TK N Telecommunication
Networks Group

Technical University Berlin

Telecommunication Networks Group

TKN15.4: An IEEE 802.15.4 MAC
Implementation for TinyOS 2

Jan-Hinrich Hauer

hauer@tkn.tu-berlin.de

Berlin, March 2009

TKN Technical Report TKN-08-003

TKN Technical Reports Series
Editor: Prof. Dr.-Ing. Adam Wolisz

Abstract

We present TKN15.4, a platform independent IEEE 802.15.4-2006 MAC implementation
for the 2.1 release of the TinyOS operating system. After establishing a set of design goals we
introduce the TKN15.4 architecture, describe the component breakdown and illustrate how
TKN15.4 builds upon an extension of the TinyOS 2 resource arbitration mechanism and a
set of revised PHY /MAC interfaces. While the TinyOS 2.1 implementation was developed
on the Tmote Sky platform a core design goal was platform-independence: as long as a set
of well-defined requirements are met the MAC implementation can be used on any TinyOS 2
platform. We give an overview of the TinyOS-2.1 implementation and explain the necessary
steps for making TKN15.4 available on a new TinyOS 2 platform.

TU BERLIN

Contents

2

2 Background| 4
21 TEEE 802.15.4. e 4
[2.1.1 Physical Layer| o o 4

[2.1.2 Medium Access Control Sublayer| 4

R.2 TinyOS 2 e 5

[3 Design Goals and Challenges| 7
3.1 Design Goals| 7
[3.1.1 Platform Independence| 7

[3.1.2 Modularity] 8

3.1.3 Extensibility] 8

[3.2 Challenges|. 8
3.2.1 TinyOS 2 Integration| 9

B.22 Clock Driftl 10

4 TKN15.4 Architecturel 11
4.1 MAC Decomposition| 11
4.2 Radio Arbitration in Beacon-FEnabled PANs| 14
4.3 Interface Definitions| o o L 17
[4.3.1 Interfaces Towards the Next Higher Layer| 17

4.3.2 Interfaces Towards the Radio Driverl 18

[TinyOS-2.x Implementation| 19
b.1 Implementation Status| oo oo 19
9.2 Directory Structure|.o 19
b.3 Plattorm Requirements|. 19
5.4 Example Applications and Debugging Support| 20

6 Related Workl 22
[7__Conclusionl 23
oyt Technical Universis TKN-03-003 Page 1

TU BERLIN

Chapter 1

Introduction

In 2003 the task group 4 of the IEEE 802.15 working group released the first edition of the
802.15.4 standard [14] to enable wireless connectivity between “ultra-low complexity, ultra-
low cost, ultra-low power consumption, and low data rate” devices in wireless personal area
networks (WPAN). The standard covers the physical layer (PHY) and the medium access
control sublayer (MAC) in the ISO-OSI layered network model. It has attracted strong
interest in industry and academia and is now (partially) adopted by several other wireless
standards, such as ZigBee [30], IETF 6lowPAN [I3] or WirelessHART [9).

In contrast to the many analytical and simulation studies of the 802.15.4 MAC [22],29, 21],
as well as the several experimental investigations of the 802.15.4 PHY [23], 18|, 28] so far very
little research related to the 802.15.4 MAC (and protocols above) has been evaluated exper-
imentally, with real hardware under realistic conditions. While the first steps in protocol
design can often be made with the help of analytical models and simulation, the last steps re-
quire the use of real hardware, in realistic environmental conditions and experimental setups.
The lack of an empirical investigation of the 802.15.4 MAC has not least been caused by the
fact that a stable, open-source 802.15.4 MAC implementation has been unavailable. Our work
aims at closing this gap: we present TKN15.4, a platform independent IEEE 802.15.4-2006
MAC implementation for the 2.1 release of the TinyOS [16] execution environment.

The 802.15.4 MAC is responsible for a number of tasks ranging from PAN association
and disassociation, over periodic beacon transmission and synchronization to the actual
channel access mechanism. The standard supports several different configurations: a PAN
may operate in a star- or peer-to-peer topology; it may use periodic beacon transmission
(beacon-enabled PAN) or not (nonbeacon-enabled PAN); and the channel access can either
be contention-based (unslotted CSMA-CA), contention-free (guaranteed time slots, GTS)
or scheduled contention-based (slotted CSMA-CA). The numerous configuration options in
conjunction with the tight resource constraints of a typical sensor node platform call for a
flexible design that can be adapted to the particular application requirements. Because it
allows to break a design into many self-contained components and provides an event-based
programming model that matches the 802.15.4 specification quite well, we have selected the
TinyOS 2 operating system [I0] as the execution environment for our 802.15.4 MAC imple-
mentation. While all development was made on the Tmote Sky platform [20], one primary
design goal is platform-independence: as long as a small set of well-defined requirements are
met (essentially a certain radio chip abstraction and timers that satisfy the accuracy and pre-

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 2

TU BERLIN

cision requirements of the standard) the MAC implementation can be used on any TinyOS
2 platform.

The rest of this document is structured as follows: Chapter 2| presents an overview
of the IEEE 802.15.4 standard and the TinyOS 2 operating system, Chapter [3] describes
the TKN15.4 design goals and discusses practical challenges and Chapter [4] introduces the
TKN15.4 architecture including (1) a component breakdown of the MAC, (2) an extension to
the TinyOS 2 resource arbitration mechanism, and (3) a set of revised PHY/MAC interfaces.
The following Chapter [5] reports on the details of the TinyOS-2.x implementation, Chapter [f]
presents related work and Chapter [7] concludes this document.

Please note that this document does not include an evaluation of TKN15./, because we
defer the evaluation, including interoperability tests with certified MAC implementations, to
a future report. Note also that this report is based on the TKN15.4 TinyOS 2 CVSH version
of 3rd April 2009; if future modifications affect the content of this document, then this will
be recorded in the TKN15.4 README. txt ﬁleﬂ

"http://sourceforge.net/cvs/7group_id=28656
2tinyos-2.x/tos/lib/mac/tkn154/README. txt in the tinyos-2.x module

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 3

http://sourceforge.net/cvs/?group_id=28656

TU BERLIN

Chapter 2

Background

This Chapter gives a brief overview of the IEEE 802.15.4 standard [15] and the TinyOS 2
operating system [16].

2.1 IEEE 802.15.4

Following the general IEEE 802 policy the standard covers the physical layer (PHY) and the
medium access control (MAC) sublayer.

2.1.1 Physical Layer

The PHY services are structured into a data and management plane. The PHY data service
allows to transport MPDUs between peer MAC sublayer entities; the PHY management ser-
vice allows to control the internal operating state of the transceiver (receive/transmit/off), to
perform clear channel assessment (CCA), energy detection measurements within the current
channel and to set PHY-specific attributes like the RF channel or transmit power. The stan-
dard specifies four PHYSs in the 868/915/2450 MHz ISM bands based on different modulation
techniques. In the popular 2.4 GHz band the direct sequence spread spectrum (DSSS) PHY
achieves a data rate of 250 kb/s using offset quadrature phase-shift keying (O-QPSK). One
4-bit symbol is mapped to a 32-chip sequence and chips are transmitted at a nominal chip
rate of 2 Mchip/s resulting in a symbol rate of 62.5 ksymbol/s. The transmit power of a
802.15.4 transceiver is typically around 0 dBm.

