this requirement.
A typical update interval requirement that is often found
in literature is 100 ms [25, 26]. Following the observation
from the previous section, far away vehicles will always
suffer from a weakened SNIR and thus have a higher PAoI
compared to vehicles that are close. Thus, when combining
the PAoI values from all surrounding vehicles using Eq. (3),
the far away vehicles will increase the average and thus
distort the view on the overall information freshness.

Fig. 10 shows the average standard PAoI of short (i.e.,
10 m) and long (i.e., 500 m) distance links for several beacon
rates. It also shows a static target AoI of 100 ms as well
as the average of the PAoI values from the two links (cf.
Eq. (3)). As expected, the average PAoI of the short link
distance (i.e., 10 m) continuously decreases proportional
to the increasing beacon rate. Here, the minimum value,
which indicates the best information freshness, is reached
at the highest simulated beacon rate (i.e., 100 Hz. At
this distance, the static target AoI of 100 ms is already
reached at a beacon rate close to 10 Hz. This is expected,
since 10 Hz is the multiplicative inverse of the target AoI
and the PAoI is not distorted at these short distances (cf.
Section 5.3).

When looking at the long link distance (i.e., 500 m), the
situation is different: First, the average PAoI is decreasing
similarly to the short link distance, following the increase
of the beacon rate. But it never reaches the target AoI
of 100 ms. Instead, after reaching its minimum at 20 Hz,
the average PAoI increases when beacons are transmitted
at higher rates. That is due to effects of the wireless
communication channel described in Section 5.3.

When looking at the combination (i.e., average) of
the two link distances, we can observe some interesting
effects as well. First, the average PAoI value decreases as
expected, but when increasing the beacon rate further, also

its value decreases further, thus reaching the static target
AoI of 100 ms at roughly 20 Hz (red circle). The continuous
decrease even at higher beacon rates (i.e., above 20 Hz) is
due to less received packets for the long distance link. Thus,
the combined PAoI contains a lot more low values which
have been observed from the short link distance.

When we now compare the beacon rates at which the
static target AoI of 100 ms is met, we see that twice the
beacon rate of the short distance links is required when
combining the PAoI metrics from both distances. Hence,
in order to keep the combined freshness of the information
from all surrounding vehicles below the given AoI require-
ment, beacons need to be transmitted at a higher rate
than required for close vehicles only. If vehicles now have
different levels of relevance to the application, e.g., close
vehicles are more important than far ones (cf. Section 3),
the non-relevant vehicles (i.e., the far ones) will weaken
the perceived combined information freshness. In order to
meet the AoI requirement, all vehicles need to transmit
their beacons at a higher rate, which leads to unnecessary
transmissions and channel load.

5.5. Combined Weighted AoI
In order to cope with the issues of the standard AoI

(i.e., effects of the wireless communication channel and
equal importance of all nodes), we now apply the proposed
spatial model from Section 3 to the AoI. Using Eq. (1), we
calculate the weighting coefficient ω for every PAoI value
that is observed for an arbitrary link between two vehicles
i, j, producing a weighted PAoI. Additionally, we also apply
the weighting coefficients to the static target AoI of 100 ms
on a per link bases, producing a weighted target AoI. In this
section, we use one exemplary parameterization (i.e., α =
0, β = 0.01) of our spatial model that uses only the distance
between vehicles for calculating the weighting coefficient.
This focuses on the issue described in Section 5.3.

Fig. 11 shows the average weighted PAoI of short (i.e.,
10 m) and long (i.e., 500 m) distance links over several
beacon rates. It also shows an average weighted target
AoI as well as the average PAoI values from the two links,
which can be used by application as a view on the overall
information freshness. Since we selected fixed distances,
the calculated weighting coefficient will be the same for all
links of the same distance. The resulting average weighted
PAoI is just a multiplication of the average standard PAoI
from Fig. 10 with a constant factor and thus follows a
similar trend.

Due to the selected parameterization of our spatial
model, a high (i.e., close to 1) and a low (i.e., close to 0)
weighting coefficient is calculated for values of the short and
long distance links, respectively. As a result, the average
PAoI for the short distance links is very close to the one
of the standard AoI from Fig. 10, whereas it is reduced
a lot for the long distance links. Therefore, and due to
less observations for the long distance links in general, the
combination (i.e., average) of all PAoI values from both
distances is, in comparison to Fig. 10, much closer to the
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Figure 11: Average weighted PAoI for two specific link distances (i.e.,
short and long) and their combination (i.e., average). The red circle
indicates the intersection of the combined PAoI with the weighted
target AoI.

average PAoI of the short distance links. Thus, the overall
view on the information freshness is not distorted much by
the long distance link, which is (in our parameterization)
less relevant.