2.1.2 Medium Access Control Sublayer

The MAC services are structured into a data and management plane. The data service allows
to transfer a MSDU to a peer device, which may include an acknowledgement from the peer
device and/or several retransmissions. The management service is responsible for device con-
figuration, periodic transmission of and synchronizing to beacons, enabling PAN association
and disassociation, employing security mechanisms and handling the GTS mechanism.

The MAC sublayer supports different configurations and operating modes. One common-
ality is that every network has exactly one PAN coordinator, which is the primary controller
responsible for PAN identifier and device address assignment and device synchronization.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 4

TU BERLIN

Bflelacon Beacon
i CAP CtP _"““_
| — > I
| GTS | GTS Inactive

oltl2l3l4lslsl7lsloltoltt]izl13]14]15

(Active)

|
| SD=aBaseSuperframeDuration*25° synbols
i BI=aBaseSuperfiameDuration*2E° symbols

Figure 2.1: IEEE 802.15.4 superframe structure (source: [15]).

802.15.4 PANS can either be nonbeacon-enabled or beacon-enabled. In a nonbeacon-enabled
PAN frames are transmitted according to an unslotted CSMA-CA algorithm (nonpersistent
CSMA): if the channel is detected idle the transmission can start immediately otherwise the
device defers the transmission for a random time period uniformly drawn from an exponen-
tially increasing backoff interval. The destination device(s) either have to always listen or
achieve synchronization with schemes beyond the scope of the standard.

In beacon-enabled mode coordinators periodically transmit beacons which mark the be-
ginning of a superframe as depicted in Figure A beacon carries information about
pending data and the current network configuration. Immediately after the beacon follows
the contention access period (CAP). During the CAP devices use a slotted variant of the
CSMA-CA algorithm: a device must sense an idle channel twice before it may transmit and
both, channel sensing and transmission must be performed on backoff slot boundaries. The
CAP is followed by an optional contention-free period (CFP), which is portioned in so-called
guaranteed time slots (GTS). GTSs are allocated dynamically and the corresponding time
interval can be used exclusively to transmit packets in a contention-free fashion. The CFP is
followed by an optional inactive period in which all nodes can sleep to preserve energy and
achieve low duty cycles.

2.2 TinyOS 2

TinyOS [10] is an operating system for wireless embedded sensor networks. It consists of a
set of components and the nesC language [7] allows to combine these components to create
an application. TinyOS 2 [I6] is the second generation of the operating system that keeps
many of the basic ideas of its popular predecessor while pushing the design in several key
areas.

TinyOS 2 improves system reliability and robustness by redefining some of the basic
TinyOS 1.x abstractions and policies such as initialization, the task queue, resource arbitra-
tion and power management. For example, in TinyOS 2, every task has its own reserved slot

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 5

TU BERLIN

in the task queue and can be posted only once. These semantics lead to greatly simplified
code (no need for task reposting on error) and more robust components. The same principle
of compile-time allocation and binding is applied to many other aspects of the system: com-
ponents allocate all of the state they might possibly need; and the invariants are explicitly
reflected by the components and their interfaces, rather then being checked at runtime. This
design principle limits the flexibility, but makes many OS behaviors deterministic.

TinyOS 2 supports code reusability and portability in several ways. It is based on a nesC
version that uses the concept of generic components, which, similar to object-oriented pro-
gramming, can be used to create multiple component instances, but instantiated at compile-
time. It also supports network types at the language level: programs can declare data struc-
tures and primitive types that follow a cross-platform (1-byte aligned, big- or little-endian)
layout and encoding. This allows services to specify platform independent packet formats
without resorting to macros or explicit serialization. Finally, it uses a three-layer Hardware
Abstraction Architecture (HAA) [27] that decomposes the functionality of an individual sub-
system, for example timers, into three distinct layers. The HAA achieves code portability
through platform independent interfaces at the top layer, but at the same time allows the
applications to access a subsystem’s full capabilities through the chip-specific second layer,
if performance requirements outweigh the need for portability.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 6

TU BERLIN

Chapter 3

Design Goals and Challenges

This chapter lists the TKN15.4 design goals and discusses practical the challenges for an
implementation.

3.1 Design Goals

The design of TKN15.4 is based on three main goals: platform independence, modularity
and extensibility. They are explained in the following.

3.1.1 Platform Independence

A platform independent 802.15.4 MAC implementation is decoupled from a particular mote
platform and can be used on any platform that provides a compatible execution environment.
There are essentially three things that a platform independent 802.15.4 MAC implementa-
tion requires from the execution environment: timers that satisfy the precision and accuracy
requirements specified in the standard (e.g. 62.5 kHz and +40 ppm for the 2.4 GHz PHY),
suitable computational abstractions (processes/tasks) and a suitable radio chip (PHY) ab-
straction. The first two requirements are typically satisfied with the help of the operating
system, assuming that a suitable hardware clock is available. Ideally, the 802.15.4 PHY
interfaces would realize the interfaces towards the physical layer (radio). Flora et al. [4],
however, have argued that the specified PHY interfaces turn out to be problematic in prac-
tice: since the PHY provides only very basic services (like activation and deactivation of the
radio transceiver), many time critical operations would have to be performed inside the MAC.
In addition to periodic beacon transmission and tracking the most time critical operations
are as follows:

e In the CAP portion of a superframe the slotted CSMA-CA algorithm requires that the
transmission of a frame must start on a 20 symbol (equals 320 us in the 2.4 GHz band)
backoff slot boundary defined relative to the beacon transmission time.

e The CSMA-CA algorithm requires one (unslotted) or two (slotted) clear channel assess-
ments to be performed one/two backoff slot boundaries before the actual transmission.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 7

TU BERLIN

e In case of a CCA failure the transmission has to be delayed for a random time period
of 0 to 255 backoff periods (equals 0 ps to 5100 s in the 2.4 GHz band).

e The transmission of an acknowledgements must start between 12 symbols (equals 192 s
in the 2.4 GHz band) and 32 symbols (512 us in the 2.4 GHz band) after the reception
of the last symbol of the previous data or MAC command frame.

On a typical mote platform, these requirements can practically not be met by a platform
independent MAC protocol [4], rather they should be pushed from the MAC to the PHY,
ideally to hardware. Consequently we believe that the CSMA-CA algorithm and the trans-
mission of acknowledgements should be exposed as services by the radio abstraction, which
we consider a part of the execution environment rather than the TKN15.4 MAC. We present
our radio driver interface definitions in Section [4.3.2]

3.1.2 Modularity

The 802.15.4 MAC supports different channel access methods, network topologies, operating
modes and device types. It is thus not surprising that full-blown commercial implementations
of the 802.15.4 MAC/PHY result in code sizes of up to 37.3 kB [5]. Given that a typical
mote platform has about 48 kB of program memory and 10 kB of RAM [20], an 802.15.4
MAC implementation should follow a modular design that allows to select only the subset of
the MAC functionality required by the particular application. TKN15.4 achieves modularity
mainly by mapping the MAC services to software components and allowing to select a suitable
subset at compile time. While TKN15.4 defines some basic composability dependencies and
restrictions, it is currently left to the application developer to make reasonable choices about
which components are to be in- or excluded. The definition of suitable MAC functionality
subsets is not in the scope of this document but a topic of our future work.

3.1.3 Extensibility

Recently there have been a number of proposals on how the 802.15.4 MAC could be modified
to, for example, be able to better adjust the active period in beacon-enabled PANs [19],
allow implicit GT'S allocation [12] or reduce collisions in multi-hop beacon-enabled PANs [24].
Furthermore, the IEEE 802.15 WPAN Task Group 4e is currently defining a MAC amendment
to “enhance and add functionality to the 802.15.4-2006 MAC to better support the industrial
markets [...]” [II]. To support the research community in evaluating MAC extensions and
facilitate the transition to a future MAC revision the design of TKN15./ is kept extensible:
the component based design in conjunction with the TKN15.4 radio arbitration mechanism
(explained in Section allow flexible integration of new components and/or modification
of the superframe structure.

3.2 Challenges

The particular challenges for a TinyOS 802.15.4 MAC implementation and the standard’s
inherent challenges related to the drift of physical clocks is discussed in the following.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Page 8

TU BERLIN

320 us

k §

Device A | CCA | - CCA | FRAME |
Device B, | oA | = RAE |
Device B: —_é_C-E_“‘ [cca (Backoff)
time
(a) Perfect synchronization of the slot boundaries
o 320 us -
- 128 us "
Device A N CCA | FRAME |
IZB_UB+ "
Device B - CCA | ~ CCA | FRAME |
Device B: ~CCA | | CcA] FRAME

time

(b) Misalignment the slot boundaries by 8 symbols (128).

Figure 3.1: As long as devices are synchronized (a) during the CAP of a beacon-enabled PAN
frames will only collide if they are transmitted in the same backoff slots, because otherwise
the CCA mechanism will detect a busy channel: the frame from Device A would collide only
with the frame from Device By but not with a frame from B, because By would detect a
busy channel and backoff. However, if due to clock drift devices lose synchronization (b),
then their frames can collide with frames that are transmitted in subsequent backoff slots:
the frame from Device A would collide with both, the frame from Device By and Bs.

3.2.1 TinyOS 2 Integration

There are two main TinyOS-specific challenges for a platform independent 802.15.4 MAC
implementation: first, TinyOS is not a real-time operating system, yet in beacon-enabled
mode some operations need to be accurately timed. TKN15.4 solves this problem by pushing
most time-critical operations from the MAC to the chip-specific radio drivers, because the
drivers typically operate in a low-latency (interrupt) context and can better exploit the
particular hardware characteristics, for example hardware-generated acknowledgements [25].

Second, TinyOS 2 MAC protocols are traditionally radio chip specific: the abstraction
of a particular radio chip already includes a certain MAC protocol. Since there exists no
platform independent TinyOS 2 MAC protocols and there are no established interfaces or
guidelines on how the radio hardware should be exposed or how MAC protocols are to be
structured, one contribution of this work is the proposal of a set of platform independent
radio interfaces to be provided by a 802.15.4-compliant radio chip abstraction in TinyOS 2

(Section [4.3.2]).

Copyright at Technical University

Berlin. All Rights reserved. TKN-08-003

Page 9

TU BERLIN

3.2.2 Clock Drift

To the best of our knowledge, it has so far not been recognized that clock drift can cause
contradictions with the timing requirements of the slotted CSMA-CA in beacon-enabled
PANs. As explained in Section [3.1.1] in the CAP the slotted CSMA-CA algorithm requires
frames to be transmitted on backoff slot boundaries. In conjunction with the listen-before-
send mechanism slotted transmissions theoretically guarantee that the time interval during
which the arrival of one packet implies a collision with another packet (“vulnerability period”)
is limited to one backoff slot (320 ps). This is shown in Figure In practice, however,
clock drift can result in collisions between frames even if they are transmitted in subsequent
backoff slots and thus the practical vulnerability period is larger. This is explained in the
following.

A beacon represents the synchronization point in a superframe: every device must receive
the beacon as it determines the slot boundaries within the CAP (cf. Figure . The active
portion of a superframe is bounded by the beacon interval (BI), which is defined as:

BI = aBaseSuper frameDuration x 9B0

where 0 < BO < 14 for beacon-enabled PANs and aBaseSuper frameDuration = 960
[symbols], resulting in a maximum beacon interval of about 250 seconds in the 2.4 GHz
band. The CAP may span the entire active portion, which means that the slotted CSMA-
CA must be applicable until the end of the beacon interval, i.e. for up to 250 seconds after
the synchronization point.

The standard requires a system clock with a tolerance as great as £40 ppm. This means
that a device may have a clock deviation of +8 symbols (+ 128 us) compared to the nominal
time 3.2 seconds after the beacon, which is possible with beacon order > 8. The device
would then access the channel 8 symbols before/after the actual backoff slot boundary. One
important consequence is that its frame may then collide with a frame from another device
which has perfect timing (zero clock drift) even if the two frames are transmitted in different
backoff slots. This is depicted in Figure |3.1b

The effect can manifest when the relative offset between the clocks of two devices is
between 8 and 12 symbols, i.e. starting 1.6 seconds after the beacon arrival which is possible
in PANs operating with beacon order > 7. The practical implications of this effect on the
performance of a 802.15.4 network (in terms of throughput, delay, etc.) are not entirely clear,
but it is likely that throughput decreases due to an increased collision probability.

Clock drift is a non-negligible property of physical clocks and frequency skew of + 40
ppm is a typical value for quartz crystal oscillators. The effects of ambient temperature
and aging are responsible for additional clock drift. As stated by authors of the standard
themselves: “very small single-chip 802.15.4 implementations could well vary between & 40
ppm during a 16-second beacon period (macBeaconOrder = 10)” [§]. However, to the best
of our knowledge none of the existing MAC performance evaluation studies have taken clock
drift into consideration and we consider a re-evaluation of this aspect important future work.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 10

TU BERLIN

Chapter 4

TKN15.4 Architecture

The TKN15.4 architecture covers a platform independent 802.15.4 MAC implementation
and defines the interfaces towards the layer below (PHY / radio driver) and above (to the
network layer). The design and implementation of the radio driver (PHY) is platform/chip
specific and thus not part of the TKN15.4 architecture. This chapter introduces the MAC
architecture, explains its radio arbitration mechanism and lists its key interfaces. While the
component breakdown is decoupled from a specific operating system in this section we use
nesC [7] syntax and refer to existing TinyOS 2 library components and established TinyOS
software design patterns [6] whenever applicable.