The average weighted target AoI is constructed by com-
bining all weighted target AoI values from the two link
distances, similarly to the average weighted PAoI. Since
the same weighting coefficients are applied to the PAoI
and the target AoI, the target faces similar effects: For the
short distance, the target is close to the static target AoI
of 100 ms, whereas for the long distance, it is close to 0 due
to the weighting coefficient being close to 0. The average
weighted target AoI thus is close to the static target AoI
of 100 ms as it is mostly influenced by short distance links.
Note that the individual weighted target AoI for both dis-
tances is constant for all beacon rates as the link distance
does not change and the beacon rate is not considered
when calculating the weighting coefficient. The average
weighted target AoI, in contrast, is not constant due to the
increasing number of lost packets and thus less values for
the long link distance with high beacon rates. The average
therefore tends towards the value of the short link distance,
when using a beacon rate ≥ 20Hz.

When comparing the average PAoI with the target
AoI, we see that now both link distances as well as their
combination intersect with the target AoI at some point.
The short distance links meet the target at a beacon rate
close to 20 Hz. The average PAoI of the long distance links
is below the weighted target AoI even for all beacon rates.
This is due to the average weighted target AoI mainly begin
influenced by the short distance links, thus, tending towards
the static target AoI of 100 ms. Additionally, the weighting
coefficient for the long distance links are close to 0. The
combined weighted PAoI reaches the weighted target AoI at
a beacon rate close to 10 Hz, as indicated by the red circle.
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Figure 12: Ratio of vehicle updates that are below the target AoI
for the standard case (blue) and when applying our spatial model
(orange) – two specific link distances (i.e., short and long) and their
combination (i.e., average).

This is a smaller beacon rate than required for only the short
distance links due to the impact of the long distance links
on the average. However, we actually need to compare this
situation with the values from using the standard PAoI and
the static target AoI in Section 5.3: With the spatial model,
we only need half of the previous beacon rate to reach the
target AoI when combining all link distances. Using our
model allows to focus on timely updates of relevant vehicles
for meeting a given AoI requirement instead, which saves
channel resources.

5.6. Ratio of Links Reaching the Target AoI
The weighted target which we introduced in Eq. (6)

allows interpreting the weighted PAoI in the way we in-
terpret the standard one. To illustrate the validity of our
approach, Fig. 12 comparatively depicts the ratio of PAoI
values fulfilling the condition in Eq. (7) and the case using
the standard approach, i.e., ∆j,i ≤ Tj,i without using the
weighting coefficient. Without the spatial model, the target
AoI is static at 100 ms, whereas when applying the spatial
model, it is calculated by using the weighting coefficient
(cf. Eq. (6)).

The ratio for both cases is at 0 for all beacon rates
≤ 10Hz. This is expected since the target AoI of 100 ms
cannot be reached when the inter-arrival time of the bea-
cons is larger than this value. When increasing the beacon
rate further (above 10 Hz), all ratios are increasing as well.
The ratios for the short link distance almost immediate
reach 1 and stay there since these links have a very good
SNIR and thus almost all transmitted beacons are received
successfully, leading to a small PAoI. For the long link
distance, the ratio grows as well but not as strongly as for
the close links. Again, this is due to the weighted PAoI
being impacted by the large distance of the link (cf. Fig. 9),
thus leading to many PAoI values being above the target
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Figure 13: Average PAoI (solid) and corresponding target AoI (dashed)
of the entire network for the standard case (blue) and when applying
our spatial model (orange). The arrows indicate the intersection with
the corresponding target AoI.

AoI. Beyond 25 Hz beacon rate, the ratio for the long link
distance decreases again due to a high PAoI (cf. Fig. 11).

As expected, the combination of both link distances
lies in between the short and the long distance links. After
reaching roughly 0.75 at 16 Hz, its value increases until it
reaches almost 1 at 100 Hz. This is due to the high number
of lost packets for the long distance links, which leads to a
value similar to the value of the short link distance.