4.1 MAC Decomposition

Figure shows an architectural overview of TKN15.4, its main components and the inter-
faces that are used to exchange MAC frames between components. While this figure abstracts
from the majority of interfaces and some configuration components, it illustrates one impor-
tant aspect, namely how access to the platform specific radio driver (PHY) is structured. For
the purpose of explanation the TKN15./ MAC can be subdivided into three sublayers:

On the lowest level (dark gray boxes), the RadioControlP component manages the access
to the radio: with the help of an extended TinyOS 2 arbiter component it controls which
of the components on the level above is allowed to access the radio at what point in time.
The use of a TinyOS resource arbiter avoids inconsistencies in the radio driver state machine
and is in line with the standard TinyOS 2 resource usage model: before a component may
access a resource it must first issue a request; once it is signalled the granted() event by
the arbiter the component can use the resource exclusively; and after usage the resource
must be releasedE] TKN15.4 extends this model by allowing a component that owns the
radio resource to dynamically transfer the ownership to a specific other component. This is
explained in Section

Most of the components on the second level (medium gray boxes) represent different parts
of a superframe: the BeaconTransmitP/BeaconSynchronizeP components are responsible for
transmission/reception of the beacon frame, the DispatchSlottedCsmaP component manages

"http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep108.html

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 11

http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep108.html

TU BERLIN

MLME-SAP MCPS-SAP
(AssociateP) (DisassociateP) (DataP) GndirecthFD (PollP) Coord-
1 t t t T RealignmentP
Fran"neTx
FrameRx

Coord-
BroadcastP DispatchQueueP | | RxEnableP
h
¥
Beacon- Beacon- Dispatch[Un]- NoCoord/No- | | Promiscuous- ScanP
TransmitP SynchromzeP SlottedCsmaP DewoeCpr ModeP

Radno['l’foxfOfﬂ
[Un]SlottedCsmaCa SimpleTransfer-
¥ ArbiterP
p
[RadioControlP
L 4
l ¥
RadioTx ? | | . Alarm

[Un]SlottedCsmaCa RadioRx RadioOff EnergyDetection

Figure 4.1: The TKN15. architecture: components are represented by rounded boxes, in-
terfaces by connection lines. The radio driver and symbol clock components are external to
TKN15.4.

Copyright at Technical University _0*.
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 12

TU BERLIN

Component Name | Function [Provided IEEE 802.15.4 Interface]

AssociateP PAN association [MLME-ASSOCIATE,MLME-COMM-STATUS]
BeaconTransmitP periodic beacon transmission [MLME-START]

BeaconSynchronizeP periodic beacon tracking [MLME-SYNC(-LOSS), MLME-BEACON-NOTIFY]
CoordBroadcastP transmission of coordinator broadcast frames

CoordRealignmentP managing realignment commands [MLME-ORPHAN, MLME-COMM-STATUS]
DataP assembling/dispatching data frames [MCPS-DATA, MCPS-PURGE]
DisassociateP PAN disassociation [MLME-DISASSOCIATE]

DispatchQueueP send queue for data/command frames

DispatchSlottedCsmaP frame transmission/reception during CAP (excluding the CSMA-CA algorithm)

DispatchUnslottedCsmaP frame transmission/reception in nonbeacon-enabled PANs (excluding the CSMA-CA algorithm)
IndirectTxP managing indirect transmissions

PibP maintaining the PAN Information Base [MLME-RESET, MLME-GET, MLME-SET]
PollP requesting data from a coordinator [MLME-POLL)]

PromiscuousModeP enabling/disabling promiscuous mode

RadioClientC virtualizing access to RadioControlP

RadioControlImplP access control to the radio

RadioControlP configuration for RadioControlImplP

RxEnableP enabling the receiver during idle time [MLME-RX-ENABLE]

ScanP channel scanning [MLME-SCAN]

SimpleTransferArbiterP radio resource arbitration

TKN154BeaconEnabledP MAC configuration when used in a beacon-enabled PAN

TKN154NonBeaconEnabledP | MAC configuration when used in a nonbeacon-enabled PAN

Table 4.1: The TKN15./ MAC components.

frame transmission and reception during the CAP and the NoCoordCfpP/NoDeviceCfpP com-
ponents are responsible for the CFPE] In nonbeacon-enabled mode a superframe structure is
not used and these components are replaced by the DispatchUnslottedCsmaP component,
which is then responsible for frame transmission and reception in nonbeacon-enabled mode.
For reasons stated in Section TKN15.4 does not implement the (un)slotted CSMA-CA
algorithm: the DispatchSlottedCsmaP/DispatchUnslottedCsmaP components are responsi-
ble for the initialization of the CSMA-CA parameters, but the algorithm is implemented and
executed in the platform specific radio driver (Section. In either beacon- or nonbeacon-
enabled mode the ScanP and PromiscuousModeP components are providing services for chan-
nel scanning and enabling/disabling promiscuous mode, respectively. The radio arbitration
mechanism is used to coordinate the activities of the components on this level so that they
do not overlap in time: typically a component is “active” only while it has exclusive access
to the radio resource. It then performs a certain task (e.g. transmission of a beacon or per-
forming a channel scan) and afterwards either releases the resource or passes it on to some
other component. This is explained in Section

The components on the top level (white boxes) implement the remaining MAC data and
management services, for example, PAN association or requesting (polling) data from a co-
ordinator. These services typically utilize data and command frame transmission/reception
based on the (un)slotted CSMA-CA algorithm and consequently the components are “wired”
via a send queue, DispatchQueueP, to either DispatchSlottedCsmaP (in beacon-enabled
PANs) or DispatchUnslottedCsmaP (in nonbeacon-enabled PANs). A component on this
level typically provides a certain MAC MLME/MCPS primitive to the next higher layer, it is

2In its current version TKN15.4 does not include a GTS implementation, the NoCoordCfpP/NoDeviceCEfpP
components are empty placeholder component.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 13

TU BERLIN

responsible for assembling the particular data or command frame and it accepts and pro-
cesses incoming frames of the same type. For example, the DataP component provides the
MCPS-DATA primitive to the next higher layer to send a frame to a peer device. On receipt
of the MCPS-DATA.request primitive DataP will assemble the data frame and enqueue it in
the send queue DispatchQueueP. The Dispatch[Un]SlottedCsmaP component will eventu-
ally dequeue the frame, and manage its transmission. Afterwards it will signal a completion
event to the DataP component, which in turn propagates a MCPS-DATA.confirm event back
to the next higher layer including an appropriate status code that denotes whether the trans-
mission was successful or not.

The next higher layer accesses all MAC services either via the TKN154BeaconEnabledP
component (in beacon-enabled PANs) or via the TKN154NonBeaconEnabledP component (in
nonbeacon-enabled PANs). These configuration components are nesC facades [6] responsible
for “wiring” the MAC components together, respectively. They allow to disable/remove
certain MAC functionality by specifying empty placeholder [6] components. Table lists
all TKN15.4 MAC components together with the provided MCPS/MLME primitives.

4.2 Radio Arbitration in Beacon-Enabled PANs

TKN15.4 includes a radio arbitration component (SimpleTransferArbiterP). With the help
of this arbiter the RadioControlP component decides which component may access the radio
at what time. Resource arbiters are part of the TinyOS 2 library and explained in TEP
108@ Two properties make the standard arbiters suboptimal for TKN15.4 when used in
beacon-enabled PANs: (1) the transition of the resource ownership from one component
to another may take an arbitrary time, because it typically involves posting a task (the
Resource.granted () event is signalled in a separate task) and (2) the resource arbitration
model is based on the assumption that clients are relatively independent of each other and
arbitration is based on a fixed queuing policy (e.g. round robin or first-come-first-serve).