It is visible that the ratio is very similar for both cases
(i.e., standard and weighted). This reflects that the per-
ceived status update on the network is the same irrespective
of the weighting coefficients. Thus, using the formulation
in Eq. (11) will not introduce any artifact on the perceived
network status; instead, it will just emphasize the relevant
links.

5.7. Weighted Network AoI
So far, in order to show how our spatial model can influ-

ence the perceived average PAoI when combining different
links, we have been looking at two specific link distances
only. Now, we combine all available links from within the
simulation scenario to analyze the average PAoI of the en-
tire network. Again, we are evaluating the freshness of the
information by comparing the average PAoI against the AoI
requirement. This time, however, the goal is to determine
the overall information quality of the entire network.

Fig. 13 shows the average network PAoI (solid, cf.
Eq. (4)) as well as the corresponding network target AoI
(dashed) for the standard case (blue) and when applying
our spatial model (orange). We use the same parameteri-
zation of the spatial model as we did already in Section 5.5
(i.e., α = 0, β = 0.01). The standard PAoI (blue) behaves
as expected. It follows the beacon rate inversely propor-
tional as the interval between beacons decreases with higher
beacon rates. It intersects with the static target AoI of

100 ms at approximately 13 Hz (not simulated) and reaches
its minimum value at 20 Hz. Since the average PAoI here
contains the values from all available link distances (i.e.,
0–600 m), there is indeed a minimum, which we can not
observe in Fig. 10. This is due enough successfully received
packets with high PAoI values (mostly from long distance
links) such that they can weaken the perceived average
PAoI.

When looking at the weighted case (orange), the situa-
tion is similar but the absolute values of the average PAoI
and target AoI are smaller due to the applied weighting
coefficient. Note, that the minimum PAoI value is achieved
at the same beacon rate in both cases, which underlines the
applicability of our model without distorting the standard
interpretation of the AoI. Similar to Fig. 11, the target is
calculated by combining all available individual target AoI
values using the average function (see Eq. (10)). It is al-
most constant and lower in comparison to the static target
AoI at beacon rates ≤ 10Hz due to many medium and long
distance links that have a small weighting coefficient. At
these low beacon rates, the packets from large distances can
still be received successfully. When increasing the beacon
rate beyond 10 Hz, analog to the average PAoI, the number
of lost packets for medium and long distance links increases
and the average weighted target AoI therefore tends to-
wards the value of the short link distances. In the weighted
case, the intersection of the average PAoI with the target
happens already at approximately 11 Hz (not simulated),
which indicates that this beacon rate is high enough to
achieve the required AoI of the entire network on average.
This approximated beacon rate is roughly 2 Hz lower com-
pared to the standard case. Using our model thus allows
to save channel resources by focusing on timely updates of
relevant vehicles for meeting a given AoI requirement.

5.8. Impact of Model Parameters
In our simulative results, so far we have only looked

at one exemplary parameterization (i.e., α = 0, β = 0.01)
of our spatial model that uses only the distance between
vehicles for calculating the weighting coefficient. In fact,
we used a very strict value for the distance parameter β,
which was favouring very short link distances. In general,
more relaxed configurations will lead to a higher weighting
coefficient, thus, producing higher PAoI (cf. Section 5.1),
especially for vehicles far away from the front of the receiver
(i.e., in distance and orientation). Thus, we now compare
the resulting average PAoI as well as the target AoI for
different parameterizations of our spatial model.

Fig. 14 shows the average PAoI (solid) and correspond-
ing target AoI (dashed) of the entire network for different
configurations of our spatial model. Here, we focus only on
4 different configurations:

1. α = 0, β = 0, which reflects the standard case by
always using a weighting coefficient of 1 (blue),

2. α = 0, β = 0.01, which only focuses on the distance
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Figure 14: Average PAoI (solid) and corresponding target AoI (dashed)
of the entire network for different configurations of our spatial model.

between vehicles for determining their relevance (or-
ange, see previous sections),

3. α = 1, β = 0, which only focuses on the orienta-
tion (angle) between vehicles for determining their
relevance (green),

4. α = 1, β = 0.01, which uses orientation (angle) and
distance between vehicles for determining their rele-
vance (red).

As expected, all configurations that apply our spatial
model (i.e., 2–4) result in a decrease of the average PAoI
and target AoI by filtering less relevant vehicles. We can
observe, however, that using only the angle (2) results in a
situation that is close to using the standard PAoI and the
static target AoI (1). In contrast, using only the distance
(3) results in a situation that is close to using angle and
distance together (4). Configuration which behave similarly
also have a similar beacon rate at which the average PAoI is
intersecting with the target AoI, i.e., approximately 13 Hz
vs. 11 Hz (not simulated). This shows that the distance has
more impact than the angle when calculating the weighting
coefficient, which is in line with the theoretical results
from Section 5.1. This is due to the effects of the wireless
communication channel (cf. Section 5.3), which impact the
PAoI quite heavily. Also, vehicles within the scenario are
distributed in space rather than in the close surroundings
of single vehicles.

5.9. Impact of the Scenario
Until now, we had disabled all movement of the vehicles

as well as the attenuation of the wireless signal by buildings
in our Manhattan grid simulation scenario. We did this
such that we can clearly observe the effects of our spatial
model. It is obvious that this is not realistic and that
enabling both of these will influence the wireless channel
available to the vehicles.

When considering buildings, the wireless signal will be
attenuated, leading to unsuccessful transmissions for links
with medium and long distances, thus increasing their AoI
(if a message is received at all). In contrast, the AoI for
short link distances will likely be improved due to less
interference from far-away vehicles. We expect this effect
in particular within our Manhattan grid scenario as line-of-
sight (LOS) between vehicles exists rarely, mainly only for
vehicles on the same road or within the same road corridor.
Additionally, every building’s wall attenuates the signal
of non line-of-sight (NLOS) links even more. Thus, the
interference domain for every receiving vehicles is reduced
a lot in comparison to the same scenario without buildings.

When considering mobility, the distance as well as the
signal quality of the links will change over time as vehicles
drive around. A former short distance link between two
vehicles with a good signal quality can become a medium
or even long distance one with worse quality (and AoI), and
the other way around. However, in a free-space scenario, we
expect these changes and the differences between vehicles
to be limited and the link quality to stay rather equal as
vehicles can only drive a certain distance in a given time
and continuously have a LOS connection.

When considering the real-world scenario, i.e., combin-
ing attenuation by buildings and vehicle mobility, both of
the aforementioned effects are mixed: At one point in time,
an arbitrary link can have a good quality with a low AoI,
but at a different point in time, the same link can have a
very high AoI or be blocked completely because vehicles
changed their position. The opposite can happen as well:
vehicles that did not have a LOS connection before, leading
to bad link quality and AoI values, can suddenly be on the
same road corridor leading to a good LOS connection.

In order to show the impact of the three aforemen-
tioned cases in comparison to the previously used simula-
tion scenario (i.e., free-space, no mobility), we repeated the
previous simulation study with the following four scenarios:

1. Freespace, a scenario without buildings but with ve-
hicle mobility

2. Freespace static, a scenario without buildings and
without vehicle mobility (scenario from above)

3. Manhattan, a scenario with buildings and with vehicle
mobility (real-word scenario)

4. Manhattan static, a scenario with buildings but with-
out vehicle mobility

For these simulations, we set the simulation time to 30 s,
such that the vehicle mobility can have an effect. In the
remainder of this section, we only show results for the config-
urations (0.0, 0.0) (standard case) and (1.0, 0.01) (strictest
weighted case, see Fig. 14).

In order to visualize the impact of the scenarios on
networking metrics, Figures 15a and 15b shows simulation
results for channel busy ratio (CBR) and beacon reception
ratio (BRR), respectively. Values are recorded for all 200
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(a) Channel busy ratio (CBR). The dashed line indicates the practical
maximum at 80% (cf. carrier sense multiple access with collision
avoidance (CSMA/CA) in IEEE802.11p).
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(b) Beacon reception ratio (BRR)

Figure 15: Key networking metrics for different scenarios.

vehicles during the entire simulation time and are time-
weighted averages, which we aggregate to overall averages.
Since the spatial model does not impact these metrics, we
do not visualize the different cases (standard vs. weighted).
Following our expectations from above, buildings in the
scenario have a huge impact on the signal quality and in-
terference domain of vehicles and thus on the channel load.
With buildings (Manhattan and Manhattan static), the
wireless signals are heavily attenuated, leading to reduced
absolute values and a less steep increase of the CBR in
comparison to the scenarios without buildings. Even at
high beacon rates (above 40 Hz), these scenarios still have
a relatively low CBR whereas both scenarios without build-
ings reach the practical maximum value of 80% (cf. carrier
sense multiple access with collision avoidance (CSMA/CA)
in IEEE 802.11p). The results for the BRR are in line with
the observed CBR: We observe a lot of collisions and thus
lost beacons at high beacon rates, especially in the sce-
narios without buildings where the interference domain is
large. In contrast to buildings, the vehicle mobility has only
little impact on the channel load (see static vs. non-static
scenarios) as the signal quality and interference domain
does not change much by movement. This is inline with
our expectations from above and can be observed in the
BRR as well.