The first is suboptimal, because a superframe is represented by multiple components and
just like there is a continuous transition between the different parts of a superframe in time
the access to the radio should be transferred immediately between the involved components.
For example, on a coordinator node immediately after a beacon has been transmitted the
radio should be switched to receive mode. If the component responsible for managing the
CAP is granted the access to the radio too late (because there are other tasks served before),
then incoming frames may be lost.

The second is suboptimal, because a superframe is dynamic and some parts of it are
dependent on others. For example, a beacon defines whether the following CFP is present and
missing an incoming beacon means that the entire superframe cannot be used. Consequently
the components that represent the superframe should be able to decide cooperatively at what
time which of them should be “active”. Instead of treating them as independent clients that
compete for access to the radio, it is more natural to let them coordinate when and in what
order they access the radio. Therefore we extend the standard Resource interface by a single
command and a single event that enables immediate transfer of the resource from one client
to another. The transfer does not involve posting a separate task and may override the

3http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep108.html

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 14

http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep108.html

TU BERLIN

interface TransferableResource{
async command error_t request();
async command error_t immediateRequest();
event void granted();
async command error_t release();
async command bool isOwner();
async command error_t transferTo(uint8_t dstClient);
async event void transferredFrom(uint8_t srcClient);

}

Figure 4.2: The TransferableResource interface extends the standard Resource interface
by an additional command transferTo() and an event transferredFrom() to transfer the
ownership of the resource from one client to another.

5. transferTo() ———
3. transferTof) 4}ra_|_15_fefl'<()‘
Beacon- Dispatch- .
SynchronizeP SlottedCsmaFJ GoDewceCfpa

SimpleTransfer-| [/
ArbiterP RadioControlP

Figure 4.3: Transferring the radio token between the components responsible for an incoming
superframe. The commands request(), transferTo() and the granted() event are part
of the TransferableResource interface.

1. requTest(}
2. granted()

-

default queuing policy. We call this extended interface TransferableResource, it is shown
in Figure

In the following we call the radio resource the “radio token”, because a token better
matches the notion of transferability. Figure shows an example of how the radio token is
shared between the components responsible for an incoming superframe: as long as the next
higher layer has requested synchronziation with the coordinator, the BeaconSynchronizeP
component will always have a request pending for the radio token (1). After it has been
granted the radio token (2) it will try to track the beacon from the coordinator. Once the bea-
con has been received, the radio token will immediately be transferred to the DispatchSlottedCsmaP
component (3), which is then responsible for managing the CAP. When the CAP has finished
the radio token is transferred to the component responsible for the CFP (4). Finally, at the
end of the CFP the token is passed back to BeaconSynchronizeP (5) to be able to receive
the next beacon. Afterwards, as long as no other components request the radio token, the
steps (3)-(5) repeat indefinitely.

Only the component that owns the radio token may access the radio and whenever a
component does not own the token, it is typically “inactive”: it may accept requests from the
next higher layer, but it will typically have to wait until it is transferred /granted the token

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 15

TU BERLIN

N Dispatch-
Br;:;;c::stP SlottedCsmaP
Dispatch- :
SlottedCsmaP .
: :
: :
. L]
Beacon- ; Beacon- ; ‘ Promiscuous- ‘
TransmitP : SynchronizeP | @DD&VCECfp'Dj [ModeP } ScanP Pij
] : . .
r : : A 1 : A T Y
J : : ; ; : : : :
Y y v L Y y Y Y \d
S'mi'bei;:,rF'f’ fer { RadioControlP
—_— request() and granted() ---=9 release() transferTo()

Figure 4.4: Resource arbitration in a beacon-enabled PAN: components that never actively
request the radio token are shown in white boxes; components that may request the token
are shown in medium gray color. The commands request(), transferTo(), release()
and the granted() event are part of the TransferableResource interface.

before it can serve the requests. A component owning the radio token must make sure that
it gives up the token at latest when the corresponding part of the superframe has finished
(cf. Figure . For example, whenever the DispatchSlottedCsmaP component is given the
token from the BeaconSynchronizeP component, it will first set an Alarm to expire at the
end of the CAP (less a platform specific guard time). And when this Alarm expires, it will
transfer the token to the component responsible for the CFP.

As shown in Figure[4.4]in addition to the BeaconSynchronizeP component the BeaconTransmitP,
ScanP, PipB and PromiscuousModeP components can also request the radio token from the
arbiter. Through interfaces not shown here a client of the arbiter can always check, whether
other clients have requested the token and then release it. For example, whenever the PipB
component requests the token to serve a MLME-RESET request from the next higher layer,
then the components responsible for the superframe will always give up the token via the
TransferableResource.release() command. When a token is released the arbiter will
allocate it to the next client based on a round-robin policy. Figure [£.4] shows all possible
transitions of the radio token from one component to another.

In a nonbeacon-enabled PAN a superframe structure is not used and the radio token is
never transferred between components. Instead components request it (via
TransferableResource.request()) and release it (via TransferableResource.release())
according to the standard TinyOS resource arbitration policyﬁ

“http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep108.html

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 16

http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep108.html

TU BERLIN

interface MCPS_DATA {
command ieeelb4_status_t request (message_t *frame, uint8_t payloadlLen,
uint8_t msduHandle, uint8_t txOptions);
event void confirm (message_t *frame, uint8_t msduHandle,
ieeelb4_status_t status, uint32_t timestamp);
event message_t* indication (message_t* frame);

}

interface MLME_BEACON_NOTIFY {
event message_t* indication (message_t *beaconFrame) ;

}

Figure 4.5: The MCPS_DATA and MLME BEACON_NOTIFY primitives are adapted to support
message_t and buffer swapping.

4.3 Interface Definitions

The 802.15.4 standard specifies 17 MAC and 6 PHY primitives [15]. TKN15.4 slightly adapts
the MAC primitives to better match TinyOS 2 design principles; this is explained in Section
For reasons stated in Section the PHY (radio driver) interfaces are revised; these
interface definitions are presented in Section [4.3.2]

4.3.1 Interfaces Towards the Next Higher Layer

TinyOS 2 does not support dynamic memory allocation, instead most allocation and binding
is pushed to compile time, which makes code more robust and predictable. This also holds
for the allocation of message buffers: a component that wants to send a packet is responsible
for allocating a message_t buffer, which is the TinyOS 2.x message buffer abstraction that
is used by protocols on network layer and above (cf. TEP 111E]). Consequently TKN15.4
adapts the MAC primitives to support message_t and the TinyOS buffer swapping semantics.
This is relevant for two MAC primitives, MCPS-DATA and MLME-BEACON-NOTIFY; Figure
shows the revised interface definitions.

In contrast to the primitives specified in the 802.15.4 standard, these interfaces do not
transport control information (source/destination address of the frame, etc.) explicitly.
Rather, this information is already contained in a message_t and can be configured /retrieved
via suitable accessor functions (via the IEEE154Frame interface, not shown here), which is in
line with the TinyOS 2 concept of treating message_t as abstract data type. A drawback
of using message_t, however, is that a message buffer always consumes the maximum MAC
payload plus header size, which frequently results in suboptimal memory usage. It is part of
our future work to design a more flexible message buffer abstraction for TinyOS 2.