In order to analyze vehicles’ knowledge of the scenario,
we report the ratio of known neighbors (i.e., other vehicles
from which at least 1 beacon was received) in Fig. 16.
Again, we can observe the impact of the buildings, which
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Figure 16: Average ratio of known neighbors (i.e., other vehicles from
which at least 1 beacon was received) for different scenarios.

block the signal of a lot of transmissions: While almost
all other vehicles (neighbors) in the scenario are known
(i.e., at least 1 beacon was received) within Freespace and
Freespace static, only some are known within Manhattan
and Manhattan static. Here, the transmissions are blocked
by the buildings, leading to no received beacons and thus
no knowledge about a lot of other vehicles in the scenario.
The values are (almost) constant over all (but the highest)
beacon rates for all scenarios as the signal quality and
interference domain does not change much due to vehicle
movement and receiving at least 1 beacon during the entire
simulation is possible even with high channel load (see
Fig. 15a). This, of course, changes when requiring regular
updates as packets are lost and updates are missed due to
collisions. Following our expectations from above, mobility
has only little impact for the scenarios without buildings.
However, we can observe that it has indeed an impact and
can increase the knowledge if the scenario contains buildings
(Manhattan vs. Manhattan static). Here, mobility helps
achieving links and thus knowledge about other vehicles by
moving either into LOS or at least increasing signal quality
for NLOS paths.

Fig. 17 shows the average network PAoI (solid and
dotted lines) as well as the corresponding network target
AoI (dashed lines) for all scenarios. Here, the solid lines
correspond to the standard PAoI (no spatial model) whereas
the dotted lines correspond to the weighted PAoI (α =
1.0, β = 0.01). The latter one needs to be evaluated against
the weighted the target AoI (colored dashed lines) whereas
the standard case is evaluated against the target AoI of
100 ms (black dashed line).

Following the previously described effects, the spatial
model reduces the values for PAoI and target AoI in all
scenarios. The results for the scenarios without buildings
(Freespace static and Freespace) are in line with Fig. 13
for both case: the PAoI follows the beacon rate, meets the
target at 13 Hz and 11 Hz for the standard and weighted
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Figure 17: Average PAoI (solid and dotted lines) and corresponding
target AoI (dashed lines) of the entire network for all scenarios). The
solid lines show the standard PAoI wheres the dotted lines show the
weighted PAoI with an exemplary configuration of α = 1.0, β = 0.01.
The corresponding target AoI is shown by the dashed lines (black =
standard, color = weighted).

case, respectively, and increases again at higher beacon
rates, which leads to a minimum at 20 Hz (for the standard
case). Vehicle mobility here has almost no impact since all
vehicles already receive all signals and movement does not
change the interference domain.

For scenarios with buildings (Manhattan and Manhat-
tan static), we can observe some interesting effects. Both
scenarios have smaller standard PAoI values because of the
smaller interference domain and higher beacon reception
ratio (see Fig. 15b) due to buildings. Accordingly, the chan-
nel will be saturated only at very high beacon rates, which
leads to a minimal PAoI value at the highest simulated
beacon rate of 100 Hz. Here, the PAoI behaves similarly
to the short distance links from Section 5.4. Following the
smaller beacon reception ratio from Fig. 15b, the vehicle
mobility in the Manhattan scenario leads to slightly higher
PAoI values. This is due to the fact that mobility achieves
knowledge about new neighbors but increases the AoI for
old neighbors at the same time.