All other MLME/MCPS primitives are adopted virtually one-to-one from the 802.15.4 specifi-
cation, with one exception: because it is usually more convenient for the caller the MLME_GET/SET
primitives consist of single commands (are non-split-phase), and the beacon payload for an
outgoing superframe on a coordinator is accessed not via PIB, but through a separate inter-
face (IEEE154TxBeaconPayload interface, not shown here).

Shttp://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep111.html

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 17

http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep111.html

TU BERLIN

interface RadioRx {
async command error_t enableRx(uint32_t tO, uint32_t dt);
async event void enableRxDone();
async command bool isReceiving();
event message_t* received(message_t *frame, const ieeelb4_timestamp_t *timestamp) ;

}

interface RadioTx {
async command error_t transmit(ieeelb4_txframe_t *frame, const ieeelb4_timestamp_t *t0, uint32_t dt);
async event void transmitDone(ieeel54 _txframe_t *frame, const ieeel54_timestamp_t *timestamp,
error_t result);
}

interface RadioOff {
async command error_t off();
async event void offDone();
async command bool isOff();

}

interface UnslottedCsmaCa{
async command error_t transmit(ieeel54_txframe_t *frame, ieeelb4_csma_t *csma);
async event void transmitDone(ieeel54 txframe_t *frame, ieeel54_csma_t *csma, bool ackPendingFlag,
error_t result);
}

interface SlottedCsmaCa{
async command error_t transmit(ieeelb54_txframe_t *frame, ieeel54_csma_t *csma,
const ieeelb4_timestamp._t *slotOTime, uint32_t dtMax, bool resume, uintl6_t remainingBackoff) ;
async event void transmitDone(ieeel54_txframe_t *frame, ieeelb4_csma-t *csma,
bool ackPendingFlag, uintl16_t remainingBackoff, error_t result);
}

interface EnergyDetection {
command error_t start(uint32_t duration);
event void done(error_t status, int8_t maxEnergylLevel);

}
Figure 4.6: The interfaces that a radio driver must provide to the TKN15.4 MAC.

4.3.2 Interfaces Towards the Radio Driver

TKN15.4 requires the radio driver to essentially provide the six interfaces shown in Figure
These interfaces push many time-critical operations from the MAC to the radio driver,
because the latter can include platform- and chip-specific code and is thus in a better position
to meet the tight timing constraints in beacon-enabled PANs (cf. Section [3.1.1]).

The RadioRx, RadioTx interfaces enable receive mode and allow the MAC to transmit a
frame at a specific point in time, respectively. The Radio0ff interface allows to disable the
transceiver and the SlottedCsmaCa, UnslottedCsmaCa interfaces transmit a frame based on
the (un)slotted CSMA-CA algorithm. The MAC specifies the initial CSMA-CA parameters
but the algorithm itself is implemented and executed in the radio driver. Also, the radio
driver is responsible for performing any random backoffs and for the transmission of acknowl-
edgements. The EnergyDetection interface is similar to the one defined in the standard. It
allows to obtain the maximum energy on a given channel over a certain time period.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 18

TU BERLIN

Chapter 5

TinyOS-2.x Implementation

This chapter summarizes the status of the implementation, describes the directory structure
of TKN15.4 in the TinyOS-2.1 module, explains the steps necessary for making TKN15./
available on a new TinyOS 2 platform and introduces the built-in debugging support.

5.1 Implementation Status

At the time of writing this document the TKN15.4 MAC implementation includes almost
the complete functionality described in the 802.15.4-2006 specification, except for (1) GTS
allocation and management, (2) security services, and (3) a few minor services like PAN ID
conflict notiﬁcationE] TKN15.4 was developed on and is available for the TelosB/Tmote Sky
platform [20]. Reportedly, it has also been successfully ported to the micaZ [2] platform
with little effort. While we have successfully performed a few interoperability tests with the
certified Texas Instruments 802.15.4 TIMAC [26], we defer the evaluation of TKN15.4 to a
future report.

5.2 Directory Structure

Within the TinyOS 2 module the TKN15.4 MAC implementation is located in the
tinyos-2.x/tos/lib/mac/tkn154 directory. This directory includes additional subdirecto-
ries for the interface definitions and the placeholder components. The location of platform
specific (e.g. CC2420 radio driver) code is out of the scope of this document but should follow
established TinyOS 2 guidelinesf] Table lists the directories that contain the TKN15.4
MAC implementation and, as an example, the directories containing the platform specific
code for the TelosB [20] platform.

5.3 Platform Requirements

To make the TKN15.4 MAC available on a new TinyOS 2 mote platform essentially the
following three requirements have to be met:

'For the details please refer to tinyos-2.x/tos/lib/mac/tkn154/README. txt
2http://tinyos.cvs.sourceforge.net /*checkout™* /tinyos/tinyos-2.x/README

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 19

TU BERLIN

Content Directory in the TinyOS-2.1 Tree

TKN15.4 MAC implementation
components tinyos-2.x/tos/lib/mac/tkn154
interfaces tinyos-2.x/tos/lib/mac/tknl54/interfaces
placeholder components tinyos-2.x/tos/lib/mac/tkn154/dummies
test applications tinyos-2.x/apps/tests/tkn154

Platform specific code for TelosB
configuration files tinyos-2.x/tos/platforms/telosb/mac/tknl154
modified timer subsystem tinyos-2.x/tos/platforms/telosb/mac/tkn154/timer
(CC2420 radio driver tinyos-2.x/tos/chips/cc2420_tkn154

Table 5.1: TKN15.4 directories in the TinyOS-2.1 tree.

1. The platform must include a radio driver that provides the interfaces listed in Sec-
tion When a platform supports only the nonbeacon-enabled mode then the radio
driver does not have to provide the SlottedCsmaCa interface, if it supports only the
beacon-enabled mode, then the UnslottedCsmaCa interface is not required. In addition,
the radio driver must use the TinyOS 2 Notify interface to be updated about changes
in the PHY PIB, and provide a set of PHY-specific constantsﬁ

2. The MAC implementation uses Alarm and Timer interfaces with a precision of a 802.15.4
symbol (62.5 kHz for the 2.4 GHz band) and an accuracy of £40 ppm. The Alarm and
Timer interfaces are standard TinyOS 2 interfaces that are provided by a platform’s
timer subsysternE] However, a TinyOS 2 platform typically does not provide these inter-
faces with the required precision/accuracy. In this case the platform’s timer subsystem
must be extended accordingly (possibly including the use of additional hardware)ﬂ

3. The platform must provide a TinyOS configuration component that connects (“wires”)
the platform independent TKN15.4 MAC implementation TKN154BeaconEnabledP or
TKN154NonBeaconEnabledP to the platform specific timer subsystem and radio driver.
In addition, the platform has to define a set of guard time constantsﬁ

5.4 Example Applications and Debugging Support

At the time writing this document there exist 5 example application for the beacon-enabled
mode. They are located in the tinyos-2.x/apps/tests/tkn154 folder and can be used
to test PAN association/disassociation, periodic beacon transmission/reception, direct and
indirect data transmission and the promiscuous mode. The applications have been success-
fully tested on the TelosB platform [20] (and reportedly on the micaZ [2] platform). The

3for an example see tinyos-2.x/tos/chips/cc2420_tkn154/CC2420TKN154C.nc and TKN154_PHY.h

“http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep102.html

®for an example see tinyos-2.x/tos/platforms/telosb/mac/tkn154/timer

Sfor an example see tinyos-2.x/tos/platforms/telosb/mac/tkn154/Ieee802154BeaconEnabledC and
tinyos-2.x/tos/platforms/telosb/mac/tkn154/TKN154 platform.h

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 20

http://tinyos.cvs.sourceforge.net/*checkout*/tinyos/tinyos-2.x/doc/html/tep102.html

TU BERLIN

$ cd tinyos-2.x/apps/tests/tkn154/TestStartSync/coordinator
$ TKN154 DEBUG=1 make telosb install

$ java net.tinyos.tools.PrintfClient -comm serial@/dev/ttyUSB0:115200
PibP:181:MLME RESET.request(1) -> result: O
BeaconTransmitP:247:MLME_START.request -> result: O
BeaconSynchronizeP:381:Token granted.
BeaconTransmitP:389:Putting new superframe spec into operation
BeaconTransmitP:436:Sending a beacon immediately.
BeaconTransmitP:501:Beacon Tx scheduled
BeaconTransmitP:516:Beacon Tx success at 1242
DispatchSlottedCsmaP:198:Got token, remaining CAP time: 30222
DispatchSlottedCsmaP:526:CapEndAlarm.fired()
DispatchSlottedCsmaP:169:updateState() transitions: 7711
DispatchSlottedCsmaP:370:Handing over to CFP.
BeaconSynchronizeP:407:Token transferred, will Tx beacon in 332
BeaconTransmitP:501:Beacon Tx scheduled for 31962.
BeaconTransmitP:516:Beacon Tx success at 31962
DispatchSlottedCsmaP:198:Got token, remaining CAP time: 30214

Figure 5.1: The debugging output for one of the TKNI15., example applications.
The second line installs the TestStartSync test application with debugging support
on a TelosB node. The next line starts the TinyOS 2 PrintfClient application (see
tinyos-2.x/apps/tests/TestPrintf/). The following output shows the debugging infor-
mation. For every dbg_serial () statement in the source code there is one line of debugging
output starting with the component name, followed by the line number in the source code
and the debugging string.

nonbeacon-enabled mode has only been cursorily tested and no test applications are avail-
able yet.

Debugging embedded systems is usually complicated and time consuming. TKN15.4 sup-
ports debugging over the serial interface (USB) using printf()-like debugging and assertions.
The first is exposed through the dbg_serial() macro, the second through the ASSERT()
macro, both defined and explained in tinyos-2.x/tos/lib/mac/tkn154/TKN154 MAC.h. Fig-
ure [5.1] shows the debugging output for one of the example applications.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 21

TU BERLIN

Chapter 6

Related Work

There exist a few open-source implementations of the 802.15.4 MAC: Meshnetics [17] provides
an open-source 802.15.4 MAC implementation for TinyOS 1.x that was developed for Atmel-
based platforms. It covers only the nonbeacon-enabled mode (without security services) and
is published under the Common Development and Distribution License. Cunha et al. [3] have
developed an 802.15.4 MAC implementation as part of their open-source “open-ZB” ZigBee
stack in TinyOS 2. The code has been made available only recently, for the most part the de-
velopment of TKN15./ and the open-ZB stack happened in parallel (unnoticed). In contrast
to TKN15.4 open-ZB builds on a monolithic architecture, where the entire MAC is con-
tained in a single component. Finally, J. Flora has developed an open-source 802.15.4 MAC
for TinyOS 1.x [4]; the development was made on platform based on a Freescale MC13192
radio and a Motorola HCS08 MCU.

There exist several commercial implementations of the 802.15.4 MAC. For example, as
part of their ZigBee “BeeStack” Freescale offers a fully compliant IEEE 802.15.4 MAC in-
cluding GTS and AES-128 security [5]. The object code is free and usable on different
Freescale platforms. The Texas Instruments 802.15.4 TIMAC [20] is available as object code
free of charge for the CC2430 platforms and for platforms based on a MSP430 MCU and a
C(C2420/CC2520 radio. In the latest revision 1.2.1 security services and GTS are not sup-
ported. The TIMAC is also used by the Texas Instruments ZigBee stack “Z-Stack”. Atmel
provides a 802.15.4 MAC [I] for platforms based on an Atmel AT86RF230/RF231 radio. This
implementation is available as source code but must only be used on Atmel-based platforms.
The latest release (2.1.1) does not include GTS.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 22

TU BERLIN

Chapter 7

Conclusion

In this document we presented TKN15./4, a platform independent IEEE 802.15.4-2006 MAC
implementation for the 2.1 release of the TinyOS operating system. We illustrated how
TKN15.4 achieves modularity through a fine-grained component breakdown and how the
architecture builds upon an extension of the TinyOS 2 resource arbitration mechanism and
a set of revised PHY/MAC interfaces. We showed how the resource arbitration extension
enables immediate transfer of the radio resource between the MAC components and thus
better matches the continuous transition between the different parts of an 802.15.4 super-
frame. The resource arbitration mechanism also makes the architecture extensible, because it
supports the integration of new components and thus modification of the existing superframe
structure. In order to better meet the tight timing constraints in beacon-enabled PANs the
PHY interfaces were revised: time critical tasks, such as the CSMA-CA algorithm and the
transmission of acknowledgements, are executed in a platform specific radio driver, because
it typically operates in a low-latency (interrupt) context and can better exploit the particular
hardware characteristics. Consequently, as long as a small set of well-defined requirements
are met the MAC implementation can be used on any TinyOS 2 platform — and reportedly,
TKN15.4 has been successfully ported to the micaZ [2] platform with little effort. An eval-
uation of TKN15./4, including interoperability tests with certified MAC implementations, is
still missing and will be part of future document.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 23

TU BERLIN

Bibliography

[1] Atmel. IEEE 802.15.4 MAC User Guide.
http://www.atmel.com/dyn/resources/prod_documents/doc5182.pdf.

[2] Crossbow Technology Inc. MICAz wireless measurement system. http://www.xbow. com,
June 2004.

[3] A. Cunha, A. Koubaa, R. Severino, and M. Alves. Open-ZB: an open-source implemen-
tation of the IEEE 802.15.4/ZigBee protocol stack on TinyOS. In Mobile Adhoc and
Sensor Systems, 2007. MASS 2007. IEEE Internatonal Conference on, pages 1-12, Oct.
2007.

[4] Jan Flora and Philippe Bonnet. Never Mind the Standard Here is the TinyOS 802.15.4
Stack. Technical Report 06-10, University of Copenhagen, 2006.

[5] Freescale. 802.15.4 MAC PHY Software Reference Manual. http://www.freescale.
com/files/rf_if/doc/ref_manual/802154MPSRM.pdf.