When applying the spatial model, the PAoI as well as
the target AoI is decreased as expected. However, they are
still higher than the values of scenarios without buildings
because the weighting coefficient ωi,j overall has larger
values. This is due to the current configuration of the
spatial model (α = 1.0, β = 0.01) and the overall smaller
distances and limited set of angles for the links between
vehicles due to the buildings (cf. Fig. 2). At the same
time, the weighted target AoI is almost constant for both
scenarios with buildings, being in-line with the metric of
known neighbors (Fig. 16). The result of both of these
effects is that the weighted PAoI reaches its corresponding
target AoI at the same beacon rate (≈ 10Hz) as in the
standard case. Thus, with this configuration of the spatial
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Figure 18: eCDF of observed beacon rate for the static target AoI of
100ms for different configurations of our spatial model. The dashed
line indicates the theoretical minimal required beacon rate in order to
reach the target AoI (assuming no propagation delay and collisions).

model, there is at least no visible benefit.

5.10. Adaptive Beaconing
In this section, we analyze the behavior of our AoI-based

algorithm for adapting the beacon rate as well as the impact
by the spatial model. We use the Manhattan scenario from
Section 5.9 with buildings and vehicle mobility and a target
AoI of 100 ms. Vehicles start with an initial beacon rate of
10 Hz, which is the theoretical minimal beacon rate required
to reach the target AoI, assuming no propagation delay
and packet collisions. We simulate for 30 s but treat the
first 10 s as warm-up period, during which the beacon rate
achieves a steady-state.

Fig. 18 shows the beacon rates observed from all vehicles
in form of an empirical cumulative distribution function
(eCDF) for different configurations of our spatial model.
The adaptive algorithm leads to a beacon rate above the
theoretical minimal beacon rate (10 Hz) required to reach
the target AoI of 100 ms in most cases. In contrast, only
a few values are below the minimum rate, leading to too
infrequent updates in all configurations. However, the
values are influenced by the configuration of our spatial
model: In general, we can observe that applying our spatial
model leads to a better beacon rate selection (a better fit
to the required beacon rate of 10 Hz). This becomes more
visible with stricter configurations (larger values of α and
β, c.f Section 5.8). The beacon rates are less distributed
(steeper eCDF curve) and closer to the theoretical minimal
beacon rate. E.g., the mean value is at 12 Hz and 14 Hz
for the strictest configuration (red) and the standard case
(blue). In fact, the standard case has the most values
below the minimal beacon rate of 10 Hz (13%) and above
20 Hz, which is double the minimal beacon rate, (6%). In
comparison, the strictest weighted case has only 2% and
3% for low and high values, respectively. Similarly, the
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Figure 19: eCDF of observed PAoI for the target AoI of 100ms
(dashed line) for different configurations of our spatial model.

spatial model is able to reduce the amount of very large
beacon rates: ≈24 Hz vs. ≈17 Hz for the 95th percentile,
100 Hz (the maximum possible beacon rate) vs. ≈23 Hz for
the 98th percentile, and 100 Hz vs. ≈33 Hz for the 99th
percentile. The observed CBR follows accordingly with
a mean of 12% vs. 10% and a 99th percentile of 18% vs.
16% for the standard case (blue) and the strictest model
configuration (red). Overall, using the spatial model avoids
outliers in both directions (too little and too high values)
during beacon rate selection, which prevents too infrequent
updates and high channel usage.

Fig. 19 shows the PAoI measurements observed from
all vehicles in form of an eCDF for different configurations
of our spatial model. Since the AoI is directly related to
the beacon rate, the values follow the previously described
effects (see Fig. 18): The stricter the spatial model con-
figuration, the closer are the values to the target AoI of
100 ms, which serves as the set-point for the PID controller
(see Section 4.2). Thus, the strictest configuration (red)
has the largest but also closest PAoI values with the least
spread. It has slightly higher mean PAoI values (0.08 s vs.
0.09 s) but leads to less deviation, e.g., 0.057 s vs. 0.074 s
at the 25th percentile and 0.095 s vs. 0.092 s at the 75th
percentile for the standard case (blue) and the strictest
model configuration (red), respectively.

To visualize this effect more strongly, Fig. 20 shows
the average deviation from target AoI of 100 ms for dif-
ferent configurations of our spatial model. Again, stricter
model configurations lead to lower deviation, e.g., 67.5%,
45.7%, 38.4%, and 32.3% at the 75th percentile. In general,
the overall performance of the system also increases when
applying our spatial model: The strictest configuration
reduces the outliers with large PAoI values from 0.21 s to
0.19 s at the 99th percentile. Thus, the ratio of observed
PAoI measurements that are below their respective target
AoI increases accordingly with stricter configurations (86%,
89.9%, 91.5%, and 92.3%). The remaining values above
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Figure 20: Average deviation (ratio) from target AoI of 100ms for
different configurations of our spatial model.

the target AoI correspond mostly to beacon rates smaller
than 10 Hz (see Fig. 18).