[6] David Gay, Phil Levis, and David Culler. Software design patterns for TinyOS. In
LCTES ’05: Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on Lan-

guages, compilers, and tools for embedded systems, pages 40-49, New York, NY, USA,
2005. ACM.

[7] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and David Culler.
The nesC language: A holistic approach to networked embedded systems. In PLDI ’03:
Proceedings of the ACM SIGPLAN 2003 conference on Programming language design
and implementation, pages 1-11, New York, NY, USA, 2003. ACM Press.

[8] Jose A. Gutierrez, Edgar H. Callaway, and Raymond Barrett. IEEE 802.15.4 Low-Rate
Wireless Personal Area Networks: Enabling Wireless Sensor Networks. IEEE Standards
Office, New York, NY, USA, 2007.

[9) HART Communication Foundation. WirelessHART. http://www.hartcomm?2.org.

[10] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer Pister.
System architecture directions for networked sensors. In Proc. of the ninth international

conference on Architectural support for programming languages and operating systems
(ASPL 2000), 2000.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 24

http://www.atmel.com/dyn/resources/prod_documents/doc5182.pdf
http://www.xbow.com
http://www.freescale.com/files/rf_if/doc/ref_manual/802154MPSRM.pdf
http://www.freescale.com/files/rf_if/doc/ref_manual/802154MPSRM.pdf
http://www.hartcomm2.org

TU BERLIN

[11]

[12]

[15]

[16]

22]

IEEE 802.15 WPAN Task Group 4e (TGde). WPAN Homepage.
http://www.ieee802.org/15/pub/TG4e.html.

Anis Koubaa, Mario Alves, and Eduardo Tovar. i-GAME: An Implicit GTS Allocation
Mechanism in IEEE 802.15.4 for Time-Sensitive Wireless Sensor Networks. Real-Time
Systems, Euromicro Conference on, 0:183-192, 2006.

Schumacher Kushalnagar, Montenegro. IPv6 over Low-Power Wireless Personal Area
Networks (6LoWPANSs): Overview, Assumptions, Problem Statement and Goals, 2007.

LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Standard for In-
formation technology — Telecommunications and information exchange between systems
— Local and metropolitan area networks — Specific requirements — Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (LR-WPANs), October 2003.

LAN/MAN Standards Committee of the IEEE Computer Society. IEEE Standard for In-
formation technology — Telecommunications and information exchange between systems
— Local and metropolitan area networks — Specific requirements — Part 15.4: Wireless
Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low Rate
Wireless Personal Area Networks (LR-WPANs), September 2006.

P. Levis, D. Gay, V. Handziski, J.-H.Hauer, B.Greenstein, M.Turon, J.Hui, K.Klues,
C.Sharp, R.Szewczyk, J.Polastre, P.Buonadonna, L.Nachman, G.Tolle, D.Culler, and
A.Wolisz. T2: A Second Generation OS For Embedded Sensor Networks. Technical Re-
port TKN-05-007, Telecommunication Networks Group, Technische Universitat Berlin,
November 2005.

MeshNetics. OpenMAC. http://www.meshnetics.com/opensource/mac/.

Emiliano Miluzzo, Xiao Zheng, Kristof Fodor, and Andrew T. Campbell. Radio charac-
terization of 802.15.4 and its impact on the design of mobile sensor networks. In Proc.
of Fifth European Conference on Wireless Sensor Networks (EWSN 2008), 2008.

Zeeshan Hameed Mir, Changsu Suh, and Young-Bae Ko. Performance Improvement of
IEEE 802.15.4 Beacon-Enabled WPAN with Superframe Adaptation Via Traffic Indi-
cation. In lan F. Akyildiz, Raghupathy Sivakumar, Eylem Ekici, Jaudelice Cavalcante
de Oliveira, and Janise McNair, editors, Networking, volume 4479 of Lecture Notes in
Computer Science, pages 1169-1172. Springer, 2007.

Moteiv Corporation. Tmote Sky Datasheet.
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf.

T.R. Park, T.H. Kim, J.Y. Choi, S. Choi, and W.H. Kwon. Throughput and energy
consumption analysis of ieee 802.15.4 slotted csma/ca. Electronics Letters, 41(18):1017—
1019, Sept. 2005.

Iyappan Ramachandran, Arindam K. Das, and Sumit Roy. Analysis of the contention
access period of IEEE 802.15.4 MAC. ACM Trans. Sen. Netw., 3(1):4, 2007.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 25

http://www.meshnetics.com/opensource/mac/
http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf

TU BERLIN

[23] Kannan Srinivasan, Prabal Dutta, Arsalan Tavakoli, and Philip Levis. Understanding
the causes of packet delivery success and failure in dense wireless sensor networks. In
SenSys ’06: Proceedings of the 4th international conference on Embedded networked
sensor systems, pages 419-420, New York, NY, USA, 2006. ACM.

[24] Maoheng Sun, Kaijian Sun, and Youmin Zou. Analysis and Improvement for 802.15.4
Multi-hop Network. Communications and Mobile Computing, 2009. CMC °09. WRI
International Conference on, 2:52-56, Jan. 2009.

[25] Texas Instruments. CC2420 data sheet.
http://focus.ti.com/1it/ds/symlink/cc2420.pdf.

[26] Texas Instruments. TIMAC - IEEE802.15.4 Medium Access Control (MAC) Software
Stack. http://focus.ti.com/docs/toolsw/folders/print/timac.htmll

[27] V.Handziski, J. Polastre, J.-H. Hauer, C. Sharp, A. Wolisz, and D. Culler. Flexible
Hardware Abstraction for Wireless Sensor Networks. In Proc. of 2nd European Workshop
on Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey, February 2005.

[28] J. Werb, M. Newman, V. Berry, S. Lamb, D. Sexton, and M. Lapinski. Improved quality
of service in ieee 802.15.4 mesh networks. Proceedings of International Workshop on
Wireless and Industrial Automation, pages 1-4, 2005.

[29] Jianliang Zheng and Myung J.Lee. A Comprehensive Performance Study of IEEE
802.15.4. IEEE Press Book, 2004.

[30] ZigBee Standards Organization. ZigBee Specification. http: //www. zigbee. orgl April
2005.

Copyright at Technical University _0*e
Berlin. All Rights reserved. TKN-08-003 Pa‘ge 26

http://focus.ti.com/lit/ds/symlink/cc2420.pdf
http://focus.ti.com/docs/toolsw/folders/print/timac.html
http://www.zigbee.org

	Introduction
	Background
	IEEE 802.15.4
	Physical Layer
	Medium Access Control Sublayer

	TinyOS 2

	Design Goals and Challenges
	Design Goals
	Platform Independence
	Modularity
	Extensibility

	Challenges
	TinyOS 2 Integration
	Clock Drift

	TKN15.4 Architecture
	MAC Decomposition
	Radio Arbitration in Beacon-Enabled PANs
	Interface Definitions
	Interfaces Towards the Next Higher Layer
	Interfaces Towards the Radio Driver

	TinyOS-2.x Implementation
	Implementation Status
	Directory Structure
	Platform Requirements
	Example Applications and Debugging Support

	Related Work
	Conclusion