6. Discussion & Remarks

Throughout this work, we used a static target AoI of
100 ms, since this value is often used in literature as a
desired update interval for information used by cooperative
driving applications. This value, however, is arbitrary
and can freely be configured dependent on the specific
needs of the chosen application. Our proposed spatial
model is independent of the actual value for this target
AoI, since the same weighting coefficient is applied to both,
the observed PAoI values as well as the static target AoI.
When modifying the value of the target AoI, the intersection
point with the average PAoI will be shifted along the x-
axes, leading to a different beacon rate that is sufficient
for meeting the target. When the target value is increased,
this beacon rate decreases and vice versa. In case both, a
small target AoI and a low beacon rate, is desired, it can be
beneficial to use a stricter configuration of our spatial model
(i.e., lager values for α and β). This will impose a greater
selectivity in the importance of vehicles and cope with
effects of the wireless communication channel as described
in Section 5.3.

We chose to aggregate PAoI values from multiple neigh-
boring vehicles using the average function instead of some
high percentile (e.g., 90th or 99th) due to multiple reasons.
The average PAoI is a typical metric used in the field of
age of information [3]. When using high percentiles in-
stead of an average in order to focus on neighbors with
bad freshness (i.e., high PAoI), the aggregated PAoI value
will be worse (i.e., higher) and the target AoI will not be
reached at all for the standard case. Applying our model
in this case will result in an even better performance in
comparison as the target AoI will still be reached (we do
not show corresponding results within this manuscript).

The selection of the model parameters as well as the
scenario play an important role in the resulting PAoI and
target AoI values. A configuration which focuses mainly on
the distance between vehicles is only useful if the interfer-
ence domain is already large. In contrast, if the interference
domain is small and observed AoI values of neighboring
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vehicles are similar, a different configuration is useful. The
mobility of vehicles did not play a big role within the re-
sults of our simulation study, but it can have a big impact
on the knowledge of neighboring vehicles in scenarios with
buildings.

Putting our spatial model to practical use within an
AoI-based beacon adaption algorithm helps reaching an AoI
requirement while avoiding strong outliers for the beacon
rate. Accordingly, the channel usage is reduced and too
infrequent updates are avoided. It should be noted that
we used a very simple approach for controlling the beacon
rate based on a PID controller. In fact, a PID controller
is not well-suited for our use-case of keeping the PAoI
below the target AoI as it tries to reach the set-point (the
target AoI) exactly and treats positive & negative deviation
from this value equally. A negative deviation from the set-
point (i.e., PAoI lower than target AoI) is better (and even
desired) than a positive deviation (which indicates outdated
information). However, even with our simple approach, we
are able to illustrate the benefit of applying the spatial
model.

7. Conclusion

We explored the use of the age of information (AoI)
in the context of intelligent transportation systems (ITS).
First approaches of using the AoI in ITS focused on the
original definition only, i.e., to measure the PAoIs for every
received message and then to interpret the resulting values
as they are. We, however, observed that this is not adequate
in this application scenario as effects from the wireless
communication channel may lead to quite variable PAoI
measures for farther away vehicles – even though they play
a less important role in many ITS applications.

In this paper, we proposed a new way of interpreting the
AoI for arriving packets. We focus on the location of the
transmitting vehicle as a metric to assess the importance of
the information. Using a weighting coefficient applied to the
PAoI and also to an AoI requirement, we can add a priority
measure. As an example for ITS, we use the orientation
and the distance of the corresponding vehicles for this
process. It should be noted that the underlying PAoI
metric is not changed in this procedure, i.e., compatibility
with other approach is maintained. The benefit of applying
the model is dependent on its parameters as well as the
scenario, which requires careful configuration. Our spatial
model allows to focus on timely updates of relevant vehicles
for meeting a given AoI requirement, which helps saving
resources on the wireless channel. Applying the model
to an AoI-based beacon adaption algorithm thus increases
information freshness while keeping beacon rates reasonable
and resource usage small.

In future work, we plan to apply our spatial model to
various different ITS applications to gain further insights to
the advantages but also limits of the AoI metric in general.
Based on the case-study in this work, more sophisticated
protocols for adaptively adjusting the beacon rate based

on the importance of the information to other vehicles can
be build.
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